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1 Introduction

In [1] Z.Neubauer makes distinction between objective, constituted reality of modern science and
natural reality of things like rocks, clouds or animals. Objective reality of scientific descriptions
and data is based on objectivity of letters and words.

These twenty-two letter-signs, signs of sites or of the place assignments constitute the
fundaments of a reality we shall call the constituted or established reality, because,
contrary to natural reality, it does not come-to-be (does not arise through becoming)
but rather, it is established by order - through the order of the letters (Z.Neubauer
[1], page 13).

An important special case is the objectivity of natural numbers.

A number is not a name of an amount or of a count but the very numeric position,
which is written down. It says it and indicates it at the same time. It does so
through its objective reality - the given sequence of numeric signs - the relation of
succession. That is why we find knowledge of numbers so easy - much easier than
knowledge of the alphabet. We do not need to sort them: numbers are already
sorted. There is no need to put them into an ordered line: they themselves form
the ordered line: the very paradigm of everything linearly ordered. Neither do we
need to look for them: numerals directly show where the corresponding numbers
are - and not only indicate it: a number is its where - where we would find just it
when looking for it. (Z.Neubauer [1], page 113).

There is a correspondence of this conception of objective reality with the formalistic con-
ception of mathematics known as the Hilbert program. According to formalism, the objectivity
of mathematical theorems and proofs is ensured by encoding them as words (strings of letters)
of a formalized language. The correctness of proofs can be verified algorithmically, with no
reference to the meaning of these theorems and proofs. In ”Grundlagen der Mathematik I” [2],
Hilbert and Bernays stress the objectivity and reliability of formalized mathematics and argue
for the undoubtfulness of properties of natural numbers and words.

In der Zahlentheorie haben wir ein Ausgangsobjekt und einen Prozeß des Fortschre-
itens. Beides müssen wir in bestimten Weise anschaulich festlegen. Die besondere
Art der Festlegung ist dabei unwesentlich, nur muß die einmal getroffene Wahl für
die ganze Theorie beibehalten werden. Wir wählen als Ausgangsding die Ziffer 1
und als Prozeß des Fortschreitens das Anhängen von 1.

Die Dinge, die wir, ausgehend von der Ziffer 1, durch die Anwendung des Fortschre-
itungsprozesses erhalten, wie z.B.

1, 11, 1111

sind Figuren von folgender Art: sie beginnen mit 1, sie enden mit 1; auf jede 1,
die nicht schon Ende der Figur bildet, folgt eine angehängte 1. Sie werden durch
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Anwendung des Fortschreitungsprozesses, also durch einen konkret zum Abschluß
kommenden Aufbau erhalten, und dieser Aufbau läßt sich daher auch durch einen
schrittweisen Abbau rückgängig machen. (D.Hilbert, P.Bernays [2], page 20-21.)

Objective reality is grounded in objectivity of elements of certain mathematical structures,
first of all, in the objectivity of natural numbers as elements of their ordinal structure formed
by the successor operation. An essential property of this structure is that it is definable:
Each number can be characterized and uniquely described by a property, i.e., by a logical
formula which uses only the successor predicate. Thus 1 is the only number which is not
preceded by any other number, 2 is the only number which is preceded only by 1, etc. For this
reason, the ordinal structure of natural numbers is asymmetric, i.e., the only automorphism
(self-mapping which preserves the successor relation) is the identity.

We treat here the concepts of definability and asymmetricity in the context of relational
structures. A relational structure consists of an underlying set and several relations of specified
arity. We present three main examples of definable structures. The first is the ordinal, ordered
or additive structure of natural numbers, the second is the semigroup of finite words with
distinguished letters or with order, and the third is the structure of (hereditarily) finite sets
with the binary relation ”belongs to”.

2 Relational structures

Definition 1 A type is a finite sequence n = (n1, . . . , nk) of positive integers. A relational

structure of type n is a system M = (M,R1, . . . , Rk), where M is a nonempty set (called the
underlying set of M), and Ri ⊆Mni is an ni-ary relation on M .

Here Mn is the set of all ordered n-tuples (m1, . . . ,mn) of elements of M . A set R ⊆Mn is a
hypostasied or reified relation between elements of M . A unary relation R ⊆M is a hypostasied
property: it consists of those elements of M which have the property in question. An oriented
graph is a structure of type (2), i.e., a pair (M,R), where R ⊆ M2. We refer to elements of
M as vertices, to elements of R as arrows (see Figure 1). An algebraic structure with a binary
operation is a structure of type (3). If the operation is addition, then the relation consists of all
triples (p, q, p+q). In general, an n-ary operation on M is an (n+1)-ary relation R ⊆Mn+1,
such that for each m1, . . . ,mn ∈ M there exists a unique m ∈ M with (m1, . . . ,mn,m) ∈ R.
Not all mathematical structures are relational structures. For example, a topological space is
a pair (M, τ), where M is the underlying set (of points) and τ ⊆ P(M) is a set of open subsets
of M .

Definition 2 Let M = (M,R1, . . . , Rk) and M′ = (M ′, R′
1, . . . , R

′
k) be structures of type

n = (n1, . . . , nk). An isomorphism F : M → M′ is a bijective maping F : M → M ′ such
that for each i ≤ k and for each (m1, . . . ,mni

) ∈Mni we have

(m1, . . . ,mni
) ∈ Ri ⇐⇒ (F (m1), . . . , F (mni

)) ∈ R′
i

A self-isomorphism F : M → M is called automorphism. A structure M is asymmetric if
the only automorphism F : M → M is the identity.

Example 1 M1 = (M,R1), where M = {a, b, c}, R1 = {(a, b), (b, c), (c, c)} (Figure 1 left), is
a structure of type (2), or a graph.

It is easy to see that the graph M1 is asymmetric. Note that R1 is a unary operation: for each
m ∈ M there exists exactly one m′ ∈ M such that (m,m′) ∈ R1. This means that from each
vertex of the graph there leads exactly one arrow.
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a b c a b c

Figure 1: Graphs

Example 2 M2 = (M,R2), where M = {a, b, c}, R2 = {(b, a), (b, c)} (Figure 1 right), is a
graph.

The graph M2 is not asymmetric. There exists a nonidentical automorphism F : M2 → M2

defined by F (a) = c, F (b) = b, F (c) = a.

Example 3 The binary Boolean algebra is a structure M3 = (M,R¬, R&) of type (2, 3), where
M = {0, 1}, R¬ = {(0, 1), (1, 0)}, and

R& = {(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 1)}.

The structure M3 is asymmetric. Note that R¬ is a unary operation and R& is a binary
operation.

3 Predicate calculus

Given a type n = (n1, . . . , nk), we have predicate calculus of formulas of type n. For each i ≤ k
we take a symbol ri for ni-ary predicate. We need symbols for variables, symbols for logical
connections ¬ (negation), & (conjunction), ∨ (disjunction), ⇒ (implication) ⇔ (equivalence),
symbols ∀,∃ for the general and existential quantifiers and auxiliary symbols like commas
and parenthesis. We have atomic formulas ri(x1, . . . , xni

), where ri is a symbol for ni-ary
predicate and x1, . . . , xni

are variables. More complex formulas are formed from atomic formulas
by logical connections and quantifiers. In the case of oriented graphs we write atomic formulas
as x → y. As an example of a formula consider (∃y)(x → y). Here y is a bound variable (it
is bound by a quantifier) while x is a free variable. The formula expresses a property of x,
namely that there exists an arrow leading out of x. When we refer to such a formula we denote
it as ϕ(x) ≡ (∃y)(x→ y), with the list of free variables in the parenthesis. A formula is closed,
if it has no free variables. For example ψ ≡ (∀x)(∃y)(x → y) is a closed formula which means
that from each vertex there leads an arrow.

Assume that ϕ(x1, . . . , xj) is a formula of type n with free variables x1, . . . , xj and that
m1, . . . ,mj ∈M are elements of a structure M = (M, . . .) of type n. We write

M |= ϕ[x1/m1, . . . , xj/mj ],

if ϕ is satisfied in M by elements m1, . . . ,mj . This is the Tarski concept of satisfiability (see
e.g., Shoenfield [3]). For example, the formula ϕ(x) ≡ (∃y)(x→ y) is satisfied by every element
of the structure M1 but only by the element b of the structure M2:

M1 |= ϕ[x/a], M1 |= ϕ[x/b], M1 |= ϕ[x/c],
M2 6|= ϕ[x/a], M2 |= ϕ[x/b], M2 6|= ϕ[x/c].

When ϕ is a closed formula, it does not speak about properties of particular elements, but it
expresses a property of the structure as a whole. The closed formula ψ ≡ (∀x)(∃y)(x → y) is
satisfied in M1 but not in M2. We write M1 |= ψ, and M2 6|= ψ.
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Definition 3 An element m ∈ M of a structure M = (M, . . .) is definable, if there exists a
formula ϕ(x) with one free variable x, which is satisfied only by m, i.e., M |= ϕ[x/m] while
M 6|= ϕ[x/m′] for each m′ ∈ M different from m. In this case we say that ϕ(x) is a defining

formula of m. We say that M is a definable structure, if each element of M is definable.

Theorem 4 Every definable structure is asymmetric and either finite or countable.

Proof: If F : M → M is an automorphism and ϕ(x) a formula with one free variable, then
M |= ϕ[x/m] if and only if M |= ϕ[x/F (m)]. Since ϕm is satisfied only bym, we get F (m) = m.
The cardinality of all formulas of a fixed type is countable. In uncountable structures (e.g.,
in structures whose underlying set is the set of real numbers) there is not enough formulas to
define all elements.

In structure M2, neither a nor c are definable (because there exists an automorphism which
interchanges them), while b is definable by formulas (∃y)(x→ y) or ¬(∃y)(y → x). We see that
an element may have several defining formulas. The structure M1 is definable. The defining
formulas for a, b, c are

ϕa(x) ≡ ¬(∃y)(y → x)

ϕb(x) ≡ ¬(∃y, z)(z → y & y → x)

ϕc(x) ≡ x→ x

A defining formula of an element can be regarded as its name. Elements which are not
definable are nameless, they cannot be named by any characteristic property. In giving examples
of our structures M1 and M2 we have taken recourse to the language of set theory using
names ’a’, ’b’, ’c’ of some objects of the universum of sets. These are not really elements of the
structure, but (arbitrarily chosen) names of these elements. The trick works as long as we use
the same names in the list of elements of sets and in the list of ordered pairs of the relation.
But we should imagine structures whose elements are not yet named as in Figure 2.

Figure 2: Graphs with nameless vertices

Besides defining elements of a structure we can define further relations between these ele-
ments.

Definition 5 Let M = (M,R1, . . . , Rk) be a structure of type n = (n1, . . . , nk). A relation
R ⊆Mp is definable in M, if there exists a formula ϕ(x1, . . . , xp) with p free variables, such
that for each m1, . . . ,mp ∈M we have

(m1, . . . ,mp) ∈ R ⇐⇒ M |= ϕ[x1/m1, . . . , xp/mp]

Trivially, each constituting relation R1, . . . , Rk of a structure M = (M,R1, . . . , Rk) is defin-
able in M. In the structure M1 of Example 1, the relation R = {(a, c), (b, c), (c, c)} is definable
by formula ϕ(x, y) ≡ (∃z)(x→ z & z → y).
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4 Natural numbers

The concepts of asymmetricity and definability apply to infinite structures as well. However,
to determine an infinite structure and its properties is not so unproblematic as in the case
of finite structures. Usually, infinite structures are conceived as objects whose existence and
properties are proved in some version of set theory. We shall consider several structures on the
set N = {1, 2, 3, . . .} of natural numbers.

Natural numbers have at least two basic interpretations which are reflected in the difference
between the linguistic categories of ordinal and cardinal numerals. Ordinal numerals refer to
”counting in time”. We recognize certain events as periodically recurring and distinguish them
by ordinal numerals: the first, second and third day. The constituting relation is the relation
between a number and its immediate successor. This is in fact a unary successor operation.
Cardinal numerals, on the other hand, refer to ”counting in space”. We recognize certain things
as objects of the same kind and give their number by a cardinal numeral: one, two or three
pebbels. The constituting relations are the sum and product operations: any two numbers can
be added or multiplied.

There is a one-to-one correspondence between ordinal and cardinal numerals but there is a
difference in the structure which they support: the successor operation in the former case and
the sum operation in the latter case. Using this one-to-one correspondence we can conceive
natural numbers as possessing both these structures, and some others as well, for example the
inequality relation.

Example 4 The ordinal structure N→ = (N, R→) of natural numbers is the infinite
graph

• −→ • −→ • −→ • −→ • −→ · · ·

The successor relation R→ is a unary operation: for each n ∈ N there is a unique n′ ∈ N

such that n→ n′, or (n, n′) ∈ R→. The ordinal structure is definable and therefore asymmetric.
We name by 1 the only element to which there leads no arrow, by 2 the only element to which
there leads an arrow only from 1, etc., so

R→ = {(1, 2), (2, 3), (3, 4), (4, 5), . . .}

The defining formulas are

ϕ1(x) ≡ ¬(∃y)(y → x)

ϕ2(x) ≡ (∀y)(y → x ⇔ ϕ1(y))

≡ (∀y)(y → x ⇔ ¬(∃z)(z → y))

ϕ3(x) ≡ (∀y)(y → x ⇔ ϕ2(y))

...

Example 5 The ordered structure N< = (N, R<) of natural numbers consists of the set
N of natural numbers and binary order relation

R< = {(1, 2), (1, 3), (2, 3), (1, 4), (2, 4), (3, 4), . . .}

In N<, the successor and equality relations are definable by formulas

x→ y ≡ (x < y) & ¬(∃z)(x < z & z < y)

x = y ≡ ¬(x < y) & ¬(y < x)

x ≤ y ≡ (x < y) ∨ (x = y)

Since the successor relation R→ is definable in N<, the structure N< is definable and
asymmetric. Defining formulas for 1 is e.g., ϕ1(x) ≡ (∀y)(x < y).
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Example 6 The additive structure N+ = (N, R+) of natural numbers is of type (3). R+

is the binary operation

R+ = {(1, 1, 2), (1, 2, 3), (2, 1, 3), (1, 3, 4), (2, 2, 4), . . .}

In formulas we write the corresponding ternary predicate as x + y = z. In (N, R+), the
order relation is definable by formula x < y ≡ (∃z)(x + z = y). It follows that N+ = (N, R+)
is definable and asymmetric. Having more structure on N, we get shorter defining formulas: If
ϕp(x) and ϕq(x) are defining formulas for p, q ∈ N, then we get a defining formula

ϕp+q(x) ≡ (∃y, z)(x = y + z & ϕp(y) & ϕq(z))

for p + q. In the structure (N, R+, R×) of natural numbers with addition and multiplication,
defining formulas can be based on positional systems (see Section 5).

When we turn to the set of integers Z = {. . . ,−2,−1, 0, 1, 2, . . .} with the standard successor
operation

· · · −→ • −→ • −→ • −→ • −→ • −→ • −→ · · ·
we see that (Z, R→) is not asymmetric: For any a ∈ Z there exists an automorphism Fa : N → N

given by Fa(x) = x+ a. Therefore (Z, R→) is not definable and, in fact, no element of (Z, R→)
is definable. The structure (Z, R+) is not asymmetric either: there is an automorphism F (x) =
−x. The only definable element of (Z, R+) is zero. Its defining formula is ϕ0(x) ≡ (∀y)(x+y =
y). However, the structure (Z, R+, R→) of type (3, 2) is definable.

5 Letters and words

As names of objects we use finite words (strings of letters) of an alphabet. Denote by A+ the
set of all words of an alphabet A. If A = {a, b} is a two-letter alphabet, then the set of words is

A+ = {a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb, aaaa, . . .}.

Two words can be concatenated, i.e., written one after the other. The concatenation is a binary
operation which gives to the set A+ a structure (A+, R•) of type (3) called the free semigroup

over A. When A = {a, b}, then the operation of concatenation is

R• = {(a, a, aa), (a, b, ab), (b, a, ba), (a, aa, aaa), (aa, a, aaa), (b, aa, baa), . . .}

For u = u1 . . . un ∈ A+ we denote by |u| = n its length and by ui its i-th letter. If A has k
letters, then there are exactly kn words of length n. We write u ⊑ v, if u is a prefix (initial
part) of v, i.e., if ui = vi for i ≤ |u|. This includes also the case that u and v are equal.

Example 7 If A = {1} is a one-letter alphabet, then A+ = {1, 11, 111, 1111, . . .}. The free
semigroup (A+, R•) is isomorphic to (N, R+).

Thus the free semigroup over a one-letter alphabet is both definable and asymmetric.
If A has at least 2 elements, then (A+, R•) is not asymmetric. Any permutation f : A →

A (e.g. f(a) = b, f(b) = a) yields an automorphism F : (A+, R•) → (A+, R•) given by
F (u)i = f(ui). To obtain definability in the case of two or more letters, we have to add some
structure. One possibility is to distinguish elements. We say that en element m of a structure
is distinguished, if the structure contains a unary relation {m} (which is subset of M). Any
distinguished element is definable.

Example 8 The free semigroup with distinguished letters over alphabet {a, b} is the
structure Ma,b = ({a, b}+, R•, {a}, {b}) of type (3, 1, 1).
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The structure Ma,b is definable and the elements a and b are distinguished. To distinguish
letters just means that we are able to tell them from each other. If ra is the unary predicate
corresponding to the unary relation {a}, then the defining formula of the letter a is ra(x). The
defining formula of a word ab is ϕab(x) ≡ (∃y, z)(x = yz & ra(y) & rb(z)), and the defining
formula of a word u = u1u2 . . . un is

ϕu(x) ≡ (∃y1) · · · (∃yn)(x = y1 . . . yn & ru1
(y1) & · · · & run

(yn))

Another possibility to make the free semigroup definable is to add order. We start with a
linearly ordered alphabet (A,R<). This means that we have a canonical (alphabetical) sequence
of letters. We define then the lexicographic order on A+ by

u < v ⇔ u ⊑ v or (∃i ≤ |u|)(ui < vi & (∀j < i)(uj = vj))

This is the order used in dictionaries. If A = {a, b} and a < b, then the order between words of
length at most 3 is

a < aa < aaa < aab < ab < aba < abb < b < ba < baa < bab < bb < bba < bbb

The structure (A+, R•, R<) is definable since each letter is definable via ordering. Note that
(A+, R<) is not isomorphic to (N, R<), since there is an infinite number of elements between a
and b.

Words in alphabets of digits are used as names of natural numbers. In the binary positional
system we use the alphabet A = {0, 1} with order 0 ≺ 1. Rather than the lexicographic order,
we use the radix order R≺ on A+ defined by

u ≺ v ⇔ (|u| < |v|) ∨ (|u| = |v| & (∃i ≤ |u|)(ui ≺ vi & (∀j < i)(uj = vj)))

The order between words of length at most three is

0 ≺ 1 ≺ 00 ≺ 01 ≺ 10 ≺ 11 ≺ 000 ≺ 001 ≺ 010 ≺ 011 ≺ 100 ≺ 101 ≺ 110 ≺ 111

The free semigroup with radix order is isomorphic to (N, R<). The isomorphism, however, does
not give the ususal binary positional system. In this system, 011 is not used as it has the same
value 3 as the word 11. For names of natural numbers we use a subset of words which do not
begin with 0:

M = {u ∈ {0, 1}+ : 0 6⊑ u}
= {1, 10, 11, 100, 101, 110, 111, 1000, 1001, . . .}

The structure (M,R≺) is also isomorphic to (N, R<). Moreover, the isomorphism assigns to
each natural number x ∈ N its binary expansion u = u1 . . . uk such that

x = 2k−1 · u1 + 2k−2 · u2 + · · · 2 · uk−1 + uk.

6 Hereditarily finite sets

Hereditarily finite sets are finite sets whose elements are finite sets, the elements of their elements
are finite sets, etc. Hereditarily finite sets are formed from the empty set in successive stages.
At stage 0 we have only the empty set ∅ with no elements. At stage n > 0, we form sets from
elements (sets) formed at previous stages. At stage 1 we can form only the set {∅} whose unique
element is ∅. At stage 2 we form the set {{∅}} with unique element {∅} and the set {∅, {∅}}
with two elements ∅ and {∅}. At the end of stage 2 we have therefore four sets with relation ∈
(belongs to) given by the graph in Figure 3.
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stage: 0 1 2

∅ {∅} {{∅}}

{∅, {∅}}

Figure 3: Hereditarily finite sets

At stage 3 we form sets from the four sets a = ∅, b = {∅}, c = {{∅}}, and d = {∅, {∅}}.
From four elements, 16 sets can be formed: 1 empty set, 4 one-element sets, 6 two-element sets,
4 three-element sets and 1 four-element sets:

∅, {a}, {b}, {c}, {d},
{a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d},
{a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}, {a, b, c, d}.

However, among these sets there are also sets a = ∅, b = {a}, c = {b}, d = {a, b} formed
at previous stages. Thus only 12 new sets are formed at stage 3. The construction continues
similarly at higher stages. If kn is the number of sets formed by stage n, then kn+1 = 2kn .
Thus we have k0 = 1, k1 = 2, k2 = 4, k3 = 16, k4 = 216 = 65536, k5 = 265536 ≈ 1019728, which
is already quite a large number. The number of sets formed at stage n+1 is kn+1−kn. The set
F of hereditarily finite sets can be characterized as the smallest set which satisfies the following
two properties:

1. ∅ ∈ F

2. If m1, . . . ,mn ∈ F, then {m1, . . . ,mn} ∈ F.

The structure (F, R∈) of hereditarily finite sets is definable. The defining formulas of ∅, {∅},
and of a general set {m1, . . . ,mn} are

ϕ∅(x) ≡ ¬(∃y)(y ∈ x),

ϕ{∅}(x) ≡ (∀y)(y ∈ x ⇔ ϕ∅(y))

ϕ{m1,...,mn}(x) ≡ (∀y)(y ∈ x ⇔ ϕm1
(y) ∨ · · · ∨ ϕmn

(y))

The equality predicate is definable in (F, R∈) by

x = y ≡ (∀u)(u ∈ x ⇔ u ∈ y).

Hereditarily finite sets are used as representations of finite mathematical objects, for example
as representations of nonnegative integers. The number zero is represented by the empty set
0 := ∅, the number one by one-element set 1 := {0} and similarly 2 := {0, 1}, 3 := {0, 1, 2},
4 := {0, 1, 2, 3}, etc. These nonnegative integers satisfy the formula ord(x) (being an ordinal
number)

ord(x) ≡ (∀u, v)(u ∈ v ∈ x⇒ u ∈ x) & (∀u, v ∈ x)(u ∈ v ∨ u = v ∨ v ∈ u)

In fact, a hereditarily finite set satisfies formula ord(x) if and only if it is a nonnegative integer.
Moreover, the relation ∈ coincides with the order relation < on nonnegative integers.

Another important new (defined) operation is the binary operation of ordered pair, ordered
triple, etc.

(a, b) := {{a}, {a, b}}, (a, b, c) := ((a, b), c)

If a, b are different sets, then the sets (a, b) and (b, a) are different as well. Using the operation
of ordered pair, we can represent finite relational structures as elements of the structure (F, R∈).
For example, the structure M1 from example 1 can be represented by the set

M1 = ({a, b, c}, {(a, b), (b, c), (c, c)})
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Here a, b, c are arbitrary distinct (hereditarily finite) sets, for example a = ∅, b = {∅}, and
c = {{∅}}.

7 Constants and terms

In infinite structures like N→ = (N, R→) or (F, R∈), the naming of objects by defining formulas
is not so unproblematic as in finite structures. A defining formula of 1 in N→ is ϕ1(x) ≡
¬(∃y)(y → x), which is equivalent to (∀y)¬(y → x). To verify whether the formula is satisfied
for 1, i.e., whether (N, R→) |= ϕ1[x/1] amounts to verifying ¬(y → x) for an infinite number of
cases y = 1, y = 2, etc.

A viable alternative is to use in logical formalism constants and function symbols, and
define elements of a structure by terms. This is possible when the relational structure in
question M = (M,R=, R2, . . .), contains among its relations the binary identity relation

R= = {(m,m) : m ∈ M} which consists of all pairs of identical elements. If R2 is another
relation of the structure, which is an n-ary operation, then we write the coresponding atomic
formula r2(x1, . . . , xn, y) as s2(x1, . . . , xn) = y, where s2 is a function symbol. A term is an
expression formed from variables and function symbols. If we have a binary operation with
function symbol +, then we have e.g., terms +(x, y) or +(x,+(y, z)) which are usually written
as x+ y or x+ (y+ z). A special case of a function symbol is a constant, which corresponds to
a 0-ary operation. A 0-ary operation is just a unary relation R = {m} which contains a unique
(distinguished) element. The atomic formula rm(x) is then x = cm, where cm is the constant
(0-ary function symbol) corresponding to the distinguished element m.

Example 9 N1 = (N, R=, R→, {1}) is a structure of type (2, 2, 1), where R= is the identity
relation, R→ is the successor relation and 1 is a distinguished element.

In predicate calculus of type (2, 2, 1) we have equality symbol =, the successor function
symbol s and a constant | (which is something different from the element 1 of the structure).
Terms are expressions formed from variables and constants by successive applications of a
function symbol s. Examples of terms are x, s(x), s(s(x)), |, s(|), s(s(|)), etc. Terms |, s(|)
and s(s(|)) are closed, since they do not contain variables. Atomic formulas are expressions
t1 = t2, where t1, t2 are terms. In N1 we have simple defining formulas

ϕ1(x) ≡ x = |
ϕ2(x) ≡ x = s(|)
ϕ3(x) ≡ x = s(s(|))

...

Definition 6 We say that M = (M,R1, . . .) is a structure with identity, if R1 = R= is the
identity relation. We say that a structure with identity is term-definable, if for each element
m ∈ M there exists a closed term tm, such that ϕm(x) ≡ x = tm is a defining formula of m.
In this case we say that tm is a defining term of m.

Thus N1 is term-definable. In a term-definable structure, we can name elements of the structure
by closed terms. This means that the name of an element does not depend on the whole (infinite)
structure but only on some finite fragment of it. The names |, s(|), s(s(|)) of natural numbers
depend only on the initial fragment 1 → • → • of the structure N1 of integers. To obtain a
term-definable structure of words, we proceed analogously.

Example 10 The free semigroup with identity and distinguished letters over the al-
phabet {a, b} is Ma,b = ({a, b}+, R=, R•, {a}, {b}). The structure is of type (2, 3, 1, 1) and is
term-definable.
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To define hereditarily finite sets by terms we must add two definable operations of unordered
pair and union of two sets:

ϕ{}(x, y, z) ≡ (∀u)(u ∈ z ⇔ (u = x ∨ u = y))

ϕ∪(x, y, z) ≡ (∀u)(u ∈ z ⇔ (u ∈ x ∨ u ∈ y))

8 Names

In conformity to the Hilbert program, terms and formulas are words in the alphabet of the pred-
icate calculus of a given type. Whether we name elements of a structure by defining formulas or
defining terms, names are always words. A peculiar situation arises in free semigroups. We can
name a word aba by its defining formula ϕaba(x) ≡ (∃y, z, w)(x = yzw & ra(y) & rb(z) & rc(w))
or by its defining term a • (b • a). Here a is a constant of the distinguished elelement a and • is
the function symbol of concatenation. What we are doing is that we describe a word by a more
complex word. The added symbols •, (, ) are redundant - they do not carry any information.
We can quite well describe a word aba by itself - this is the most economic way. Words are
therefore unique in that they are their own names. This holds also for natural numbers when
we conceive them as words 1, 11, 111, . . . in a one-letter alphabet {1}. As for hereditarily finite
sets, we can describe them by words in alphabet of four letters ∅ (empty set), , (comma), { (left
bracket), } (right bracket). This is a description we have used in Figure 3.

9 Infinite sets

In set theory, the construction of hereditarily finite sets is extended to the construction of
general (finite and infinite) sets at stages indexed by infinite ordinal numbers. Ordinal numbers
include all nonnegative integers 0 = ∅, 1 = {0}, 2 = {0, 1}, 3 = {0, 1, 2} etc., but continue
beyond them. The first infinite ordinal is the set ω = {0, 1, 2, 3, . . .} of all nonnegative integers.
Further ordinal numbers are

ω + 1 = ω ∪ {ω} = {0, 1, 2, . . . , ω}
ω + 2 = (ω + 1) ∪ {ω + 1} = {0, 1, 2, . . . , ω, ω + 1}

...

2ω = {0, 1, 2, . . . , ω, ω + 1, ω + 2, . . .}
2ω + 1 = {0, 1, 2, . . . , ω, ω + 1, ω + 2, . . . , 2ω}

...

The successive construction of sets is continued as follows. At stage ω we have all hereditarily
finite sets constructed at finite stages (see Section 6). At stage ω+ 1 we construct all sets from
elements constructed by stage ω. Thus we get for example the set ω of nonnegative integers,
the set N = ω \ {∅} of positive integers, the set of even positive integers, or the set F of all
hereditarily finite sets. At stage ω+ 2 we construct all sets from elements constructed by stage
ω + 1. Thus we get some finite sets as a one-element set {ω} (whose element is an infinite
set) and also new infinite sets as ω + 1. When this construction process is performed through
all stages of all ordinal numbers, the universum V of all sets is obtained. The universum V

cannot be a set. It has the status of a proper class in the Gödel-Bernays set theory. The
relation

E := {(x, y) : x ∈ y ∈ V} ⊂ V × V

is also a proper class. It consists of all pairs of sets x, y such that x ∈ y. While there is in
Gödel-Bernays set theory no pair (V,E), there are definable objects of such a ”superstructure”.
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We say that a set m ∈ V is definable in E, if there exists a formula ϕ(x) of set theory (build
only from the predicate ∈), such such that ϕ(x) is satisfied only by m. This means that the
formula

(∃x)ϕ(x) & (∀x, y)(ϕ(x)&ϕ(y) ⇒ x = y)

can be proved in the Gödel-Bernays set theory. In this sense, many important infinite sets are
definable in E. The unary predicate

ord(x) ≡ (∀u, v)(u ∈ v ∈ x⇒ u ∈ x) & (∀u, v ∈ x)(u ∈ v ∨ u = v ∨ v ∈ u)

from Section 6 is satisfied exactly for (finite and infinite) ordinal numbers. The formula

ϕω(x) ≡ ord(x) & (∀u ∈ x)(u = 0 ∨ (∃v)(u = v ∪ {v}))

says that x is the first infinite ordinal number, so this is a defining formula of the set ω =
{0, 1, 2, 3, . . .} of nonnegative integers. By further constructions we can define the set N = ω\{0}
of natural numbers (positive integers) or the set of odd positive integers.

There are many other subsets of ω which are definable in E, but there are also subsets of
ω which are not definable in E. The set P(ω) of all subsets of ω is not countable, so there is
not enough words to describe all subsets of ω. On the other hand, the set P(ω) is definable.
The successor operation S ⊂ ω × ω is a subset of the cartesian product ω × ω of all pairs of
nonnegative integers and is definable in E as well. Similarly, the order and addition operations
are definable in E, so structures as N→, N+ or N1 are all definable in E.

10 Real numbers

Usually, the system of real numbers is presented as a result of algebraical and topological com-
pletions of natural numbers in a sequence of number domains N ⊂ Z ⊂ Q ⊂ R. Natural
numbers cannot be always subtracted, so we get integers Z as results of their subtractions.
Integers cannot be always divided, so we get rational numbers Q as their quotients. By topo-
logical methods we obtain the set R of real numbers using Dedekind cuts or Cauchy sequences
of rational numbers. The successive constructions of these number domains and of algebraic
structures built on them can all be performed within Gödel-Bernays set theory. Thus all these
arithmetic structures are definable sets in E.

Having the set R of real numbers, we get the structures of order, addition, multiplication,
etc. Neither the ordered structure (R, R<) of real numbers nor the additive structure (R, R+)
of real numbers are asymmetric for the same reason why the analogous structures of integers Z

are not asymmetric. On the other hand, the ordered ring R = (R, R<, R+, R×) of type (2, 3, 3)
is asymmetric. Both 0 and 1 are definable, therefore all rational numbers are definable and
algebraic numbers (solutions of algebraic equations with integer coefficients) are definable as
well. The defining formula for

√
2 is for example ϕ√

2
(x) ≡ (x × x = 2) & (x > 0). In fact, a

real number is definable in R if and only if it is algebraic. Transcendent numbers like π or e
are not definable in R. However, real numbers are also elements of the universum V and the
class of E-definable real numbers is larger. Of particular interest are algorithmic real numbers.

Definition 7 A real number x is algorithmic, if there exists an algorithm (a Turing machine)
which on input of a natural number n computes the n-th digit of the decimal expansion of x.

Each algorithmic real number is definable in E and can be named by the text of the algorithm
(or by the code of the Turing machine) which computes its decimal digits. The constructive
analysis of A.A.Markov [5] based on the intuitionistic mathematics of Brouwer and Heyting [4]
works only with these constructive real numbers. In the study of real functions, constructive
analysis is concerned only with functions which can be described by an algorithm, and these
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algorithmic functions are E-definable as well. Constructive analysis is more intuitive, but its
mathematics is more complicated, since the existence of various algorithms must be repeatedly
proved.

Classical mathematics, in contrast, assumes the existence of many undefinable objects whose
objective reality is questionable. These mathematical ”phantoms” are, however, very instru-
mental in simplifying the theory. The properties of these phantoms are expressed as theorems
of set theory. The theorems and their proofs can be written in predicate calculus, and the
correctness of these proofs can be (in principle) checked algorithmically. This is the part of
the formalistic Hilbert program which survived the negative undecidability and unprovability
results of K.Gödel (see e.g., Shoenfield [3]). In this sense, mathematical knowledge about un-
definable mathematical phantoms is objective. However, when the actual practice of doing
mathematics is considered in its social context, the objectivity of mathematical results may
appear more subtle than suggested by this formalistic paradigm - see e.g. De Millo et all [6] or
Thurston [7].

Natural numbers, words and hereditarily finite sets are mathematical objects whose objective
reality and existence is rooted in structures which envelop them. Of these three kinds of
mathematical objects, words are the most easily implemented: in clay, on paper or blackboard,
in computer memories as well as in computer keyboards and screens. Maybe it is mostly for
this reason, that words are used as names or descriptions of all kinds of finitary mathematical
objects. In particular, words are their own names. Objective reality is objective reality of
words.
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