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Does the Roughness of the Substrate Enhance Wetting?
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We consider a semi-infinite three-dimensional Ising system with a rough wall to describe the effect
of the roughness r of the substrate on wetting. For sufficiently low temperature, we show that the
difference of wall free energies A7(r) of the two phases behaves like A7(r) = rA7(1), implying that
roughness enhances wetting for A7(1) > 0 and drying for A7(1) < 0.

PACS numbers: 68.45.Gd, 0.5.0.+q

Liquid/solid interfaces and associated wetting prob-
lems are important topics of surface physics and have
been widely studied in the last decades both theoretically
and experimentally [1]. In particular, the case of a sessile
drop on a solid substrate gave rise to Young’s equation
and has gone through many developments since then.

From a thermodynamical point of view, the optimal
shape of a droplet of phase A immersed in another
phase B is a sphere whenever the surface tension is
isotropic while it is given by the Wulff construction
in the anisotropic case [2]. For the sessile drop of an
isotropic fluid, the contact angle 6 is given by Young’s
equation. In the anisotropic case, the shape of the sessile
droplet is described by a piece of the shape of the isolated
droplet using the so-called Winterbottom construction [3].
Namely, rescaling the isolated drop in such a way that its
‘height is 745, the sessile drop is obtained by cutting the
drop at the height A7 = 7z = Taw, see Fig. 1, where
Taw and 7py are the wall free energies of the phases A
and B, respectively, and 7,45 is the free energy of the AB
interface parallel to the substrate.

According to these results, wetting is thus enhanced
by increasing A7 from A7 = —743, corresponding to the
complete drying situation, to A7 = 745, corresponding to
the complete wetting case. (It should be remarked that
near the wetting transition A7 = 743, line tension effects
have to be taken into account for small droplets.)

From a microscopic point of view, different versions of
lattice gases were used to model such droplets or crystals.
On one hand, these models have been used to calculate
surface tensions and other important quantities. On the
other hand, they lead to rigorous microscopic derivation
of the Wulff construction for a drop of A immersed in B
in the case of a low temperature d = 2 Ising model [4],
and of the Winterbottom construction for the sessile drop
in the case of 4 = 2 solid-on-solid (SOS) models [5].

Experimentally, the implicitly made assumption of a
perfectly flat and homogeneous substrate is never met. It
is therefore important to study the influence of roughness
and chemical impurities on the equilibrium shape of
the drop. While one might argue that this equilibrium
shape cannot be observed experimentally, since one would
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observe hysteresis in terms of different receding and
advancing angles, it should be noted that, for small
roughness or densities of impurities, hysteresis effects are
expected to be negligible [1].

In this Letter, we propose to model the influence
of roughness on the equilibrium shape in terms of a
suitably modified half-infinite Ising system. Namely, we
will describe the wall by a half-infinite lattice W C Z3
with rough boundary (see below for the precise form
of W) and for the vessel containing the drop and the
gas we take the complement V = Z3\W. To each site x
of the vessel V, we associate a variable ¢, which may
take two values: +1 associated to a particle at x, and
—1 associated to an empty site. We assume that the
substrate is completely filled, i.e., o, = +1forallx € W.
Inside the vessel, the variables o, are coupled with a
nearest-neighbor coupling J > 0, representing a nearest-
neighbor attraction of particles, while the spins at the
boundary between the vessel and the substrate are coupled
with coupling constant X, stemming from the interaction
between the molecules of the liquid and those of the
substrate. Formally, these interactions are described by

7,5(0)
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FIG. 1.
model.

The Winterbottom construction for the d = 2 Ising
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where (xy) denotes nearest-neighbor pairs.

In the perfectly flat case, the set W modeling the
substrate will be just the half space {x = (x|, x2,x3) €
Z3 | x; = 0}. More generally, we consider a substrate W
with surface 8W which, for simplicity, is taken as an SOS
surface lying in between the two planes {x € Z3 | x; =
—Ho}and {x € Z* | x; = Ho}. Even though our methods
would allow us to treat certain kinds of random impurities,
we assume here that W is nonrandom and it is periodic
in both the 2 and 3 directions, with periods L, and L3,
respectively.

Let A be the area of the substrate surface (i.e., the
number of pairs with coupling K in our model) and A
its projection onto the horizontal plane. The roughness r
can then be defined by
A
A 2
For a given value of r, is it then possible to predict rig-
orously how the wall free energies will be modified? In
fact, we prove rigorously that there is a constant a > 0
such that

r =

A7r(r) = rA7(1) + 0(e ), 3)
provided B is sufficiently large and |rK/J]| is small.

This is, in fact, a confirmation of the experimentally
observed Wenzel’s law [1] relating the contact angle 6
of a sessile drop on a rough substrate to the wall free
energies: -

'TABCOSGI,- ~ rAT(l) (4)

A direct consequence of this relation is that the contact
angle with a rough substrate, characterized by the rough-
ness r, will be larger (respectively, smaller) than the cor-
responding contact angle for a sessile drop on top of a flat
substrate, whenever A7(r) > 0 [respectively, A7(r) < 0].
Our calculation points out that the Wenzel’s roughness
r = A/Ap is indeed the appropriate variable in this wet-
ting problem.

The conditions for validity of (3) are twofold. The
restriction to low temperatures is of a technical nature
and stems from the conditions on convergence of used
low temperature expansions (for the proof, we need that
T /T, is roughly less than %). There is no a priori reason,
however, for the claim not to be valid up to the wetting
temperature Tw. On the other hand, the assumption of
smallness of |rK/J]| is intimately related to the physics
of the problem. Roughly speaking, it is an assumption
about the smallness of the difference A7(r) as compared
to the “liquid-gas” tension 743. Indeed, recalling the well-
known thermodynamic stability condition

Tab = Tac t Teb
for the coexistence of three different phases a,b,c, we
observe that necessarily [A7(r)] = 745.

One, therefore, cannot expect (3) to be valid once
|A7(r)| is close to 745: (i) Even for small roughness
(r near 1), A7(r) = rA7(1) should fall if the model is
already in the vicinity of the wetting or drying transition,
ie., if |[A7(1)] = 745 (which here would correspond to
|K/J| of the order 1). (ii) Moreover, if [AT(1)|/7ap
is small, one only expects a linear dependence of the
form (3), as long as r is small enough to guarantee
that the absolute value of the right hand side (r.h.s.) is
less than 745. Namely, due to the a priori upper bound
|A7(r)] = 74g, the function A7(r) should finally level off
as schematically reproduced in Fig. 2. As a ground state
analysis of this situation shows [6], the details of this
behavior for large r depend crucially on the geometry of
the substrate.

To present our results in a rigorous manner, we
define wall free energies 7.y and 7_y for the
model (1). Considering a finite lattice A(L) = {x =
(1, x2,x3) EZ3 2 Ix;) = L, i = 1,2,3}, we introduce
partition functions Z.[A(L)] as the partition functions
of the standard Ising model in the volume A(L) with +
boundary conditions on 3A. Let Z+w[A(L) N V] be
the partition functions of the model (1) in the volume
A(L) NV, with * boundary conditions on that part of
8[A(L) N V] which is not part of the wall (on the wall,
the boundary conditions are always +1, with coupling
constant K). We then define

1 ZLwlAQW) N V]

Brew(r) = =lim oo 2 Lo z.[A)]
(5)

where r = 1 corresponds to the flat case already intro-
duced in {7,8]. For a drop of + spins of a given fixed
volume, we then introduce

Ar(r) =71-w = T+w, ©
getting
. Z_wlAL) N V]
BAT(r) = - lim QL + 1)? log ZiwlA(L) N V]
)]
AT(r)
_______________ Ths
AT(l) r
1 T

FIG. 2. Ax(r) as a function of the roughness r.
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Note that A7(r) actually depends not only on the
roughness r but also on the shape of the substrate surface
aW. Within our model, however, the main contribution
to A7(r) does not depend on the details of the geometry of
dW, but only on the value of the roughness r; see Egs. (9)
and (10) below. :

In order to prove (3), we start with the analy-
sis of the ground state configurations contributing to
Z+ wlA(L) N V]. For the + boundary conditions, this is
the configuration where o, = +1 forall x € AL) NV
while the ground state configuration for the — boundary
condition is o, = =1 for all x € A(L) N V (note that
here we use the fact that |K/J| is small). Calculating the
terms, except for those involving the coupling K to the
wall, cancel and we are left with

AE =2KA, ®)
where A is the surface of 3[W N A(V)]. In the limit
L — oo, this leads to a ground state contribution

BAe(r) = lim 7 BAE = 28Kr  (9)

1
o= 2L + 1
to the difference (7).

To get (3) for nonvanishing temperatures, one has to
take into account excitations. This is possible with the
help of powerful methods of cluster expansions used
in two steps. Namely, considering first the contour
representation of the model, in a similar way as in

As aresult, one can rigorously bound S by O(e~%£7), thus
implying Eq. (3) from (10).

Let us notice that the appearance of the factor r is
due to the fact that the interaction energy of the substrate
with the liquid and gas, respectively, is proportional to the
macroscopic surface A while the tension only involves a
division by the projected surface Ay = 2L + 1)2.

Note also that in the situation described by our model,
all the surface atoms of the substrate are contributing to
the surface energy. This may not be the case for liquids
with large molecules, where only an effective part of the
surface A takes part to this interaction.

To conclude, we have modeled a liquid droplet or
crystal on a rough substrate by a semi-infinite, three-
dimensional Ising lattice gas. Within this model, we
rigorously established that for sufficiently low tempera-
ture, the difference of wall free energies Ar(r) behaves
like A7(r) = rA7(1) + O(e™*#’), implying that rough-
ness enhances wetting for A7(1) > 0 and drying for
Ar(1) < 0.
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[9,10], one is getting a dilute “gas of contours” in
the volume A(L) N V. The Mayer expansion for the
logZ. w[A(L) N V] leads to a sum of connected clusters
of contours in A(L) N V. As usual, this gives rise to a
bulk term proportional to the volume [A(L) N V| plus
surface corrections. The crucial point is that, due to
the = symmetry of the model, the bulk terms as well
as those surface terms that are not associated to the
wall will cancel in the difference of the two logarithms
in (7). What is left is a sum of clusters touching the
substrate surface [W N A(L)]. The second step consists
in evaluating this sum. After projecting onto the plane
x; =0 and resumming over all clusters with the same
projection, one can view the sum as the (logarithm of
the) partition funcfion of a two-dimensional dilute gas (of
projected clusters) in the “volume” Ag. The free energy S
of this gas then yields the finite temperature correction to

the ground state behavior (9). Namely,
Ar(r) =2Kr + S. (10)

Here the free energy S can be calculated as an explicit low
temperatures series (see [6] for the details of the proof).
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