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Highlights
The latitudinal diversity gradient (LDG)
is one of the most widely debated pat-
terns in ecology and evolution, asso-
ciated with hundreds of papers,
dozens of hypotheses, and disagree-
ments about its underlying processes.

The lack of agreement stems from: (i)
the verbal nature of existing hypoth-
eses, (ii) the failure to mechanistically
integrate all relevant ecological and
evolutionary processes to the LDG,
and (iii) the degree to which many
empirical patterns are consistent with
The latitudinal diversity gradient (LDG) is one of the most widely studied
patterns in ecology, yet no consensus has been reached about its underlying
causes. We argue that the reasons for this are the verbal nature of existing
hypotheses, the failure to mechanistically link interacting ecological and evo-
lutionary processes to the LDG, and the fact that empirical patterns are often
consistent with multiple explanations. To address this issue, we synthesize
current LDG hypotheses, uncovering their eco-evolutionary mechanisms, hid-
den assumptions, and commonalities. Furthermore, we propose mechanistic
eco-evolutionary modeling and an inferential approach that makes use of
geographic, phylogenetic, and trait-based patterns to assess the relative
importance of different processes for generating the LDG.
multiple LDG explanations.

We show how mapping LDG hypoth-
eses to a set of key ecological and evo-
lutionary processes leads to a better
understanding of the internal logic of
those hypotheses. The codification of
those processes within a mechanistic
eco-evolutionary model is essential for
contrasting support for hypotheses and
for understanding the relative impor-
tance of the processes themselves.
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The increase in species diversity from the poles to the equator, commonly referred to as the
latitudinal diversity gradient (LDG), is one of the most pervasive [1,2] and widely debated
biological patterns, with at least 26 listed hypotheses associated with it [3–5]. These
hypotheses can be classified into three higher-level categories related to latitudinal variation
in ecological limits (see Glossary), diversification rates, and time for species accumu-
lation (Table 1). Empirical evidence seems compatible with many of these hypotheses. For
example, species richness is correlated with purported proxies for ecological limits such as
net primary productivity [6–8], diversification rate can vary latitudinally due to gradients in
temperature [9,10], and diversity is greatest in regions where diversification has occurred
over a longer period [11–13]. These and similar studies have improved our understanding of
the LDG and macroevolutionary patterns in general, but the diffuse support for different
hypotheses reveals a lack of consensus and points to challenges in testing and evaluating
these hypotheses.

We argue that reconciling the causes of the LDG requires moving beyond verbal chains of logic,
which are inherently prone to error with respect to how assumptions result in their predicted
effect [14], and towards a more formal and mechanistic framework. Verbal hypotheses often
contain hidden assumptions that go untested and lack specificity with respect to the mecha-
nistic underpinning of relevant ecological and evolutionary processes. Verbal hypotheses
also tend to focus on a single driver to predict just one or a few patterns related to that driver.
Consequently, these predictions alone may not be sufficient to distinguish competing
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Table 1. Overview of the Main Hypotheses Proposed for Explaining the LDG in Recent Reviews,
Categorized by the Drivers, Assumptions, and Rationales they Invoke [9,24–30,33,36,37,40,74–84]a,b

aThese hypotheses can be classified according to three categories: ecological limits, diversification rates, and time for
species accumulation. Some hypotheses invoke multiple distinctive (but not mutually exclusive) mechanisms and so are
repeated in multiple categories. We also distinguish the primary cause of the diversity difference between tropical (t) and
non-tropical (n) regions (as parameter indices) from secondary causes that may be explicitly or implicitly stated in the
hypothesis. Subfigures illustrate the three main hypotheses categories that predict the LDG. c, Colonization rate; K,
carrying capacity or limit on the number of individuals or species; t, time; l, speciation rate; m, extinction rate.

bThese hypotheses cab be classified according to three categories: ecological limits (green rows), diversification rates
(orange rows), and time for speciation (blue rows).

212 Trends in Ecology & Evolution, March 2019, Vol. 34, No. 3

mailto:mikael.pontarp@biol.lu.se


Glossary
Approximate Bayesian
computation: a simulation-based
approach to create approximate
likelihoods for model selection and
parameter estimation of complex
models, possibly with multiple data
sources.
Diversification rate: the net rate of
production of new lineages (i.e., the
difference between origination and
extinction rate). It usually applies to
species (i.e., speciation minus
extinction rate) but can be equally
applied to higher or lower taxonomic
levels.
Eco-evolutionary processes: the
interplay of ecological and
evolutionary processes that violate
the assumption that timescales of
ecological and evolutionary
processes can be separated;
ecological processes affect evolution
and vice versa.
Ecological limits: a limit to the
number of individuals and/or taxa
that can coexist within an ecosystem
due to abiotic settings and biotic
interactions such as competition for
limited resources.
Ecological processes: interactions
between individuals of the same or
different species driving the
dynamics of populations,
communities, and ecosystems within
an ecological timescale, typically
within a few generations of the focal
organisms.
Environmental filtering: the
differential establishment,
persistence, or performance of a
species determined by that species’
ability to tolerate a given set of
abiotic conditions.
Evolutionary processes: any
processes leading to genetic
changes in populations, driving
lineage divergence and persistence
within an evolutionary time scale,
typically spanning many generations.
Mechanisms: a system of causally
interacting parts or subprocesses (e.
g., ecological interactions) that
constitute some process (e.g., eco-
evolutionary process).
Mechanistic macroecology: the
study of mechanisms describing how
individual organisms interact with
their biotic and abiotic environments,
and how these mechanisms scale up
to result in macroecological patterns,
hypotheses [15,16]. A more explicit description of the processes underlying all hypotheses will
generate a wider range of predictions, which can be used to disentangle possibly nonmutually
exclusive hypotheses and evaluate the relative importance of these processes.

We, therefore, call for a transformation in the way biologists think about and study the LDG. The
classification of hypotheses (Table 1) is an important first step, but it does not resolve the
difficulty of identifying and quantifying the relative strength of the processes underlying the LDG.
We propose moving towards a mechanistic framework, founded on key processes that
describe how individual organisms interact with their biotic and abiotic environments, and
how these interactions scale up to result in the LDG and other secondary biodiversity
patterns. Ultimately, revealing the nature of these eco-evolutionary processes will yield
more insight than continuing to argue about nonmutually exclusive LDG hypotheses.

Examining the LDG through the Lens of Mechanistic Macroecology
Key Processes across Levels of Biological Organization
We recognize four key processes, as defined by Vellend [17], that necessarily underpin the LDG
and thus should be included as components of any LDG model that aims to capture variation in
species richness, abundance, and composition over a spatially and temporally variable envi-
ronment: (i) selection, (ii) ecological drift, (iii) dispersal, and (iv) speciation. Selection, drift, and
dispersal can all influence the birth, death, and movement of individuals over small spatial and
temporal scales. Selection (sensus [17]) encompasses any process that results in the differen-
tial survival and reproduction of individuals, based on how environmental filtering [18] and
biotic interactions select for specific traits. Ecological drift manifests itself via stochastic
variation in the births and deaths of individuals. Dispersal of individuals is influenced by the
spatial structure of the landscape as well as individual dispersal capabilities and can lead to
species colonizing new regions. Each of these individual-level ecological and microevolutionary
processes is propagated throughout higher levels of biological organization, resulting in
discrete patterns at the level of populations, species, and communities (Figure 1).

Over longer timescales, environmental conditions have fluctuated with glacial/interglacial
oscillations, cooler and warmer periods in Earth’s history, orogenic events, volcanic activity,
and shifts in tectonic plates, all of which can affect diversity dynamics [19–21]. At these spatial
and temporal scales selection, ecological drift, and dispersal determine where species or even
whole clades are able to persist geographically and how traits evolve. Species that become
poorly adapted to the environment or that are poor competitors for resources are expected to
have low fitness and to ultimately become extinct, reflecting critical eco-evolutionary feedbacks
[22,23]. Speciation becomes especially relevant with increasing temporal and spatial scales.
The details of how speciation occurs are complex and the critical question in an LDG context
becomes how and why speciation mode or rate varies along geographic gradients. All of the
processes described above necessarily interact with each other and with the spatiotemporal
environment, resulting in a broad range of geographic and phylogenetic biodiversity patterns
that we observe today. As highlighted below, these processes can help us compare and
disentangle LDG hypotheses.

Classical LDG Hypotheses Revisited
Characterizing LDG hypotheses based on the key processes described above helps to clarify
the internal logic of those hypotheses, and highlights how they differ. All hypotheses invoke an
explicit driver or condition that varies latitudinally (Figure 1), but considering the processes
related to this driver, often below the level of biological organization at which the hypothesis was
formulated, can reveal previously unrecognized assumptions and predictions. Below we
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including the LDG and other
secondary biodiversity patterns.
Mechanistic model: mechanistic
models may vary in complexity and
detail, but in the context of the LDG,
such a model should at a minimum
specify the mechanisms by which
the processes of selection, dispersal,
ecological drift, and speciation
operate on individuals, populations,
or species.
Niche conservatism: the tendency
for descendant lineages or species
to retain their ancestral niche.
Pattern-oriented modeling: a
modeling approach where multiple
patterns observed in real systems at
different hierarchical levels and
scales are used systematically to
optimize model complexity and to
reduce uncertainty.
Secondary biodiversity patterns:
spatial, temporal, phylogenetic, or
trait-based diversity patterns that
emerge from the same ecological
and evolutionary processes as the
LDG.
Simulation model: a set of rules
(usually formulated in a programming
language) governing the dynamics of
artificial entities that reflect
individuals, populations, or
communities.
discuss four examples, chosen to represent hypotheses invoking variation in limits, rates, and
time. These examples may also serve as a guide for better understanding other hypotheses.

The More Individuals Hypothesis
The ‘more individuals hypothesis’ invokes latitudinal variation in ecological limits and a positive
relationship between the number of species and resource availability [24]. If resources are finite
and a zero-sum constraint on the total amount of biomass or individuals applies, any increase in
diversity over time results in a decrease in average biomass or abundance per species.
Extinction rates will thus be diversity-dependent and richness will be regulated around some
equilibrial value that scales with the total number of individuals that can be supported [24,25].
This hypothesis implicitly invokes interspecific competition and the resultant allocation of
resources across species (Table 1). The argument does not invoke selection (Figure 1) and
can be applied equally to ecologically neutral or non-neutral species. An important and
unstated assumption is that the response of the biota to environmental change is fast enough
that richness is at equilibrium across the latitudinal gradient.

The Seasonality Hypothesis
The ‘seasonality hypothesis’ argues that the within-year environmental stability of the tropics results
in either greater diversification rates or higher ecological limits via increased niche packing (Table 1
and Figure 1). The first argument suggests that in the less seasonal tropics, organisms experience a
smaller rangeof conditions and hence evolve narrower thermal niches compared with the temperate
zone. The idea that ‘mountain passes are higher in the tropics’ [26] suggests that dispersal barriers
were effectively greater there, increasing the chance of population divergence and allopatric
speciation [27,28]. Selection thus dictates the environmental conditions that a species can tolerate,
but it is speciation rate that varies with latitude and ultimately generates the LDG. The second version
of the seasonality hypothesis suggests that stability-driven specialization promotes intense niche
packing, and hence more species can coexist in the tropics [29,30]. Species are then hypothesized
to evolve narrower resource breadths rather than narrow thermal niches, assuming that resources
are limited and that diversity actually emerges from niche packing [29] (Table 1 and Figure 1). Implicit
in both hypotheses is a performance tradeoff between specialists and generalists, such that
specialists evolve and outcompete generalists in aseasonal environments.

The Temperature-Dependent Speciation Rates Hypothesis
The hypothesis that higher temperature elevates evolutionary rates has been used to explain
global diversity patterns for both land and sea [31,32]. One version of the hypothesis [33]
follows from the metabolic theory of ecology [34], stating that temperature positively affects all
biological rates, including mutation rates, which can lead to speciation and ultimately diversity
accumulation. This assumes that speciation rates directly follow from mutation rates, which
may be problematic if other factors (e.g., the existence of geographic barriers, assortative
mating) are limiting speciation. The hypothesis makes no specific predictions regarding
selection or dispersal. Importantly, this hypothesis could be invoked in either an equilibrium
or non-equilibrium world. In a non-equilibrium world, speciation rates alone could explain
variation in richness between regions if all regions were similarly old, and extinction rates were
equal across regions [10]. In an equilibrium world, increased speciation rates in the tropics can
lead to higher equilibrium richness, as in Hubbell’s [35] neutral model of biodiversity.

The Tropical Niche Conservatism Hypothesis
The tropical niche conservatism hypothesis [36,37] states that diversity is higher in the tropics
because of the infrequency of colonizations of the cooler temperate zone by a tropical ancestor
due to strongly conserved thermal niches and tropical origins of most taxa, and hence the
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Figure 1. Key Processes across Levels of Biological Organization. Illustration of our framework spanning external drivers that are associated with the
spatiotemporal environment, the eco-evolutionary processes that are thought to be central to the latitudinal diversity gradient (LDG), and the emergent diagnostic
patterns. We consider four key eco-evolutionary processes: selection, dispersal, ecological drift (eventually resulting in extinction), and speciation [17]; they are shown
relative to spatial, temporal, and biological scales (e.g., local versus regional, population-level versus continent-level). Five example hypotheses from the three
categories of LDG hypotheses are mapped onto this framework with their specific drivers, processes, and emergent patterns (hypothesis names and categories as in
Table 1). For each hypothesis, we show only the primary driver-process pathway identified in Table 1 (see main text for more detailed explanation of the mapped
examples).
longer time available for diversification in the tropics. The hypothesis assumes that, barring
major disturbances or climatic shifts, species richness will continue to increase unbounded
over time [37]. This hypothesis has only ever been formulated at the species level, and yet it
inherently implies a particular set of rules by which individuals interact with the environment and
each other. Selection by the environment is by definition strong, with individuals unable to
survive and reproduce under conditions different from their optima, and evolution of a new
optimum is rare. Less obvious are the implications of the hypothesis for resource competition
between individuals. Unbounded, or diversity-independent, diversification is only possible in the
absence of an overarching zero-sum constraint [25]. The absence of such a constraint implies
that while the population size of a species might be affected by the fit between the environment
and environmental performance traits, it is independent of the population sizes of potential
competitors and of interspecific competition more broadly.

The Utility of a Mechanistic Framework
The examples presented above illustrate three insights gained by adopting a generalized eco-
evolutionary framework. First, many of the fundamental rules by which organisms are assumed
Trends in Ecology & Evolution, March 2019, Vol. 34, No. 3 215



to interact with each other and with their environment will be qualitatively similar, regardless of
LDG hypothesis. For example, individual survival and reproduction must be functions of how
well-adapted the individuals are to their environment relative to their intra- and interspecific
competitors. Second, latitudinal differences in ecological limits, diversification rates, and time
for diversification may emerge via different mechanisms integrated into the same framework.
For example, diversification rates may be higher due to the temperature-dependence of
mutation rates [9,38] or due to the increased reproductive isolation in aseasonal environments
[27,39]. Third, although each hypothesis invokes a primary driver or process, we have shown
that these hypotheses also make unstated assumptions about other processes and mecha-
nisms, which need to be considered in concert to fully understand the emergence of the LDG
and other macroecological and macroevolutionary patterns.

Mechanistic Eco-evolutionary Models as a Quantitative Tool for
Understanding LDG Patterns
The mechanistic framing of processes that underpin the LDG naturally facilitates the translation
from heuristic thinking to mechanistic eco-evolutionary models (Box 1). We believe that building
these models will be essential to making progress on the LDG and biodiversity patterns in
general because they allow quantitative analyses and predictions of the various secondary
patterns. Secondary patterns are key for more powerful inference about the origin of species
richness patterns. Below, we provide concrete examples of components of a mechanistic LDG
model and associated patterns, followed by a discussion about how to use such a model for
inference with the available data.

Mechanistic Models for Studying the LDG
The Spatiotemporal Environmental Template
The basic driver of an LDG model is the spatiotemporal environmental template. It can be
viewed as the theater in which the eco-evolutionary play unfolds, and the spatiotemporal
variation in that template (Earth’s climatic, geologic, and tectonic history) may be as critical to
emergent diversity patterns as the mechanisms and processes governing how organisms
interact and evolve [40–42]. Explaining the LDG with eco-evolutionary simulation models,
therefore, benefits from suitable paleoenvironmental reconstructions [43] and the integration of
global data sets on continental topography and paleoshorelines [44,45].

Trait-Based Local Population Dynamics
Traits are essential for individual survival and reproduction (fitness), and mechanistic models
that include interactions of organismal traits and the abiotic and biotic environment, below the
level of species (i.e., at the individual, population, or metapopulational level), are thus appro-
priate. Local population dynamics can, for example be assumed to be trait-dependent [46,47].
One set of traits might determine an organism’s fitness dictated by the abiotic environment, a
different set of traits may influence relative fitness associated with the suite of potential
competitors present at any point in time [48]. Such a modeling approach requires making
basic assumptions that facilitate the link between environmental conditions, available resour-
ces, and ecological interactions, and population dynamics then emerge from those
assumptions.

Spatial and Eco-evolutionary Metacommunity Dynamics
For modeling eco-evolutionary metacommunity dynamics, trait-based models need to be
implemented in a larger spatial context, allowing individuals to disperse over geographically
relevant extents. Metacommunity dynamics will arise from eco-evolutionary feedbacks
between dispersing individuals and recipient communities within the context of the
216 Trends in Ecology & Evolution, March 2019, Vol. 34, No. 3



spatiotemporal template [49]. Evolutionary dynamics result from natural selection by both
abiotic and biotic conditions, ecological drift, dispersal, and speciation. Speciation can be
modeled using a phenomenological approach or more complex allele-based models in which
phenotypic trait variability is completely or partially heritable and the accumulation of genetic
incompatibilities may drive differentiation of daughter species (Box 2). Each of these modeling
components is necessary for capturing the suite of processes invoked by LDG hypotheses
(Box 1); they can be modeled with varying degrees of complexity and they come with a set of
low-level assumptions that need to be clearly stated (Box 2).

Understanding Patterns and Inferring Processes
Above, we have shown that a mechanistic mindset is useful to better understand the internal
logic and consequences of the different hypotheses, as well as the interactions among them. In
addition, a mechanistic model can clarify the biodiversity patterns expected under different
combinations of spatiotemporal environmental templates, biotic interactions, and other eco-
evolutionary rules (e.g., [16,48,50]). This ability to simulate very different worldviews of how the
LDG arises (e.g., ‘ecological limits’, ‘niche conservatism’, etc.) within the same comparative
framework is a critical element of our approach as different types of processes modeled with
varying degrees of mechanistic detail can be explored and contrasted.

Ultimately, we need mechanistic models to understand the details of the emerging eco-
evolutionary patterns at a sufficient resolution to be able to quantitatively confront them with
data. The more secondary patterns (e.g., phylogenies, species ranges, distributions of abun-
dance or functional traits) that can be modeled, the greater the diagnostic power of the model
for exploring parameter space and for inferring the strength and interactions of different
processes. Examination of these patterns will also point to the type of data that will be most
valuable for reliable inference of a given process [51].

While we believe that confronting different model scenarios with multiple observed patterns
(Box 3) is the only way to make progress in understanding the LDG, we realize that substantial
conceptual, statistical, and computational challenges are associated with this task [52]. The
Box 1. An LDG Simulation Model in Action

Any simulation model of the processes that result in patterns at the biogeographic scale (e.g., [52,60]) must incorporate several fundamental processes (Figure IA).
Hurlbert and Stegen [16,25] provide one example of such an eco-evolutionary simulation model in an LDG context (Figure IB). In the model, species have different
thermal optima (initially assigned randomly, but subject to selection). The difference between a species’ thermal optimum and the temperature of the region
determines the local population size of that species. Species may experience implicit competition via a regional zero-sum constraint, and the probability of speciation,
dispersal, and extinction are each functions of regional population size. The simulation results in spatial richness patterns, regional trait distributions, and a
phylogenetic tree (Figure IC).

The simulation model was run under different parameter combinations that mimic distinct LDG hypotheses (‘niche conservatism’, ‘ecological limits’, ‘diversification
rates’), and the emergent geographic, trait, and phylogenetic data were used to derive further metrics and patterns that provide diagnostic support for each
hypothesis (Figure ID, only two patterns shown). Simulated and observed patterns were compared informally. This study demonstrated the utility of comparing
expectations for multiple hypotheses, confirming that many patterns like the diversity gradient itself and measures of phylogenetic tree imbalance were shared across
hypotheses. Conversely, patterns like the relationship between speciation rate and latitude or mean root distance and richness were potentially diagnostic of the
processes that generated them [16].

While exemplifying many of the desirable properties of a mechanistic model for the LDG, there are several ways in which the model in Hurlbert and Stegen [16,25]
could be improved. First, the geographic representation of the model was a simple one-dimensional spatial gradient with no long-term climate dynamics. Second, the
model has no means of representing a trophic niche in particular, or niche specialization in general, both of which are invoked by various LDG hypotheses (Table 1).
Third, speciation is modeled as a point mutation process which may impact simulated phylogenetic patterns (Box 2). Finally, to make more quantitative inferences
about the support for the respective hypotheses, a formal statistical parameter estimation, and model selection would be desirable [53,61,62]. We discuss methods
of fitting empirical patterns to simulations in Box 3.
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Figure I. An Example of an Eco-evolutionary Simulation Model in a Latitudinal Diversity Gradient (LDG) context. (A) Process classes suggested for any
eco-evolutionary model of the LDG. Text inside each wedge describes how the process was modeled in [25] and [16]. (B) A flowchart outlining the processes in [25]
and [16], with model components colored as in (A). (C) Example simulation output displaying species richness along a spatial gradient, the distribution of species’
thermal trait optima at three locations along the spatial gradient (dotted vertical lines indicate the actual temperature in those regions), and a phylogeny with branch
color denoting speciation rate estimates (from low blue to high red values) from BAMM [85]. (D) Diagnostic model outputs for three different LDG hypotheses.
Patterns shown are: upper panel, temporal variation of the correlation between species richness in a region and time since the region was colonized (simulations with
tropical clade origin in red, temperate clade origin in blue); lower panel, phylogenies color-coded by instantaneous speciation rate as in (C). DR, Diversification rates;
EL, ecological limits; NC, niche conservatism (see Table 1 for details).
complexity of the suggested models often makes it difficult to understand the consequences of
the underlying assumptions. Ways of overcoming such challenges are to build on known
ecological models (e.g., Lotka-Volterra equations) and evolutionary theory (e.g., adaptive
dynamics theory) that have been studied extensively. The models should also be built and
analyzed in a sequential manner of increased complexity to shed light on the consequences of
the key model assumptions and their interactions. While it is not our aim to detail these and
other methodological challenges here, we nevertheless highlight two basic inferential
approaches that seem particularly promising. First, qualitative matching of multiple patterns
218 Trends in Ecology & Evolution, March 2019, Vol. 34, No. 3



Box 2. Modeling Decisions: The Example of Speciation

Modeling each of the components in Figure IA in Box 1 requires a wealth of implementation decisions. These decisions
may have consequences for how well a given hypothesis is represented and what types of patterns emerge. As an
example, we consider the case of speciation, which can be modeled with varying degrees of complexity [63], from a
purely phenomenological approach to more complex allele-based models. For example, spatial processes combined
with drift may induce speciation through Dobzhansky-Müller incompatibilities [64], while abiotic and ecological factors
can induce disruptive selection and speciation both in allopatry (e.g., [41,65]) or sympatry (e.g., [66,67]). For complete
divergence and the formation of proper (biological) species, mechanisms for reproductive isolation, including sexual
selection and assortative mating, also adds to the complexity.

After making decisions about what speciation mode to model (e.g., sympatric versus allopatric), modelers face a range
of implementation choices from purely phenomenological models of point mutation speciation as in Box 1 to more
mechanistic models, where species diversification emerges from evolved trait divergence [48,68–70], or the accumula-
tion of genetic differences that arise as a function of vicariant events or divergent selection (Figure I). These implementa-
tion decisions can impact emergent phylogenetic patterns. For example, Davies et al. [42] showed that measures of tree
imbalance and branch stemminess were sensitive to whether speciation occurred via point mutation or various types of
range fission.

More generally, to draw a reliable inference, researchers should assess their possible implementation options and
evaluate the sensitivity of the patterns of interest to these choices. Some patterns will inevitably be more sensitive to
implementation decisions than the others. For example, the topology of a phylogeny captures the relative branching
pattern but is agnostic about branch lengths, and so topology may be less sensitive than branch length-based metrics
to decisions that affect the timing and rate of speciation events. When attempting to infer process from empirical data,
patterns sensitive to those implementation decisions should either be disregarded, or the implementation decision itself
can be included as alternative submodels that are then inferred by data. A more general discussion of fitting models to
data is provided in Box 3.

What concept to model?

How to model it?

Allopatric
specia on

Sympatric
specia on

Random
fission

Allelic Point
muta on

Adap ve
dynamics

Consequences

Figure I. Decisions About the Implementation of Speciation Processes in Mechanistic Models. Examples of
speciation models are schematically illustrated. The choice of model implementation may impact the pattern of interest.
In this hypothetical example, allopatric and sympatric speciation result in different tree topologies, but the specific
implementation of either speciation mode may additionally impact branch lengths.

Trends in Ecology & Evolution, March 2019, Vol. 34, No. 3 219



Box 3. Inference

Possibly the most crucial step in using mechanistic eco-evolutionary models for inference about the origin of the LDG is the way we connect them to data, for example, to
compare alternative parameterizations and model structures. Starting from a set of alternative model formulations (see Figure IA in Box 1), we can compare the patterns
produced by the model alternatives toobserved patterns (see Figure IB inBox 1). The alternativemodel formulations may correspond toparticular hypotheses, as shown in
Figure I, or to different parts of parameter space independent of existing hypotheses. The fit to the different patterns can be combined and weighted, or assessed
independently, to identify the support for the different alternatives, or specific model inadequacies that need to be addressed (see Figure IC in Box 1).

Indetail,however, therearevariouschallengestoachievecorrect inference.Howtoweighthedifferentpatterns,andaccount for theiruncertainty, isoneof them[71,72].Another
challenge ishowtodealwithuncertainties inparametersandsubprocesses.Asmostmodelparameterscannotbemeasureddirectly,anymodelcomparisonhastoaccount for
theiruncertainty,suchthat thesupportassignedtoanyof themodelalternatives isnotcontingentonarbitraryparameterchoices.Onepossibilitywouldbetotestwhetheroutput
patterns are dependent on model parameters and only use patterns that are independent for inference about the model alternatives. However, that would likely severely reduce
the number of patterns that can be used for inference. A better, albeit computationally more expensive alternative, is to use techniques of inverse modeling to calibrate each
modelalternative (e.g., [56]),andthencomparetheirsupportusingestablishedstatisticalmodelselectionmethodsthataccount forparameteruncertainty (e.g., theBayesfactor;
Figure I). This more complete approach to model comparison is also the preferredsolution in other research fields dealing with comparable problems (large complex system, no
replicate observation), such as cosmological models of the early universe [73]. Another solution would be to avoid the model selection problem altogether, and instead phrase
the inferentialproblemasaproblemofparameter inference fora ‘supermodel’ that includesall thepossiblepathways (i.e.,modelalternatives)and processes leadingto theLDG,
and through which we estimate the relative strength of each pathway, instead of testing fixed hypotheses.

Itera�ve
modellin g
approac h

(A) Model design (B) Model evalua�on/tes t

(C) Model inference and applica�on

Richness
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...Phylogen y

Richness
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Observed data
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Model fit
Richness Phylogeny
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Input es�mates
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Prior support

Hypotheses

Empirical support
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Empirical
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Model Pred ic�ons
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NC EL DR
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NC EL DR

Predic�onInference

Figure I. Inferential Cycle. (A) Theory about eco-evolutionary processes combined with data is used to build a model that can generate the observed patterns and
determine its a priori support (green bars) for different combinations of eco-evolutionary processes. The models may be designed to explicitly test support for
hypotheses listed in Table 1 or some other combination of processes. (B) The competing models are parameterized and their predictions are compared with empirical
data, quantifying the support lent by the model predictions for each hypothesis (pink bars) or parameter combination and providing specific information on missing or
misspecified processes to be improved in further inference cycles. (C) The model can then be used for inference and prediction. The updated posterior support (blue
bars) informs on the plausibility of inference given prior and empirical support and can be used as a prior in a subsequent iteration of the approach with a modified
model structure and/or different input data. DR, Diversification rate; EL, ecological limits; NC, niche conservatism.
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Outstanding Questions
What are the underlying causes of the
latitudinal diversity gradient (LDG)?
Multiple hypotheses have been formu-
lated to answer this question but a
consensus remains elusive, partly
due to hidden assumptions that are
associated with these primarily verbal
hypotheses.

What key processes, describing how
organisms interact with their biotic and
abiotic environment, are necessary
and sufficient for modeling biodiversity
patterns associated with the LDG? We
argue for eco-evolutionary processes:
selection, dispersal, ecological drift,
and speciation, but researchers need
to explore the tradeoffs associated
with modeling these processes in
greater or lesser detail.

How are eco-evolutionary simulation
models best confronted with empirical
data (e.g., phylogenies, species
ranges, rank abundances, and func-
tional trait distributions)? Pattern-ori-
ented modeling and novel Bayesian
statistics may be the key for such a
quantification of the link between pro-
cess and LDG patterns.
gives an indication of whether the modeled processes can produce the patterns that we
observe [15,25,41,53]. Pattern matching is conceptually straightforward and easily allows
combination of the LDG with multiple observed secondary patterns to compare alternative
model or parameter choices. Second, models like the ones suggested above can be fitted to a
range of patterns in data using simulation-based methods such as approximate Bayesian
computation [54–57] or synthetic likelihood [58,59]. Regardless of which inferential approach
is used, any empirical patterns that a model is unable to reproduce can be instructive in the
iterative process of model improvement.

Concluding Remarks
Progress in understanding the processes that underlie LDG patterns and associated diversity
patterns has been slow (see Outstanding Questions). We repeat calls for a transition in
biodiversity research, translating verbal models into a unified mechanistic framework that
can be implemented in quantitative computer simulations [52,53,60]. In such a framework,
researchers can focus on measuring and inferring the ecological and evolutionary processes
that govern the interaction of organisms with each other and their environment in time and
space, which must ultimately underpin the LDG. By applying this framework, hidden assump-
tions in current hypotheses are exposed, revealing how the hypotheses relate to each other and
how they might be distinguished (Table 1 and Figure 1). More importantly, this framework is a
roadmap for flexible eco-evolutionary simulation models (Boxes 1 and 2) that can generate a
rich set of empirical patterns from the same underlying processes. We believe that this ability to
produce multiple diagnostic patterns will be crucial for inference (Box 3), and ultimately for
converting the available data into new knowledge about macroecology and macroevolution.
Challenges associated with model construction and the way models are confronted with data
will arise, but such challenges are inherent and inevitable to all sciences that deal with complex
systems. We are confident that, with time, these challenges can be addressed, and models
combining realistic spatiotemporal environmental templates with trait-based eco-evolutionary
implementation under an iterative procedure of model design, evaluation, and improvement,
will advance our understanding and quantitative inference of the processes underlying the LDG.
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