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1 Introduction

Codings of real numbers are based on the fact that each compact metric space is a factor of the
Cantor space of symbolic sequences. The binary coding of the unit interval I = [0, 1] is a factor map
Φ2 : ZN

2 → I defined by Φ2(u) =
∑∞

n=0 un2−n−1, where Z2 = {0, 1} is the binary alphabet. This
can be regarded as a dynamical system F : Z∗

2×I → I, or a continuous action of the monoid Z∗
2 on I.

The action is generated by maps F0, F1 : I → I given by Fi(x) = (x+i)/2, and Fu = Fu0 ◦· · ·◦Fuk−1

for any finite word u ∈ Zk
2 . For each infinite word u ∈ ZN

2 , Φ2(u) is the unique number contained in
all Fu[0,k)

(I). This can be generalized to any contractive A∗-action (see Edgar [2], or Barnsley [1]).
If all (Fa)a∈A are contractions on a compact metric space X , then there exists a unique attractor
Y ⊆ X with Y =

⋃

a∈A Fa(Y ), and a factor map Φ : AN → Y .
Binary coding is not very convenient, since continuous maps on I cannot be lifted to continuous

maps on the symbolic space. For u = 0∞ and v = 01∞, the first digit of Φ2(u)+Φ2(v) = 1
2 cannot

be determined from any finite prefices of u and v. To be able to perform continuous operations in
the symbolic space, we need a factor map with the extension property.

Theorem 1 (Weihrauch [6], Kůrka [3]) For a Cantor space X and a compact metric space
Y there exists a factor map Φ : X → Y with the extension property. This means that for any
continuous map ϕ : X → Y there exists a continuous map F : X → X such that Φ ◦ F = ϕ.

X
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//

ϕ
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A

A

A
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// Y

Then, any continuous map G : Y → Y can be lifted to a continuous map F : X → X such that
Φ◦F = G◦Φ. An example of a factor map with the extension property is Φ3 : ZN

3 → [0, 1] given by
ϕ(u) =

∑∞

n=0 un2−n−2, where Z3 = {0, 1, 2}. This is again the attractor of a Z∗
3-action determined

by maps Fi(x) = (x+ i)/4. The reason why Φ3 has the extension property is that the interiors of
intervals Fi(I) = [ i

4 ,
i+2
4 ], cover the space I.

The construction of a symbolic representation for the whole set R of real numbers poses another
problem that R is not compact, so only a noncompact subset of the symbolic space could be used
for the coding. A reasonable alternative is to construct a coding for a compactification of R, e.g.,
for the extended real line R = R ∪ {∞}. Even more promising seems to be to look for codings of
the complex sphere C = C ∪ {∞}. The complex sphere is the ultimate accomplished arithmetical
structure, which is perfect in the sense that nothing could be added to it or taken away from it
without destroying its beautiful geometric, algebraic, and analytical properties (see e.g., Penrose
[5] or Kůrka [4]).

The only holomorphic (differentiable) self-maps of the complex sphere are the rational functions,
i.e., quotients of polynomials. Among them, Möbius transformations are distinguished by being
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conformal isomorphisms. In fact, the conformal geometry of the complex sphere is created by the
group of Möbius transformations. Thus, when we try to construct a symbolic representation of
the complex sphere, a dynamical system based on Möbius transformations is the most obvious
choice. The aparent problem is that Möbius transformations are not contracting and that they are
surjective, so the forward images of the space cannot converge to a point.

However, instead of convergence of sets, we can use convergence of measures, and inquire
whether the images of the uniform measure converge to a point measure. This approach has an
additional advantage, that finite numbers (i.e., finite words in the alphabet of digits) can be inter-
preted as imprecise numbers. The preciseness of a number increases with its length. As generators,
we use local contractions, which are contractive only in neighbourhoods of their attractive fixed
points. We consider holomorphic dynamical systems generated by local contractions to a finite set
of regularly spaced points of the complex sphere. A natural choice for these points are vertices
of a Platonic solid. Among the five Platonic solid, the regular octahedron is distinguished by the
property that its six vertices represent important arithmetical constants: 0, 1, i, −1, −i and ∞.

We first consider the case of extended real line R, and construct holomorphic dynamical systems
consisting of local contractions to vertices of regular polygons. The coding should satisfy some
constraints, otherwise the contraction to a point would be cancelled by a contraction to an opposite
point. These constraints define subshifts on the set of vertices of the polygon. We consider two such
subshifts, the walk subshift, and the slow walk subshifts, and show that a symbolic representation
can be based on them. The most interesting case is the square, whose vertices are numbers 0, 1,
∞ and −1. This system can be extended to the complex sphere adding vertices in i and −i to
obtain the regular octahedron. The unique contraction quotient for which the system works is the
golden mean number q = (3 −

√
5)/2.

2 Real Möbius transformations

Consider the stereographic projection P of the extended real line R = R ∪ {∞} to the unit circle
{(x, y) ∈ R2 : x2 + y2 = 1} given by

P (x) =

(

2x

x2 + 1
,
x2 − 1

x2 + 1

)

, P−1(x, y) =
x

1 − y
.

Parametrize the unit circle by (cos(t − π
2 ), sin(t − π

2 )), where t ∈ T = R/2πZ, so t, t′ ∈ R are
indentified in T iff (t− t′)/2π ∈ Z. The lowest point (0,−1) of the circle is parametrized by t = 0
We have mutually inverse maps x : T → R and t : R → T given by

x(t) =
cos(t− π

2 )

1 − sin(t− π
2 )

= tan
t

2
, t(x) = 2 arctanx+ 2πk.

Consider orientation preserving Möbius transformations m(a,b,c,d)(x) = ax+b
cx+d

of R with positive
determinant ad−bc > 0. On T we get corresponding circle Möbius transformation M(a,b,c,d) =
t ◦ m(a,b,c,d) ◦ x which can be regarded as increasing continuous functions M : R → R with
M(t+ 2π) = M(t) + 2π. We have

M(a,b,c,d)(t) = 2 arctan
a tan t

2 + b

c tan t
2 + d

+ 2kπ,

M ′(a, b, c, d)(t) =
(ad− bc)(1 + x

2(t))

(a · x(t) + b)2 + (c · x(t) + d)2
.

Denote by Cq(t) = 2 arctan(q tan t
2 ) the contraction to 0 with quotient q < 1. This is the

Möbius transfromation which corresponds to the contraction x 7→ qx of the real line. We have
C′

q(t) = q(1 + x
2(t))/(1 + q2x2(t)) and

|C′
q(t)| ≤ 1 ⇐⇒ x(t) ≤ 1/

√
q ⇐⇒ |t| ≤ π − αq, where αq = 2 arctan

√
q < π.

We denote by U0 = [αq − π, π − αq] the contraction interval of Cq and by V0 = [−αq, αq]
the expansion interval of C−1

q = C 1
q

respectively. Note that V0 ⊂ U0 and Cq(U0) = V0, so
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Cq(π − αq) = αq. We consider also contractions Cq,α to points α ∈ T given by

Cq,α(t) = α+ Cq(t− α) = 2 arctan
(q + tan2 α

2 ) tan t
2 + (1 − q) tan α

2

(1 − q) tan α
2 tan t

2 + (1 + q tan2 α
2 )
.

Lemma 2 There exists an increasing continuous function ψq : [0, 2(π − αq)] → [0, 2αq] such that
ψq(0) = 0, 0 < ψq(t) < t for t > 0 and |Cq(W )| < ψq(|W |) for each interval W ⊆ U0. Moreover,
there exists a constant c > 0 such that for any W ⊆ V0 with |W | ≤ c we have |C−1

q (W )| >
ψ−1

q (|W |).

Here |W | is the length of the interval W . The proof follows from the fact that C′
q(t) < 1 for each

t ∈ int(U0).

3 Measures

Given a compact metric space X , we consider the space M(X) of Borel probability measures with
weak∗ topology, i.e., limn→∞ µn = µ iff limn→∞

∫

fdµn =
∫

fdµ for each continuous function
f . A continuous function F : X → Y extends to a continuous map F : M(X) → M(Y ) by
(Fµ)(U) = µ(F−1(U)). Denote by δx the Dirac point measure concentrated on x, i.e., δ(U) =
1 iff x ∈ U . Measures which are absolutely continuous with respect to the Lebesgue measure
have densities, which are nonnegative functions with unit integral. In particular the uniform
Lebesgue measure κ on T has the constant probability density h(t) = 1/2π. The corresponding
measure xκ on R has the Cauchy density h(t(x)) · t

′(x) = 1
π(1+x2) . The probability density of

M(a,b,c,d)κ is

h(a,b,c,d)(t) = h(M−1
(a,b,c,d)(t)) · (M−1

(a,b,c,d))
′(t)

=
1

2π
· (ad− bc)(1 + x

2(t))

(d · x(t) − b)2 + (c · x(t) − a)2

A probability measure on the circle (uderstood now as a subset of the complex plane C) can be
characterized by its mean E(µ) :=

∫

T
dµ which is a complex number in the unit disk. For a

measure with density h we get E(h) =
∫ π

−π
h(t)eit dt. In particular for the densities of Möbius

transfromations, the real and imaginary parts are

<E(h(a,b,c,d)) =
ad− bc

π

∫ +∞

−∞

(1 − x2) dx

[(dx − b)2 + (cx− a)2](1 + x2)

=
(c2 + d2 − a2 − b2)[(a− d)2 + (b+ c)2]

(c2 + d2 − a2 − b2)2 + 4(ac+ bd)2

=E(h(a,b,c,d)) =
ad− bc

π

∫ +∞

−∞

2xdx

[(dx − b)2 + (cx− a)2](1 + x2)

=
2(ac+ bd)[(a− d)2 + (b + c)2]

(c2 + d2 − a2 − b2)2 + 4(ac+ bd)2

The argument arg E(h) characterizes the mean of the Möbius transformation on T and the absolute
value |E(h)| characterizes the preciseness of the distribution. In particular for the uniform measure
with density h(t) = 1/2π we have E(h) = 0. For the point measure δt we have E(δt) = eit, so
|E(δt)| = 1. In the sequel we use the following obvious lemma.

Lemma 3 Let (Mn : T → T)n≥0 be a sequence of circle Möbius transformations. Assume that
there exists t ∈ T and c > 0 such that for each interval I 3 t we have lim infn→∞(Mnκ)(I) > c.
Then limn→∞(Mnκ)(I) = 1 and limn→∞Mnκ = δt.

3



4 Subshifts and their actions

For a finite alphabet A, denote by A∗ :=
⋃

n≥0A
n the set of words over A. The length of a word

u = u0 . . . un−1 ∈ An is denoted by |u| := n and the word of zero length is λ. We say that u ∈ A∗

is a subword of v ∈ A∗ (u v v), if there exists k such that vk+i = ui for i < |u|. We denote by
u[i,j) = ui . . . uj−1 and u[i,j] = ui . . . uj subwords of u associated to intervals. With the operation
of concatenation and empty word λ, A∗ is the free monoid over A.

We denote by AN the Cantor space of infinite sequences of letters of A equipped with the
metric d(x, y) := 2−n, where n = min{i ≥ 0 : xi 6= yi}. The shift map σ : AN → AN is
defined by σ(u)i = ui+1. A subshift is a nonempty subset Σ ⊆ AN, which is closed and σ-
invariant, i.e., σ(Σ) ⊆ Σ. For a subshift Σ there exists a set D ⊆ A∗ of forbidden words such that
Σ = SD := {x ∈ AN : ∀u v x, u 6∈ D}. A subshift is of finite type (SFT), if there exists a
finite set D ⊂ A∗ such that Σ = SD. The order o(Σ) is the length of the longest word of D. A
subshift is uniquely determined by its language L(Σ) := {u ∈ A∗ : ∃x ∈ Σ, u v x}. We denote
by Ln(Σ) := L(Σ) ∩An.

By a dynamical system we mean a Σ-action over a compact metric space X , i.e., a continuous
map F : L(Σ)×X → X satisfying Fλ = IdX and Fuv = Fu ◦Fv, (the discrete topology is assumed
on L(Σ)). The action is given by generators (Fa)a∈A and Fu = Fu0 ◦ · · · ◦Fun−1 for any u ∈ L(Σ).
As alphabets we use groups Zn = Z/nZ = {0, 1, . . . , n−1} of integers modulo n with circle distance
defined by d(a, b) = min{|a− b|, n− |a− b|}.

Definition 4 A holomorphic arithmetics with arity n > 2 and quotient 0 < q < 1 is a Σ-action
F : L(Σ) × T → T, where Fi = Cq, 2πi

n
, and Σ ⊆ ZN

n is a subshift. Denote by

Ui = [−π + αq + 2πi
n
, π − αq + 2πi

n
], Vi = [−αq + 2πi

n
, αq + 2πi

n
]

the contraction intervals of Fi and the expansion intervals of F−1
i respectively. The cylinder

of u ∈ Zk
n is Vu = Fu(Uuk−1

).

We have F ′
i (t) ≤ 1 iff t ∈ Ui and (F−1

i )′(t) ≥ 1 iff t ∈ Vi. Moreover, Fi(Ui) = Vi.

5 Walk subshifts

Definition 5 For n ≥ 2 the walk subshift Wn ⊆ Z
N
n is a SFT of order 2 with forbidden words

D = {ij ∈ Z2
n : d(i, j) > 1}.

Thus only transitions i → (i − 1), i → i, and i → (i + 1) to neghbouring letters are alowed in a
walk subshift. For n = 2, 3, Wn is the full shift.

Proposition 6 Let n ≥ 4, and let F : Z∗
n × T → T be the n-ary arithmetics with quotient q < 1.

Then the contraction and expansion conditions

Fi(Ui) ⊆ Ui−1 ∩ Ui ∩ Ui+1, (1)

F−1
i (Vi) ⊆ Vi−1 ∪ Vi ∪ Vi+1 (2)

are satisfied iff q = tan2 π(n−2)
4n

, i.e., αq = π(1
2 − 1

n
). In this case the conditions (1) and (2) hold

with equality and Vi ∩ Vi+1 6= ∅. If moreover n ≥ 5, then int(Vi) ∩ int(Vi+1) 6= ∅.

Proof: Since Fi(Ui) = Vi, the two conditions read

[−αq, αq] ⊆ [−π + αq + 2π
n
, π − αq − 2π

n
],

[−π + αq, π − αq] ⊆ [−αq − 2π
n
, αq + 2π

n
]

This yields αq ≤ π(1
2 − 1

n
) ≤ αq, so we obtain the equality and q = tan2 αq

2 = tan2 π(n−2)
4n

. The
intervals Vi and Vi+1 intersect iff αq ≥ π/n which gives n ≥ 4. For n ≥ 5, the inequality αq > π/n
is strict, so the interiors of Vi intersect as well.
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Theorem 7 Let n ≥ 4 and let F : L(Wn) × T → T be the holomorphic arithmetics with quotient
q = tan2

(

π
4 − π

2n

)

. There exists a factor map Φn : Wn → T such that for each u ∈ Wn,

lim
n→∞

Fu[0,n)
κ = δΦn(u),

⋂

k≥0

Vu[0,k)
= {Φn(u)}.

If n ≥ 5, then Φn has the extension property.

Proof: We use the contraction and expansion conditions of Proposition 6. Assume u ∈ Wn and
k > 0. Since u[k−1,k−2] ∈ L(Wn), we have Fuk−1

(Uuk−1
) ⊆ Uuk−2

. Applying Fu[0,k−2)
we get

Vu[0,k)
⊆ Vu[0,k−1)

. Using the contraction function ψ of Lemma 2, we get

|Vu[0,k)
| ≤ ψ(|Fu[1,k)

(Uuk−1
)|) ≤ ψ2(|Fu[2,k)

(Uuk−1
)|) ≤ · · · ≤ ψk(|Uuk−1

|).

Since the only fixed point of ψ is 0, we get limk→∞ |Vu[0,k)
| = 0, so

⋂

k Vu[0,k)
is a singleton containg

the unique element Φn(u). Clearly Φn : Wn → T is continuous. Since

(Fu[0,k)
κ)(Vk) = κ((Fu[0,k)

)−1Fu[0,k)
(Uu0)) = κ(Uu0) = 2(π − α),

we have limn→∞ Fu[0,k)
κ = δΦn(u) by Lemma 3.

To prove that Φn is surjective, take any t0 ∈ T. Choose u0 such that t0 ∈ Vu0 . Since F−1(Vu0) =
Vu0−1 ∪ Vu0 ∪ Vu0+1, there exists u1 such that u[0,1] ∈ L(Wn) and t1 = F−1

u0
(t0) ∈ int(Vu1 ),

etc. We get a sequence tk := F−1
u[0,k)

(t0) ∈ Vuk
, and Fu[0,k)

(tk) = t0. If I 3 t0 is any interval

containing t0, then for all sufficiently large k we have (Fu[0,k−1)
κ)(I) ≥ 2αq, so limk→∞ Fu[0,k−1)

κ =
δt0 . If n ≥ 5, then {int(Vi) : i ∈ A} is an open cover of T. Moreover, for any u ∈ L(Wn),
{int(Vua) : a such that ua ∈ L(Wn)} is an open cover of int(Vu). We show that Φn : Wn → T

has the extension property. Let ϕ : Wn → T be continuous and u ∈ Wn. There exists k0

and v0 such that ϕ([u[0,k0)]) ⊆ int(Vv0). There exists k1 and v1 such that v[0,1] ∈ L(Wn) and
ϕ([u[0,k1)]) ⊆ int(Vv[0,1]

). Continuing in this manner, we construct F (u) = v ∈ Wn such that
ΦnF (u) = ϕ(u).

6 Slow walk subshifts

For n = 4 the neighbouring intervals Vi intersect only in their endpoints, so Φ4 does not have the
extension property. To get it, we define a smaller subshift in which we cannot go around the circle
too fast. We keep the expansion condition while we relax the contraction condition.

Definition 8 For n ≥ 4 the slow walk subshift Sn ⊆ ZN
n is a SFT of order 3 with forbidden

words D = {ij ∈ Z2
n : d(i, j) > 1} ∪ {ijk ∈ Z3

n : d(i, k) > 1}.

Proposition 9 Let n ≥ 4, and let F : L(Si) × T → T be n-ary arithmetics with quotient q < 1.
Then the conditions

F−1
0 (V0) ⊆ V−1 ∪ V0 ∪ V1 (3)

F0(V0) ⊆ U−1 ∩ U1, (4)

F−1
0 (V0 ∩ U1) ⊆ U0 ∩ (V0 ∪ V1), (5)

F0(U0 ∩ V1) ⊆ U1 (6)

are satisfied iff q = qn = (c2n − cn
√

c2n + 4 + 2)/2, where cn = tan π
n
. In this case |Vi ∩ Vi+1| > 0

and conditions (4) and (5) are satisfied with equality.

Proof: Condition (3) gives α ≥ π
2 − π

n
analogously as in Proposition 6. It follows

U0 ∩ V1 = [α− π, π − α] ∩ [−α+ 2π
n
, α+ 2π

n
] = [−α+ 2π

n
, π − α],

U1 ∩ V0 = [α− π + 2π
n
, π − α+ 2π

n
] ∩ [−α, α] = [α− π + 2π

n
, α],

U0 ∩ (V0 ∪ V1) = [−α+ π, π − α] ∩ [−α, α+ 2π
n

] = [−α, π − α]
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number 
t= 0.000(0.00)
x= 0.000
 1.00  0.00
 0.00  1.00

number 1
t= 1.571(0.45)
x= 1.000
 0.69  0.31
 0.31  0.69

number 10
t= 0.983(0.62)
x= 0.535
 0.26  0.31
 0.12  0.69

number 101
t= 1.190(0.80)
x= 0.677
 0.28  0.30
 0.30  0.51

number 1010
t= 1.071(0.89)
x= 0.594
 0.11  0.30
 0.11  0.51

Figure 1: Some finite holomorphic numbers, their densities and cylinders

Condition (4) gives [F0(−α), F0(α)] ⊆ [−π + α+ 2π
n
, π − α− 2π

n
], so

F0(α) ≤ π(1 − 2
n
) − α =⇒ q tan α

2 ≤ tan(π
2 − 1

n
− α

2 ).

We have tan α
2 =

√
q and tan π

n
= cn. Using formulas tan(π

2 − x) = 1/ tanx and tan(x + y) =
(tanx+ tan y)/(1 − tanx tan y), we get

q
√
q ≤ (1/cn) −√

q

1 +
√
q/cn

=
1 −√

qcn

cn +
√
q

=⇒ q2 +
√
q(q + 1)cn − 1 ≤ 0.

Condition (5) gives

[α− π + 2π
n
, α] = U1 ∩ V0 ⊆ F (U0 ∩ (V10 ∪ V1)) = [F0(−α), F0(π − α)]

We get α ≤ F0(π − α) which is satisfied with equality and π − 2π
n

− α ≤ F0(α), so

(1/cn) −√
q

1 +
√
q/cn

=
1 − cn

√
q

cn +
√
q

≤ q
√
q =⇒ q2 +

√
q(q + 1)cn − 1 ≥ 0

Together with condition (4) we get q2 +
√
q(q+1)cn − 1 = 0, and therefore q+ cn

√
q− 1 = 0. This

is a quadratic equation with solution
√
q = (−cn +

√

c2n + 4)/2 and qn = (c2n − cn
√

c2n + 4 + 2)/2.
Condition (6) gives

[F0(−α+ 2π
n

), F0(π − α)] = F0(U0 ∩ V1) ⊆ U1 = [α− π + 2π
n
, π − α+ 2π

n
]
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Thus F0(π − α) ≤ π − α+ 2π
n

which is satisfied, and F0(α− 2π
n

) ≤ π(1 − 2π
n

) − α. We get

q

√
q − cn

1 +
√
qcn

= q tan(α
2 − π

n
) ≤ tan(π

2 − π
n
− α

2 ) =
1 −√

qcn

cn +
√
q

We get q2 ≤ 1 which is satisfied. To show |Vi ∩ Vi+1| > 0 we need α > π
n
, which gives

tanα =
2
√
q

1 − q
> cn =

1 − q√
q

or cn = tan π
n
<

√
2, which is satisfied for n ≥ 4.

0

1

8

7

0
0

01

07

10

11

18

81

8
8

87

70

78

77

0
0
0

0
0
1

0
0
7

0
1
0

0110
7
0

077

100

101

110

111

118
181

18
881

1

8
1
88
8
18
8
8

8
8
7

8
7
8

87
7

700

707

78
8

787

770

778

777

Figure 2: Means of finite holomorphic numbers

Theorem 10 Let n ≥ 4 and let F : L(Sn) × T → T be the holomorphic arithmetics with quotient
qn from Proposition 9. There exists a factor map Ψn : Sn → R with the extension property such
that for each u ∈ Sn,

lim
n→∞

Fu[0,n)
κ = δΨn(u),

⋂

k>0

Vu[0,k)
= {Ψn(u)}.

Proof: By (4) we have F1(U0∩V1) ⊆ U0∩V1 and by (6) we have F0(U0∩V1) ⊆ U1∩V0. Moreover,
both F0 and F1 are contracting on U0 ∩ V1. If u ∈ Z

N
n, then Fuk−1

(Vuk−1
) ⊆ Uuk−2

∩ Vuk−1
,

Fu[k−2,k−1]
(Vuk−1

) ⊆ Uuk−3
∩ Vuk−2

, so for any 0 < j < k we have F[j,k)(Vuk−1
) ⊆ Vuj

∩ Uuj−1 .

Since |Fu[0,k−1)
(Vuk−1

)| ≤ ψk(|Vuk−1
|), the intersection ∩nVuk−1

contains a unique point Ψn(u) and
limk→∞ Fu[0,k)

κ = δΨn(u). Conversely let t0 ∈ T and let u0 be such that t0 ∈ Vu0 . By (3) there

exists u1 such that u[0,1] ∈ L(Sn) and t1 = F−1
u0

(t0) ∈ Uu0 ∩ Vu1 . By (5) there exists u2 such that

u[0,2] ∈ L(Sn) and t2 = F−1
u1

(t1) ∈ Uu1 ∩ Vu2 , etc., so tk = F−1
u[0,k)

(t0) ∈ Uuk−1
∩ Vuk

. Since F−1
0 is

expansive on V0 ∩ U1, for any interval I 3 t0 we get |F−1
u[0,k)

(I)| ≥ 2α for all sufficiently large k. It

follows that limn→∞ Fu[0,k)
κ = δt0 .
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Figure 1 shows Möbius transformations of some finite holomorphic numbers. The graphs on
the left display the circle Möbius transformations, their densities and cylinders (botom thick line).
The graphs on the right display the same data in the extended real line. The mean of a number is
given by its argument, followed by radius in parenthesis. Figure 2 displays some finite holomorphic
numbers placed in the unit disk according to the mean of their densities. We can see that shorter
numbers are less precise and situated more to the centre of the circle. Since x(0) = 0, x(π/2) = 1,
x(π) = ∞ and x(3π/2) = −1, we use alphabet {0, 1, 8, 7} insted of Z4. Here 8 stands for ∞ and 7
for −1.

7 The octahedron subshift

In the complex domain, the stereographic projection

P (x+ iy) =

(

2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,
x2 + y2 − 1

x2 + y2 + 1

)

, P−1(x, y, z) =
x+ iy

1 − z

maps the extended complex plane C = C ∪ {∞} to the unit sphere S = {(x, y, z) ∈ R
3 : x2 +

y2 + z2 = 1}. In C we have Möbius transformations m(a,b,c,d)(z) = az+b
cz+d

, where a, b, c, d are
complex numbers with ad− cb 6= 0. Corresponding sphere Möbius transformations are M(a,b,c,d) =
P ◦m(a,b,c,d) ◦ P−1. We have again contractions Cq,α to points α ∈ S and their contraction and
expansion disks Uα and Vα. In Figure 3, the expansion disks Vi are displayed both in the extended
complex plane (left) and in the sphere (right).

The 4-ary holomorphic arithmetics, whose vertices are numbers 0, 1, ∞ and −1 can be extended
to the complex sphere C by adding two more vertices i and −i. The resulting six digits are vertices
of a regular octahedron. We use octahedron alphabet O = {0, 1, I, 7, J, 8} which corresponds to
vertices {0, 1, i,−1,−i,∞}. Denote by E(O) = {{0, 1}, {0, I}, {0, 7}, {0, J}, {1, I}, . . .} the set of
twelve edges of the octahedron.

Definition 11 The octahedron subhift O ⊂ ON is a SFT of order 3 with forbidden words D =
{ijk ∈ O3 : {i, j, k} 6∈ O ∪ E(O)}.

Thus u ∈ ON belongs to O iff each subword of u of length 3 belongs to an edge of the octahedron
Transitions like 018 or 01I are forbidden.

Figure 3: Expansion disks Vi of the octahedron action
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Theorem 12 Let F : L(O) × C → C be the L(O) action of contractions with quotient q4 =
(3 −

√
5)/2. There exists a factor map Θ : O → C such that for each u ∈ O,

lim
k→∞

Fu[0,k)
κ = δΘ(u),

⋂

k>0

Vu[0,k)
= {Θ(u)}.

Proof: For ij ∈ L = L(O) and jk ∈ L set

Wij = Fj(Vi) ∩ Vj ∩





⋂

k:ijk∈L

Uk



 , Zjk = Vj ∩ Uk ∩





⋃

l:jkl∈L

F−1
k (Ul)



 .

Then {int(Zjk) : jk ∈ L} is an open cover of C, and for any ijk ∈ L we have

Fk(Wij) ⊆Wjk, F−1
j (Zjk) ⊆

⋃

i:ijk∈L

Zij .

Some of these relations are displayed in Figures 4 and 5. The sets of the left-hand sides are in blue,
and the complements of the sets in the right-hand sides are in red. Thus the two regions should not
intersect. To prove convergence pick any u ∈ O. Then we have Fu[2,k)

(Wu[0,1]
) ⊆Wu[k−2,k)

and Fk is
contracting on Wu[k−2,k)

, so Fu[0,n)
κ converges to a point measure. Conversely, to prove surjectivity,

take any x0 ∈ C. Since int(Zij) cover C, there exists u[0,1] ∈ L such that x0 ∈ int(Zu[0,1]
). There

exists u2 such that u[0,2] ∈ L and x1 = Fu0(x0) ∈ Zu[1,2]
. Since F−1

j are expansive on Zjk, we get
the result.

000 001

010 011

Figure 4: Forward relations for the octahedron action

8 Conclusion

Besides the cases treated in the present paper, other examples of holomorphic arithmetics might be
of interest. In the one-dimensional case, the triangle seems to require even slower walk subshift of
higher order. The charactreristic angle should be obtained as a solution of a higher order algebraic
equation. (For the walk subshift of order 2 the equation is linear, for the slow walk subshift of

9



00 01

Figure 5: Backward relations for the octahedron action

order three, the equation is quadratic.) A general question is to characterize those subshifts of
ZN

n which admit a holomorphic arithmetics with a factor map. In the two-dimensional case, other
Platonic solids than octahedron are obvious candidates for nice holomorphic arithmetics.

A quite interesting use of the octahedron representation would be the construction of efficient
algorithms for arithmetical operations. Holomorphic arithmetics could avoid the notorious overflow
problems of computer arithmetics, since ∞ is a legitimate number in the system. At least two
arithmetical operations are trivial in the octahedron system. To obtain the negation of a number,
just interchange 1 with 7 = −1, and I = i with J = −i. To obtain the inverse element, interchange
0 with 8 = ∞ and I with J. Other arithmetical operations are less obvious, but it is clear that
there exist algorithms (recursive functions) for them. For any Möbius transformation M whose
parameters are algorithmic real or complex numbers there exists an algorithm which computes a
continuous function FM : O → O such that Θ ◦ FM = M ◦ Θ. The algorithm works on infinite
words u ∈ O in the sense that for each k ∈ N it determines mk > 0, and then computes FM (u)k

from u[0,mk) (see Weihrauch [6]). The operations of addition and multiplication are realizable
by partial recursive functions, since these operations cannot be continuously extended to whole
product C×C (addition is not defined at (∞,∞) and the multiplication is not defined at (0,∞)).
All these arithmetic algorithms can be described and implemented by passing through standard
real or complex arithmetics. Of course, their direct combinatorial description would be much more
interesting.
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