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Kagomé lattices. Under these conditions we show that the only possible point of discontinuity
of the magnetization and the energy density is at the onset of the magnetic ordering transition
(i.e., at the threshold for bond percolation in the random-cluster model). The result generalizes
to any model with a natural dual, appropriate FKG monotonicity properties and a percolation
characterization of the Gibbs uniqueness.

†Microsoft Research, Redmond
‡Department of Mathematics, UCLA, Los Angeles.
�Center for Theoretical Study, Charles University, Prague.
�Department of Theoretical Physics, Charles University, Prague.

Typeset by AMS-TEX



2 M. Biskup, L. Chayes, R. Kotecký

1. Introduction

In a recent paper [BC] coauthored by one of us, the continuity of the energy density in the
Potts (and generalized Ashkin-Teller) ferromagnets on Z

2 was investigated. As is well known,
the Potts model on the square lattice is self-dual. Using this property it was established that
if there is any discontinuity in the energy density, this must take place at the point where
the model and its dual ostensibly coincide (i.e., at the self-dual point). Whenever such a
discontinuity actually happens, the self-dual point was proved to coincide with the magnetic
ordering transition. Thus, away from the transition point the energy is continuous. (The
opposite case, where the energy density is presumed to be continuous even at the self-dual
point was investigated in [CS], where partial information about the critical nature of the
transition was obtained.)

Here we investigate the problem in a general two-dimensional context. We consider Potts
models on two-dimensional planar graphs that satisfy certain hypotheses to be detailed below.
For these systems, there is always a well defined ordering temperature, whose inverse we
denote by βt. The quantity βt is characterized by “onset of spontaneous magnetization”
and/or “onset of percolation” in the graphical representation. We show that for all β except
possibly βt the energy density is continuous. As a corollary, we obtain that for all β > βt,
there are exactly q pure phases (for β < βt there is a unique Gibbs state [ACCN]). Then,
as our final result, we show that for all temperatures below β−1

t the magnetization is also
continuous in β.

Our setting is genuinely two-dimensional, no self-duality is required. Thus, above and
beyond the square lattice, a large class of two-dimensional graphs can be treated. In order
to ensure that both the magnetization and the energy density are well defined, we restrict
ourselves to planar graphs that arise from Bravais lattices. Given an elementary cell V

(i.e., a finite connected graph in R
2), the latter arise as orbits of V under the action of an

infinite group isomorphic to Z
2. The only other (key) ingredient is the assumption is that

the conclusion of Gandolfi-Keane-Russo’s theorem [GKR] holds. Letting G denote the set of
graphs we consider, G includes all graphs G such that

• G is a planar Bravais lattice with a basis (for a definition see e.g. [AM], page 75).

Furthermore, the interaction (Hamiltonian) must be such that

• The associated random cluster model on G excludes the simultaneous percolation of
occupied bonds and dual percolation of vacant bonds.

As recently remarked by Georgii and Higuchi [GH], Zhang’s argument streamlining the proof
of the GKR-theorem (as described in [GHM] based on its reproduction in the forthcoming
book [G1]) can be extended to rather general planar graphs. Thus, in particular, G includes
any planar Bravais lattice that is invariant under reflections through the horizontal and vertical
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axes; i.e., the triangular, honeycomb, Kagomé, dice and octagonal lattices, to name just a few.
Moreover, models with asymmetric couplings can also be considered, provided the reflection
symmetry is preserved.

The remaining sections of this paper are organized as follows: In the next section we collect
the necessary facts about the Potts model and the associated random cluster models. In the
third section we state and prove the theorem (Theorem A) on the continuity of the energy
density on any graph in G as well as some corollaries on the number of phases below the
ordering transition and on the location of the transition line in the asymmetric model on Z

2.
The last section is devoted to the proof of continuity of the magnetization (Theorem B).

2. The Potts models

Consider a two-dimensional graph G = (S,B), where S denotes the vertex and B the edge
sets, respectively. The Potts Hamiltonian is given by

H = −
∑

〈i,j〉∈B

Jijδσi,σj , (2.1)

with Jij > 0 and σi ∈ {1, . . . , q} the usual Potts variables.
Let L ⊂ G be a subgraph consisting of a collection of vertices SL together with the set BL

of all edges connecting pairs of vertices in SL. We use the notation L � G to indicate that
L ⊂ G is finite and connected. We define ∂SL to be the sites in S

c
L with at least one neighbor

in SL:
∂SL = {j ∈ S

c
L|∃〈i, j〉 ∈ B for some i ∈ SL}. (2.2)

The Gibbs measure on L � G with boundary conditions σ∂SL = {σi|i ∈ ∂SL} is defined by the
usual Boltzmann weights in accord with the Hamiltonian H. If # is a boundary condition, or
a convex combination thereof, we denote the corresponding finite volume Gibbs measure by
〈−〉#βH;L. Of additional interest are the free boundary conditions (denoted by # = f) which
are obtained by setting the Jij , i ∈ SL, j ∈ S

c
L, to zero.

Let Rij = eβJij − 1 and let L � G. For a given boundary condition # that is provided by
a fixed spin configuration at ∂SL, the associated random cluster measure in L is defined by
the relation

µ#
βH;L(ω) ∝

( ∏
〈i,j〉∈ω

Rij

)
qC#(ω)χ#(ω). (2.3)

Here ω is a subset of the edges of L together with the boundary edges (namely, ω ⊂ {〈i, j〉|i ∈
SL, j ∈ S}, while C# and χ# are defined as follows: Let ∂S

(1)
L , . . . , ∂S

(q)
L denote the set of

sites of ∂SL where the spins take on the values 1, . . . , q, respectively. Then χ#(ω) is zero if
there is a connection between any of these components and it is one otherwise. Given that
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χ#(ω) = 1, C#(ω) is the number of connected components of ω (including the isolated sites
in SL), counting each connected component of each ∂S

(1)
L , . . . , ∂S

(q)
L as a single component.

In general, we may also consider any convex combination of such measures.
Every (infinite volume) spin Gibbs measure 〈−〉#βH has a natural random cluster counter-

part. Namely, this can be directly seen from the construction ρ#
βH|L(−) =

〈
µ�

βH;L(−)
〉#

βH
,

where � denotes the spin boundary condition of the above type that is subject to the expec-
tation under the state 〈−〉#βH. The random cluster measures (ρ#

βH|L)L�G form a consistent

family (meaning that the projection of ρ#
βH|L onto any L′ ⊂ L is precisely ρ#

βH|L′), hence they

are finite-volume projections of a unique infinite-volume random cluster measure ρ#
βH. The

relation between 〈−〉#βH and ρ#
βH can be characterized as follows: Every event of the type

{ωb = 1|b = b1, . . . , bn} yields the same expectation under 〈−〉#βH as does the product of func-
tions Rb

1+Rb
δσiσj , b = 〈i, j〉 = b1, . . . , bn, under ρ#

βH. An alternative route to this relationship
is by using the Edwards-Sokal Gibbs measures as worked out in [BBCK].

Among all possible random cluster measures, of a particular interest are the ones generated
by the free and wired boundary conditions (# = f, w). The latter are defined by setting
χf (ω) = χw(ω) ≡ 1, and interpreting the quantity Cf (ω) as the usual number of components
while Cw(ω) is counting all clusters attached to the boundary as a single component. The free
measure corresponds to the free boundary condition in the spin-system, whereas the wired
measure corresponds to all boundary spins set to the same spin state r, i.e., ∂S

(s)
L = ∅ for

s �= r and ∂S
(r)
L = ∂SL.

We state without proof the following results that will be needed in subsequent develop-
ments. The proofs of these results can be found in (or easily extended from) [ACCN, G2] and
the various other references stated.

(i) In the partial order defined by putting occupied bond above vacant one, the free and
wired measures are (strong) FKG with

µw
βH;L ≥

FKG
µf

βH;L. (2.4)

Further, for any boundary condition # as described above,

µw
βH;L ≥

FKG
µ#

βH;L, (2.5)

even if the latter measure is not FKG.
(ii) For the free and wired cases, infinite volume (weak) limits exist: if (Lk) is a sequence

of volumes with Lk ⊂ Lk+1 � G which eventually exhaust the entire graph G, limiting
measures emerge independent of the details of (Lk). The limiting objects will be denoted
by µw

βH and µf
βH. In the cases at hand, where the lattice can be described as a Bravis
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lattice with a basis and the couplings are invariant under translations by the primitive
(generating) vectors, then the measures µw

βH and µf
βH are also invariant under these

translations.
(iii) Percolation in these models is defined in the strongest possible sense. Supposing that a

site x is contained in SLk
, let P β

Lk
(x) = µw

βH;Lk
(x ↔ ∂SLk

) denote the probability that
the origin is connected to the boundary in the wired state. Then the limit

P β
∞(x) = lim

k→∞
P β

Lk
(x) (2.6)

exists and is independent of the sequence (Lk). Moreover, even though P β
∞(x) in principle

depends on x, the positivity of this quantity does not: Either P β
∞(x) > 0 for all x ∈ S

or P β
∞(x) = 0 for all x ∈ S. The necessary and sufficient condition for unicity of the

Gibbs state is that P β
∞(0) = 0 (see [ACCN]). Under the condition that P β

∞(0) > 0, the
spontaneous magnetization defined as

m(β) =
∂

∂h

(
lim

k→∞
1

|SLk
| log

∑
σ

e
−βHLk

(σ)+h
∑

i∈SLk
δσi,1

)∣∣∣
h=0+

(2.7)

is also strictly positive. (Here HLk
is the Hamiltonian restricted to Lk and σ denotes spin

configurations in SLk
.) In fact, m(β) = P β

∞(0) for the homogeneous cases (i.e., Jij = J

independent of i, j and G a homogeneous graph). In general, if G ∈ G, then

m(β) =
1
|V|

∑
x∈V

P β
∞(x), (2.8)

where V is the elementary lattice cell.
(iv) For any β1 < β2, we have

µw
β1H ≤ µf

β2H. (2.9)

The proof is based on a “free energy” argument and can be found in [G2,BCK,BBCK].
In conjunction with the FKG domination stated in (i), this FKG bound implies that
β �→ P β

∞(0) and, consequently, β �→ m(β) are monotone increasing (in fact β �→ P β
∞(0)

is right continuous). Hence βt = inf{β|m(β) > 0} is a well-defined percolation threshold.
In particular, we have that µf

β2H(x↔∞) ≥ µw
β1H(x↔∞), so the free measure at β > βt

exhibits percolation almost surely.
(v) Using Strassen’s theorem (see [St] or [L], page 75), the FKG domination bound from (i)

implies that µf
βH = µw

βH whenever µf
βH(ωb = 1) = µw

βH(ωb = 1) for all bonds b. The
same argument applies when µf

βH is replaced by any (subsequential-)limiting state µ#
βH.
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(vi) Let 〈i, j〉 be a nearest-neighbor bond. There is a one-to-one correspondence between the
energy density e#ij(β) in the state 〈−〉#βH and the bond density b#

ij(β) in the corresponding
random-cluster measure µ#

βH, with these quantities defined as

e#ij(β) = −Jij

〈
δσi,σj

〉#
βH

b#
ij(β) = µ#

βH(ωij = 1).
(2.11)

The relation reads
b#

ij(β) = − 1
Jij

Rij

1 +Rij
e#ij(β) (2.12)

(for a derivation see [MCLSC]). It follows by convexity of the free energy that both
β �→ b#

ij(β) and β �→ e#ij(β) are continuous except for countably many values of β. The
overall energy density e(β) is defined by averaging the values of e#ij(β) over the bonds in
the elementary lattice cell V and taking the supremum over all boundary conditions #.
By convexity arguments, e(β) can alternatively be defined as the right-derivative of the
free energy with respect to β. At the points of continuity of the latter, e(β) is the energy
density for all states.

(vii)Let G∗ denote the dual graph of G (note that G∗ exist because G is planar). We denote
by ω∗ the complementary configuration of ω, where ω∗ is occupied at the dual bond
whenever the direct bond is vacant in ω and vice versa. Then, in the case of free and
wired boundary conditions, the dual of a random cluster measure is again a random
cluster measure with parameters

R∗
ij =

q

Rij
(2.13)

and with free and wired boundary conditions interchanged.

3. Continuity of the energy density

We begin by extending a theorem established in [BC] for the usual Potts model on Z
2 that

was proved using the self -duality of the lattice. It turns out that the reference to self-duality
is not essential; it only matters that the model has a natural dual that can readily be analyzed.

Theorem A. For the two-dimensional Potts model on any graph G ∈ G, the overall energy
density e(β) is continuous at every β �= βt.

Proof. First note that, whenever a discontinuity in the energy density occurs, there are (at
least) two coexisting pure spin states, one with the higher and the other with the lower value
of the energy density, as follows by a limiting argument for which we refer e.g. to [BC] or any
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standard textbook on statistical mechanics. If β < βt, which means no percolation, the claim
in (iii) implies uniqueness of the spin Gibbs state. This rules out discontinuity in this region.

For β > βt, let us consider the dual system. This is a similar Potts spin system, however,
now at dual values of the parameters, which correspond to high temperatures. Indeed, for
any β > βt, there is percolation in the free measure (as was observed in statement (iv) above).
Invoking the [GKR] result, which asserts that percolation implies finiteness of all connected
components of “dual-to-vacant” bonds, we have that there is no percolation in the wired state
of the dual model. The latter rules out percolation in all states, hence, the dual model has a
unique Gibbs state and thus a continuous energy/bond density. Since the free energies of the
model and its dual are equal up to an analytic factor, the desired result is established. �

Corollary I. For the two-dimensional Potts model on any G ∈ G, at every β > βt there are
exactly q pure (i.e., translation invariant extremal) states.

Remark. The result that the continuity of the energy at β > βt implies the existence of exactly
q pure phases in the Potts model was established in [Pf]. Additional results along these lines
for other spin systems were also established there, however, the arguments were restricted to
systems on Z

d. Presumably, this is not essential but, in any case, certain modifications would
have to be implemented.

With the help of Pirogov-Sinai theory, even more can be proven in the case of very large
values of q. Namely, the class of all translation invariant states is exhausted by q phases for
β > βt, a single phase at β < βt, and q + 1 phases at β = βt [M]. Again, even though these
results are explicitly proven only for Z

d they are directly extendable to other periodic lattices,
provided q stays large.

Here we use an alternative method, which is perhaps less generalizable (e.g., in the direction
of non-Potts type systems and for d > 2), but is more in accord with the percolation spirit of
the present work.

Proof of Corollary I. Let 〈−〉�βH be a translation-invariant Gibbs measure. As argued previ-
ously, there is a unique (translation-invariant) random cluster measure ρ�

βH associated with
this measure. In particular, the corresponding bond and energy densities b�

ij(β) and e�
ij(β)

satisfy the same relationship as stated in (vi). Since at β > βt the energy density is equal for
all states, we conclude that ρ�

βH has the same bond density as the wired state µw
βH (namely,

a jump in any bij , with 〈i, j〉 being a bond in V, implies a jump in the overall bond and hence
also energy density). Moreover, by the FKG domination

µw
βH ≥

FKG
ρ�

βH, (3.1)

so Strassen’s theorem implies that µw
βH = ρ�

βH. We conclude, in particular, that ρ�
βH has a

unique infinite cluster and only finite components of the dual bonds to vacant bonds.
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Given ε > 0 and � an integer, with probability at least 1− ε under ρ�
βH there is a circuit of

occupied bonds enclosing a box Λ� of size � such that it is contained in a large-enough box Λ,
both centered at the origin (otherwise there is a dual connection between the boundaries of
the boxes). However, this means that with probability ≥ 1− ε under 〈−〉�βH, there is a circuit
of sites in the ring Λ\Λ� whereupon the spin is constant. Hence, 〈−〉�βH can be approximated
by a convex combination of finite-volume measures with constant boundary conditions: If
λΓ;k is the probability that the circuit Γ occurs and the spin thereupon is equal to k, then

∑
Γ,k

λΓ;k〈O〉[k]
βH;L(Γ) − ε ≤ 〈O〉�βH ≤ ε+

∑
Γ,k

λΓ;k〈O〉[k]
βH;L(Γ), (3.2)

for any observable O in Λ� with ‖O‖∞ ≤ 1. Here 〈−〉[k]
βH;L(Γ) denotes the spin state in Int Γ

with boundary condition σi = k at i ∈ Γ. As L(Γ) ↗ G, each such state has a unique
thermodynamic limit [C, BBCK], which altogether give rise to q distinct states for β > βt.
By taking a subsequential limit of the coefficients λk =

∑
Γ λΓ,k (and noting that

∑
k λk tends

to one as �→∞) we see that 〈−〉�βH is indeed a mixture of these q states. �

Corollary II. Consider the asymmetric Potts models on Z
2 with couplings Jij = K in the

vertical direction and Jij = L in the horizontal direction (with 0 ≤ K,L ≤ ∞). If this model
has a discontinuous transition (which is the case for large q), then it occurs exactly at βt(K,L)
determined by the equation (eβtK − 1)(eβtL − 1) = q.

Proof. Abbreviating K = eβK − 1 and L = eβL − 1, let us define K
∗ and L

∗ by the formula

K L
∗ = q

K
∗
L = q.

(3.3)

Since the original model is on Z
2, it is easy to verify that its dual is the same model with

(K,L) replaced by (K∗,L∗) (and the wired and free boundary measures interchanged). The
(K,L)-parameter space Σ = {(K,L)|K ≥ 0, L ≥ 0} splits into three disjoint parts: Σ0 and
Σ∞, with the former containing the point (0, 0) and the latter containing (∞,∞), and the
self-dual line C = {(K,L)|KL = q}.

On the other hand, the free and wired random cluster measures are both increasing in
K and L, hence we can define a unique transition line C̃ = {(Kα,Lα)|0 < α < ∞}, where
Lα = αKα and where Kα is the infimum of all K such that there is percolation in the
model with parameters (K, αK). Similarly, C̃ induces a trichotomy: Σ splits into C̃, the
high-temperature part Σ̃0, and the low-temperature part Σ̃∞. It is of importance that C̃ is
parametrizable as a function either of K or of L as follows from monotonicity analogous to
claim (iv) above. As a consequence, Σ̃∞ is mapped into Σ̃0 under the duality map, and thus
C̃ ⊂ C ∪ Σ̃∞.
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Consider now the curve γ that (K,L) sweeps out as β increases from 0 to ∞ and suppose
that there is a discontinuity in the energy density at some purported (K†,L†) ∈ γ. As before,
a limiting argument ensures the existence of two Gibbs measures at (K†,L†) exhibiting the
two values of e. However, if (K†,L†) ∈ Σ̃0, then this contradicts the no-percolation uniqueness
theorem whereas if (K†,L†) ∈ Σ∞ (note the absence of “tilde”) the same is applies to the
dual model. Consequently, (K†,L†) ∈ Σ \ (Σ̃0 ∪Σ∞) ⊂ C. �

4. Continuity of the magnetization

Here we state and prove the following claim:

Theorem B. For the Potts model on any graph G ∈ G, the spontaneous magnetization m(β)
is continuous for all β > βt.

Remark. We need only a slight variant of the argument in the proof of Theorem A. Namely,
such a discontinuity implies, it would seem, two different translation invariant states at the
purported point of discontinuity (distinguished by the value of the magnetization), which
in turn implies different energy densities. However, this time the argument is not quite so
straightforward because there is no guarantee that the lower state will be pure—conceivably,
it can be a particular mixture of the various upper states craftily tuned to reduce the mag-
netization. Indeed this phenomenon presumably occurs in the one-dimensional 1/r2 models:
There is a discontinuity in the magnetization at the critical point (the Thouless effect) and
yet at the critical point, there is no extremal state with zero magnetization. Thus we must
proceed with caution.

Proof of Theorem B. Suppose the magnetization is discontinuous at a β = β� > βt. In the
inhomogeneous case, at least one sublattice magnetization (defined by restricting the effect of
the field h in (2.7) to the sublattice)—say the one of the vertex-type of the origin—necessary
undergoes a jump at β = β�, because the magnetization of each sublattice increases. The
whole problem is thus converted to the sublattice containing the origin to which we now
restrict our attention (and to which we will not make any further explicit reference).

Obviously, the wired state at β = β� gives rise to the upper value of the magnetization.
Let us use m+ to denote this value and let m− be the lower value, i.e., m− = limβ↑β� m(β).
Define ∆ = (m+)2 − (m−)2. Then, for any x and y,

µw
β�H(x↔ y) = q

q−1

〈
δσxσy − 1

q

〉[k]
β�H

≥ (m+)2, (4.1)

where [k], k = 1, . . . , q, denotes any of the q ordered states obtained as the limit of finite
volume states with all the boundary spins set to the k-th spin state.



10 M. Biskup, L. Chayes, R. Kotecký

Let ε > 0 be a small number, in particular, we demand ε < ∆/6. We shall show that for
L large enough there is a Gibbs state 〈−〉#

β�H
such that

q
q−1

〈
δσ0σ2L

− 1
q

〉#
β�H

≤ (m+)2 −∆ + 6ε, (4.2)

where σ2L is a shorthand for the spin at the site (2L, 0).
To show this, notice first that at any inverse temperature β, the quantity q

q−1 〈δσxσy
−

1
q 〉fβH = µf

βH(x ↔ y) is decomposed into two events. Namely, the event {[x ↔ y]F } that x
and y are in the same finite cluster and the event Π∞(x)∩Π∞(y) that both are in an infinite
cluster. Let β0 ∈ (βt, β

�) and let L � � � 1 be two length scales that satisfy the following
two conditions for the measure µf

β0H:

(a) With probability larger than 1 − ε, a site at the boundary of the square vessel Λ�

centered at the origin is connected to infinity.
(b) With probability larger than 1− ε, there is a circuit of occupied bonds in the region

ΛL \ (Λ� ∪ ∂Λ�).

We denote the events described in these conditions by A, B, respectively. Clearly, (a) can be
achieved because there is percolation whereas (b) holds because there is no dual percolation.

Let C be the event that there is no dual circuit surrounding the origin containing any site a
distance greater than 2L away. Since C ⊃ A∩ B, it occurs with probability that is, assuming
(a) and (b), larger than 1 − 2ε. Moreover, it is obvious that all three events are increasing.
Hence, if µf

β0H(D) > 1− ε, then µf
βH(D) > 1− ε for all β > β0 and D = A,B, while for D = C

the same holds with ε replaced by 2ε.
For the part {[0 ↔ 2L]F } of the event 0 ↔ 2L, let us first note that {[0 ↔ 2L]F } ⊂ Cc.

We thus have, for β ≥ β0, the bound

µf
βH

(
[0↔ 2L]F

) ≤ µf
βH(Cc) < 2ε. (4.3)

Concerning the event Π∞(x)∩Π∞(y), define ΛL to be a box of size 2L− 1 centered at 0 and
let P β

L (0) be the probability that the origin is connected to ∂ΛL in the finite volume system
with wired boundary conditions. Clearly,

µf
βH

(
Π∞(0) ∩Π∞(2L)

) ≤ [
P β

L (0)
]2
, (4.4)

which means that we just need to bound the quantity P β
L (0) in terms of P β

∞(0) = m(β).
Let F denote the event that there is a circuit of occupied bonds in the region ΛL\(Λ�∪∂Λ�)

that is connected to infinity. Clearly A∩B ⊂ F . Under the condition F , it is not hard to see
that the probability of Π∞(0) exceeds P β

L (0). Indeed, conditioning further on the outermost
circuit in ΛL that satisfies the requirements for F , all that is required is a connection from
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the origin to this circuit. Let 1lΓ indicate that the outermost such circuit is precisely Γ. Then
we have

µw
βH

(
Π∞(0) ∩ F)

=
∑
Γ

µw
βH

(
1lΓ µw

βH;Int Γ(0↔ Γ)
)

≥ µw
βH;ΛL

(0↔ ∂ΛL)µw
βH(F),

(4.5)

where we used that conditioning on Γ yields the wired measure for the interior of Γ and that
Λ �→ µw

βH,Λ(0↔ ∂Λ) is monotone decreasing in Λ. Finally, we summed over Γ to get µw
βH(F)

back. Invoking the bound µw
βH(F) > 1− 2ε, we have

P β
∞(0) ≥ µw

βH(F)P β
L (0) > P β

L (0)(1− 2ε). (4.6)

whenever β > β0. Now let (βk)k≥0 denote a sequence of inverse temperatures increasing to
β� and let # denote the Gibbs state defined as a k →∞ limit of the free Gibbs states at βk.
By putting (4.3), (4.4) and (4.6) together, we have for all k that

q
q−1

〈
δσ0σ2L

− 1
q

〉f

βkH
< m(βk)2 + 6ε, (4.7)

where we remind the reader that ε is uniform in k. Hence

q
q−1

〈
δσ0σ2L

− 1
q

〉#
β�H

≤ (m−)2 + 6ε = (m+)2 −∆ + 6ε < (m+)2. (4.8)

A comparison with (4.1) reveals that the state 〈−〉#
β�H

as well as the random cluster measure

µ#
β�H

associated with this state are evidently different from the wired state. However, by

the last display, µ#
β�H

is lower than the wired state, which implies that the bond density is
strictly below the value in the wired state. Thence, the existence of a discontinuity of the
magnetization at β� > βt implies a discontinuity in the energy density, which contradicts the
result of Theorem A. �
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