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Abstract

We examine some aspects of the recent results by Binder [Physica A 319 (2003) 99]. The
equilibrium formation/dissolution of droplets in finite systems is discussed in the context of the
canonical and the grand canonical distributions.
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In the last few years, a considerable number of computer experiments, for instance
[1-5], carefully performed on systems exhibiting phase coexistence have underscored
the need for a better understanding of the droplet formation/dissolution phenomena. In
this context, some early analyses [6—8] pointed to the existence of a volume-dependent
(mesoscopic) scale at which droplets first appear. (Specifically, it was argued that
in a system of volume L, one does not observe droplets below the linear scale of
L4@+1) ) Recently, a detailed quantitative description of the actual droplet forma-
tion/dissolution in closed equilibrium systems has been accomplished [9,10]. For in-
stance, the following was shown in Ref. [10] regarding a gas—liquid system in volume
L4 and the number of particles fixed to a value exceeding that of the ambient gas by
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(1) There is a dimensionless parameter 4 proportional to (6N )@+ /L? and a critical
value 4. = 4.(d), such that no droplet forms for 4 < A, while there is a single
droplet of liquid phase when 4 > A..

(2) The fraction 44 €[0, 1] of the excess particles subsumed by the droplet depends
on A via a universal equation which depends only on dimension (and which is
otherwise independent of the details of the system).

(3) The minimal fraction A4, =2/(d + 1) is strictly positive, so when the droplet first

forms, it indeed has volume of the order L4'/(@+D).

Further investigations permitted a rigorous proof of the above conclusions in the context
of the two-dimensional Ising lattice gas at all temperatures below critical [11] (as well
as a rigorous derivation of the Gibbs—Thomson formula under certain conditions [12]).

The intriguing circumstances concerning the systems with coexisting phases were
the subject of a recent paper by Binder [13] wherein the existence of the mesoscopic
scale for droplet formation/dissolution was re-derived by phenomenological arguments.
Two additional conclusions of interest were reached in Ref. [13]:

(4) A signature discontinuity in the intensive variable relative to the setup at hand, that
is, the magnetic field in a spin system and the chemical potential in a liquid/gas
system.

(5) The scaling window for the “rounding” of this discontinuity in finite systems.

While we are somewhat uneasy about the derivation of (5)—which in our opinion
poorly accounts for the possible influence of lower-order corrections—we will focus
our attention on conclusion (4). The substance of this conclusion is apparently novel
and warrants further investigations, particularly because of the purported connection
with other “unconventional” phase transitions, see Ref. [35] of Ref. [13]. We will
concentrate on the Ising ferromagnet in a d-dimensional volume LY. Although the
magnetic language is used in Ref. [13], the lattice-gas interpretation is invoked to label
the ensembles: The constrained ensemble with fixed total spin (i.e., fixed magnetization)
will be referred to as the “canonical” ensemble, whereas the “grand canonical” ensemble
will denote the usual distribution in which the magnetization is allowed to fluctuate.

Inherently in its nature, the magnetic field is a quantity associated with (and ad-
justable only in the context of) the “grand canonical” ensemble. This leads us to our
first question: How does the purported discontinuity reflect itself in the “grand canoni-
cal” ensemble? To address this issue, let us investigate the problem of the Ising magnet
in a box of linear dimension L, at the temperature T < T, external field # and plus
boundary conditions. The cases of interest are & < 0 with || <1, which are the only
conditions under which the system might nucleate a droplet. Denoting by R the linear
scale of the purported droplet, the magnetic gain from its formation would be of the
order of AR?, while the surface cost would scale as R?~!. Obviously, the two costs
balance out for R ~ 1/|h|, so if L 2 R permits R to exceed a constant times 1/|4|,
such a droplet will form and otherwise it will not. This, of course, is exactly the basis
for classical nucleation theory.
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Notwithstanding any doubts as to the validity of the above reasoning, the preceding
setup has been the subject matter of some rigorous analysis, see Refs. [14-17]. In
particular, the following two-dimensional result was established in Ref. [15]: Consider
the setup as described (with plus boundary conditions and 4 < 0), with |4| — 0 and
L — oo in such a way that |A|L tends to a definite limit, denoted by B. Then there
is a By > 0 (which can be calculated in terms of system characteristics), such that the
following holds:

e If B < By, there are no droplets and the entire box is in the plus phase.
e If B > By, a large droplet of minus phase fills most of the box leaving only a small
fraction of the plus phase in the corners.

Thus, whenever the droplet forms, it subsumes the bulk of the system. Similar (albeit
weaker) theorems were proved in Refs. [16,17] for all d > 2.

These results are of direct relevance and lead to the following inescapable conclusion:
In the context of the “grand canonical” distribution, there is no window of opportunity
for the formation of a mesoscopic droplet. Explicitly, whenever conditions permit the
existence of a “droplet” in the system, it occurs on the macroscopic scale. Ostensibly,
one might still hope for the occurrence of some signature event when the magnetic
field lies in (or in the vicinity of) Binder’s gap. However, this is not the case: Binder
has calculated the edges of the forbidden region,

d/(d+1) —d/(d+1)
HY Z(d+ l)mcoex(T) p—@=D/d+1) (Sd> ( L ) cd/d+1)
Xcocx(T) d 2d écocx(T)

and
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where V;, S; and d are geometrical constants, mcoex(T), Ycoex(T) and Eeoex(T) is no-
tation for the magnetization, susceptibility and the correlation length, respectively, and
¢ = fi( T)Ycoex (T Meoex (T) 2 Ecoex(T) ' —with £;(T) denoting the surface tension—is a
dimensionless ratio (canceling out the superfluous Ecoex(7')’s!) which presumably tends
to a constant as T — T,. But, at the end of the day, both edges satisfy H" ~ L=4/d+D),
which, we emphasize, is deep inside the droplet dominated regime.

On the basis of the above deposition, it appears that conclusion (4) has absolutely
no bearing on finite-volume systems described by the “grand canonical” ensemble. The
question is then: How to interpret the magnetic field and its purported discontinuity oth-
erwise? As is clear from the outset, some non-standard interpretation will be necessary
since the only physical framework in which the phenomenon occurs is the “canonical”
ensemble. In the context of the Ising model in volume L¢ and plus boundary conditions,
the latter describes the constrained distribution where the overall magnetization M| is
restricted to a single value. (Here, as goes without saying, the external field 4 in the
Hamiltonian simply drops out of the problem.) To achieve a droplet of minus phase,
there has to be a deficit in the magnetization away from the preferred value of M;.
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In such circumstances, the general results discussed in the introductory paragraph imply
the existence of a sharp constant @, (related to 4.) such that no droplet will be created
for deficits less than @.L¢ /@1 while, for deficits larger than ©.L¢/@+1), a non-trivial
fraction of the deficit will condense into a droplet.

Let us now attempt to elucidate how a magnetic field could have arisen in the deriva-
tions of Ref. [13]. Of course, in the “canonical” ensemble, we are always entitled to
calculate the (finite-volume) free energy as a function of the magnetization. As is nec-
essarily implied by the nature of the above droplet formation/dissolution phenomenon,
this function has two branches depending on what type of configurations bring the
decisive contributions:

e for magnetizations with a deficit less than ©,L¢/(¢+1) configurations with no meso-
scopic droplets,

e for magnetizations with a deficit in excess of @chz/ @+ configurations with a single
appropriately sized droplet.

It is not much of a surprise that a cusp will form at the point where the two branches
come together. It appears that the values Ht(l) and Ht(z), which are enunciated explicitly
in Ref. [13], are just the one-sided derivatives of the free energy—with respect to
magnetization—at this cusp.

Unfortunately, the physical significance attributed to the values H,(l), H,(z), their dif-
ference and their ratio in Ref. [13] is perhaps a bit overplayed. Indeed, following the
dogma of bulk thermodynamics, the “H” is proclaimed to be the natural canonical con-
jugate of the magnetization and, as such, it is deemed to be the appropriate measure
of the response of the system to the change of the magnetization. However, here we
deal with a system exhibiting mesoscopic phenomena and, more importantly, inhomo-
geneities. In such systems, the meaning of a conjugate variable is rather murky because
the standard interpretations of the thermodynamic potentials are only clear in the ther-
modynamic limit, under the auspices of the equivalence of ensembles. Consequently,
for the system at hand, the primary response functions should be the “H’s” associated
with the parts of the system outside and inside the droplet, which we note are per-
fectly analytic functions of the corresponding magnetizations. On the basis of the latter
response functions, and the knowledge of the droplet size, the overall “H” considered
in conclusion (4) can immediately be reconstructed. But, even if this quantity could
be conveniently accessible numerically, its actual meaning is at best secondary.

We would like to remark that, in our opinion, the probabilistic language of large-
deviation theory provides some additional and worthwhile perspectives in these sit-
uations. In the terminology of large-deviation theory, the actual free energy can be
conveniently expressed as an infimum of a simple function over what seems to be
the natural parameter here: The fraction of the deficit absorbed by the droplet. With
this parametrization, the relevant calculations of Ref. [13], including the jump in the
derivative at the formation point, fit on the back of the proverbial envelope. We refer
to Refs. [9—11] for more details but we do not wish to overstate our case.

The conclusion/moral is self-evident. In general, given a function, we are always en-
titled to take its Legendre transform and express it in terms of the conjugate variables.
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In the context of equilibrium statistical mechanics, these transforms are invaluable
because the equivalence of ensembles allows for the uninhibited two-way flow of in-
formation. For instance, if a particle system is studied at a fixed density then, except
at points of phase transitions, we know everything about the fluctuating ensemble with
the chemical potential adjusted to produce this density. Even more interesting—and
even more useful—are the points of thermodynamic discontinuities. If one ensemble
has a forbidden gap (say the particle density in the grand canonical distribution), then
forcing the “parameter value” into the gap is essentially guaranteed to have interesting
consequences in the other ensemble (e.g., phase separation).

But, the equivalence of ensembles is a mathematical—not to mention physical—fact
only in the thermodynamic limit. In finite volume, as the droplet formation/dissolution
phenomenon dramatically illustrates, the various ensembles are not equivalent. In these
contexts, the assignment of physical—not to mention mathematical—significance to the
conjugate variables is of dubious value. We suspect that this is the generic situation
when “phase transitions” on a mesoscopic scale are the object of study. We believe that
the dramatic inequivalence of ensembles in finite volume is the signature of interesting
phenomena taking place below the macroscopic scale.

It is worth pointing out that, in the present context, the natural thermodynamic quan-
tity which exhibits the signature jump is the good old energy density. There are several
advantages to the use of this quantity as opposed to, e.g., the magnetic field considered
in Ref. [13]. To list a couple, first, there is no numerical difficulty in the dynamical
construction of the energy histogram and, second, there is no theoretical dispute in
the interpretation of this quantity. Some previous efforts to exhibit the behavior of the
energy density can be found in Refs. [4,5,9]; but, here we emphasize that the actual
energy should be measured directly. Notwithstanding, if the physics of interest con-
cerns droplets, it appears most natural to look for the droplet itself. This is evidently
numerically feasible [4,7] and, presumably, permits the exhibition of all the secondary
commodities.
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