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Abstract: We study the formation/dissolution of equilibrium droplets in finite systems at parameters
corresponding to phase coexistence. Specifically, we consider the 2D Ising model in volumes of size L?,
inverse temperature 3 > (. and overall magnetization conditioned to take the value m* L? — 2m*vy,,
where 3; ' is the critical temperature, m* = m* () is the spontaneous magnetization and vy, is a
sequence of positive numbers. We find that the critical scaling for droplet formation/dissolution is
when vi/QL*2 tends to a definite limit. Specifically, we identify a dimensionless parameter A, pro-
portional to this limit, a non-trivial critical value A; and a function A such that the following holds:
For A < Ac, there are no droplets beyond log L scale, while for A > A, there is a single, Wulff-shaped
droplet containing a fraction Aa > A = 2/3 of the magnetization deficit and there are no other droplets
beyond the scale of log L. Moreover, Ax and A are related via a universal equation that apparently is
independent of the details of the system.
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1. INTRODUCTION
1.1 Motivation.

The connection between micrascopic interactions and pure-phase (bulk) thermodynamics has
been understood at a mathematically sophisticated level for many years. However, an analysis of
systems at phase coexistence which contain droplets has begun only recently. Over acentury ago,
Curie[22], Gibbs [30] and Wulff [52] derived from surface-thermodynamical considerations that
asingle droplet of a particular shape—the WUIff shape—will appear in systems that are forced to
exhibit afixed excess of aminority phase. A mathematical proof of thisfact starting from asystem
defined on the microscopic scale has been given in the context of percolation and Ising systems,
first in dimension d = 2 [4, 24] and, more recently, in all dimensions d > 3 [11,18,19]. Other
topicsrelated to the droplet shape have intensively been studied: Fluctuations of a contour line[3,
15-17,23,34], wetting phenomena[47] and Gaussian fields near a“wall” [5, 13,26]. See[12] for
asummary of these results and comments on the (recent) history of these developments.

The initial stages of the rigorous “Wulff construction” program have focused on systems in
which the droplet subsumes a finite fraction of the available volume. Of no less interest is the
situation when the excess represents only a vanishing fraction of the total volume. 1n [25], sub-
stantial progress has been made on these questions in the context of the Ising model at low tem-
peratures. Subsequent devel opments [35, 36, 45, 46] have allowed the extension, in d = 2, of the
aforementioned results up to the critical point [37]. Specificaly, what has so far been shown is
as follows: For two-dimensional volumes A, of side L and § > 0 arbitrarily small, if the mag-
netization deficit exceeds L*/319, then a Wulff droplet accounts, pretty much, for al the deficit,
while if the magnetization deficit is bounded by L*/3-9, there are no droplets beyond the scale
of log L. The preceding are of course asymptotic statements that hold with probability tending to
oneas L — oo.

The focus of this paper is the intermediate regime, which has not yet received appropriate
attention. Assuming the magnetization deficit divided by L*/3 tends to a definite limit, we define
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adimensionless parameter, denoted by A, which isproportional to thislimit. (A precise definition
of Aisprovidedin(1.10).) Our principal resultisasfollows: Thereisacritical value A¢ such that
for A < Ag, there are no large droplets (again, nothing beyond log L scale), whilefor A > A,
thereisasingle, large droplet of adiameter of theorder L2/3. However, in contrast to all situations
that have previously been analyzed, this large droplet only accounts for afinite fraction, Aa < 1,
of the magnetization deficit, which, in addition, does not tend to zero as A | A¢! (Indeed, Aa |
e, With A\c = 2/3.) Whenever the droplet appears, its interior is representative of the minus
phase, its shape is close to the optimal (Wulff) shape and its volume is tuned to contain the Aa-
fraction of the deficit magnetization. Furthermore, for all valuesof A, thereisat most one droplet
of size L2/3 and nothing else beyond the scale log L. At A = A the situation is not completely
resolved. However, there are only two possibilities: Either there is one droplet of linear size L2/3
or no droplet at all.

The above transition is the result of a competition between two mechanisms for coping with a
magnetization deficit in the system: Absorption of the deficit by the ambient fluctuations or the
formation of adroplet. The results obtained in [24,25] and [37] deal with the situations when one
of the two mechanisms completely dominates the other. Asis seen by a simple-minded compar-
ison of the exponential costs of the two mechanisms, L*/3 is the only conceivable scaling of the
magnetization deficit where these are able to coexist. (Thisis the core of the heuristic approach
outlined in [7,8,43].) However, at the point where the droplets first appear, one can envision al-
ternate scenarios involving complicated fluctuations and/or a multitude of droplets with effective
interactions ranging across many scales. To rule out such possibilities it is necessary to demon-
strate the absence of these “intermediate-sized” droplets and the insignificance—or absence—of
large fluctuations. Thiswas argued on a heuristic level in [9] and will be proven rigorously here.

Thus, instead of blending into each other through a series of intermediate scales, the droplet-
dominated and the fluctuation-dominated regimes meet—literally—at a single point. Further-
more, all essential system dependence is encoded into one dimensionless parameter A and the
transition between the Gaussian-dominated and the droplet-dominated regimes is thus character-
ized by a universal constant A¢. In addition, the relative fraction Aa of the deficit “stored” in
the droplet depends on A viaa universal equation which is apparently independent of the details
of the system [9]. At this point we would like to stress that, even though the rigorous results
presented here are restricted to the case of the two-dimensional 1sing model, we expect that their
validity can be extended to a much larger class of models and the universality of the depen-
dence on A will become the subject of a mathematical statement. Notwithstanding the rigorous
analysis, this universal setting offers the possibility of fitting experimental/numerical datafrom a
variety of systems onto asingle curve.

A practical understanding of how droplets disappear is by no means an esoteric issue. Aside
from the traditional, i.e., three-dimensional, setting, there are experimental realizations which are
effectively two-dimensional (see [39] and references therein). Moreover, there are purported ap-
plications of Ising systems undergoing “fragmentation” in such diverse areas as nuclear physics
and adatom formation [33]. From the perspective of statistical physics, perhaps more impor-
tant are the investigations of small systems at parameter values corresponding to a first order
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transition in the bulk. In these situations, non-convexities appear in finite-volume thermody-
namic functions [33, 40, 41, 48], which naturally suggest the appearance of a droplet. Severa
papers have studied the disappearance of droplets and reported intriguing finite-size characteris-
tics[7,8,39,42,43,48,49]. It is hoped that the results established here will shed some light in
these situations.

1.2 The mode!.

The primary goal of this paper is a detailed description of the above droplet-formation phenome-
non in the Ising model. In general dimension, this system is defined by the formal Hamiltonian

H=— Z 030y, (11)
(z.y)

where (z, y) denotes a nearest-neighbor pair on Z¢ and where o, € {—1, +1} denotes an Ising
spin. To define the Hamitonian in a finite volume A C 74, we use OA to denote the externa
boundary of A, OA = {z ¢ A : thereexistsabond (x,y) withy € A}, fix a collection of
boundary spins gy = (0:)zcaa and restrict the sum in (1.1) to bonds (x, y) such that {z,y} N
A # (). We denote this finite-volume Hamiltonian by H (o, 094 ). The specia choices of the
boundary configurations such that o, = +1, resp., o, = —1 for dl = € A will bereferred to as
plus, resp., minus boundary conditions.

The Hamitonian gives rise to the concept of a finite-volume Gibbs measure (also known as
Gibbs state) which is a measure assigning each configuration oy = (0,).cn € {—1,+1}4 the
probability
LI CINCEIN)

ZX@A (ﬁ)
Here 6 > 0 denotes the inverse temperature, oy, is an arbitrary boundary configuration and
Z{P* () isthe partition function. Most of this work will concentrate on squares of L x L sites,
which we will denote by A, and the plus boundary conditions. In this case we denote the above
probability by P; P (—) and the associated expectation by <—>Z”3 . Asthe choice of the signsin
(1.1-1.2) indicates, the measure PL+  with £ > 0 tends to favor alignment of neighboring spins
with an excess of plus spins over minus spins.

PX@Aﬁ(

op) = (1.2)

Remark 1. Asiswell known, the Ising model is equivalent to a model of a lattice gas where at
most one particleis allowed to occupy each site. In our case, the sites occupied by a particle are
represented by minus spins, while the plus spins correspond to the sites with no particles. In the
particle distribution induced by PL+ B , the total number of particles is not fixed; hence, we will
occasionally refer to this measure as the “grandcanonical” ensemble. On the other hand, if the
number of minus spinsis fixed (by conditioning on the total magnetization, see Section 1.3), the
resulting measure will sometimes be referred to as the “canonical” ensemble.

The Ising model has been studied very extensively by mathematical physicists in the last 20-
30 years and a lot of interesting facts have been rigorously established. We proceed by listing
the properties of the two-dimensional model which will ultimately be needed in this paper. For
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genera overviews of various aspects mentioned below we refer to, e.g., [12, 28, 29,51]. The
readers familiar with the background (and the standard notation) should feel free to skip the
remainder of this section and go directly to Section 1.3 where we discuss the main results of the
present paper.

e Bulk properties. For al 3 > 0, the measure PL+ ' has a unique infinite volume (weak)
limit P+ which isatrandation-invariant, ergodic, extremal Gibbs state for the interaction (1.1).
Let (—)*7 denote the expectation with respect to P+, The persistence of the plus-bias in the
thermodynamic limit, characterized by the magnetization

m*(8) = (o0) ™7, (1.3)

marks the region of phase coexistence in this model. Indeed, there is a non-trivial critical value
Be € (0,00)—known [1, 6,38, 44] to satisfy e?* = 1 + \/2—such that for 3 > [, we
have m*(3) > 0 and there are multiple infinite-volume Gibbs states, while for 5 < g, the
magneti zation vanishes and there is a unique infinite-volume Gibbs state for the interaction (1.1).
Further, using (A4; B)™* to denote the truncated correlation function (AB) ™5 — (A)+A(B) 8,
the magnetic susceptibility, defined by

X(8) =Y {o0;02) "7, (14)

T €72

is finite for al 5 > G, see [21,50]. By the GHS or FKG inequalities, we have x(5) > 1 —
m*(3)? > 0foral 3 € [0,00).

e Peierls contours. Our next requisite item is a description of the Ising configurations in
terms of Peierls’ contours. Given an Ising configuration in A with plus boundary conditions, we
consider the set of dual bonds intersecting direct bonds that connect a plus spin with a minus
spin. These dual bonds will be assembled into contours as follows: First we note that only an
even number of dual bonds meet at each site of the dual lattice. When two bonds meet at asingle
dual site, we simply connect them. When four bonds are incident with one dua lattice site, we
apply the rounding rule “south-east/north-west” to resol ve the “cross” into two curves “bouncing”
off each other (see, e.q., [24,46] or Figure 1). Using these rules consistently, the af orementioned
set of dual bonds decomposes into a set of non self-intersecting polygons with rounded corners.
These are our contours,

Each contour v is a boundary of a bounded subset of ®2, which we denote by V(). We
will also need a symbol for the set of sitesin the interior of ~; welet V(vy) = V(vy) N Z2. The
diameter of a contour + is defined as the diameter of the set V(vy) in the £2-metric on R2. In the
thermodynamic interpretation used in Section 1.1, contours represent microscopic boundaries of
droplets. The advantage of the contour language is that it permits the identification of a sharp
boundary between two phases; the disadvantage is that, in order to study the typical shape (and
other properties) of large droplets, one hasto first resum over small fluctuations of this boundary.

e Surfacetension. In order to study droplet equilibrium, we need to introduce the concept
of microscopic surface tension. Following [4,45], on Z? we can conveniently use duality. Given
apg > b let g* = %log coth 3 denote the dual temperature. For any (k1, ko) € Z? and k =
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+ + + + o+

FIGURE 1. An example of an Ising spin configuration and its associated Peierls’ contours. In
general, a contour consists of a string of dual lattice bonds that bisect a direct bond between a
plus spin and a minus spin. When four such dual bonds meet at a single (dual) lattice site, an
ambiguity isresolved by applying the south-east/north-west rounding rule. (The remaining corners
are rounded just for esthetic reasons.) The shaded areas correspond to the part of V() occupied
by the minus spins.

(K2 + )2, let n = (k1 /k, ko /k) € S; = {z € R?: ||z| = 1}. (Here ||z|| is the Euclidean
norm of z.) Then the limit

ro(n) = Jim_ - log(oomvin) (L5)
where Nkn = (k1 N, koN) € 7?2, exists independently of what integers k1 and k» we chose to
represent n. and defines a function on a dense subset of S;. It turns out that this function can
be continuously extended to all n € S;. We call the resulting quantity 753(n) the surface ten-
sion in direction n at inverse temperature 5. Asis well known, n — 73(n) is invariant under
rotations of n by integer multiples of & and 7iin = inf,cs, 75(n) > 0 foral 8 > 3. [45]. Infor-
mally, the quantity 73(n )N represents the statistical-mechanical cost of a (fluctuating) contour
line connecting two sites at distance N on a straight line with direction (or normal vector) n.

Remark 2. Our definition of the surface tension differs from the standard definition by a fac-
tor of 371. In particular, the physical units of 75 are length~! rather than energy xlength!.
The present definition eliminates the need for an explicit occurrence of 5 in many expressions
throughout this paper and, as such, is notationally more convenient.

e Surface properties. On the level of macroscopic thermodynamics, it is obvious that when a
droplet of the minority phaseis present in the system, it is pertinent to minimize the total surface
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cost. By our previous discussion, the cost per unit length is given by the surface tension 73(n).
Thus, oneis naturally led to the functional 1V3(~) that assigns the number

Wa(v) = / T5(ne)dt (1.6)
vy

to each rectifiable, closed curve v = (v;) in R2. Here n; denotes the normal vector at ;. The
goal of theresulting variational problemisto minimize W3 (0D) over all D C B2 with rectifiable
boundary subject to the constraint that the volume of D coincides with that of the droplet. The
classic solution, due to Wulff [52], isthat W3(9D) is minimized by the shape

DW:{TERQ:r-nng(n),nESl} .7

rescaled to contain the appropriate volume. (Here r - n denotes the dot product in I22.) We will
use I to denote the shape Dy scaled to have a unit (Lebesgue) volume. It follows from (1.7)
that W isaconvex set in[22. We define

wi(B) = Wg(OW) (1.8)

and note that w; () > 0 once 3 > fc.
Our preliminary arsenal is now complete and we are prepared to discuss the main results.

1.3 Main results.

Recall the notation A7, for asquare of L x L sitesin Z2. Consider the Ising model in volume Ay,
with plus boundary condition and inverse temperature 5. Let us define the total magnetization (of
aconfiguration o) in A, by the formula

Mp= ) o, (1.9)
zEAL

Let (vr)r>1 beasequence of positive numbers, with v;, — co as L — oo, such that m* [Ap| —
2m* vy, isan alowed value of My, for al L > 1. Our first result concerns the decay rate of the
probability that M, = m* |AL| — 2m™* vy, in the “grandcanonical” ensemble Pzr’ﬂ:

Theorem 1.1 Let § > [ and let m* = m* (5), x = x(5), and w; = w;(B) be as above.
Suppose that the limit

* 3/2
(m*)? . g
A=2 — 1.10
Xwi L—oo ‘AL’ ( )
existswith A € (0, 00). Then
. 1 +,8 * * .
LIEI;O — log P;7 (M, = m* [AL| — 2m*v) = —wy oguifgl(I)A()\)’ (1.112)

where

AN =VA+A(L-N?  0<A<L (1.12)
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The proof of Theorem 1.1 is a direct consequence of Theorems 3.1 and 4.1; the actual proof
comes in Section 5. We proceed with some remarks:

Remark 3. Note that, by our choice of the deviation scale, the term m*(3)|A | can be replaced
by the mean value (M L>Z’ﬁ inall formulas; seeLemma?2.9 below. The motivation for introducing
the factor “2m*” on the |eft-hand-side of (1.11) isthat then v;, represents the volume of adroplet
that must be created in order to achieve the required value of the overall magnetization (provided
the magnetization outside, resp., inside the droplet ism*, resp., —m™).

Remark 4. The quantity X that appearsin (1.11-1.12) represents the trial fraction of the deficit
magnetization which might go into a large-scale droplet. (So, by our convention, the volume of
such adroplet isjust Avz.) The core of the proof of Theorem 1.1, roughly speaking, is that the
probability of seeing a droplet of this size tends to zero as exp{—w1,/vL®a(A)}. Evidently,
a large deviation principle for the size of such a droplet is satisfied with rate L?/3 and a rate
function proportional to ® . However, wewill not attempt to make this statement mathematically
rigorous.

Next we shall formulate our main result on the asymptotic form of typical configurationsin the
“canonical” ensemble described by the conditional measure PEL”B( | Mp =m*|AL| — 2m*vr).
For any two sets A, B C R?, let dy(A, B) denote the Hausdorff distance between A and B,

du(A, B) = max{sup dist(z, B), sup dist(y, A) }, (1.13)
€A yeB

where dist(z, A) is the Euclidean distance of = and A.
Our second main theorem is then as follows:

Theorem 1.2 Let 8 > [ and suppose that the limit in (1.10) exists with A € (0, 0). Recall
that W' denotes the WUIff shape of a unit volume. Given z¢,s,L € (0,00), let A, 5, be the
event that any external contour  for which diam~ > s must also satisfy diam~y > s, /vr.
Next, for each e > 0, let B, 5 1, be the event that there is at most one external contour vy in Ay,
with diam vy > s and, whenever such a contour -, exists, it satisfies the conditions

inf, dn (V(70), 2 + V[V (0)| W) < Veur (1.14)
and
(v V(0)l) € inf @A(N) +e. (1.15)

In addition, the event B, ; 1, also requires that the magnetization inside v, obeys the constraint

Z (0p +m")| < evr. (1.16)
z€V(70)

There exists a constant ¢ > 0 such that for each { > 0 and each ¢ > 0 there exist numbers
Ky < oo and Ly < oo such that

PP (Ao r N Bes p| My, = m* [Ap] = 2m*vp) > 1— L7¢ (1.17)
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holds provided »c < 3¢y and s = K log L with K > Kgpand L > Ly, .

Thus, simply put, whenever there is a large droplet in the system, its shape rarely deviates
from that of the Wulff shape and its volume (in units of v;) is amost always given by a value
of A nearly minimizing ® ». Moreover, all other dropletsin the system are at most of alogarithmic
size.

Most of the physically interesting behavior of thissystemissimply aconsequence of where & 5
achieves its minimum and how this minimum depends on A. The upshot, which is stated con-
cisely in Proposition 2.1 below, is that thereisacritical value of A, given by

Ac = 1(%)3/2, (118)

such that if A < Ac, then & A hasthe unique minimizer at A = 0, whilefor A > A, the unique
minimizer of ® A isnontrivial. More explicitly, for A # Ac, the function ® A is minimized by

if A <A
L= A< Be (1.19)
A (A), if A > Ag,
where A (A) isthe maximal positive solution to the equation
AAVA(1 = N) = 1. (1.20)

The reason for the changeover is that, as A increases through A, alocal minimum becomes a
globa minimum, see the proof of Proposition 2.1. As a conseguence, the minimizing fraction A
doesnot tend to zeroas A | Ag; in particular, it tendsto A\c = 2/3.

Using the information about the unique minimizer of ®A for A # A, it is worthwhile to
reformulate Theorem 1.2 asfollows:

Corollary 1.3 Let 5 > (5 and suppose that the limit in (1.10) existswith A € (0,00). Let A
and \a be asin (1.18) and (1.19), respectively. Let K be sufficiently large (i.e, K > Ko,
where K isasin Theorem1.2). Considering the conditional distribution PZ“B(- |Mp =m*|Ar|—
2m* vy,), the following holds with probability tending to oneas L — oo:

(1) If A < Ag, then all contours~y in Ay, satisfy diam v < K log L.

(2) If A > Ag, then there is exactly one external contour v with diam g > Klog L and
all other external contours « satisfy diam~ < K log L. Moreover, the unique “large’
external contour ~, asymptotically satisfies the bounds (1.14-1.16) for all ¢ > 0. In partic-
ular, [V (7)] = vr.(Aa + o(1)) with probability tending to oneas L — oc.

We remark that although the situation at A = A is not fully resolved, we must have either a
singlelargedroplet or no droplet at all; i.e., the outcomemust mimicthecase A > Acor A < A.
A better understanding of the case A = A¢ will certainly require a more refined anaysis; e.g.,
the second-order large-deviation behavior of the measure P}~ ﬂ(').

Remark 5. We notethat in the course of thiswork, the phrase“s > (. appearsin three disparate
meanings. First, for 8 > 3¢, the magnetization is positive, second, for 5 > G, the surface tension
is positive and third, for 5 > J, truncated correlations decay exponentialy. The facts that the
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transition temperatures associated with these properties al coincide and that 5. is given by the
self-dual condition plays no essential role in are arguments. Nor are any other particulars of the
square lattice really used. Thus, we believe that our results could be extended to other planar
lattices without much modification. However, in the cases where the coincidence has not yet
been (or cannot be) established, we would need to define “5;” so as to satisfy al three criteria.

1.4 Discussion and outline.

The mechanism which drives the droplet formation/dissolution phenomenon described in the
above theoremsis not difficult to understand on a heuristic level. This heuristic derivation (which
appliesto al dimensionsd > 2) has been discussed in detail elsewhere [9], so we will be corre-
spondingly brief. The mainideas are best explained in the context of the large-deviation theory for
the “grandcanonical” distribution and, as a matter of fact, the actual proof a so follows this path.

Consider the Ising model in the box A;, and suppose we wish to observe a magnetization
deficiency 0 M = 2m*vy, from the nominal value of m*|Ar|. Of course, this can be achieved in
one shot by the formation of a Wulff droplet at the cost of about exp{—w1 /v }. Alternatively,
if we demand that this deficiency emerges out of the background fluctuations, we might guess on
the basis of fluctuation-dissipation arguments that the cost would be of the order

(6M)* \ (m*v,)?
exp{—m} R~ exp{—ZW}, (1.21)
where x is the susceptibility and Var(Mr) = (x + o(1))|AL| isthe variance of M, in distribu-
tion Pj’ﬁ. Obviously, the former mechanism dominateswhen /vy, < v%/\AL|, i.e., whenvy, >
L4/3, while the latter dominates under the opposite extreme conditions, i.e., when v;, < L*/3.
(These are exactly the regions previously treated in [25, 37] where the corresponding statements
have been established in full rigor.) In the case when vy, /L*/3 tends to a finite limit we now find
that the two terms are comparable. Thisisthe basis of our parameter A defined in (1.10).

Assuming ui/Q/\AL\ is essentialy at its limit, let us instead try a droplet of volume Avy,,
where0 < A < 1. Thedroplet cost is now reduced to

exp{—w1V\/r }, (1.22)

but we still need to account for the remaining fraction of the deficiency. Assuming the fluctuation-
dissipation reasoning can still be applied, thisis now

(m* v)
exp{—ZX‘TLL’(l — )\)2} = exp{—wi/vr (1 — A\)?A}. (1.23)

Putting these together we find that the total cost of achieving the deficiency M = 2m*vy, using
adroplet of volume Av;, isgivenin the leading order by

exp{—w1®a(N\)\/vL }. (1.24)

An optimal droplet size is then found by minimizing ®A (\) over A. Thisis exactly the content
of Theorem 1.1. We remark that even on the level of heuristic understanding, some justification
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is required for the decoupling of these two mechanisms. In [9], we have argued this case on a
heuristic level; in the present work, we simply provide a complete proof.

The pathway of the proof isasfollows. The approximate equalities (1.22—-1.24) must be proved
in the form of upper and lower bounds which agree in the L — oo limit. (Of course, we never
actually have to go through the trouble of establishing the formulas involving ® (\) for non-
optimal values of \.) For the lower bound (see Theorem 3.1) we simply shoot for the minimum
of @A (\): We produce anear-Wulff droplet of the desired areaand, on the complementary region,
alow the background fluctuations to account for the rest. Here, as a bound, we are permitted to
use a contour ensemble with restriction to contours of logarithmic size which ensures the desired
Gaussian behavior.

The upper bound requires considerably more effort. The key step is to show that, with prob-
ability close to one, there are no droplets at any scale larger than log L or smaller than /v,
Notwithstanding the technical difficulties, the result (Theorem 4.1) is of independent interest be-
cause it applies for al A € (0,0), including the case A = A;. Once the absence of these
“intermediate” contour scales has been established, the proof of the main results directly follow.

We finish with a brief outline of the remainder of this paper. In the next section we collect the
necessary technical statements needed for the proof of both the upper and lower bound. Specif-
icaly, in Section 2.1 we discuss in detail the minimizers of ¢, in Section 2.2 we introduce the
concept of skeletons and in Section 2.3 we list the needed properties of the logarithmic contour
ensemble. Section 3 contains the proof of the lower bound, while Section 4 establishes the ab-
sence of contour on scales between log L and the anticipated droplet size. Section 5 assembles
these ingredients together into the proofs of the main results.

2. TECHNICAL INGREDIENTS

This section contains three subsections: Section 2.1 presents the solution of the variational prob-
lem for function & on the right-hand side of (1.12), while Sections 2.2 and 2.3 collect the
necessary technical lemmas concerning the skeleton calculus and the small-contour ensemble.
Readers are invited to skip the entire section on a preliminary run-through and return to it only
after getting to the proofsin Sections 3-5.

2.1 Variational problem.

Here we investigate the global minima of the function ® A that was introduced in (1.12). Since
the general picture is presumably applicable in higher dimensions as well (certainly at the level
of heuristic arguments, see [9]), we might as well carry out the analysis in the case of a general
dimension d > 2. For the purpose of this subsection, let

DAN) = AT +A(I-N?2,  0<A<L 2.1)
We define

Pp = dnf Pa(N) (2.2)
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and note that &% > 0 once A > 0. Let usintroduce the d-dimensional version of (1.18),

d+1

Ac = é(%)T. (2.3)

The minimizers of ® o are then characterized as follows:
Proposition 2.1 Letd > 2 and, for any A > 0, let 9t A denote the set of all global minimizers
of @ on [0, 1]. Then we have:

(1) If A < Ac, thenMita = {0}.
(2 If A = Ac, then A = {0, Ac}, where

2
S d+ 1
(3) If A > Ac, thenMia = { Ao}, Where )\ isthe maximal positive solution to the equation

2d 1
HA Ad(1—XN)=1. (2.5

e (2.4)

In particular, Ag > Ac.

Proof. A simple calculation shows that A\ = 0 is dways a (one-sided) local minimum of \ —
dA(N), while A = 1 isaways a (one-sided) local maximum. Moreover, the stationary points
of ®a in (0, 1) have to satisfy (2.5). Consider the quantity

2d

(1- %Al/d@IAO‘)) _ m)\1/61(1 - ), (2.6)

_ 1
A

i.e, q(\) isessentialy the left-hand side of (2.5). A simple calculation shows that ¢(\) achieves
itsmaximal valueon [0, 1] at A = Ay = 717, whereit equals A ' = 2d?(d* — 1)~ (d +1)~"/4,
and is strictly increasing for A < A4 and strictly decreasing for A > A\;. On the basis of these
observations, it is easy to verify the following facts:

(1) For A < Ay, we have Ag(A) < 1 foral A € [0,1] (except perhaps at A = Ac when A
equals A4). Consequently, A — ®a (\) isstrictly increasing throughout [0, 1]. In particu-
lar, A = 0 isthe unique global minimum of ®A () in [0, 1].

(2) For A > Ay, (2.5), resp., Ag(\) = 1 hastwodistinct solutionsin [0, 1]. Consequently, A —
®A(A) has two local extremain (0,1): A loca maximum at A = A_(A) and a local
minimum at A = A (A), where A\_(A) and A\ (A) are the minimal and maximal positive
solutionsto (2.5), respectively.

q(N)

Asasimple calculation shows, the function A — A (A) isstrictly increasing on its domain with

In order to decide which of the two previously described local minima (A = 0 or A = A (A))
gives rise to the global minimum, we first note that, while @A (0) = A tendsto infinity as A —
00, the above asymptotics of A (A) showsthat Pa (A (A)) — 1asA — oo. Hence, AL (A) is
the unique globa minimum of & once A is sufficiently large. It remains to show that the two
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local minimainterchange their rolesat A = A.. To that end we compute

B (A (8)) = L BA((A)) = (1A (A) > 0, @7
wherewe used that A (A) isastationary point of ® A to derive thefirst equality. Comparing this
with %(I)A(O) =1, weseethat A — P (N (A)) increases with A strictly slower than A —
®A(0) on any finiteinterval of A’s. Hence, there must be a unique value of A for which ® A (0)
and & (M (A)) are exactly equal. An elementary computation shows that this happensat A =
Ac, Where A¢ isgiven by (2.3). This finishes the proof of (1) and (3); in order to show that also

(2) holds, we just need to note that A (A¢) isexactly Ac asgivenin (2.4). O

Proposition 2.1 alows us to define a quantity Aa by formula (1.19), where now A (A) isthe
maximal positive solution to (2.5). Since lima o, Aa = Ac > 0, A — A undergoes a jump
a Ae.

2.2 Skeleton estimates.

In this section we introduce coarse-grained versions of contours called skeletons. These ob-
jects will be extremely useful whenever an upper bound on the probability of large contours is
needed. Indeed, the introduction of skeletons will permit us to effectively integrate out small
fluctuations of contour lines and thus express the contour weights directly in terms of the surface
tension. Skeletonswerefirst introduced in[4,24]; here we use amodified version of the definition
from [37].

2.2.1 Definition and geometric properties. Given a scale s > 0, an s-skeleton is an n-tuple
(z1,...,xy,) of pointson the dual lattice, x; € (Z?)*, suchthat n > 1 and

s < |lwig1 — x| < 2s, i=1,...,n. (2.8)

Here || - || denotes the ¢2-distance on R? and z,,. is identified with z;. Given a skeleton S,
let P(.S) bethe closed polygonal curvein®? induced by S. Wewill use|P(S)| to denote the total
length of P(.S), in accord with our general notation for the length of curves.
A contour ~ is called compatible with an s-skeleton S = (x1, ..., zy,), if
(1) T, viewed as a simple closed path on 2, passes through all sites z;, i = 1,...,n inthe
corresponding order.
(2) du(v,P(S)) < s, where dy is the Hausdorff distance (1.13).

We writey ~ S if v and S are compatible. For each configuration o, we let I's(o) be the set of
al s-large contours~ in o; namely all v in o for which thereisan s-skeleton S such that v ~ S.
Given a set of s-skeletons & = (51, ...,.S,), we say that a configuration o is compatible with
S,ifI's(o) = (71,-..,vm) andy, ~ S foral k= 1,...,m. Wewill writec ~ & to denote
that 0 and & are compatible.

It is easy to see that I's(o0) actually consists of al contours ~ of the configuration o such
that diam~ > s. Indeed, diam~ > s for every v € T's(o) by the conditions (1) and (2.8)
above. On the other hand, for any ~ with diam~ > s, we will construct an s-skeleton by the
following procedure: Regard ~ as a closed non-self-intersecting curve, v = (v¢)o<t<1, Where v
is chosen so that sup,c, [|* — 0l > s. Thenwelet z; = 7o and 72 = ,, Where ty =
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inf{t > 0: [[v¢ — 70|l > s}. Similarly, if ¢; has been defined and z; = ¢, welet z;1 = v,
where t; 1 = inf{t € (t;,1]: |7 — v, > s}. Note that this definition ensures that (2.8) as
well as the conditions (1) and (2) hold. The consequence of this construction is that, via the
equivalence relation o ~ &, the set of all skeletons induces a covering of the set of all spin
configurations.

Remark 6. The reader familiar with [24, 37] will notice that we explicitly keep the stronger con-
dition (1) from [24]. Without the requirement that contours pass through the skeleton pointsin
the given order, Lemma 2.3 and, more importantly, Lemma 2.4 below would fail to hold.

Next we will discuss some subtleties of the geometry of the skeletons stemming from the
fact that the corresponding polygons (unlike contours) may have self-intersections. We will stay
rather brief; a detailed account of the topic can be found in [24].

We commence with a few geometric definitions: Let 8 = {P4,..., Py} denote a finite col-
lection of polygonal curves. Consider a smooth self-avoiding path £ from apoint x to oo that is
generic with respect to the polygons from 3 (i.e., the path £ has afinite number of intersections
with each P; and this number does not change under small perturbations of £). Let #(L£ N P;)
be the number of intersections of £ with P;. Then we define V(3) C R? to be the set of
points 2 € 22 such that the total number of intersections, Z?:l #(LNP;), isodd for any path £
from z to co with the above properties. We will use |V ()| to denote the areaof V' (I3).

If 33 happens to be a collection of skeletons, B = &, the relevant set will be V(&). If B
happens to be a collection of Ising contours, 8 = T', the associated V' (I") can be thought of as a
union of plaquettes centered at sites of Z2; wewill use V(I') = V(') N Z? to denote the relevant
set of sites. It is clear that if T are the contours associated with a spin configuration o in A and
the plus boundary condition on 9A, then V(I") are exactly the sitesx € A whereo,, = —1. We
proceed by listing a few important estimates concerning compatible collections of contours and
their associated skeletons:

Lemma2.2 Thereis a finite geometric constant g; such that if I" is a collection of contours
and & isa collection of s-skeletonswithT" ~ &, then

STl <as Y |P(S)]- (2.9)

vyel Se6
In particular, if diam~ < s« for all v € T', then we also have, for some finite constant g-,
V()| < gase > _[P(S)]. (2.10)
Se6
Proof. Immediate from the definition of s-skeletons. O

Lemma 2.2 will be useful because of the following observation: Let & be a collection of s-
skeletons and recal| that the minimal value of the surface tension, Tmin = infrcs, 75(n) isstrictly
positive, Tmin > 0. Then

> Ws(P(S)) = mmin D _|P(S)]. (2.11)

Se6 Se6
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Thus the bounds in (2.9-2.10) will alow us to convert a lower bound on the overall contour
surface area/lvolume into alower bound on the Wulff functional of the associated skeletons.

A littlelesstrivial is the estimate on the difference between the volumes of V(T') and V (&):

Lemma 2.3 There is a finite geometric constant g3 such that if I" is a collection of contours
and & isa collection of s-skeletonswithT" ~ &, then

“V(m - \V(G)H < [VID)AV(S)] < g5 S |P(S)]. 2.12)
56
Here V(I') AV (&) denotes the symmetric difference of V(I') and V (S).

Proof. We will just rephrase the proof of Theorem 5.13 in [24]. Let " = (y1,...,7%n) and
fixy, € I'. Let S, € & with S, = (o, ..., x,) be the skeleton compatible with +;, and let S}, ;
denote the segment of the straight line between z; and x ;1. Since v passes through the skeleton
pointsin the given order, for each j there is a corresponding piece, v ;, of v which connects
and l’j+1 .

Let Uy, ; be the subset of R? enclosed “between” Sy, ; and vy ; (i.€., Uy, ; is the union of all
bounded connected components of R \ (Sk.; U yx.;)). We claim that

V(ID)AV(S) € Uk, (2.13)
k.j

Indeed, let x € V(I")AV(&) and let £ be a path connecting x to infinity which is generic with
respect to both G and I'. Then £ has the same parity of the number of intersections with ~;
and Sy, unlessz € Uy ; for some k and j. By inspecting the definitions of V(I") and V' (&),
(2.13) is proved.

Let U, (P(Sk)) bethe s-neighborhood of the polygonal curve P(Sy,). Since Uy, ; C Us(P(Sk)),
by (2.13) we havethat V(I') AV (&) C |, Us(P(Sk)). From here (2.12) directly follows. O

2.2.2 Probabilistic estimates. The main reason why skeletons are useful is the availability of
the so called skeleton upper bound, originally due to Pfister [45]. Recall that, for each A C 72,
we use Pj’ﬁ to denote the probability distribution on spins in A with plus boundary condition
on the boundary of A. Given a set of skeletons, we et PZ’B(G) = PX’ﬁ({a: o ~ &}) bethe
probability that & is a skeleton of some configurationin A. Then we have:

Lemma 2.4 (Skeleton upper bound) For all 3 > 3, all finite A C 72, all scales s and all
collections G of s-skeletonsin A, we have

PIP(&) < exp{-W3(6)}, (2.14)
where
Ws(8) =Y Ws(P(9)). (2.15)
Se6

Proof. Thisis exactly Eq. (1.3.1) in [37]. The proof goes back to [45], Lemma 6.7. For our
purposes, the key “splitting” argument is provided in Lemma 5.4 of [46]. A specia case of the
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key estimate appears in Eq. (5.51) from Lemma 5.5 of [46] with the correct interpretation of the
left-hand side. O

The bound (2.14) will be used in severa ways: First, to show that the K log L-large contours
in abox of side-length L are improbable, provided K is large enough; this is a consequence of
Lemma 2.5 below. The absence of such contours will be wielded to rule out the likelihood of
other improbable scenarios. Finally, after all atypical situations have been dispensed with, the
skeleton upper bound will deliver the contribution corresponding to the term /X in (1.11).

An important consequence of the skeleton upper bound is the following generalization of the
Peierls estimate, which will be useful at several steps of the proof of our main theorems.

Lemma25 Lets = KlogL and let Sy, x denote the set of all s-skeletons that arise from
contoursin Ay,. For each 3 > ;. and o > 0, thereisa Ky = Ko(«, ) < oo, such that

> exp{-aWs(®)} <1 (2.16)

GCSL,K
for (all L and) all K > K.

Proof. Let 52,1( be the set of all K log L-skeletons S suchthat S = (x1,...,x;) withz; = 0.
By trandlation invariance,

RLGEDS (Lz 3 e*aWﬁ(P(S))>n7 (2.17)

S6CSL,k n2l  Ses? .

where the prefactor L? accounts for the translation entropy of each skeleton within A;. The
latter sum can be estimated by mimicking the proof of Peierls’ bound, where contour entropy
was bounded by that of the simple random walk on Z2. Indeed, each skeleton can be thought of
as a sequence of steps with step-length entropy at most 3252, where s = K log L, and with each
step weighted by afactor not exceeding e~ "min*, Thisand (2.11) yield

Z e~ oWs(P(5)) < Z (3252 Tmins )™, (2.18)

SeSP k m21

By choosing K sufficiently large, the right-hand side is less than %L—z foradl K > Ky. Using
thisin (2.17), the claim follows. O

Lemmas 2.4 and 2.5 will be used in the form of the following corollary:

Corollary 26 Letg > 3¢, L > 1and k > 0 befixed, and let A be the set of of configurations o
such that Wg(&) > « for at least one collection of s-skeletons & satisfying & ~ o. Let a €
(0,1),and let Ko(a, 3) beasin Lemma 2.5. If s = K log L with K > Ky(a, 3), then

PHP(A) < e (mow, (2.19)
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Proof. By the assumptions of the Lemma, we have
PPy < Y e, (2.20)

GCS](’L
Wg(&)=>x

where we used the notation P;’B(G) = P;’ﬂ({a: o ~ &}). Lemma2.4 then implies

Pz_’ﬁ(A) < Z e Ws(6) < o=(1—a)s Z e~ Ws(S) (2.22)
GCSk,L &CSk, 1L
W5(8)zk

Here we wrote e~ W3(8) = ¢=aWs(8)=(1-2)Ws(8) gnd then invoked to bound Ws(&) > & to
estimate e ~(1=¥Ws(8) py ¢=(1=2)%_Finally, we dropped the constraint to W3 (&) > « inthelast
sum. Since s = K log L with K > Ky(«a, (), the last sum isless than one by Lemma 2.5. O

Ideas similar to those used in the proof of Lemma 2.5 can be used to estimate the probability
of the occurrence of an s-large contour:

Lemma2.7 For each 8 > [, there exist a constant a(3) > 0 such that
PX,B (Ts(o) #0) < |A|e=(®)s (2.22)

for any finite A c Z? and any scale s > 1.

Proof. Fix o > 0 and suppose without loss of generality that [A| > 1 and s > o~ 'log|A| for
some « > 0. If I'y(o) # 0, the associated s-skeleton must satisfy Ws(&) > 7mins. Invoking
(2.14) avariant of the etimate (2.17-2.18) (hereiswhere s > o~ ! log | A| entersinto the play),
we show that PX’ﬁ(FS(U) #0) < C\A[sQe_%Tmiﬂs, where C' > 0 is a constant. From here the
bound (2.22) follows by absorbing the factor C's? into the exponential. O

2.2.3 Quantitative estimates around WuIff minimum. The existence of a minimum for the func-
tional (1.6) and a coarse-graining scheme supplemented with a bound of the type in (2.14) tell
us the following: Consider acollection I' of contours, all of which are roughly of the same scale
and which enclose a fixed total volume, and suppose that the value of the Wulff functional on
a S with & ~ T isclose to the Wulff minimum. Then (1) it must be the case that " consists of a
single contour and (2) the shape of this contour must be close to the Wulff shape. A quantitative
(and mathematically precise) version of this statement is given in the forthcoming lemma:

Lemma28 Let 3 > (.. Thenthere exist constants ¢y = ¢o(3) € (0,1), ¢ = ¢(8) > 0, and
C = C(f) < oo such that the following holds for all ¢ € (0,¢p): Let I' be a collection of
contours such that diam~y > ce/|V(I')| for all v € T" and let s be a scale function satisfying
s < e4/|V(T)|. Let S be a collection of s-skeletons compatible with T, & ~ T, such that

Ws(6) < wi/|V(D)|(1+€). (2.23)
Then T consists of a single contour, I' = {~}, and thereisan x € &2 such that

6 (V7). VIVOIW +2) < ev/e/ V3], (2.2)
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where IV is the WUIff shape of unit area centered at the origin. Moreover,

IV = V()] < CelV (7)]. (2.25)
Proof. We begin by noting that, by the assumptions of the present Lemma, |V (T")| and |V (&)|
have to be of the same order of magnitude. More precisely, we claim that

[[V(D)] = [V(8)|| < Ce|V(D)] (2.26)

holds with some C' = C(3) < oo independent of I', & and e. Indeed, from (2.11) and (2.23) we
have

D [P(S)] < TinWs(8) < wi(1+ ) rn/ [V (D), (2.27)
5e6
which, using Lemma 2.3 and the bounds s < e/|V(T")] and ¢ < 1, gives (2.26) with C' =

2g3w17'n:i}].

The bound (2.26) essentially alows usto replace V(') by V(&) in (2.23). Applying Theo-
rem 2.10 from [24] to the set of skeletons & rescaled by |V (&)|~1/2, we can conclude that there
ispoint » € R? and askeleton Sy € & such that

du (P(S0), VIV(8)|OW + ) < av/e/|V(8)], (2.28)
and
> [P(S)] < ae/ V()] (2.29)
SeG\{So}

where « is a constant proportional to the ratio of the maximum and the minimum of the surface
tension. Using (2.26) once more, we can modify (2.28-2.29) by replacing V(&) on the right-
hand sides by V(I") at the cost of changing « to (1 + C). Moreover, since (2.26) also implies
that |\/[V(T)] — V/[V(S)]| < Cey/[V(T)], we have

du (v |V (D)[OW, / |V (&)|0W) < Cediam W/ |V (T)|. (2.30)

Let v € T be the contour corresponding to Sy. By the definition of skeletons, dy(y, P(Sy)) <
s < e4/|V(T')|. Combining this with (2.30), the modified bound (2.28), and € < 1, we get

A (7, VIVIDIOW + 2) < ev/ey/[V (D)) (2.31)

forany ¢ > 14+a(14+C)+C diam W. (From the propertiesof 1V, itiseasily shown that diam W
is of the order of unity.)

Let us proceed by proving that I' = {~}. Forany o/ € T'\ {v}, let S,, be the unique skeleton
in & such that ' ~ S.,. Since diam~" < |P(Sy)| + s and, since aso |P(Sy)| > s, we
have diam ' < 2|P(.S,/)|. Using the modified bound (2.29), we get

<2a(1+ C)e/| V(D)) (2.32)
If ¢ also satisfiestheinequality ¢ > 2«(1 + C'), then this estimate contradicts the assumption that
diam~’ > ce/|V ()| foral 4" € T'. Hence, I = {~} as claimed.

diam " < 2|P(S)
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Thus, V(I') = V() and the bound (2.25) is directly implied by (2.26). Moreover, (2.31)
holds with V' (T") replaced by V'(y) on both sides. To prove (2.24), it remains to show that the
naked ~ on the left-hand side of (2.31) can be replaced by V' («y). But that istrivial because v is
the boundary of V() and the Hausdorff distance of two closed setsin 22 equals the Hausdorff
distance of their boundaries. O

2.3 Small-contour ensemble.

The goal of this section isto collect some estimates for the probability in Pf ¥ conditioned on the
fact that all contours are s-small in the sensethat I'; (o) = (). Most of what isto follow appears,
invarious guises, in the existing literature (cf Remark 7). For some of the estimates (Lemmas 2.9
and 2.10) we will actually provide a proof, while for others (Lemma 2.11) we can quote directly.

2.3.1 Estimates using the GHS inequality. The principal resource for what follows are two
basic properties of the correlation function of 1sing spins. Specifically, let (o, ; a@jfl denote the

truncated correlation function of the Ising model inaset A c Z? with plus boundary condition,
in non-negative inhomogeneous external fields h = (h,) and inverse temperature 3. Then:

() If 8 > B, then the correlations in infinite volume decay exponentialy, i.e., we have
<Ux;0y>£éﬁh < e~ lle=vll/e (2.33)

for someé = £(5) < co and al z and y.
(2) The GHSinequality impliesthat the finite-volume correlation function, (o; ayﬂ’,ﬂl, isdom-
inated by the infinite-volume correlation function at any pointwise-smaller field:

0 < (ozioy) ih < (0us0y) i (2.34)

foral A c Z?andal ' = (b)) with b, € [0, h,] for dl x.

Note that, via (2.34), the exponential decay (2.33) holds uniformly in A c Z2. Part (1)
is a consequence of the main result of [21], see [50]; the GHS inequality from part (2) dates
back to [31].

Now we are ready to state the desired estimates. Let A C 72 be a finite set and let s be a
scale function. Let Pj’ﬁ’s be the Gibbs measure of the Ising model in A C Z? conditioned on

the event {I'y(c) = 0} and let us use (—) "”** to denote the expectation with respect to P, """,
Then we have the following bounds:

Lemma29 For each s > [, there exist constants o1 () and a2 (3) such that
(M) = m*|Al| < a1 (B) (10A] + |APem2)9) (2.35)
for each finite set A C 72 and any scaling function s. Moreover, if A’ C A, then

(MAY T — (Maa) 505 | < an(B)(|A'] + |APPemo2@)9). (2.36)
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Proof. By Lemma 2.7, we have P:{’B(Fs(a) # ) < |Ale~*2® for some ay > 0, independent
of A. An easy estimate then shows

(MY S = (Ma)FP| < |APe, (2.37)
Therefore, it suffices to prove the bounds (2.35-2.36) without the restriction to the ensemble

of s-small contours. Next we claim that, for any B C 72 we have

0 < (o) 5 = (o) i,y < e lmvle, (2.39)

Indeed, the difference of the two expectationscan bewritten asanintegral [ dh(o; ay>§f{y}, iy
where h = (h) issuch that o, = hd, .. By property (2) of the truncated correlation function,
we have that (o,; ay)gf{y}’h is non-negative, which proves the left inequality in (2.38), while it
is bounded above by the same correlation function with B = Z2. Theintegral representation can
be used again for the correlation function in the infinite volume with the result

+.8 +.8 (o0 1+20y >+76 +.,8 (oa; HQ% >+76 +.8
<O-x>B o <U$>BU{Z‘J} < < 140y >+75 N <Ux> R~ < 140y >+ﬂ < <U$; Uy) o (239)
2 2

where we used that (1 + ay>+»5 > 1 to derive the last inequality. Using the property (1) above,
the right-hand side is bounded by e~ llz=vll/¢,

The bound (2.38) immediately implies both (2.35) and (2.36). Indeed, using (2.38) for al « €
Aandy € B\ A, wehaveforal A C B C Z? that

0< (Ma) 47— (Ma) 7 <D D elevllie < afjo4, (2.40)

r€AyeB\A
where o} = () < oo. Thisand (2.37) directly imply (2.35). To get (2.36), we also need to
nOtethat|MA—MA\A/’ < |A/| l

Our next claim concerns an upper bound on the probability that the magnetization in the plus
state deviates from its mean by a positive amount:

Lemma210 Let 5 > [c and let x = x(3) be the susceptibility. Then there exists a con-
stant K = K () such that

(1;m*)2

PXﬁ,S (MA > <MA>Z’5 +m* U) < 2e KA (2.41)

for any finite A C 72, anyv > 0, and any s > K log | A|.

Proof. Let M denotetheevent M = {o: My > <MA>}5 + m*v}. By Lemma 2.7 we have
that P7*(M) < 2PP (M), so we just need to estimate P*°(M). Consider the cumulant
generating function FX’B (h) = log{ehMa >X’ﬁ . The exponential Chebyshev inequality then gives

log PP (M) < FIP(h) — (M) TP — hm*v,  h>0. (2.42)



DROPLET FORMATION IN THE 2D ISING MODEL 21

By the property (2) of the truncated correlation function, we get

d?Fi’ "
anz =

(Ma; Ma)Ylop < (Ma; Ma)lg, (2.43)

where h = (h,) with h, = h for al = € Z? and where 0 is the zero field. Since FX’B(O) =0
and & F7(0) = (M)}, we get the bound

h2
Fy2(h) < M) 7 + = (Mas Ma) . (2.44)
Now, once more by the property (2) above,
JA|7HMa; Ma) g < [A7H(Ma; M) Z20 <A DD Howio) TP =y, (245)
z€A yEZQ
where the sums converge by the property (1). The claim follows by optimizing over h. O

Remark 7. Thebound in Lemma 2.10 correspondsto Eq. (9.33) of Proposition 9.1in[46] proved
with the help of Lemma5.1 from [45]. Similarly, the estimatesin Lemma 2.9 are closely related
to the bounds in Lemma 2.2.1 of [37]. We included the proofs of both statements to pinpoint
the exact formulation needed for our analysis as well as to reduce the number of extraneous
references.

2.3.2 Gaussian control of negative deviations. Our last claim concerns the deviations of the plus
magnetization in the negative direction. Unlike in the previous Section, here the restriction to the
small contour is crucial because, obviously, if the deviation is too large, there is a possibility of
forming a droplet which cannot be controlled by bulk estimates.

Let 3 > (. and let v be such that <MA>j’ﬁ’3 — 2m* v is an dlowed value of M 4. Define
2% (v) by the expression

S S * 1 m* 2 S
PP (My = (Ma) 5 — 20m*) = T exp{—Z(X A)| 2+ Qi(0)} (246)

Then we have:

Lemma 2.11 (Gaussian estimate) For each 5 > (. and each set of positive constants aq, as, as,
there are constants C' < oo and K < oo such that if s = K log L, then
s v? v3
1% (v)| < C(KﬁlogL\/ ﬁ) (2.47)
for all allowed values of v such that
2

0<ov<
_v_allogL

(2.48)

and all connected sets A C 72 such that
asl? < |A| < L? and |0A| < asL. (2.49)
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Proof. Thisisareformulation of Lemma 2.3.3 from [37]. O

3. LOWER BOUND

In this Section we establish a lower bound for the asymptotic stated in (1.11). In addition to
its contribution to the proof of Theorem 1.1, this lower bound will play an essential role in the
proofs of Theorem 1.2 and Corollary 1.3. A considerable part of the proof hinges on the Fortuin-
Kasteleyn representation of the Ising (and Potts) models, which makes the technical demands of
this section rather different from those of the following sections.

3.1 Large-deviation lower bound.
This section is devoted to the proof of the following theorem:

Theorem 3.1 (Lower bound) Let 3 > . and let (vy,) be a sequence of positive numbers such
that m* |[Ar| — 2m* vy, isan allowed value of M, for all L. Suppose that the limit (1.10) exists
with A € (0, 00). Then there exists a sequence (e, ) with e;, — 0 such that

Pz'ﬂ(ML =m* |AL‘ — Qm*vL) > exp{—wl\/ﬁ(ogir){fgl CI)AO\) + EL)} (3.1

holds for all L.

Remark 8. It is worth noting that, unlike in the corresponding statements of the lower bounds
in [24, 37], we do not require any control over how fast the error ¢;, tendsto zero as L — oc.
Indeed, it turns out that in the regime of finite A, the simple convergence e;, — 0 will be enough
to prove our main results. However, in the caseswhen vy, tendsto infinity so fast that A isinfinite,
a proof would probably need also some information about the rate of the convergencee;, — 0.

The strategy of the proof will simply be to produce a near-Wulff droplet that comprises a
particular fraction of the volume v,. The droplet will account for its requisite share of the deficit
magnetization and we then force the exterior to absorb the rest. The probability of the latter event
is estimated by using the truncated contour ensemble.

Let us first attend to the production of the droplet. Consider the Wulff shape W of unit area
centered at the origin and a closed, self-avoiding polygonal curve P C W. We will assume that
thevertices of P haverational coordinatesand, if N denotes the number of vertices of P, that each
vertex is at most 1/N away from the boundary of 7. Let Int P denote the set of points 2 € R?
surrounded by P. For any ¢, > 1, let Py, Py, Py, P3 be four magnified copies of P obtained
by rescaling P by factors ¢, t + r, t + 2r, and t + 3r, respectively. (Thus, for instance, Py =
{z € R%: z/t € P}.) Thisyieldsthree “coronas” K/, = IntP; \ IntPy, K}'. = IntP; \ IntPy,
and K{!l = IntP3\ IntP, surrounding Po. Let <} . = K/, N Z?, and similarly for K}!, and K}

Recall that a x-connected circuit in Z2 is a closed path on vertices of 72 whose elementary
steps connect either nearest or next-nearest neighbors. Let &, be the set of configurations o
such that €} ,. contains a x-connected circuit of sitesz € 72 with o, = —1 and K}'!. contains a
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EXT Cy

FIGURE 2. Anillustration of the “coronas” K} ., KY! ., K., the sets INT and EXT, and the *-
connected circuits C4 and C— of plus and minus sites, respectively, which are used in Lemma 3.2
and the proof of Theorem 3.1. Going from inside out, the four polygons correspond to Py, P1, P2
and P3; the shaded region denotesthe set A..

x-connected circuit of sites x € Z2 with o, = +1. The essential part of our lower bound comes
from the following estimate:

Lemma3.2 Let 3 > (. and let P be a polygonal curve as specified above. For any pair of
sequences (t7,) and (r1,) tending to infinity as L — oo in such a way that

tLL_l — 0, tL,r.Le—TLTmin/3 — 0 and rLtzl — 0, (32)
there is a sequence (€ ) with €, — 0 such that
PP (E ) > exp{—t.Ws(P)(1 + 1)} (33)
for all L > 1.

The proof of this lemma requires some substantial preparations and is therefore deferred to
Section 3.2. Using Lemma 3.2, we can prove Theorem 3.1.

Proof of Theorem 3.1. Let us introduce the abbreviation
ML:{U:ML:m*|AL|—2m*vL} (3.4)

for the central event in question. Suppose first that A < A¢, where A isasin (1.18). Propo-
sition 2.1 then guarantees that info< x<; Pa(A) = ®a(0) = A. In particular, there is no need
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to produce a droplet in the system. Let s = K log L. By restricting to the set of configurations
{o:Ts(c) =0} weget

PP (M) > PP (M) PP (Da(0) = 0). (3.5)

The resulting lower bound is then a consequence of (2.46), Lemma 2.11 and Lemma 2.7, pro-
vided K issufficiently large.

To handle the remaining cases, A > A, we will have to produce a droplet. Fix a polygon P
with the above properties, let Vol (P) denote the two-dimensional Lebesgue volume of itsinterior,
and let |P| denote the size (i.e., length) of its boundary. Let A = Aa, where A5 is as defined in
(1.19), and recall that, for this choice of A, wehave @A () = info<y <1 Pa(N) and X > A¢ > 0.
Since the goal is to produce a droplet of volume \vy, we let t;, = /vy, and pick r;, be such
that (3.2) holdsas L — oco. Abbreviating £, = &, »,, Welet (¢) denote the corresponding
sequence from Lemma 3.2. (Note that ¢/, may depend on P.)

For configurationsin &y, let C.. be the innermost *-connected circuit of plus spinsin K}l and
let C_ denote the outermost s-connected circuit of minus spinsin KLT. Let INT bethe set of sites
in the interior of C_ and let EXT be the set of sitesin Ay, that are in the exterior of C;.. (Thus,
we have INT N C_ = EXT N C4 = ().) Further, let Ay = Ay \ (INTUEXT) and use o4 to
denote the spin configuration on A.. Let M\t, Mexr and M. denote the overall magnetization
in INT, EXT and A4, respectively. Finally, let us abbreviate pnt = L(MNTmf’SJ and introduce
theevent £, = {0 € £+ Mint = —punt}-

The lower bound on P;f P(My) will be derived by restricting to the event £/, conditioning
on o4, extracting the probability of having the correct magnetization in Az \ A4, and applying
Lemma 2.11 to retrieve the contribution from droplet surface tension. The first two steps of this
program give

PHoMp) = My ngr) = 3T P ML N & los) P (o). (36)

o+

Our next godl is to produce a lower bound of the type (3.1) on PZr 0 (Mp N &L o), uniformly
in 0. The advantage of conditioning on afixed configuration isthat, if M;NE; N{o } occurs,
the overall magnetizationsin INT and EXT are fixed. Thus, on M N &} N {o+} we get

Mexr = Mp, — My — My = (Mexr)gys® — 2m*vp (1 — Aol (P) — 6),  (3.7)

where §;, = 01, (o+) isgiven by the equation 2m* vr,or, = | + 1l + 111 4 IV with I-1V defined by

| = junt — m* |INT], = — (M) + m* [EXT], (3.8)
I = — My +m* | A, IV = 2m* (|INT| — AVol (P)uy,). 3.9)

To estimate |-1V, we first notice the geometric bounds
t2VOol(P) — t1|P| < |INT| < (t, +7)?Vol(P) + (t + r)|P],

(3.10)
|As] < (tp +3rp)* —t7 + (tp + 3rp)|P|,
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and recall that, sinceboth C; and C_ arecontainedin A, wehave|C_|,|C+| < |A+|. Lemma2.9
for s = Klog L then alows us to estimate ||| < «a;(8)(|Ax| + INT]2L~2(0)K) and, simi-
larly, [I1] < a1(3)(|Ax| + 4L + L*~220)K) while the remaining two quantities are bounded by
invoking [I11] < 2|Ay| and [IV| < 4rptr + 2r% + 2(t + r)|P|. Using that r, = o(\/or)
and t;, = O(y/vr), we have [A| = o(vy) as L — oo. Moreover, if K is so large that
4 — as(B)K < 4/3, weaso have INT|2L=2DK < [4=2(AK — 4(y;) as L — oo. Combin-
ing these bounds, it is easy to show that |0, (c+)| < &, for al o, where 67, is a sequence such
that limL_,oo SL = 0.

Now we are ready to estimate the probability that both INT and EXT produce their share of
magnetization deficit. Note first that

B’ (Mint = —punt) > B (Minr = —punt) B (Ts(o) =0). (3.11)

Using Lemmas 2.11 and 2.7, we get Pyi’ (Mint = —punt) > CL~2/3 for some C = C(3) > 0.
On the other hand, letting Mexr = {0: Mexr = <MEXT>§X’?’S —2m*vr(1 — AVol(P) — 1)}, a
bound similar to (3.11) for Pg(f combined with Lemmas 2.11 and 2.7 yields

%exp{—zwu — AVoI(P) — 5L)2}7 (3.12)

P‘Hﬂ M >
EXT ( EXT) ‘EXT‘ X|EXT|

where C" = C’(f) > 0 isindependent of o1 contributing to (3.6). Combining the previous
estimates, we can use Lemma 3.2 to extract the surface energy term. Theresult is

PP(My) > C"L7/3 exp{—w1up @1 — €11 }, (3.13)
where C” = C"(8) > 0 and where &, stands for the quantity

Wg(P) 2(m*)2xflw1_1vi/2 = \2
b, = 1 — A\Vol(P . 14
L ” VA + () (1 — AVol(P) + 67 (3.14)

Asis clear from our previous reasoning, the quantity ®; can be made arbitrary close to ® (\)
by letting L — oo and optimizing over P with the above properties. The existence of the desired
sequence (ez,) then follows by the definition of the limit. O

3.2 Results using random-cluster representation.

In this section we establish some technical results necessary for the completion of the proof of
our lower bound. These results are stated mostly in terms of the random cluster counterpart of
the Ising model; the crowning achievement, which is Lemma 3.5, givesimmediately in the proof
of Lemma 3.2. We remark that the latter is the sum total of what this section contributes to the
proof of Theorem 3.1. The uninterested, or well-informed, readers are invited to skip the entire
section, provided they are prepared to accept Lemma 3.2 without a proof.

3.2.1 Preliminaries. The random cluster representation for the Ising (and Potts) ferromagnetsis
by now a well established tool. The purpose of the following remarks is to define our notation;
for more background and details we refer the reader to, e.g., [10, 32] or the excellent review [29].
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Let T C Z? denote afinite graph. A bond configuration, generically denoted by w, isthe as-
signment of azero (vacant) or aone (occupied) to each bondin T. Theweight of aconfiguration w
is given, informally, by RI*!¢C“), where |w| denotes the number of occupied bonds and C'(w)
denotes the number of connected components. For the Ising system at hand we have ¢ = 2
and R = ¢?# — 1. The precise meaning of C(w) depends on the boundary conditions; of concern
here are the so called free and wired boundary conditions. In the former, C(w) isthe usua num-
ber of connected components including the isolated sites, while in the latter all clusters touching
the bond-complement of T are identified as a single component.

The free and wired random-cluster measuresin A, denoted by PI"® and P} , respectively,
correspond to the free and plus (or minus) boundary conditions in the Ising spin system. Both
random-cluster measures enjoy the FK G property and the wired measure stochastically dominates
the free measure. Theinfinite volume limits of these measures also exist; we denote these limiting
objects by nge’ﬂ and ng. The most important type of event we shall consider is the event that
sites are connected by paths of occupied bonds. Our notation is as follows. If x,y € T, we
define {x «—— y} to be the event that there is such a connection. If we demand the existence of
apath using only bonds with both endsin some subgraph A C T, we write {z = y}.

The next concept we need to discuss is duality. For any T C 72, the dual graph T* is defined
as follows: Each bond of T is transversal to abond on (Z + 3) x (Z + 1) = (Z?)*. These
bonds are the bonds of T*; the sites of T* are the endpoints of these bonds. Each configuration w
induces a configuration on the dual graph via the correspondence “direct occupied” with “dual
vacant” and vice versa. It turns out that, if we start with either free or wired boundary conditions
on T, the weights for the dual configurations are also random-cluster weights with parameters
(¢*, R*) = (q,q/R), provided we also interchange the designation of “free” and “wired.” Of
course, the graph and its dual are not precisely the same. For example, if we examine the relevant
graph for the problem dual to the wired system in Ay, this consists of an (L + 1) x (L + 1)
rectangle with the corners missing. Moreover, because the boundary conditions on the dual graph
are free, all dua edges touching the boundary sites are occupied independently of the rest of
the configuration. Thus, ignoring these decoupled degrees of freedom, the restricted measure is
equivalent to afree measureon Ay .

In genera, we will use 5* to denote the inverse temperature dua to 3, which, for ¢ = 2
and the normalization of the Hamiltonian (1.1), is related to § via §* = %log coth 3. The
critical temperature is sdf dual, i.e, 5. = %log coth B.. For 6 > [, the dual model isin
the high-temperature phase. Hence, the limiting free and wired measures at 5* coincide and,
using the well-known relation between the spin-correlations and the connectivity functionsin the
FK representation, we have

f * * *
PEEP (2 e y) = PR (2 e y) = (00027, (3.15)

for all x,y € Z2. Thus, the exponential decay of correlations in the spin system at high temper-
atures, (ogo,)HP#" < e~ll#=vl/¢ where ¢ = £(3*) is the correlation length, corresponds to an
exponential decay of the connectivity probabilities. In particular, the surface tension at 3 > (c,
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as defined in (1.5) for unit vectors n with rationally related components, isthe inverse of the cor-
relation length for two point connectivity functionsin the direction n at inverse temperature 5*.

3.2.2 Decay estimates. Here we assemble two important ingredients for the proof of Lemma3.2.
We begin by quantifying the decay of the point-to-boundary connectivity function:

Lemma 3.3 Consider the ¢ = 2 random cluster model at 3 < 3. (which corresponds to the
high-temperature phase of the Ising system). Then,

Pl ({0 —— 0A.}) < Ate™'/* (3.16)
for all ¢ > 1.

Proof. Thisis one portion of the proof of Proposition 4.1in [20]. O

For the purposes of the next lemma, let n be a unit vector with rationally related components
and let C(n) be the set of al pairs (a,b) of positive real numbers such that the a x b rectangle
with side b perpendicular to n can be positioned in R in such away that all its four corners are
in Z?. We will use R}, C 7 to denote a generic a x b rectangle with the latter property. If =

and y arethetwo corners along the same b-side of R}, we let B, denote the event {z e y}.
a b

Lemma3.4 Letg € (0,0:) and let * = %log coth 3. Let n be a unit vector with rationally

related components and supposethat L, ay, and by, with (az, br) € C(n), tend to infinity in such

awaythatar/L — 0,br/L — 0 anddist(R ab,Z2 \Ar)/(br +1log L) — oo as L — oco. Then
. n 1/b —Tp*(MN

Jim PIRE(BE )" = e ), (3.17)

Proof. We will first establish the limit (3.17) for the measure in infinite volume and then show

that provided R7 are well separated from Z? \ A, as specified, the finite volume effects are not

important. Throughout the proof, we will omit the subscript 5* for the surface tension.
Fix n € S; with rationally related componentsand let 8 < (.. Let

m = PaC(Bl),  (a,b) €Cn), (3.18)

and note that if (a,b;) € C(n) and (a, b2) € C(n) with by > by, then also (a, b1 + b2) € C(n)

and (a,bs — b1) € C(n). We begin by the claim that the events in question enjoy a subadditive
property:

eglbl—l—bg 2 eglbl anbg’ (a b]_) ((I 62) S C(n) (319)

Indeed, welet k7, betranslated relativeto Ry, sothat the “left” a-side of R}, coincideswith

the “right” a- S|de of Ry, . Letzg and y; be the “left” and “right” bottom corners of k7, and

let 22 and y, be similar corners of R, . By our construction, y; and z coincide. Let R}’
denotethe union k7, U R7, Then

{m fo_’ y2} 2 {m = i 0 {oe o g}, (3.20)

a,by+bg a,by a,by

a,b1+b2

Theinequality (3.19) then follows immediately from the FKG property of the measure ng .
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Let A(n) = {a > 0:3b > 0, (a,b) € C(n)} bethe set of alowed values of a. As a
consequence of subadditivity, for any a € A(n) we have the existence of the limit e=@e(®) =
limbﬁoo(egjb)l/b. (Here b only takes values such that (a,b) € C(n).) Further, if a1,a2 € A(n)
with a; > aq, then thereis a b such that both (a;,b) € C(n) and (az,b) € C(n), and, for any
such b, we have Hafiﬁ > 9;;1,. Thence w,, (n) < w,,(n) whenever a;, as € A(n) satisfy a; >
az. Let w(n) = lim,_.oo @e(n), Where a’s are restricted to A(n). Now the quantity 632 , =
limg oo 0%, Where (a, b) € C(n), still obeys the subadditivity relation (3.19) and, in particular,
the half-space surface tension y(n) iswell defined by the limit

—m(n) — li 9™ )1/b, 3.21
e Jim (mb)lgg(n)( ab) (3.21)

Moreover, 0 , > 0, for al a and b such that (a, b) € C(n) and, therefore, m(n) < w(n). Our
god isto demonstrate that m(n) = w(n) and that the half-space surface tension m(n) equals
the full space surface tension 7(n).

Let e > 0. Thenthereisab* suchthat 62 ,. > e~ " (m(™)+9). However, since §7 . simply
equals the limit of 67, asa — oo, thereis an a* such that 6% ,. > =" (m(m)+29) Thence

w(n) < m(n)and theequality of m(n) and w(n) follows. To remove the half-space constraint,
consider the analogue of the previously defined events. Let = and y be related to R7, asin the
definition of event B, and let D, denote the union of R, and its reflection through the line
joining z and y. Let

oy =P ({= o y}). (322
a,b
Reasoning identical to that employed thus far yields
e T = blim lim (pgfb)l/b = lim bhm (pr b)l/b (3.23)

where we tacitly assume (a, b) € C(n) for the production of both limits. Now, obviously, p;%, >
0,7 and hence 7(n) < m(n). To derive the opposite inequality, we note that for each a € A(n),
thereisag(a) > 0 such that

0266 = 9(a)paps (a,b) € C(n). (3.24)

Indeed, the event giving rise to 6% , can certainly be achieved by connecting the bottom corners
of R%. directly to the middle poi nts and then connecti ng the middle points on the opposite a-
sides of R, ;. Then (3.24) follows by FKG. (To get that g(a) > 0, we also used that 5 > 0.)
Taking the 1/b-th power of both sides of (3.24) and letting b — oo followed by a — oo we arrive
a w(n) =m(n) = 7(n) aspromised.

To finish the proof, we must account for the effects of finite volume. Consider the event }‘;fb =
{OR}, < OAr}. Should F*, not occur, avacant ring separates R}, from dA, and, using fairly
standard arguments, we have 7

f n s n '
PIRE(BRy) = PR (Bry[(Fi)°). (3.25)
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On the other hand, by Lemma 3.3, we have
PEO(F2) < Pli(Fiy) < 8L(a+b) e SHORLOME, (3.26)

Thusif the distance between O R}, and OA 1, exceedsalarge multiple of b, +log L, the dominant
contribution to Pry” (B™,) comes from P&’ (B, | (F2,)°). Using (3.25), the claim follows. [

3.2.3 Corona estimates. We recall the “corona” regions K} ,~IK}'!. associated with some given
polygon P. In addition, we will also need to consider the collection of dual sites K}l = Kj'. N

(Z%)*, where (Z?)* isthe lattice dual to Z2. (This differs slightly from the graph dual to K}, by
some boundary sites.) In the context of the random cluster model (and its dual) we will consider
three events: The first event, to be denoted &/ ,., takes place in K} ,. and is defined by

e;gm = {w € ): thereisacircuit of occupied bondsin K'tﬂ. surrounding the origin}. (3.27)

The event £}') is defined similarly except that the circuit takes place in the region K'.. Finally,
one more Ci rcwt thistime adual circuit in the region K”* We define

& = {w € Q: thereisadual circuit of vacant bondsin K;'! surrounding the origin}.
(3.29)

As we will see in the proof of Lemma 3.2, the event £}, N &!'; N £}'} more or less implies
the desired event &; ,.. The desired lower bound will then be an immediate consequence of the
following lemma:

Lemma35 Let 5 > [ and let P be asin Lemma 3.2. For any sequences (¢1,) and (rp)
satisfying (3.2), there is a sequence (€ ) such that €] — 0 and, for all L,

PYG (&L, n el nEN ) > exp{—t,Ws(P)(1+€¢])}. (3.29)

tr,rr

Proof. In the course of this proof, let us abbreviate £ = &/, .., and similarly for £}'* and £},

aswell as K}, k3", and KIf'. We will start with an estimate for P} (€]/*), whichisin any case
the central ingredient of thislemma. Let 7' be the smallest integer T > 2 such that the polygon P
magnified by T has all verticeson Z2. Let uy, = T|(ty + r1)/T] + T and let z1, ...,z y be

the vertices of the polygon P magnified by uy,. Let xl, ..., x’y bethe corresponding vertices of
the polygon P magnified by u;, and trandated by (—— —%). Notice that (once t;, and r, are
large enough) the sites 7, ..., =}, lie inside the “corona” K*L”. We use n; to denote the unit
vector constituting the outer normal to the side between =7, ; and z; (where 27, is identified
with x%). By our construction, z1,...,xn € Z2, 2},...,2% € (Z*)* and n; have rationally
related components.

Fori = 1,..., N, let us consider the rectangles R;‘b with the base coinciding with the

line between z; and z;, ;. Here q; is the largest possible number such that (a;,b;) € C(n;)
and R}, C K*“ We remark that al (a;) and (b;) have L-dependence which is notationally
suppressed and that these tend to infinity as L — oo. In particular, the b;’s scale with u.. Let us
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denote
b;
b; = lim —, i=1,...,N, (3.30)
where the limit exists by the construction of b;’sand wherewe noted that ¢, /u;, — 1 as L — oo.
Let B; be the event that there is a dual vacant connection z; «— z7,, in the box R}’
and let 3; be the corresponding “direct” event that there is a direct occupied path x; «— x;4+1
contained in (2, 2) -trandate of Rnl .. Itis clear that the intersection ﬂf\i 1 BF produces the
event £1* and that these events are FKG-correI ated. Moreover, by duality, we have

L FK (B*) = geeiﬂFK (Bi) (3.3
(c.f., the paragraph before (3.15)). Now we are perfectly positioned to apply Lemma 3.4: Using
FKG, the scaling relation (3.30), and the fact that also the a;’stend to infinity by our construction,
we have as a consequence of the above-mentioned lemma that

Tim PG ()" = exp{ - Zb ma(n) }. (3.32)

The remainder of the proof concerns the estimate of the probability P/ (€} N £ [E1). Wi
claim that this conditional probability tends to one as . — oo. First, as a worst-case scenario,
consider the event V}'* that all bondsin 3" are vacant. By monotonicity in boundary conditions
and the strong FK G property of PZ"fK it is seen that

PrE(ELNENER) = PrE (L n e V). (333)

Under the condition that V}'* occurs, &) and E!!' are independent and we may treat them sepa-
rately The arguments are virtually identical for both events, so we need only be explicit about
PYECELIVI™).

Let ¢1, be amaximal integer such that there is a circuit of dua cites, 27, ..., 2}, separating
the boundaries of k!, with the property that, if Ay, (z;) isthetranslate of A7 by (the vector) =7,
then A;L (z;f) C K'L Note that lim inf; . ¢ /rr, > 1/3. Now, for the event E'L not to occur,
there must be a dual occupied path connecting some dua site on the outer boundary of K'L to
another on the inner boundary and hence at least one z; has to be connected to the boundary of
its A7 (z7) by apath of dual occupied bonds. Using subadditivity of the probability measure, we
find

1= PPEC(ELIVE™) <3 PlRc (2 —— 0A;, ()| Vi™). (3.34)
j=1
Now, again invoking monotonicity in the boundary conditions, the probability of the above con-
nection events may be estimated from above by placing dual wired (i.e., direct free) boundary
conditions on A7 (7). But then, by duaity, we have exactly the event which is the subject of
Lemma 3.3. Explicitly,

P A (2 = 0N, (z)|Vi") < B} [f:K (0 0A,) (3.39)
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holdsfor all j = 1,...,m, and the bound in (3.16) can be applied. Now the number of sites
which comprise the circuit does not exceed a multiple of ¢;,. Thus, for some constant C' indepen-
dent of L we have

PPE(ELIVIY) > 1= Clptpe /e, (3.36)

By the condition stated in (3.2), the fact that r;, > ¢, > r1/3 for sufficiently large L, and the
observation that ¢~ = 7iin, the desired result for £} follows. Similarly for £}, O

Proof of Lemma 3.2. We make liberal use of the correspondence between the graphical configu-
rations w and (sets of) spin configurations as described, e.g., in [2,10,27]. Each connected cluster
inw represents the spin configurationsin which all sites of the cluster have spins of the sametype.
Thus, if £ nEM* N &M oceurs, then the inner circuit of occupied bondsin X!, forcesthe spinson
these sites to be of the same type. Since these are disconnected from the boundary of A, by the
dual vacant circuitin K*L” , With probability one-half, all spins on the circuit are minus. Similarly,
the outer circuit of bonds in IK!/!' is plus-type with probability one if it is connected to A, and
with probability 1/2 otherwise. Thus, P, (&, ,, |} N EW* N MY is certainly bigger than 1/4,
and the claim follows using Lemma 3.5. O

4. ABSENCE OF INTERMEDIATE CONTOUR SIZES

4.1 Statement and outline.

The goal of this section isto prove that, with probability tending to one as . — oo, there will be
no contours with a diameter between the scales of log L and /v, in the “canonical” ensemble of
the lsing model in volume A;,. Thisresult isby far the most difficult part of the proof of our main
results stated in Section 1.3.

We start with a standard notion from contour theory. Let I'(o) denote the set of all contours
of a configuration o in Ay, with plus boundary condition. Applying the rounding rule, contours
are self-avoiding simple curves in 2. Recall that I's(o) is the set of contours of o that have a
non-trivial s-skeleton. We say that v € I'(o) is an external contour, if it is not surrounded by
any other contour from I'. We will use I'®!() to denote the set of external contours of I's(c).
(We remark that T®¢(o), namely the external contours of I'(o) which are big enough to have
an s-skeleton, coincides exactly with the set of external contours of the collection I's(o).)

Using this notation, the event A,, ; ;, from Theorem 1.2 is best described viaits complement:

Sl = {o: 3y e I'*(s), diamy < PR (4.2
Therelevant claim is then restated as follows:

Theorem 4.1 Let 8 > [ and let (v,) be a sequence of positive numbers that make m*|Ar| —
2m* vz, an allowed value of M, for all L. Supposethe limit A in (1.10) obeys A € (0, o). For
each ¢y > 0 thereexist 2 > 0, Ky < oo and Ly < oo such that if K > Ky, L > Ly and



32 M. BISKUP, L. CHAYES AND R. KOTECKY

s = K log L, then

PPO(AS ML = m*|AL] — 2m* o) < L7 (4.2)

Let s = K log L beascalefunction and recall that acontour v iss-largeif v € I's(o). For 2 >
0, acontour -y large enough to be an s-large contour but satisfying diam v < s, /v, will be called
a z-intermediate contour. Thus, Theorem 4.1 shows that, in the canonical ensemble with the
magnetization fixed to m*|Ar| — 2m* v, there are no s«-intermediate contours with probability
tending to one as L tendsto infinity. This statement, which is of interest in its own right, reduces
the proof of our main result to a straightforward application of isoperimetric inequalities for the
WuIff functional as formulated in Lemma 2.8.

Remark 9. The reason why a power of L appears on the right-hand side is because we only
demand the absence of contours with sizes over K log L. Indeed, for a general s, the right-hand
side of (4.2) could be replaced by e=¢ for some constant « > 0. In particular, the decay can be
made substantially faster by easing the lower limit of what we chose to call an intermediate size
contour. Finaly, we note that L, in Theorem 4.1 depends not only on 3, A, and ¢, but aso on

how fast the limit v3/% /| A | is achieved.

The proof of Theorem 4.1 will require some preparations. In particular, we will need to esti-
mate the (conditional) probability of five highly unprobable events that we would like to exclude
explicitly from the further considerations. All five events are defined with reference to a positive
number s« which, more or less, is the same 3« that appearsin Theorem 4.1.

Thefirst event, R}{V& 1., collects the configurations for which the combined length of all s-large
contoursin A, exceeds %_ls\/ﬁ . These configurations need to be a priori excluded because al
of the crucia Gaussian estimates from Section 2.3 can only be applied to regions with amoderate
surface-to-volume ratio. Next, we show that one can ignore configurations whose large contours
occupy too big volume. Thisisthe basis of the event Ri@ - Theremaining three events concern
the magnetization deficit in two random subsets of Ay: A set Int® C V(I'®(s)) of sites enclosed
by an s-large contour and a set Ext° of sites outside all s-large contours. The precise definition
of these setsfollowsin Section 4.2. The respective events are:

(3) Theevent R , , that Mine < —m*|Int°| — s~ svy/™.
(4) Theevent R, , | that Mgyge > m*|EXt?| — 2m*vy,.
(5) Theevent R;&L that Meye < m*|Ext®| — 2(1 + s~ Ym*vy.

By choosing s sufficiently small, the events R!, ..., R> will be shown to have a probability
vanishing exponentially fast with ,/vr. These estimates are the content of Lemma 4.2 and Lem-
mas 4.6-4.8.

Oncethe preparatory statements have been proven, we consider arather extreme version of the
restricted contour ensemble, namely, onein which no contour that islarger than sc-intermediate is
alowed to appear. We show, in arather difficult Lemma 4.9, that despite this restriction, bounds
similar to those of (4.2) till hold. The final step—the proof of Theorem 4.1—is now achieved by
conditioning on the location(s) of the large contour(s), which by the “R-lemmas” are typically
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not too big and not too rough. By definition, the exterior region is now in the restricted ensemble
featured in Lemma 4.9 and the result derived therein allows arelatively easy endgame.

Throughout Sections 4.2-4.4 wewill let 5 > [ be fixed and let (v, ) be a sequence of positive
numbers such that m*|Ar| — 2m* vy, is an alowed value of My, for all L. Moreover, we will
assumethat (vy,) issuch that the limit A in (1.10) existswith A € (0, c0).

4.2 Contour length and volume.

In this section we will prepare the grounds for the proof of Theorem 4.1. In particular, we derive
rather crude estimates on the total length of large contours and the volume inside and outside
large external contours. These results come as Lemmas 4.2 and 4.4 below.

4.2.1 Total contour length. We begin by estimating the combined Iength of large contours. Let s
be ascale function and, for any s > 0, let R}{,S,L be the event

RLoo={o: 3 Wz ="syir}). (43)

~v€ls(o)

The probability of event R}% 1, iIsthen estimated as follows:

Lemma4.2 For eache; > 0thereexist 2 > 0, Ky < oo and Lg < oo such that
PZ’B(R;S’L‘ML =m*|AL| —2m*vy) < e~V (4.9
holdsfor all 5 < 3¢, K > Ko, L > Ly, and s = K log L.

Proof. Let K be the quantity KO(%, () from Lemma 2.5 and let us recall that 7y, denotes the
minimal value of the surface tension. We claim that it suffices to show that, for al ¢; > 0 and an
appropriate choice of 3¢, the bound

PPRL L) <emaviE (4.5)

»,8,L
holds true once L is sufficiently large. Indeed, if (4.5) is established, we just choose ¢} so large
that the difference ¢} — ¢, exceeds the rate constant from the lower bound in Theorem 3.1 and the
estimate (4.4) immediately follows.
In order to prove (4.5), fix ¢} > 0 and let s, ' = 2g1¢} /Tmin, Where g; isasin (2.9). Let K >
Ky, « < xgands = Klog L. Weclamthat if o € R}{ .z, and & isacollection of s-skeletons
such that & ~ o, then (2.9) and (2.11) force o

2L < Y < gis Y P(S)] < grsTnWe(©). (4.6)

veTs(0) Se6s
Hence, for each o € R, , ; thereisat least one & suchthat & ~ o and W;s(6) > 2¢}/vr. By
Corollary 2.6 with k = 2¢} /v, and a = % and our choice of K, (4.5) follows. O

4.2.2 Interiors and exteriors. Given a scale function s and a configuration o, let T®Y(o) be
the set of external contoursin I's(o). (Note that these contours will also be external in the set
of all contours of ¢.) Define Int = Int, 1,(0) to be the set of all sitesin A;, enclosed by some
v € T'®Y(0) and let Ext = Ext; 1,(o) be the complement of Int, i.e., Ext = Ay \ Int.
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Given a set of externa contours T', we claim that under the condition that I'®!(¢) = T, the
measure PL+ isa product of independent measures on Ext and Int. A coarse look might suggest
a product of plus-boundary condition measure on Ext and the minus measure on Int. Indeed,
all spinsin Ext up against a piece of I" are necessarily pluses and similarly al spins on the Int
sides of these contours are minuses. But this is not quite the end of the story, two small points
arein order: First, we have invoked arounding rule. Thus, for example, certain spinsin Ext (at
some corners but not up against the contours) are forced to be plus otherwise the rounding rule
would have drawn the contour differently. On the other hand, some corner spins are permitted
either sign because the rounding rule would separate any such resulting contour. Fortunately, the
upshot of these “rounding anomalies” is only to force afew additional minus spinsin Int and plus
spinsin Ext than would appear from anaivelook at I".

To make the af orementioned observations notationally apparent, we define Int® C Int to bethe
set of sites that can be flipped without changing I" and similarly for Ext. We thushave o, = —1
fordl z € Int\Int° and o, = +1 for al x € Ext\ Ext°. Explicitly, there are afew more boundary
spins than one might have thought, but they are always of the correct type. Thus, clearly, although
rather trivialy, the measure Pjvﬁ(.yrgxt(a) = T') restricted to Int is simply the measure in Int
with minus boundary conditions. The same measure on Ext is not quite the corresponding plus-
measure due to the condition that I" constitutes all the external contours visible on the scale s.
Thus, beyond the scale s in Ext, we must see ... no contours. But thisis precisely the definition
of the restricted ensemble.

We conclude that the conditional measure splits on Int and Ext into independent measures that
are well understood. Explicitly, if A is an event depending only on the spinsin Int® and B isan
event depending only on the spinsin Ext°, then

PP (AN BT (0) =T) = P (A)PE2*(B). 4.7)
This observation will be crucial for our estimatesin the next section.

Next we will notice that the number of sites associated with the contours can be easily bounded

in terms of thetotal length of I":

Lemma4.3 Thereexistsa geometrical constant g4 < oo such that the following istrue: If " is
a set of external contours and Int® and Ext° are as defined above, then

AL\ (I UEBX)| < g4 ) |Al. (4.8)
~yel’

Proof. Each sitefrom Ay, \ (Int® U Ext®) iswithin some (Euclidean) distance from a dual lattice
stex* € (Z?)* such that some contour « € T' passes through z*. On the other hand, the number
of dual lattice sites x* visited by contours from I" does not exceed twice the total length of all
contoursin I". From here the existence of a g4 satisfying (4.8) follows. O

The definition of the event R}{’& 1, gives usthe following easy bounds:
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Lemma4.4 Let g, beasinLemma 43. Leto ¢ R.,; and let the sets Int = Int, (o)
and Int> = Int; ; (o) be as above. Then we have the bounds

10INt°] < gase tsyup and  |OEXt| < gysls\/or 4.9
and
Int°| < [Int| < g2 25%0y. (4.10)

Proof. The bound (4.9) is an immediate consequence of the estimate [0INnt°| < g43 . e () [V
and the fact that 0 ¢ R! The other bound, (4.10), then follows by the inclusion dint €

s,8,L"
Ext\ Ext®, the inequality [Ext \ EXt°| < g4>_ cr (. [7] @nd the isoperimetric inequality [A[ <
-=[0A|? valid for any A C R? that is afinite union of closed unit squares (see, eg.,, LemmaA.1

in [14]). O

4.2.3 \olume of large contours. The preceding lemma asserts that, for typical configurations,
the interior of large contours is not too big. Actually, one can be a bit more precise. Namely,
introducing

Rior={o: [V(TT(0))] > (1 = =)o}, (4.12)

s,s,L —

wewill show in the next lemmathat, whenever s« is sufficiently small, the conditional probability
of R2,,, given the M’s of interest is still exponentially small in /vz. However, unlike in
Lemma 4.2 (and Lemma 4.6 below), here the constant multiplying ,/v7, in the exponent can no
longer be made arbitrarily large.

Lemmad4.5 Thereexist constantscy > 0, 29 > 0, Ky < 0o, and Ly < oo such that

PHP(RE | My =m*[AL| —2m*vr) < em@2VoE (4.12)

s,8,L

holdsfor all K > Ky, s« € (0,3¢], L > Lo,and s = K log L.

Proof. Let @3, beasdefinedinin (2.2). Clearly, it sufficesto prove the statement for some s« > 0,
so let >« € (0,1) besuch that

e =wi[(1—3)? — (®X +25)] > 0. (4.13)

(Thisis possible because @7, < 1 foral A < 00.) Let Ly be so large that €7, from Theorem 3.1
satisfies e;, < s foral L > Ly. Let Ky be chosen to exceed the quantity Ko(,3) from
Lemma 2.5.

Fix K > Ko, L > Lo, and s = KlogL. Letnow o € Rf{’syL and let us temporarily
abbreviateI' = T's(0) and I = I'®Y(0). Let & be any s-skeleton suchthat & ~ T, and let &’ be
the set of skeletonsin & corresponding to I, First we note that we may as well assume that, for
some fixed B > 0 to be specified later

STIP(S)| < 2y (4.14)

—
Se’ min
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Indeed, the contribution of the configurations violating this bound can be directly estimated,
combining Corollary 2.6 with o« = 5 and (2.11), by e~(*=*)Bv%L_ For configurations satisfying
(4.14), Lemma 2.3 inturnimplies

V(&) = [V(IT)| = gss D [P(S)| = (1 — ), (4.15)
Se@’

provided L is sufficiently large to ensure that g3 K b\/%f % < 1. Asaconsequence of this and

the Wulff variational problem, Wg(&') > (1 — 5)/vpw;. Since & D &', we have W3(6) >
Ws(&') and thus for every o € Ri,s,L satisfying (4.14) there is a collection & of s-skeletons
suchthat & ~ o and Wg(&) > (1 — ), /vpw;. Using, once more, Corollary 2.6 with o = 2«
and our choice of Ky, we have

PR, ) < e (1= wiVil 4 o~(1=2)BVaL, (4.16)

2,8,

Letting B = (1 — 2c)w;, the right-hand side beats the lower bound Pf’ﬁ(ML = m*|Ar| —
2m*vr) > exp{—wi/vr (P} + #)} from Theorem 3.1 and our choice of L, and s« by ex-
actly 2e—(c2t>w1)vvL  Using the leeway in the exponent to absorb the extra factor of 2 (which
may require that we further increase L), the estimate (4.12) follows. O

4.3 Magnetization deficit dueto large contours.

In this section we will provide the necessary control over the magnetization deficit inside and
outside large contours. The relevant statements come as Lemmas 4.6-4.8.
4.3.1 Magnetization inside. Our next claim concerns the total magnetization inside the large
contoursin Ay,. Recaling the definition of Int°, we reintroduce the event
RS o1 = {0 Mie < —m*|Int°| — %_13112/4}. (4.17)

For the probability of Rf’{’& ;. we have the following bound:
Lemma4.6 For eachcg > 0 thereexist ¢g > 0, Ky < oo and Lg < oo such that

PZ’B (Ri’&L‘ML =m*|Ar| — 2m* vL) < e VUL (4.18)
for any »r < 249, K > Ko, L > Lg,and s = K log L.
Proof. Fixacg > 0. By Lemma 4.2, there are ¥ < oo, Ky < oo and Ly < oo such that
PrP(RY [ IMy, = m* |AL| — 2m*vy) < e 23V7L whenever s = KlogL and L > Ly.
LetT = {I'*(0): o ¢ R}, ; }. Recaling thelower bound in Theorem 3.1, it is clearly sufficient
to prove that for some ¢ > 0 large enough,

PHP(RE [T (0) =T) < 2e7 V7" (4.19)

»,8,L
holdsfor all " € T and al L sufficiently large provided s« is sufficiently small and that the K

ins = K log Lissufficiently large. (Notethat, for (4.19) toimply (4.18), ¢; will haveto exceed c3
by a 5-dependent factor. The factor of “2” was put in for later convenience.)
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Pickal' e T. Since Rf’@s’L depends only on the configuration in Int°, (4.7) implies

PP (R, LT o) =T) = B (R, 1) (4.20)

»,s,L Int° »,8,L

In order to apply Lemma 2.10, we need to compare —m*|Int°| with the actual average magne-
tization of the Ising model in volume Int® with minus boundary condition. By (4.10) and (4.9),
we have [Int°| < g0~ 2s%v, and [0Int°| < g4~ 1s/vr. Then Lemma 2.9 and (2.37) imply the
existence of constants oy = o () < oo and ap = ax(F) > 0 such that

|<M|mo);]{§ + m*||nt°]| <aq (9419_15\/1)14 + g25°0 2vpe22%), (4.21)

Now, sinces = K log L, for K sufficiently large the right-hand side does not exceed 2a; g49 ' s./v1.
Thus, if L is so large that the latter does not exceed %%*1311%/4 (i.e, if 4daqgs9 's/op <
= lsoy/ ), theno € RY | andT%!(0) =T imply

e 1 4 an
Mine < (Mine )i = 5% Ly, (4.22)

Let now s > 0 be such that ¢ < 9¥?(8s¢2x) !, where x = x(8) is the susceptibility, and
let 5c < 5. By Lemma 2.10, equation (2.41), and the fact that |Int°| < g39~2s%vy, the right-
hand side of (4.20) is bounded by 2¢~<v7Z. The bound (4.19) is thus proved. 0O

4.3.2 Magnetization outside. Recall the definition of Ext°. Our first concern here is an upper
bound on the total magnetization in Ext°. Let Rf;?s’ 1, bethe event

RY .= {0: Mege > m* [EXt°| — 2em* vy }. (4.23)

2,8, L

To bound the conditional probability of this event is easy; we will actually show that it can be
included into the preceding ones for configurations contained in My, = {o: M = m*|AL| —
2m* vr }.

Lemma4.7 For any > > 0 and s < oo, we have
Ri/Q,s,L NMp C (Rilf,s,L U Ri,s,L U Ri,s,L) NMp (424)
for any L large enough.

Proof. Let >z and K be fixed. Let us abbreviate Int® = Int°(0) and Ext® = Ext°(o) for a

configuration o which wewill taketo bein (R, /)°N(R2 ;)N (R2, , ;)¢ First, wenote that
ifo ¢ R}, 1, WecanuseLemmas 4.3 and 4.4 to get

|AL| = (|EXt| + [Int°]) < gase'sy/ur (4.25)
and hence

|ML — Mgge — Mine| < gase™'s\/ur. (4.26)
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Now, since the total magnetizationisheld fixed, i.e., o € M, wehave M = m* |AL|—2m* v,
and by a simple calculation we get

Mexe < My, — Mige + gas ™ 's\/vr, =
=m* (|AL| — |Int°|) = Myye + m* [INt°] — 2m* vy, + gase Ls\/vp. (4.27)

At theexpenseof another factor of g4sc~'s,/vr, wecanreplace |A | — |Int°| with |Ext°|. Finaly,
foro ¢ R% . URS,, , wewill use the bounds

Int°] < [V(T§(0))] < (1 —s)ur (4.28)
and
Mipe > —m™ |Int®| — %715112/4 (4.29)
in succession to arrive at
Mege < m* |EXt°| — 2m* vy, + 2942 ts\/op + 18?1%/ . (4.30)

From herewe seethat o ¢ Ri /2,5,1, ONCE L isso large that the remaining terms on the right-hand
side are swamped by —m* scvy,. O

Our second task concerning the magnetization outside the large external contours is to show
that Mgy —m*|Ext®| will not get substantially below the deficit value forced in by the condition
on overall magnetization. (Note, however, that we haveto alow for the possibility that Ext® = A,
in which case the exterior takes the entire deficit.) Let >« > 0 and consider the event

RS = {o: Mggo < m* [Ext°] — 2m* (14 5~ UL}. (4.31)

»x,s, L —

The probability of R?, _ ; is bounded as follows:

Lemma4.8 For any c; > 0 thereexist constants s¢p > 0, Ky < oo and Ly < oo such that
P+ﬁ (RS, sn|Mp=m*|AL| —2m*vy) < e VUL (4.32)

forall K > Ko, % < xyand L > Lg,and s = K log L.

Proof. With @ asin (2.2) and c; fixed, choose s so that

w1 A
< 2 =
= [A+

— &% |. 4.33
o Al (4.33)

For thiss¢y > 0, let Ly be so Iarge that foral L > Ly, thefinite-L expression on the right-hand
side of (1.10) exceeds A(1 + 5, )71 and, at the same time, ¢;, from Theorem 3.1 is bounded

by 2 G
0
First, we can restrict ourselves to the complement of Ry, ; with ¢ so small that the corre-
sponding ¢; exceeds 2¢;. Once again using Lemma 2.9, we get

\(MExto>Exto — m*|Ext°|| < o (949 'sy/vr + 4L + LYe™%%). (4.34)
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Now, since s = K log L and v, ~ L*/3, for K sufficiently large the right-hand side does not
exceed 8ay L. Thus, if L is so large that the latter does not exceed m* vL%al, it sufficesto prove
the corresponding bound for the event

R = {U Mgy < <MEXt°>ExtO —m*(2+ %O_I)UL}. (4.35)

Clearly, R depends only on the configuration in Ext°, and thus (4.7) makes the estimates in
Lemma2.11 available. We get

P;vﬁ(ﬁ‘l’f(t(a) =T) < Cexp{—Q% <1 + QLm))Z} w30
< Cexp{—wlA(l + %)\/ﬁ}

HereC = C(3) < oo isindependent of T" and the second inequality follows from our assumption
about Lo. Now, using (4.33) and the fact that e, < =, we derive the bound

PP (RIT®(o) =T) < Ce—wlm(¢g+q>—2c5m : (4.37)

The claim then follows by comparing the right-hand side with the lower bound in Theorem 3.1
and summing over all I" with the above properties. O

4.4 Proof of Theorem 4.1.

The ultimate goal of this section isto rule out the occurrence of intermediate contours. As afirst
step we derive an upper bound on the probability of the occurrence of contours of intermediate
sizesin acontour ensemble constrained to not contain contours with diameters larger than s« /vy..
Therelevant statement comes asLemma4.9. Oncethislemmais established, we will give a proof
of Theorem 4.1.

44.1 A lemma for the restricted ensemble. Recall our notation Pj’ﬁ’s/ for the probability
measure in volume A C A, conditioned on the event that the contour diameters do not exceed s'.
We will show that the occurrence of intermediate contours is improbable in Py < with s =
/v, and magnetization restricted to “reasonable” values. For any A C Ap andany s > 0
and > > 0, let

S.sa = {o: thereexistsy in A suchthat K log L < diam~y < s¢\/ug }. (4.38)
Then we have the following estimates:

Lemma4.9 Foranycs > 0,0 > 1,andd > 1, thereexist s¢9 € (0, 1), Ky < oo, and Ly < oo,
such that for s = K'log L, all 5« € (0, 5], K > Ky, L > Lo, all A C Ay, satisfying the bounds

Al >97'L? and |0A| < 9L, (4.39)
and all ¢ € [5, po] that make m* |A| — 2¢om* vy, an allowed value of My, we have

Py (AS | Ma = m* [A] — 2pm* ug) < L (4.40)
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Proof. Notice that the event Af, | | ismonotonein s = K log L and thusit is sufficient to prove
the claim for only afixed K (chosen suitably large). Fix aset A C 72 satisfying (4.39) and let
Ma(p) = {o: My =m* |A] — 2pm* vy, }. (4.41)
Let us define
Sp = (Mp) 7% — m*|A| (4.42)
and note that, on M (¢), we have M) = <MA>X’5’S — 0A — 20om*vy,.
The proof of (4.40) will be performed by writing the conditional probability as a quotient of

two probabilities with unconstrained contour sizes, and estimating separately the numerator and
the denominator. Let

E={0:V¥yeTs(0), diam~y < »\/v1} (4.43)
and, using the shorthand A = A,, ; A, write
_ PPAC Ma(p) N E)
P (Malp)nE)

Asto the bound on the denominator, we restrict the contour sizesin A to s = K log L asin (3.5)
and apply Lemmas 2.11 and 2.7 with the result

PV (A0 M () (4.44)

+,8 C (m*vr)?® 5 m*pur
Py (MA(p) N E) > 25 exp{—QWgo +250 5A}, (4.45)
where C; = C1(8,9, po) > 0. Here, we note that two distinct terms were incorporated into the
constant C;: First, aterm proportional to §3 since, by Lemma 2.9 and (4.39), [dA| < 20q9L
once K is sufficiently large and thus |55 |?/|A| is bounded by a constant independent of L. Sec-
ond, aterm that comes from the bound (2.47) yielding |24 (pvr, + 2%*)\ <Oy (Klzli/;j Vv 1) with
some Cy = Co(B3,7, ¢p) < oo. (Notice that, to get a constant C, independent of L, we have to
choose L after achoice of K isdone.) Although the second term on the right-hand side of (4.45)
is negligible compared to the first one, its exact form will be needed to cancel an inconvenient
contribution of the complement of intermediate contours.

In order to estimate the numerator, let T' = {T's(c): 0 € &, T's(0) # 0} be the set of al
collections of s-large contoursthat can possibly contributeto £. (Wealso demandthat T's(o) # 0,
because on A° there will be at least one s-large contour.) Then we have

PEO(AT A Ma(p) N E) <D PEP(MA(9)Ta(0) =T) PP (Ts(0) =T).  (4.46)
rer’

Our strategy is to derive abound on PI’ﬁ(MA(go)\FS(U) = I') whichisuniforminT € T and
to estimate Pj{ P (I's(o) = T') using the skeleton upper bound.
LetI" € T and let & be an s-skeleton such that & ~ I'. We claim that, for some C’ =
C'(8,9) < oo and someny = no(B3,9) < oo, independent of I', S and L,
Py (Ma(@)[Ts(0) = T)

< O L2V (8) (4.47)
PyP(Mu(p)NE)
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holds true. Indeed, let I” be the abbreviation for the set of external contoursin I and let &’
be the set of skeletonsin & corresponding to I'. Recall the definition of Int and Int°® and note
that V(I") = Intand Wz(&) > Wg(&'), sinceS D &'. Also note that, by (2.10) and (2.11) and
the fact that diam v < s, /vy, for dl v € T, we have

Int] < gaser/or, Y |P(S)| < gasermm/vL Wi(8). (4.48)

Se@’

This bound tells us that we might as well assume that |Int|] < />vy. Indeed, in the opposite
case, the bound (4.47) would directly follow by noting that (4.45) implies P;" PMalp)nE) >
CL~2e~mvV=Ws(8) with ), given by

* 2, 3/2

®)” vy
VR (4.49)
Notice that n; is bounded uniformly in L by (4.39) and the fact that A < oco. A similar bound,
using (2.9) instead of (2.10), showsthat also |dInt| < s,/vr.

Thus, let us assume that [Int| < \/>vr, and [OInt| < s,/v7, hold true. In order for M ()
to occur, the total magnetization in A should deviate from m* |A| by —2¢m* vy, while the vol-
ume Int can help the bulk only by at most —|Int|. More precisely, Mgy isforced to deviate from

its mean value <MExto>‘gt€’s by at least —2m*u where u is defined by

(m

m = 292

—2m*u = —2pm* vy, — dpxe + 2|Int], (4.50)

with dgge asin (4.42). By the estimates |Int| < /zevp, |[Ext°| > 97112, [0EXt®| < 20L,
andu < C3L*° <« L?/log L, with C3 = C3(83,7, vo) (al these bounds hold for L sufficiently
large—in particular, to ensure that K, /vy, log L < L), we now have, once more, Lemma 2.11
at our disposal. Thus,

m* ur,

X|A|

m* UL)2 9

PP (Ma(p)|Ts(o) =T) < Cy exp{—2( ©°+2

A (O — 2\Int\)}, (4.51)

where Cy = C4(03,9,p0) < oco. Similarly asin (4.45), the constant C4 incorporates also the
error term QF . (u). To compare the right-hand side of (4.51) and (4.45), we invoke the second
part of Lemma 2.9 to note that, for K sufficiently large and some a; = a1 () < oo,

Sexte — O < o |A\ EXt°). (4.52)

Using (4.48) again, |Int| is bounded by a constant times s:)V3(&) and the same holds for |A \
Ext°|. Therefore, thereisaconstant 1 = 12(, ) < oo such that

m* pur,

X|A|

holds true for al T € T' and their associated skeletons G. By combining this with (4.51) and
(4.45), the bound (4.47) is established with g = 1 V 12, taking into account that >« < 1.

9 (Jexte — O — 2[Int]) < m2seW5(6), (4.53)
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With (4.47), the proof iseasily concluded. Indeed, astraightforward application of the skeleton
bound to the second term on the right-hand side of (4.46) then shows that

P;rﬁ,% v (AC}MA(SO)) < Z O L2 e~ (1—m0v/=)W3(8) (4.54)
G#0
Now, for 2 sufficiently small, we have 1 — n9y/> > 2/3. Then we can extract the term
C’e~3W5(®) which, choosingthe K ins = K log L sufficiently large, can be madelessthan L—2—¢,
for any c¢ initially prescribed. Invoking Lemma 2.5, the remaining sum is then estimated by
one. O]

4.4.2 Absence of intermediate contours. Lemmas 4.2 and 4.5-4.9 finally put us in the position
to rule out the intermediate contours altogether.

Proof of Theorem 4.1. Recall that our goal isto prove (4.2), i.e., PZ“B(AC\ML) < L. Pick
any co > 0and »g < 1. Let Ky and Ly be chosen so that Lemmas 4.2, 4.5, 4.6, and 4.8 hold with
somecy, o, c3,c5 > 0 foral 2 < 23¢9, K > Kgand L > L. We also assume that L is chosen
so that Lemma 4.7 isvalid for s« = 23¢. We wish to restrict attention to configuration outside

thesets R}, ;. Ry, . adRZ ., butsince R} _; isessentialy includedin RZ _; and
R ., wemight aswell focus on the event RS, where R = [ J0_, R, ;. Fixany s < s, let
#0,5, 0,5,

s = Klog L and let us introduce the shorthand A = A,, , ;. Appealing to the aforementioned
lemmas, our goal will be achieved if we establish the bound Pj’ﬁ(Ac NREMp) < L%,

Let ¢ = >,/vp and let T = {I'$(0): 0 € R°} be the set of all collections of external
contours that can possibly arise from R°. Fix I" € T" and recall our notation Ext® for the exterior
component of Ay, induced by the contoursin I". To prove (4.2), it suffices to show that, for al
rer,

PP (ACNRENML|T®(0) =T) < L720PH 7 (MT®(0) =T). (455
Indeed, multiplying (4.55) by Pfﬂ(l“q(o) =T') and summing over al T" € T, we derive that
PP (ACNREN M) < L720PP(My). (4.56)
Thence, P, (ASNR| M) < L2 which, inthelight of thebound P’ (R|M ) < 4evVE
where ¢ = min{cy, c2, c3, ¢5 }, implies (4.2) once L is sufficiently large.

It remains to prove (4.55) for dl I' € T'. Let ¢ > 0 be such that m* |Ext°| — 2¢om* vy, is
an allowed value of Mgy and consider the corresponding event Mgy (¢) (cf. (4.41)). Note

that, by the restriction to the complements of Rj‘m’s, p and R2 ., weonly need to consider
@ € [30,1+ 525 ']. We claim that, for all such allowed values of ¢, we have
PP (AT (o) = T} N My N Mee (9) = P ™V (A% Meee (9)).  (457)

Indeed, given that FgXt(a) =T, the event A depends only on the configurations in Ext°. More-
over, M N Mgy () can be written as an intersection of Mgy (), which also depend only
ono inExt®, and the event {o: My, \gxe = m* (|AL| — [EXt®[) — 2m* (1 — ¢)v}, which de-
pends only on the configuration in Int°. Thus, (4.57) follows from (4.7) and some elementary
manipulations.
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By the restriction to the complement of R}, ;, we have |[Ext°| > L?/2 and |9Ext°| < 8L for
al T" € T'. Choosing now cg = 2¢q and then K and L (if necessary, even bigger than before) so
that Lemma 4.9 can be applied, the right-hand side of (4.57) can be bounded by L= = [, —20
uniformly inI" € T, provided s« is sufficiently small and L > L. Using (4.57), we thus have

P;ﬂ (Ac NRENMLN MExto(w)‘rq(g) _ F) <
< PPO (AT (o) = T} N My 0 Mege (9)) PP (M, 0 Mee () [Ty (0) = T) <

< L7290 PP (Mp 0 Mexe (9)|Tg(0) =T),  (4.58)

for all ¢ for which m* |Ext°| — 2¢m* vy, is an alowed value of Mgqe. (In the cases when
¢ & [#0,1 + 35 '] we have RS N Mgy (@) = § and the left-hand side vanishes,) Thisimplies
(4.55) by summing over al allowed values of ¢. O

5. PROOF OF MAIN RESULTS

Having established the absence of intermediate-size contours, we are now in the position to prove
our main results.

Proof of Theorem1.2. Fix a¢ > 0 and recall our notation M, = {o: My = m*|Ar|—2m* v }.
Our goal isto estimate the conditional probability PZF’B(AE{757LUB§757LIML) by L=¢. Letcy > ¢
and note that, by Theorem 4.1, we have

PrP(AS ML) < L7, (5.1)

2,8, L
provided s is sufficiently small and L sufficiently large. This means we can restrict our attention
tothe event B¢ ; \ AS, , ;. Furthermore, we can use Lemmas 4.2, 4.5, 4.6, and 4.7 to exclude

the events R, ;, R5, 1, R, 1, ad Ry ;, provided 9 is sufficiently small. We therefore
introduce the event & . » defined by

1 2 3 4
Eered =B \ (AL L URy s L URG s L URy 5. U R 5.1)s (5.2

where we have suppressed s = K log L and L from the notation.
On the basis of the aforementioned Lemmas, the proof of Theorem 1.2 will follow if we can
establish that for each 2 > 0 and each ¢ > 0 thereare Ky < oo, ¥ > 0 and ¢; > 0 such that

PP (& .9lML) < e eTViE (5.3)

whenever L is sufficiently large. The proof of (5.3) will be performed by conditioning on the
set of s-large exterior contours and applying separately the Gaussian estimates and the skeleton
upper bound. The argument will be split into several cases, depending on which of the bounds
(1.14-1.16) constituting the event B, , 1, fail to hold.

Let us write £ ..y as the digoint union &), U &2, ,, where £, is the set of &l con-
figurations on which one of (1.14) or (1.15) fail and where &2, = & .9 \ &}, ;. LetT =
{I'®Y(0): o € & .9} bethe set of al collections of exterior contours allowed by & . ». (Here
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s = KlogL.) SinceI's(o) isnon-empty for all o contributing to BgS’L, we have " # () for al
I'eT. Le

Ar = o V(D). (5.4)
To apply the Gaussian estimate, we need the following upper bound on the magnetization in Ext°.
Lemmab.l Lete > 0, > 0andd > 0andletthe K ins = K log L be sufficiently large.
Then there exists a sequence (x ) with lim ., k; = 0 such that for both: = 1,2, allT € T
andall o0 € My N Sj,%ﬁ N{Ir'%(s) = I'}, the magnetization Mgy = Mexe |, (0)(0) Obeysthe
bound ’

Mexe < (Mexe)ii® = 2m* vr,(1 = Ar + € — K1.). (5.5)
Heree; = 0 and ex = €/(2m™).

Proof. Recall the exact definition of Ext°. The proof is similar in spirit to the reasoning (4.28-
4.30). First we will address the case of configurations in 8617%719. Using the equality M =

m*|AL| — 2m* vy, and our restriction to the complement of R}, _ ; , we have
My, < m*|Ext®| + m*|V(T)| — 2m*vg, + g9 's\/vr, (5.6)

where g49~!s,/vr, bounds the volume of Ext \ Ext° according to Lemma4.3. Next, in view of
therestriction to (R} , ;)°, we have

My > —m*V(D)| — 9 s/t — gu9 s /or. (5.7)

Findly, since Mgxe < My — Myr) + 940~ s /vr, and since (4.34) implies that m*|Ext°| —
(MExto>gg’S can be bounded by 8«4 L once K is sufficiently large, we have (5.5) with 1, given
by

2m* Ky = 79_131)21/4 + 3g419_1sv21/2 + 8041Lv£1. (5.8)

Sincevy, ~ L3, wehavelim;_.o rz, = 0 asclaimed.

Next we will attend to the case of configurations from 52%719, for which the bound (1.16) must
fail. Since &2, is till a subset of (R3 _ )¢, we still have the bound (5.7) at our disposal
implying that MV(F) > —m*|V([)| — evy, once L is sufficiently large. However, this means that
the only way (1.16) can fail isthat, in fact, the lower bound

Myy > —m*|V(I)| + evg, (5.9)
holds. Substituting this stronger bound in the above derivation in the place of (5.7), the desired
estimate follows. O

With Lemma 5.1 in the hand, we are ready to start proving the bound (5.3). We begin with
the Gaussian estimate. By the restriction to the complement of R?M 1» We have the bound A\r <
1—9Yandthus1l — Ar + ¢; — k, > 0 once L is sufficiently large. Moreover, since we also
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discarded R19 1 Lemma2.11 for A = Ext® applies. Combining this with the observation (4.7)
and the bound (5 5), there exists a constant C' < oo such that

m* vL)Q(

XAz
holdsfor al T' € T'. Next wewill estimate the probability that T*!(c) = T'. Let & be acollection

of skeletons corresponding to I". The skeleton upper bound in Lemma 2.4 along with the estimates
featured in Lemma 2.5 then yields

PP (1%(o) <> e ) < e V8(O), (5.11)
&'06

P;”@(MLﬁgéxﬂFeXt ) )<Cexp{ 2( 1—/\F+€Z‘—/€L)2} (510)

where C’ < oo and where &’ corresponds to the skeleton of afull set I's (o) with ™) =T.
To estimate the probability of M, NE! ;N {I'®(s) = '}, we will write T as the union of
twodigoint sets, I' = I'y U I's. Here

[ ={lel:36 ~T, W3(8) < wi/Arvr(l +ec?)}, (5.12)

where ¢ is the constant from Lemma 2.8, and I'; = T" \ T';. First we will study the cases when
I' € T'y. By theredtriction to the event A,, ; 1., we know that diam~ > ¢, /vy, for al v € T.
Using that \r < 1 — J—recall that we are in the complement of Rgvs’ ;—Wwe have diam~y >
c(ec™2)4/|V(T)| whenever s« > ¢/c. Moreover, the upper bound on W;s(&) from (5.12) along
with the estimate W3(&) > 7minse,/vr, imply that Ar is bounded away from zero and thus

|[V(T')| = es/Arvr > s for L sufficiently large. This verifies the assumptions of Lemma 2.8
with e replaced by ec—2, which then guarantees that T isasingleton, I = {0}, and that

inf,(V(0), VIV O0IW +2) < VeV V00l (513)

Now, |V (70)| = Arvr < vy, (because, as before, A\r < 1), which means that the right-hand side
is less than /evy, and (1 14) holds. But on EZ sl the event B, 5, must fail, so we must have
either that ®A(Ar) > @ + €, which only appll&when i = 1, or that (1.16) fails, which only
applieswhen i = 2.

We claim that, in both cases, there exists an ¢ > 0 and an @ > 0—both proportional to
e—such that for some & ~ I'', we have

(m*vrp)?

(1-— a)Wg(G) +2 ALl

(1= Ar + € — k1)* > w1 (P4 +€). (5.14)
Indeed, the Wulff variational problem in conjunction with Lemma 2.3, therestriction to (R}m L)S

and thebound (1 — z)/2 > 1 — z for = € [0, 1] imply that

1/2
Wa(8) 2 wi[V(&)]2 = wi |V (30)| - 9595 /o)

Arvr — gswi (19\/;)71 2

(5.15)
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Observing also that the difference (m*)2/(x|A)v¥/? — w A — 0 as L — oo, theleft hand side
of (5.14) can be bounded from below by

w1/ UL PA(Ar) — w1/ Arvr — dp\/vr + 2w A/vp (e, — k)Y, (5.16)
where §;, — 0 (asswell asky, — 0) with L — oo. (Herewe again used that 1 — Ar > 1J.) Now,
fori =1 wehave ®a(Ar) > @} + e fromwhich (5.14) follows once o < € and L is sufficiently
large. For i = 2, weuse ®(Ar) > @3 and get the same conclusion since (5.16) now contains
the positive term 2wy Aeg/vr, o €,/vr.

By putting (5.10) and (5.11) together, applying (5.14), choosing K > Ky(«, 3) and invoking
Lemma 2.5 to bound the sum over al skeletons &, we find that

P;’ﬁ (ML E .y N{T (o) € T1}) < 20C" exp{—wiy/vr (Ph +€) }. (5.17)

whenever > < /e and L is sufficiently large. (Here the embarrassing factor “2” comes from
combining the corresponding estimatesfori = 1 and ¢ = 2.)

Thus, we are down to the cases I € T'y, which means that for every skeleton & ~ T, we
have W3(6) > wivArvr(1 + ec™?). Moreover, since Eew, C A, s 1, dl s-large contours
that we have to consider actualy satisfy that diamy > s, /vr. In particular, we also have that
Wg(&) > Tminx+/vr,. Combining these bounds we derive that, for some ¢’ > 0 and regardless
of thevalue of Ar,

Ws(6) > wl( Ar + c’) VL. (5.18)
Disregarding thefactor ¢; in (5.10) and performing similar estimates asin the derivation of (5.17),
we find that (5.14) holds again for some o > 0. Hence an analogue of (5.17) isvalid aso for all
I' € T'5. A combination of these estimates in conjunction with Theorem 3.1 show that, indeed,
(5.3) istrue with ac; proportional to e. This finishes the proof. O
The previous proof immediately provides us with the proof of the other main results:
Proof of Theorem 1.1. In light of Theorem 3.1, we need to prove an appropriate upper bound on
PEL”B(ML), where My, = {o: M = m*|Ar| — 2m* vz }. First we note that for L sufficiently
large, the probability PZ“’B (M) iscomparable with PZ“’B (FL), where F, isthe event

Fr=MN Ay NBesrN(Ry L URS, LURS )" (5.19)

with €, 3¢, ¢ asin the proof of Theorem 1.2. But on F,, we have at most one large contour and
the skeleton and Gaussian upper bounds readily give us that

PIA(FL) < CemVPE@a =), (5.20)
for some C' < oo and some ¢ > 0 proportional to e. From here and Theorem 3.1, the claim
(2.12) follows by letting . — oo and e | 0. O

Our last task isto prove Corollary 1.3.

Proof of Corollary 1.3. By Proposition 2.1, if A < A, the unique minimizer of A (\) isA = 0.
Thus, for e > 0 sufficiently small and L large enough, the contour volumes are restricted to a
small number timesv;,. Since (1.14) saysthat the contour volume is proportional to the square of
its diameter, this (eventually) forces diam y < /vy, for any fixed > > 0. But that contradicts
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the fact that A,. ; 1, holds for a s« sufficiently small. Hence, no such intermediate  exists and all
contours have a diameter smaller than K log L.

Inthecases A > A, thefunction ® A (\) isminimized by anon-zero A (whichis, infact, larger
than 2/3). Since, again, diamy > s, /v, for al potential contours, Theorem 1.2 guarantees that
there is only one such contour and it obeys the bounds (1.14) and (1.15). All the other contours
have diameter lessthan K log L. O
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