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Abstract: We study equilibrium droplets in two-phase systems at parameter values corresponding to
phase coexistence. Specifically, we give a self-contained microscopic derivation of the Gibbs-Thomson
formula for the deviation of the pressure and the density away from their equilibrium values which,
according to the interpretation of the classical thermodynamics, appears due to the presence of a curved
interface. The general—albeit heuristic—reasoning is corroborated by a rigorous proof in the case of
the two-dimensional Ising lattice gas.

1. INTRODUCTION

1.1 The problem.

The description of equilibrium droplets for systems with coexisting phases is one of the outstand-
ing achievements of classical thermodynamics. Standard treatments of the subject

highlight various formula relating the linear size of the droplet to a specific pressure difference.
One of these, called the Gibbs-Thomson formula, concerns the difference between the actual
pressure outside the droplet and the ambient pressure of the system without any droplets. (Or,
in the terminology used in classical textbooks, “above a curved interface” and “above a planar
interface,” respectively.) The standard reasoning behind these formule is based primarily on
macroscopic concepts of pressure, surface tension, etc. But, notwithstanding their elegance and
simplicity, these derivations do not offer much insight into the microscopic aspects of droplet
equilibrium. The goal of the present paper is to give a self-contained derivation of the Gibbs-
Thomson formula starting from the first principles of equilibrium statistical mechanics.

While straightforward on the level of macroscopic thermodynamics, an attempt for a micro-
scopic theory of droplet equilibrium immediately reveals several technical problems. First of all,
there is no obvious way—in equilibrium—to discuss finite-sized droplets that are immersed in
an a priori infinite system. Indeed, the correct setting is the asymptotic behavior of finite sys-
tems that are scaling to infinity and that contain droplets whose size also scales to infinity (albeit,
perhaps, at a different rate). Second, a statistical ensemble has to be produced whose typical
configurations will feature an equilibrium droplet of a given linear size. A natural choice is the
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canonical ensemble with atiny fraction of extra particles tuned so that a droplet of a given size
isinduced in the system. A difficulty here concerns the existence of a minimal droplet size as
will be detailed below. Finally, for the specific problem at hand, the notions of pressure “above
a curved interface” and “above a planar interface” have to be reformulated in terms of micro-
scopic quantities which allow for a comparison of the difference between these pressures and the
droplet size.

Some of these issues have been addressed by the present authors. Specifically, in [4, 5], we
studied the droplet formation/dissolution phenomena in the context of the canonical ensemble
at parameters corresponding to phase coexistence and the particle density slightly exceeding the
ambient limiting rarefied density. It wasfound that, if V' isthe volume of the system and 6V isthe
particle excess, dropletsform when theratio (6V)(@+1)/4 /V/ is of the order of unity. In particular,
there exists a dimensionless parameter A, proportiona to the thermodynamic limit of the above
ratio, and anon-trivial critical value A, such that, for A < A, al of the excess will be absorbed
into the (Gaussian) fluctuations of the ambient gas, whileif A > A, a mesoscopic droplet will
form. Moreover, the droplet will only subsume afraction Aa < 1 of the excess particles. This
fraction gets smaller as A decreases to A, yet the minimum fraction Aa, does not vanish. Itis
emphasized that these minimum sized droplets are a mesoscopic phenomenon: The linear size of
the droplet will be proportional to V'1/(4+1) « V1/d and the droplet thus occupies a vanishing
fraction of the system. Or, from another perspective, the total volume cannot be taking arbitrary
largeif there isto be a (fixed-size) droplet at all.

The droplet formation/dissolution phenomena have been the subject of intensive study in last
few years. The fact that d/(d + 1) is the correct exponent for the scale on which droplets first
appear was shown rigoroudly in [14] (see also [20]); a heuristic derivation may go back at least
to [3]. The existence of asharp minimal droplet size on the scale V'1/(4+1) was described in [21],
more recently in [4, 24] and yet again in [2]. In the context of the 2D Ising system, a rigorous
justification of the theory outlined in [4] was provided in [5]. We note that the existence of a
minimal droplet size seems to be ultimately related to the pressure difference “due” to the pres-
ence of adroplet as expressed by the Gibbs-Thomson formula. Indeed, from another perspective
(which is more or less that of [21, 24]), the formation/dissolution phenomena can be understood
on the basis of arguments in which the Gibbs-Thomson formula serves as a foundation. Finally,
we remark that although the generation of droplets is an inherently dynamical phenomenon (be-
yond the reach of current methods) it is possible that, on limited temporal and spatial scales, the
equilibrium asymptoticsis of direct relevance.

The remainder of this paper is organized as follows. In the next subsection (Section 1.2) we
will present an autonomous derivation of the Gibbs-Thomson formula based on first principles
of statistical mechanics. Aside from our own (modest) appreciation of this approach, Section 1.2
isworthwhile in the present context because the rigorous analysis devel ops precisely along these
lines. In Section 2, we will restrict our attention to the 2D Ising lattice gas, define explicitly the
relevant quantities and present our rigorous claims in the form of mathematical theorems. The
proofswill come in Section 3.
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1.2 Heuristic derivation.

Let us consider atwo-phase system at parameter values corresponding to phase coexistence. We
will assume that the two phases are distinguished by their densities and, although the forthcoming
derivation is completely general, we will refer to the dense phase as liquid and to the rarefied
phase as gas. Confining the system to a (d > 2)-dimensional volume V', we will consider a
canonical ensemble at inverse temperature 3 and the number of particles fixed to the value

N = pgV + (p; — pg)dV. (1.1)

Here, p, and pg are the bulk densities of the liquid and gas, respectively, and the particle excess
iISON = (p, — pg)0V with 6V < V. Let w; denote the dimensionless interfacial free energy
(expressed in multiples of 5~1), which represents the cost of an optimally-shaped droplet of unit
volume, and let 2 denote the response function, » = (N — (N))?), which is essentially the
isothermal compressibility. Then, as has been argued in [4], if the parameter
(pe — pg)?* (OV) T
A= 2301 % ’ (12)

is less than a critical value A¢ = (%£1)“0, all of the particle excess will be absorbed by the

a\ 2
background fluctuations, while, for A > A, a fraction of the excess particles will condense
into a droplet. Moreover, the volume of this droplet will be (in the leading order) AadV, where
Aa € [0, 1] isthe maximal solution to the equation

%xl/d —2A(1 - \). (13)
Note that Aa, = 2/(d + 1) as advertised; that is to say, the droplet does not appear gradually.
Furthermore, asis of interest in certain anisotropic situations where the droplet plays arole of an
equilibrium crystal, the droplet has aparticular shape, known as the WuIff shape, which optimizes
the overall interfacial free energy for a given volume.

1.2.1 Gibbs-Thomson I: The density. On the basis of the aforementioned claims, we can aready
state a version of the Gibbs-Thomson formulafor the difference of densities “due to the presence
of acurved interface.” Indeed, since the droplet only accounts for a fraction, Aa, of the excess
particles, the remainder (1 — Aa)(p, — pg)0V/, of these particles reside in the bulk. Supposing
that the droplet subsumes only a negligible fraction of the entire volume, i.e., 6V <« V, the gas
surrounding the droplet will thus have the density

o = pg (1= Aa) (o — p) o (14 0(1). (L4)

Hereo(1) isaquantity tending to zero as V' tendsto infinity while keeping A finite (and A > A¢).
Invoking (1.2) and (1.3), thisis easily converted into
d—1 2w 1

d  py— pg (AadV)1/d (1+o0(1)). (1.5)

Pg = pPg +
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Thus, the density of the gas surrounding the droplet will exceed the density of the ambient gas
by a factor inversely-proportional to the linear size of the droplet. Thisis (qualitatively) what is
stated by the Gibbs-Thomson formula.

In order to make correspondence with physics literature, let us assume that the droplet is
spherical—which is the case for an isotropic surface tension. Then we have

S\ -5t S

— Ld d _ Pd d
wl—ﬁan<d> and ApOV = =iy
where o isthe surface tension, .S, is the surface area of a unit spherein R4 and r is the radius of
the droplet. Substituting these relations into (1.5), we will get
Bosx 1
—(1+0(1)). 1.
o= par L) (17)
Of course, dl three formulas (1.4), (1.5) and (1.7) represent the leading order asymptoticin 1/r.
Higher-order corrections go beyond the validity of the presented argument.

(1.6)

pg = pg+(d—1)

Remark 1. We notethat equation (1.7) differsfrom the usual corresponding version of the Gibbs-
Thomson formula in which the 2 appearing above is replaced by pg. Thisis due to the approxi-
mation s« ~ p, which isjustified only in the ideal-gas limit of the rarefied phase.

1.2.2 Pressures above curved/planar interfaces. Next we turn our attention to the Gibbs-
Thomson formulafor the pressure.

Here we immediately run into a complication; while the density is a well-defined object in
finite volume, the pressure, by its nature, is a macroscopic commodity. Thus, strictly speaking,
the pressure should be discussed in the context of thermodynamic limits.

In the present context we need to define the “pressure of the gas surrounding a droplet.” In
order to do so, we will consider two canonical ensembles with the same number of particles
given by (1.1), involumes V and V 4+ AV, where AV <« V. From the perspective of equilibrium
thermodynamics, these two situations describetheinitial and terminal states of the gas undergoing
isothermal expansion. Standard statistical-mechanical formulas tell us that the change of the
relevant thermodynamic potential (the Helmholtz free energy) during this expansion is given as
the pressure times the difference of the volumes AV. Using Z¢(V, V') to denote the canonical
partition function of N particlesin volume V', we thus define the relevant pressure p,, by

11 og Zc(pgV + (pg — pg)dV,V + 4V)

For finite V, AV, etc., the quantity p, still depends on AV. As it turns out, this dependence
(which we will refrain from making notationally explicit) will annul in any limit V, AV — oo
with AV/0V — 0, where 9V denotes the boundary of V. However, we must consider alimiting
procedure for which AV also does not “disturb” the droplet. Thisis a dlightly delicate subject
matter to which we will return shortly.

Our next goal isto give amathematical interpretation of the pressure “above aplanar interface.”
Asit turnsout (and asis the standard in all derivations), here the correct choice isto take simply

bv (1.8)
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the pressure of the ambient gas phase. (See Remark 3 for further discussions.) Using Zg(u, V)
to denote the grand canonical partition function, with p denoting the chemical potential, this
quantity is defined by the (thermodynamic) limit

1

1
P = E lim — log ZG(,UU V)a (1.9

Vooo V

Here we have prepositioned the chemical potential to the transitional value, i.e. © = ut. By well-
known arguments, this limit is independent of how V' tends to infinity provided 0V/V tends to
zeroasV — oo.

Since we are ultimately looking for an expression for the difference p,, — p.., instead of (1.9)
we would rather have an expression that takes aform similar to (1.8). We might try to use the fact
that log Zg(ut, V') = Bp.V + O(9V), but then the boundary term will be much larger than the
actual Gibbs-Thomson correction. We thus have to develop a more precise representation of the
grand canonical partition function. For simplicity, we will restrict ourselves to the caseswhen V/
isarectangular box, in which case, it turns out

10g Zo(jit, V) = BpaV + TwatdV + O(V @), (1.10)

Here rq) denotes awall surface tension which depends on the boundary conditions. The error
term represents the contribution from lower-dimensional facets of V', e.g., edges and corners
of V' ind = 3. (Such arepresentation can be justified using low-temperature expansions, see [8],
and/or by invoking rapid decay of correlations. Of course, thiswill be discussed in excruciating
detail in Section 3 of the present paper.)

Using the representation (1.10), we can now write

_ L Ze(mV +av) O(@(V—I—AV)—@V%—V%)
AV 8T 2 V) AV ’

which supposes that both V' and V' + AV are rectangular volumes.

Our goal is to limit AV to the values for which the error term is negligible compared with
the anticipated Gibbs-Thomson correction. First, supposing that AV <« V, we find that the
difference d(V + AV) — OV is of the order AV/V/?, Second, assuming that A from (1.2) is
finite and exceeding A¢ (which is necessary to have any droplet at all), we have 6V ~ V4/(d+1),
These two observations show that the contribution of 9(V +AV) — 9V to the error termin (1.11)
is indeed negligible compared with (6V)~1/¢. A similar calculation shows that the the second
part of the error term, V(4=2)/4/AV, on the right-hand side of (1.11) is negligible compared
with (6V)~1/4 provided that

BPoo (1.11)

d=2, 1
AV > VT o, (1.12)

It iseasy to check—see formula (1.22)—that (1.12) can be satisfied whilemaintaining AV < §V'.
This observation will be essential in the forthcoming devel opments.

The formulas (1.8-1.11) can be conveniently subtracted in terms of the probability Py ()
that, in the grand canonical ensemble, there are exactly N particles in volume V. Explicitly,
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denoting
PN Zo(N, V)

Py (N) = ~Zoln V) (1.13)

we get

1L Py iav(pgV + (g — pg)dV)
av By (pgV + (g — pg)dV)

Here we have applied (1.12) to smplify the error term.

Blpy — o) = +o((oV) 1. (1.14)

1.2.3 Gibbs-Thomson II: The pressure. Now we are in a position to derive the desired Gibbs-
Thomson formula for the pressure. A principal tool for estimating the ratio of the probabilities
in (1.14) will be another result of [4] which tellsusthat, inthelimit V' — oo,

—log Py (pgV + (pg — pg)dV) = w1 (8V)“T (D4 + o(1)), (1.15)

where @7, isthe absolute minimum of the function

DaA(N) = AT + AL — )2 (1.16)

on [0,1]. Since pgV + (p, — pg)oV = pg(V + AV) + (p, — pg)(a 8V'), where

pg AV
a=1-— —_— 11
Py — pg OV (17
we also have, againinthelimit V' — oo,
d—

—log Pyyav (pgV + (pg — pg)dV) = w1 (c cSV)T1 ((I)*A(a) +0(1)), (1.18)

where we have introduced the shorthand A(«) = T A. Supposing that AV < 6V, we can

write @73, = PA — pep_gpg &V (1 — Aa)? + o(aV/6V) and thus, to the leading order in aAV/5V,

Py 1 [d—1_, d+1
(I) -
pe—pg V)| d AT g

By — pa) = wn A(1—=Aa)*+o(1)]. (1.19)

After some manipulations involving (1.16) and (1.3), the bracket turns out to equal d%dl)\;l/ ¢y
o(1). Thus we finally derive
d—1 wipg 1

d py— pg (AadV)H/e
In the case of an isotropic surface tension, formula (1.20) again reduces to

opg 1

—(140(1)). 121
ey 1+ o) (1.21)
Thisisthe (leading order) Gibbs-Thomson correction; the one which is usually derived [23, 28]
by invoking thermodynamic considerations. We note that here the gas-density pg in the numerator

isfully justified, cf Remark 1.

B(py — pos) = (1+0(1)). (1.20)
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Remark 2. We note that higher ordersin 1/r—as predicted by the “exponential” Gibbs- Thom-
son formulain classical thermodynamics—go beyond the validity of theformulas (1.15) and (1.18).
In fact, as a closer look at the V-dependence of 6 and 0V suggests, these corrections may de-
pend on the choice of the volumes V' and V' 4+ AV and on the boundary condition. We further
remark that both formulas (1.5) and (1.20) have been derived for the situation when a droplet of
the dense phase forms inside the low-density phase. However, a compl etely anal ogous derivation
works for a droplet of alow-density phase immersed in a high-density environment (e.g., vapor
bubblesin water).

Remark 3. Once we have derived the Gibbs-Thomson formula (1.20), we can aso justify our
choice of p., for the pressure “above a planar interface.” First let us note that, in (1.20), p., can
be viewed as a convenient normalization constant—subtracting (1.20) for two different volumes,
say V7 and V5, the quantity p., completely factors out. Moreover, if V7 <« V4, the contribution of
the droplet in V5 to such a difference will be negligible. Thus, in the limit when V5 — oo and V3
staysfixed, py; —py, tendsto py, —p.., asexpressedin (1.20). Sinceaso thedropletin 1, becomes
more and more flat in thislimit, p.. indeed represents the pressure “above a planar interface.”

This concludes our heuristic derivation of the Gibbs-Thomson formula. We reiterate that all of
the above only makes good sense when AV has been chosen such that

VITItET < AV < 6V ~ ViTa, (1.22)

As is easily checked, these inequalities represent a non-trivial interval of values of AV. In the
next sections, where we will rigorously treat the case of the two- dimensional Ising lattice gas, the
inequality on the right-hand side will be guaranteed by taking AV = ndV and then performing
thelimits V' — oo followed by n — 0.

2. RIGOROUS RESULTS
2.1 The mode!.

Throughout the remainder of this paper, we will focus our attention on the two-dimensional 1sing
lattice gas. The latter refers to a system where each site of the square lattice Z? can be either va-
cant or occupied by one particle. The state of each siteis characterized by means of an occupation
number n, which is zero for a vacant site and one for an occupied site. The forma Hamiltonian
of the system can be written as

H:—anny—uan. (2.1
() x

Here (z,y) denotes a nearest-neighbor pair on Z2 and 1 plays the role of a chemical potential.
Note that the Hamiltonian describes particles with a hard-core repulsion and short-range attraction
(with coupling constant set to unity).

The Gibbs measure (or Gibbs state) on particle configurations in a finite volume A C Z2 is
defined using the finite-volume version of (2.1) and a boundary condition on the boundary of A.
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Explicitly, let OA bethe set of sitesin 72\ A that have abond into A and let 7, bethe restriction
of H obtained by considering only pairs {x,y} N A # () in thefirst sumin (2.1) and sitesz € A
in the second sum. If ny € {0, 1}" isaconfigurationin A and ny, isaboundary condition (i.e.,
a configuration on the boundary OA of A), and if H (na|nga) isthe Hamiltonian for these two
configurations, then the probability of n, in the corresponding Gibbs measure is given by

e~ BHa(nalnox)

PAnaAﬁ’M(n/\) = ZnaA’B(,u A) ' (2.2)
G )

Here, as usual, 5 > 0 isthe inverse temperature and the normalization constant, ZgaA’ﬁ (1, A),
is the grand canonical partition function in A corresponding to the boundary condition ngs. We
recall that, according to the standard DLR-scheme [15], the system is at phase coexistence if
(depending on the boundary conditions and/or the sequence of volumes) there is more than one
infinite-volume limit of the measuresin (2.2).

As is well known, this lattice gas model is equivalent to the Ising magnet with the (formal)
Hamiltonian

H=-J)Y o0w0,—h)Y o (2.3)
(zy) z

coupling constant J = 1/4, external field h = p — 2 and the Ising spins (o) related to the
occupation variables (n,) viao, = 2n, — 1. The +-symmetry of the Ising model aso alows us
to identify the regions of phase coexistence of the lattice gas model defined by (2.1): Thereisa
value 3. = 2log(1 + v/2) of the inverse temperature such that for 3 > (. and pu = i = 2, there
exist two distinct trandation-invariant, extremal, ergodic, infinite-volume Gibbs states for the
Hamiltonian (2.1)—a “liquid” state characterized by an abundance of particles over vacancies
and a “gaseous” state, characterized by an abundance of vacancies over occupied sites. In the
Ising-spin language, these states correspond to the plus and minus states. We will use <—>%
and (—)3 to denote the expectation with respect to the “gaseous” and “liquid” state, respectively.

In order to discuss the Gibbs-Thomson formulain thismodel, we need to introduce the rel evant
quantities. Assuming i = p and 3 > (¢, we will begin by defining the gas and liquid densities:

pg = pg(B) = (no)z and  p, = py(B) = (no)j, (2.4)

where ny refers to the occupation variable at the origin. Note that, by the plus-minus Ising
symmetry, (no)3 = (1 —no)g andthus p, + pg = 1. Next we will introduce the quantity > which
isrelated to isothermal compressibility:

=Y ({nona)y — pg). (2.5)
xeZ?
The sum converges for all 8 > (¢ by the exponential decay of truncated particle-particle corre-
lations, [(n.ny)% — pg| < e 1"/, where ¢ = £(f8) < oo denotes the correlation length. The
latter was proved in [11, 27] in the context of the 2D Ising model.
The last object we need to bring into play is the surface tension or the interfacial free energy.
In the 2D Ising model, one can use several equivalent definitions. Since we will not need any of
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them explicitly, it suffices if we just summarize the mgjor concepts as formulated, more or less,
in [13,25]: First, for each 3 > f, there is a continuous function 75: {n € R?: |n| = 1} —
(0, 00), called the microscopic surface tension. Roughly speaking, 73(n) isthe cost per length of
an interface with normal vector n that separates a “gaseous” and “liquid” region.

This allows to introduce the so called WUIff functional V3 that assigns to each rectifiable
curve o = (), with the normal vector to ¢ at ¢; denoted by n;, the value

Ws(e) = / 75(1t)dny. (2.6)
%)

The quantity Wg(0D) expresses the macroscopic cost of a droplet D with boundary 0D.
Indeed, as has been established in the course of last few years[1,13,18-20, 25, 26],

the probability in the measure Pz’ﬁ #t that a droplet of “liquid” phase occurs whose shape is
“near” that of the set D isgiven, to leading order, by exp{—W3(9D)}. Thusthe“most favorable”
droplet shape is obtained by minimizing Wg(0D) over al D with a given volume. Using IV to
denote the minimizing set with a unit volume

(which can be explicitly constructed [12, 16, 29]), we define

wi(B) = Ws(0W). 27)

By well-known properties of the surface tension, we have wy (3) > 0 once 5 > (.. We note that,
as in the heuristic section—see Remark 1—the customary factor 1/ is incorporated into 73 in
our definition of the surface tension.

Remark 4. For those more familiar with the magnetic terminology, let us pause to identify the
various quantities in Ising language: First, if m*(3) is the spontaneous magnetization, then we
have pg(3) = 3(1—m*(8/4)) and p,(8) = 2 (1+m*(B/4)). Similarly, if x(3) denotesthe mag-
netic susceptibility in the Ising spin system, then »<(3) = <(3/4)/4. Finaly, the quantity w; ()
corresponds exactly to the similar quantity for the spin system at a quarter of the inverse temper-
ature.

2.2 Known facts.

Here we will review some of the rigorous results concerning the 2D Ising lattice gas in a finite
volume and afixed number of particles. In the language of statistical mechanics, this corresponds
to the canonical ensemble. The stated theorems are transcribes of the corresponding results
from [5].

Let Ay, denote a square of L x L sites of Z? and let Pz’ﬁ denote the finite-volume Gibbs
measure in Ay, for interaction (2.1) and vacant boundary condition. Let (vz,) be a sequence of
positive numbers tending to infinity in such away that vi/ 2 /|Ar| tendsto afinite non-zero limit.
In addition, supposethat (vr,) issuchthat pg|A |+ (p, — pg)vr isanumber from {0,1, ..., |A|}
for all L. For any configuration (n,) in Az, let Ny, denote thetotal number of particlesin Ay, i.e.,
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Our first theorem concerns the large-deviation asymptotic for the random variable N;,. The fol-
lowing is arigorous version of the claim (1.15), which, more or less, is Theorem 1.1 from [5].

Theorem A Let 3 > [ and let the sequence (vz) and the quantities pg = pg(5), p, =
pe(B), 32 = (), and wy; = w1 (F) be as defined previously. Suppose that the limit

(Pz - Pg)2 . 02/2
A="— " 1] — 29
ey L TA] (29)
existswith A € (0, c0). Then

. 0,0 o o .
i —— log PP, (NL = pglAr| + (g — pglvr) = —un oduf 2a(3), (2.10)

where ®a (\) = VA + A(1 — \)2,
We proceed by a description of the typical configurationsin the conditional measure

PPP(-|NL = pglALl + (py — pg)vr)- (2.12)

To this end we introduce the notion of Peierls contours: Given a particle configuration, let
us place a dua bond in the middle of each direct bond connecting an occupied and a vacant
site. These dual bonds can be connected into self-avoiding polygons by applying an appropriate
“rounding rule,” as discussed in [13] and illustrated in, e.g., Fig. 1 of [5]. Given a contour -,
let V() denote the set of sites enclosed by ~y. In accord with [5], we aso let diam ~ denote the
diameter of the set V (y) inthe ¢2 metric on Z2. If T isacollection of contours, wesay that v € T
isan external contour if it is not surrounded by any other contour from I".

While “small” contours are just natural fluctuations within a given phase, “large” contours
should somehow be interpreted as droplets. It turns out that the corresponding scales are clearly
separated with no intermediate contours present in typical configurations. The following is es-
sentially the content of Theorem 1.2 and Corollary 1.3 from [5].

TheoremB Let 5 > [ and let the sequence (vz) and the quantities pg = pg(3), p, =
pe(B), ¢ = =(B), and w; = w;(B) be as defined previously. Suppose that the limit in (2.9)
exists with A € (0, 00) and let Ac = £(3/2)%/2. There exists a number K = K(8,A) < oo
such that, for each e > 0 and L — oo, the following holds with probability tending to onein the
distribution (2.11):

(D If A < Ag, then all contours vy satisfy diam v < K log L.
(2) If A > Ag, then there exists a unique contour o with
Aavr(l =€) < |V(v)| < Aavp(l+e¢) (2.12)

and

peravp(l —e) < Z Nz < ppAavr(l+e), (213
€V (0)
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where Aa isthe largest solution to the equation
AANVA1 =) =1 (2.14)
in [0, 1]. Moreover, all the other external contoursy # v satisfy diamy < K log L.

Remark 5. We note that, in the case A = A, thereis at most one large external contour satis-
fying the bounds (2.12-2.13), or no contour beyond K log L at all. The details of what exactly
happenswhen A = A have not, at present, been quantified; presumably, thiswill depend on the
asymptotic of the sequence vy,.

Remark 6. One additional piece of information we could add about the contour v is that its
macroscopic shape asymptotically optimizesthe Wulff functional, see (2.6-2.7). While the shape
of the unigue large contour plays no essential role in this paper (it appearsimplicitly in the value
w1) We note that statements of this sort were the basis of the (microscopic) WuIff construction,
initiated in [1, 13] for the case of 2D Ising model and percolation. These results were later
extended in [14, 18-20, 25, 26]. The techniques developed in these papers have been instrumental
for theresults of [5], which addressesthe regimethat is “critical” for droplet formation. Recently,
extensions going beyond two spatial dimensions have also been accomplished [6,9,10]. We refer
to[7] and [5] for more information on the subject.

2.3 Gibbs-Thomson formula(s) for 2D Ising lattice gas.

Now we are finally in aposition to state our rigorous version of the Gibbs- Thomson formulafor
the 2D Ising lattice gas. We will begin with the formulafor the difference of the densities, which
is, more or less, an immediate corollary of Theorem B.

Theorem 2.1 Let 5 > f; and let the sequence (vz,) and the quantities pg = py(5), p, =
pi(B), » = 3(0), and w1 = w; () be as defined previously. Let A € (0,00) be asin (2.9).
Suppose that A > A¢ = 1(3/2)%/2 and let A» be the largest solution of the equation (2.14)
in the interval [0, 1]. Let A, 1, be the set of configurations (n,).ca, that satisfy (2.13), contain
a unique large external contour yy—as described in Theorem B—obeying (2.12), and whose
particle density in the exterior of g,

1
pea(10) = T e, (2.15)
0 A\ Vo) xeAL;W

satisfies the bounds

2XW1 1

1 2w 1 1
2 py— pg [V (70)[1/?

2 py— pg |V (70
Then, for each € > 0, we have

Jim PP (Ac LINL = pgl ALl + (pg = pg)vr) = 1. (2.17)

(1+e). (2.16)

72(1—€) < peali0) ~ o1 <
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Remark 7. We note that, up to the e corrections, (2.16) is exactly (1.5) for d = 2. Indeed, by
Theorem B we know that |V (v9)| = Aavr(1l + o(1)) and the two formulas are identified by
noting that 6V corresponds to vy, in our setting. Due to the underlying lattice, the Wulff droplet
is undoubtedly not circular for any 3 > (. and the better-known form (1.7) of the (density)
Gibbs-Thomson formula does not apply.

In order to state our version of the Gibbs-Thomson formulafor the pressure, we will first need
to define the pressure “above a curved interface”—not to mention the planar interface. We will
closely follow the heuristic definitions (1.8-1.11). Let us consider a sequence (A’ ) of squares
in Z?2 satisfying

,L D Ap but AIL % Ap, (2.18)

forall L. Let Zé’ﬁ (N, A) denote the canonical partition function in A with N particles, inverse
temperature 3 and the vacant boundary condition. This quantity is computed by summing the
Boltzmann factor,

exp{ I5] Z nxny}, (2.19)

(z,y)
z,yeN

over al configurations (n,) with ), n, = N. Thenwe et

DL = 1 1 og 28" (pglALl + (pr — po)vr, AL)
L — ° .
BINNALL ™ 287 (pgl ALl + (pe — po)vr, Ar)

Asin the heuristic section, the quantity p, depends on the sequences (A’), (vr), inverse temper-
ature 3, and also the boundary condition—all of which is notationally suppressed.

For the pressure “above a planar interface,” again we will simply use the pressure of the pure
(gaseous) phase. If A C Z2, welet Zg’ﬁ (u, A) denote the grand canonical partition functionin A
corresponding to the chemical potential ;» and vacant boundary condition. Recalling that i = 2,
we define

(2.20)

1 I 1
o — — IIm ——
P =5 L TAL|
where the limit exists by standard subadditivity arguments.
Suppose that A > A and let us consider the event B, ;, collecting all configurationsin Ay,
that (1) have a unique “large” contour -y, as described in Theorem B, and (2) the volume V(o)
satisfies the inequalities

log Z&" (u, AL), (2.21)

1 pgwr 1 1 pgwr 1
> 1—€) <Bpr—p=) <5
2 o pg Vo2 ST S 5 L G
Somewhat informally, the event 3, ;, represents the configurations for which the Gibbs-Thomson
formula for pressure holds up to an e error. The next theorem shows that, as . — oo, these
configurations exhaust all of the conditional measure (2.11):

(1+e). (2.22)
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Theorem 2.2 Let 3 > [ and let the sequence (vz,) and the quantities pg = pg(3), p, =
pi(B), 3 = »(0), and w1 = w; () be as defined previously. Let A € (0,00) be asin (2.9).
Suppose that A > A¢ = 1(3/2)%/2 and let Ax be the largest solution to (2.14) in [0, 1]. For
each ¢ > 0, there exists a number 7, > 0 such that if (A}) is a sequence of squares in Z?2
satisfying (2.18) and

. [OALI = [0AL] AL\ AL

nggo W\/UL =0 and Lh_fgo B 1 € (0,m0], (2.23)
then
Lh_{{.lo Py (Be.INL = pgl ALl + (pg — pg)vr) = 1. (2.24)

Remark 8. Asbefore, since |V (79)| = Aavr(1 + o(1)), the equality (2.24) isarigorous version
of (1.20) for the case at hand. The rate at which the limit in (2.24) is achieved depends—among
other things—on the rate of the convergencein (2.23). We note that the constraints (2.23) corre-
spond to the boundsin (1.22). In particular, thereis anon-trivial set of sequences (A’ ) for which
both limits in (2.23) are exactly as prescribed. Finally, the restriction that » > 0 in (2.23) is due
to the fact that from [5] we have essentially no control on the rate of convergencein (2.10). Thus,
to allow the second limit in (2.23) to be zero, we would have to do a little extrawork in order to
clarify therate at which the limitsin (2.23) and (2.10) are achieved.

3. PROOFS OF MAIN RESULTS

3.1 Proofs of Theorems 2.1 and 2.2.

In this section we provide the proofs of our main results. We will commence with Theorem 2.1.

Proof of Theorem 2.1. The proof closely follows the heuristic calculation from Section 1.2. Fix
an e > 0 and let us restrict our attention to particle configurations containing a unique external
contour v, and satisfying the bounds (2.12-2.13). We will show that, under the condition

N = pg| ALl + (py — pg)vL, (3.1)

any such configuration is, for a suitable € > 0, contained in Ag 7, for al L . Recall the defini-
tion (2.8) of the quantity N, and let

Next(ﬁ/o) = Z Ng. (32)

z€AL~V (70)
Theinequalitiesin (2.13) then directly imply
‘Next(’}/o) — (N — pg)\AvL)’ < €pAAUL. (3.3)
Since we work with a measure conditioned on the event (3.1), we can write

Ni — pedave = pg(|AL] — Aave) + (pr — pg)(1 — Aa)vr. (34
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But [AL| —Aave = |AL\V (70)|+ (|V(10)] — Aavz) and by (2.12), the second term is no larger
than eAavr,. Combining the previous estimates, we derive the bound

Nex(10) — pg|AL \ V(70)| = (b — pg)(1 — Aa)vr| < edavy, (3.5

where we also used (inessentially) that p, + pg = 1 (and thus p, < 1).

The first two terms in the absolute value on the left-hand side represent the difference be-
tween pe(70) and pg while the third term is exactly the Gibbs-Thomson correction. Indeed, di-
viding (3.5) by |AL\V (70)| and noting that, by definition, Next(70) = pext(70)[AL\V (70)], we get

(1 —=Aa)vg

EAAVL,
'paa(’yo) —pg = (pe = pg) AL\ V(70)]

AL\ V()|
Since both the Gibbs-Thomson correction—which arises from the last term in the above absolute

value—and the error term on the right-hand side are proportional to vz, /|Az \ V (70)|, the desired
bound (2.16) will follow with some e > 0 once we show that

(3.6)

(» _p)(l_)‘A)UL_l 2w 1
C YAV (o)l 2 pp— pg VAL
To prove (3.7), wenotethat [Az \ V(70)|/|AL| = 1+ o(1), which using (2.9) allows usto write

(1+0(1)), L— oo. (3.7)

v, 2%w1 A
= 1+o0(1)), L — oo. 3.8
Vo]~ G-y o o) 38
Using (2.14) in the form A(1 — Aa) = 1/(4v/Aa), we get rid of the factor of A, whereby
(3.7) follows. Since the o(1) term in (3.7) is uniformly small for al configurations satisfying
(2.12-2.13), the bounds (2.16) hold once L is sufficiently large. O

In order to prove our Gibbs-Thomson formula for the pressure, we will need the following
representation of the grand canonical partition function:

Theorem 3.1 Let 8 > (. and let p,, beasin (2.21). There exists a number 7, € [0, 00) and,
for each 6 € (1, 00), also a constant C'(/3, 0) < oo such that

[log Z&" (11, A) = Bpw| A = T OA]] < C(5,6) (39)
for all rectangular volumes A C 72 whose aspect ratio liesin theinterval (=1, 6).

Clearly, Theorem 3.1 isarigorousversion of theformula(1.10). Such thingsarewell knownin
the context of low-temperature expansions, see, e.g., [8]. Here we are using expansion techniques
in conjunction with correlations inegqualities to get the claim “down to G..” However, the full
argument would detract from the main line of thought, so the proof is postponed to Section 3.2.

Proof of Theorem 2.2. We will again closely follow the heuristic derivation from Section 1.2.
First we note that, using Theorem 3.1, we have

! 28" (1, A7) o OAL —10AL] | 20(5.6)

Bpee — 0g —2 iggr| <, :
IALNALL T 228 (e, Ar) WAAL VA AL\ AL

(3.10)
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Introducing the shorthand
PA(N) = PoOm ( Y 0= N), (3.11)
zeA
invoking the assumption on the | eft of (2.23) and apTJIyi ng (2.20), this allows us to write
m@:qa>:u&iAﬂk%p“hmAﬂ+«”_p@”)+owi”» Lo (312)

P, (pglALl + (pe — pg)uL)
Now, by Theorem A we have
log A, (pglALl + (pp — pg)vr) = —wi (PA + o(1))vr, L — oo, (313

where ¢ isthe absolute minimum of ® (\) for A € [0, 1]. Asto the corresponding probability
for A, wefirst note that

pgl ALl + (py — pg)vr = pg|AL| + (py — pg)arvr, (3.14)
where
A\ A
oy =1 o 1A \ALL (3.15)
Pe — Pg UL

By our assumption on the right-hand side of (2.23), «;, converges to a number « given by o =
1 — —£5_y. Again using Theorem A, we can write

Py—Pyg
log P, (pgl ALl + (pp — pg)vr) = —wi(PFs00 +0(1))Var/ur, L — oc. (3.16)
A simple calculation—of the kind leading to (1.19)—now shows that
m Py 1 2
Vad*r,,  — dh =+ —— +0(1?), 10, (3.17)
oA A T2 o — pg VAN () 7
while (2.23) implies that
VUL 11
= —(14+0(1)), L — oc. 3.18
E\ Al - gt L (318)
Plugging these equations, along with (3.13) and (3.16), into (3.12), we have
1 pgwi 1 o(1)
Blpr —pe) = 5 1+ +0(n)), 3.19
= p) = 5 T (7 O) (319

where o(1) denotes a quantity tending to zero as L. — oo while O(n) is a quantity independent
of L and tending to zero at least asfast as# inthelimit » | 0. Equation (3.19) showsthat, once L
is sufficiently large, a particle configuration satisfying the bounds (2.12) from Theorem B will
also satisfy the bounds (2.22). The limit (2.24) is then a simple conclusion of Theorem B. O

3.2 Representation of the partition function.

Thegoa of thissectionisto prove Theorem 3.1. Asalready mentioned, we will employ two basic
techniques: cluster expansion and correlation inequalities. The basic strategy of the proof is as
follows. First we pick alarge negative number 1o < pt and use cluster expansion to establish a
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corresponding representation for the partition function Zé’ﬁ (10, Ar). Then, as a second step, we
invoke correlation inequalities to prove asimilar representation for the ratio of the partition func-
tions Zgﬁ(uo, Ap) and Zé’ﬁ(ut, Ar). Essentia for the second step will be the GHS inequality
and the exponentia decay of correlationsfor al g > G.. Combining these two steps, the desired
representation is proved.

Let p.. (1) denote the pressure corresponding to the chemical potential 1, which is defined by
thelimit asin (2.21) where p; isreplaced by p. (Throughout this derivation, we will keep /3 fixed
and suppress it notationally whenever possible.) The first step in the above strategy can then be
formulated as follows:

Lemma3.2 Let( > (. andletp. (u) beasdefined above. For each # € (1, c0) and each suf-
ficiently large negative 1.9, there exists a number 7 (o) € [0, co) and a constant C (3, o, ) <
oo such that

[log Z&" (10, A) = Bp< (o) |A] = 77 (110)|OA]] < C1(8, po. ) (320)
holds for each rectangular volume A C 72 whose aspect ratio liesin theinterval (6=, 6).

To implement the second step of the proof, we need to study the ratio of the partition functions
with chemical potentials it and 1. Let A be afinite rectangular volume in Z? and let <—)j\’5’“
denote the expectation with respect to the measure in (2.2) with vacant boundary condition.
Let Ny = >, na- FOrany pug < e wethen have

2" (e, A p
logw = / (NA)Y (3.21)
Z(;’ (MO:AL) 10
and
I
B(Poo(t) — Poo(p0)) = / (no)°*P+dp. (3.22)

Ho

where (—)°%# denotestheinfinite-volume limit (which we are assured exists) of the state (—) %",
(Note that (3.22) is true with any infinite-volume Gibbs state substituted.) Combining (3.21-
3.22), we thus get

7P (e, A ) e oo (Il /ut
I

= | (V)R = [ALmo) ™) . 3.23
og Zé’ﬁ(uoaAL)e_ﬁpoo(uo)lAl (< AN |A|{no) ) m (3.23)

0

To derive the desired representation, we need to show that the integrand is proportiona to |0A|,
up to an error which does not depend on A. This estimate is provided in the following lemma:

Lemma3.3 Lets > G.andf € (1,00). There exists a constant C (3, 0) < oo and a bounded
function 75 : (—o0, ] — [0, 0o) such that

[(NA) S — [Al(no) > — [0A]75 ()] < C2(B,6), 1 € (=00, ], (3:24)

holds for each rectangular volume A C 72 whose aspect ratio liesin theinterval (6=1,6).
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Lemma 3.2 will be proved in Section 3.3 and Lemma 3.3 in Section 3.4. With the two lemmas
in the hand, the proof of Theorem 3.1 is easily concluded:

Proof of Theorem3.1. Let 6 € (1,00) and let A be a rectangular volume whose aspect ratio lies
intheinterval (6=1,0). Fix u to be so large (and negative) that Lemma 3.2 holds and let Q1 (1)
denote the quantity in the absolute value in (3.20). For each u € [uo, 1], 1€t Q2() denote the
quantity inside the absolute value in (3.24). Let us define

it

7ot = 75 (t0) + / 72 () (3.25)

1o

A simple calculation combining (3.20), (3.24) with (3.23) then shows that

4t
log 28" (1, A) = Bpoo (n)|A] = Tl OA] = Q1 (o) + | Qa(w)dp. (3.26)
Ho
Using (3.20) and (3.24), we easily establish that the absolute value of the quantity on right-hand
sideisno Iarger than C(/Bv 9) = 01(67 Mo, 6) + (/’Lt - ,U’O)CQ(/B) 9) U

3.3 Cluster expansion.

Here we will rewrite the grand canonical partition function in terms of a polymer model, then we
will collect afew facts from the theory of cluster expansions and assemble them into the proof of
Lemma 3.2. The substance of this section is very standard—mostly siphoned from [22]—so the
uninterested reader may wish to consider skipping the entire section on afirst reading.

We begin by defining the polymer model. Given aconfigurationny in A, let uscall two distinct
sites of Z? connected if they are nearest-neighbors and are both occupied in the configuration n 5 .
A polymer isthen defined as a connected component of occupied sites. Two polymers are called
compatibleif their union is not connected. A collection of polymersis called compatible if each
distinct pair of polymers within the collection is compatible. Clearly, the compatible collections
of polymers are in one-to-one correspondence with the particle configurations. Finally, let us
introduce some notation: We write P ¢ P’ if the polymers P and P’ are not compatible and say
that the polymer P isin A, if P C A.

Let P be apolymer containing N (P) sites and occupying both endpoints of £(P) edgesin Z2.
We define the Boltzmann weight of P by the formula

Cpu(P) = PEPIHINE), (3.27)

Asis straightforward to verify, the partition function Zg’ﬁ (1, A) can be written as

2% N) = > ] ¢oun(P). (3.28)

P PeP
where the sum runs over al compatible collections P of polymersin A. This reformulation of
the partition function in the language of compatible polymer configurations allows usto bring to
bear the machinery of cluster expansion. Following [22], the next key step is a definition of a
cluster, generically denoted by C. Namely, C is afinite non-empty collection of polymersthat is



18 M. BISKUP, L. CHAYES AND R. KOTECKY

connected when viewed as a graph whose vertices are polymers P € C and edges are connecting
pairs of incompatible polymers.

(Thus, if C contains but a single polymer it is automatically a cluster. If C contains more than
one polymer, then any non-trivial division of C into two digoint subsets has some incompatibility
between some pair chosen one from each of the subsets.) In accord with [22], a cluster C is
incompatible with a polymer P, expressed by C ¢ P, if CU {P} isacluster.

To get started, we need to verify the convergence criterion from [22]. In present context this
reads as follows: For some x > 0 and any polymer P,

Z Cou(PeTHINPD 1o N (P). (3.29)
: PP

Since (g,,(P) < e +20NP) jstrue, this obvioudy holdsif p is sufficiently large and negative.
The main result of [22] then says that each cluster C can be given a weight (g ,(C) (which is
defined lessimplicitly in [22]), such that for all finite volumes A C Z? we have

log Z&” (1, A) = > Ca. mu( (3.30)
CeCp

where C, denotes the set of all clusters arising from polymersin A. Moreover, this expansion is
accompanied by the bound

> [¢su(Q))e"NO < N (P), (3.31)
C: CotP
where N (C) denotes the sum of N (P’) over all P’ constituting C. With (3.30-3.31) in hand, we
are ready to prove the first part of the representation of Zgﬂ (1, A):

Proof of Lemma 3.2. First, we will introduce a convenient resummation of (3.30). For each
polymer P, let A/(P) be the set of sites constituting P. Similarly, for each cluster C, let N'(C) be
the union of \V(P) over al P constituting C. For each finite A C 72, we let

Ipu(A) = D (aulBO). (332)
C: N(O)=A

Clearly, the weights 93, are invariant with respect to lattice translations and rotations, having
inherited this property from (g ,. Moreover, asis easily checked, J3,(A) = 0 unless A isa
connected set. The new weights allow us to rewrite (3.30) and (3.31) in the following form:

log Zg" (1, A) = > (A (3.33)
A: ACA
with
> pu(A)| <emmm (3.39)
A: 0eA
A[>n

for each n > 0. Here | A| denotes the number of sitesin A.
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Now we are ready to identify the relevant quantities. First, the limiting version of the expres-
sion (3.33) suggests that the pressure should be given by the formula

(i) = S 05, (A). (3.3

Byt
A: 0€A |A‘

To define the constant 77 (1) representing the wall surface tension, let H denote the upper half-
planein Z2, i.e, H = {(z1,72) € Z2: x5 > 0}, and let I be the “line” in Z? corresponding to
the boundary of H, i.e., I. = {(z1,22) € Z?: x5 = 0}. Then we define

= 3 [A\H| 9,,(A)
A: 0€A
ANL#)

Clearly, in order to contribute to 77 (u), the set A would have to have both A NTH and A \ H
nonempty. On the basis of (3.34) it can be shown that the sums in (3.35) and (3.36) converge
once (3.29) holdswithax > 0.

Combining (3.33) with (3.35), we can now write that

logZ’ﬁ ,u, Z Z |A| ﬂ#

zEA A xeA

= Bpo (WA =D ‘ﬁu

zeEN A:z€A
AgZA

(3.37)

Using thefact that A isaconnected set andthus ANA # () and A\ A # () imply that ANOA # 0,
the second term on the right-hand side can further be written as

[AN A [ANA| 95,u(A)
2 A A Pea(A) = D [A] |ANOA]
A: AZA T€OA A: z€A (3.39)
|ANA]  JANHY]| '
wIoAl+ 3 3 W<|AmaA| - \AOLH)%’“(A)'
€A A: zcA

Here Hl,, denotes the half-plane in Z? that contains A and whose boundary I, = 9H., includes
the portion of the boundary 0A that contains z. (Remember that A is a rectangular set and thus
its boundary dA splitsinto four disjoint subsets—the sides of A.)

Let Q1 (1) denote the (complicated) second term on the right-hand side of (3.38). Let A be the
collection of al finite connected sets A  72. Notice that, whenever aset A € A intersects OA
inonly oneof itssidesand AN9A = ANL,,thenaso ANA = ANH,, and the corresponding
term in (3.38) vanishes. It follows that, in order for the set A to contribute to the z-th term
of Q1(p), it must contain at least as many sites as is the ¢°°-distance from = to the sides of OA
not containing =. Thus, for agiven z € A, aset A C Z2 can only contributeto Q1 () if A € A
and |A| > dist(x, 0A \ ;).
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Since|ANA|,|ANH,| < |A|and |[ANOA|,|ANI,| > 1forany A contributing to Q1 (u),
we can use (3.34) to get the bound

Q] < D Yoo Psu(A)] < Y e astnOne), (3.39)

z€OA A€eA, xeA TEIN
|A|>dist(z,0A\Lz)
Choosing x > 0, letting G (k) = S50, e™*" < oo, and using L1, Ly € [#~1L, 0 L] to denote the
lengths of the sides of A, we can bound the right hand side by 8G(k) 4 2L1e™" 2 4-2Lye "1,

yielding [Q1(p)| < 8G(k) +46Le 5L, Theright hand side can be bounded uniformly in L by
aconstant that depends only on 8 and we thus get the claim of Lemma 3.2. O

3.4 Correlation bounds.

This section will be spent on proving Lemma 3.3. We begin by recalling the relevant correlation
bounds. Let us extend our notation (—)j’\’ﬁ *# for the expectation with respect to the Gibbs measure
in A also to the cases when A is not necessarily finite. (It turns out that, by FKG monotonicity,
such a state is uniquely defined as a limit of finite-volume Gibbs states along any sequence of
finite volumesincreasing to A.) We will use the notation

(i ny) 37 = (nang) Y — (na) 77 (ny) 30 (3.40)

for the truncated correlation function. This correlation function has the following properties:
(1) Foreachp < p/ < rand A ¢ A, andall z,y € Z2,

(nr;nyﬁ{ﬂ’“ < <nx;ny>f\’,ﬁ’“/. (3.41)

(2) For each 8 > [ thereexistsa& = £(3) < oo such that
0 < (ngsny) 3P < emlo=vl/e (342)
foral u < py, al A € Z? andal z,y € Z2. Here |z —y| denotesthe /., distance between x

and y.
Both (1) and (2) are reformulations of well-known properties of the truncated correlation func-
tionsfor Ising spins. Namely, (1) isasimple consequence of the GHSinequality [17], while (2) is
aconsequence of (1) and the fact that the infinite-volume truncated correlation function at 1 = ¢
decays exponentially once 5 > (. The latter wasin turn proved in [11, 20].

A simple consequence of the above observations is the following lemma:

Lemma3.4 Let3 > (.. Then thereexist constants oy = a1 (8) < oo and aie = () < 0
such that

0 < (na)3™ = (na) g H < a2 dBHEANN (343
for all ;v < 1, all (not necessarily finite) volumes A ¢ A’inZ? and all z € A.

Proof. See, e.g., formula (2.2.6) from [20]. O
Now we can start proving Lemma 3.3:
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Proof of Lemma 3.3. We begin by adefinition of the quantity 75 (). Let H be the upper half-plane
in 72, see Section 3.3. Then we define

T (p) = Z((”(z o)E Pt <n0>%f’“), (3.44)

>0

where (z1, 22) is a notation for a generic point in Z2. By Lemma 3.4, the sum converges with
a p-independent rate (of course, provided p < ).

Let A be arectangular volumein Z2 with aspect ratio in the interval (9, 6). Let uscyclically
label the sides of A by numbers 1,...,4, and define Hy, ...,H, to be the half-planes in Z?
containing A and sharing the respective part of the boundary with A. We wish to partition the
sitesof A into four sets A, ..., A4 according to which HH; the site is closest to. We resolve the
cases of atie by choosing the H; with the lowest j. Now we can write

(NA)RPH — A {no)od™

4 4
=2 D (™ = ma)g™) + 30 3 ()" = (n0)2). (348)

Jj=1x€A; Jj=1z€A;
If it were not for the restriction € A, the second term on the right- hand side would have the
structure needed to apply (3.44). To fix this problem, let S;, with j = 1,..., 4, denote the half-
infinite slab obtained as the intersection H;_; NIH; NH;41, whereit is understood that Hy = Hy
and Hs = Hi;. Clearly, A; C S; forall j =1,...,4. Then we have

4
ZZ Vi = (no)sa ™) = s WIOAl =Y Y () — (no)E™).

Jj=1lzeA; J=1 ze§5;(A)~A;
(3.46)

It remains to show that both the first term on the right-hand side of (3.45) and the second term on
the right-hand side of (3.46) are bounded by a constant independent of 1 and A with the above
properties. Asto the first term, we note that, by Lemma 3.4,

() — () < e W), (247

which after summing over = € A; gives a plain constant. Concerning the second contribution
to the error, we note that <nx)]§ﬁ’f’“ - <n0)%’f’“ is again exponentially small in dist(z, Z% \ H;).
As a simple argument shows, this makes the sum over = € S; \ A; finite uniformly in A with a
bounded aspect ratio. This concludes the proof. O
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