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Abstract: Existence of first-order phase transitions is often proved with the aid of reflection posi-
tivity and chessboard estimates. The standard approach relies on estimates of correlations in torus
measures which yield the existence of a transition point where the free energy has a discontinuous
derivative with respect to a suitably chosen variable. In addition, at the transition point, two distinct
translation-invariant Gibbs states are extracted from torus measures in which the one-sided deriva-
tives of the free energy are realized as expectations of a local observableX. Here we show that
(most of) the gap between these extreme expected values is forbidden: There are no shift-ergodic
Gibbs states for which the expectation ofX lies deep inside the gap. We point out several re-
cent results based on chessboard estimates where our main theorems provide important additional
information concerning the structure of the set of possible thermodynamic equilibria.

1. INTRODUCTION

One of the basic tasks of mathematical statistical mechanics is to find a rigorous approach to var-
ious first-order phase transitions in lattice spin systems. Here, two methods of proof are generally
available: Pirogov-Sinai theory and chessboard estimates. The former, developed in [19, 20],
possesses an indisputable advantage of robustness with respect to (general) perturbations, but its
drawback is the (nearly strict) restriction to finite sets of possible spin values. The latter method,
which goes back to [12,13], is limited, for the most part, to systems with nearest-neighbor attrac-
tive interactions but it poses almost no limitations on the individual spin space. In particular, the
method of chessboard estimates is still the only tool we have for a general control of asymmetric
phase transitions in continuum spin systems.

A closer look at the results proved using the aforementioned methods reveals one important
additional difference. Namely, while both techniques ultimately produce a proof of phase coex-
istence, Pirogov-Sinai theory offers significantly better control of the number of possible Gibbs
states. In fact, one can prove the so calledcompleteness of phase diagram[22] which essentially
asserts that the states constructed by the theory exhaust the set of all shift-ergodic Gibbs states. In
a more technical language, there is a one-to-one correspondence between the shift-ergodic Gibbs
states and the “stable phases” defined in terms of minimal “metastable free energy”. No state-
ment of this kind has been available in the approaches based solely on chessboard estimates. This
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makes many of the conclusions based on this technique—see [2,4,8,11,21] for a modest sample
of recent references—seem to be somewhat “incomplete.”

To make the distinction more explicit, let us consider the example of temperature-driven first-
order phase transition in theq-state Potts model withq � 1. In dimensionsd ≥ 2, there
exists a transition temperature,Tt, at which there areq ordered states—related by an underlying
symmetry of the model—that are low on both entropy and energy, and one disordered state which
is abundant in both quantities. The transition is accompanied by a massive jump in the energy
density (as a function of temperature). Here the proof based on chessboard estimates [16] seems
to produce “only” the existence of a temperature where the aforementionedq + 1 states coexist,
but it does not rule out the existence of other states; particularly, those with energies “inside”
the jump. On the other hand, Pirogov-Sinai approaches [15, 17] permit us to conclude thatno
other than the aboveq + 1 shift-ergodic Gibbs states can exists atTt and, in particular, there is a
forbidden gapof energy densities where no shift ergodic Gibbs states are allowed to enter.

The purpose of this note is to show that, after all, chessboard estimates can also be sup-
plemented with a corresponding forbidden-gap argument. As a consequence, the theorems of,
e.g., [2,4,8,11,16,21] imply not only theexistenceof particular states at the corresponding tran-
sition temperature, but also theabsenceof states that differ significantly from those proved to
exist. Our arguments are fairly general; indeed, apart from the necessary condition of reflection
positivity we require only translation invariance and absolute summability of interactions. The
main idea of the proof is that all Gibbs states (at the same temperature) have the same large-
deviation properties on the scale that is exponential in volume. This permits us to compare any
translation-invariant Gibbs state with a corresponding measure on torus, where chessboard esti-
mates can be used to rule out most of undesirable scenarios.

The rest of this paper is organized as follows: In Sect. 2.1 and 2.2 we define the class of mod-
els to which our techniques apply and review various elementary facts about reflection positivity
and chessboard estimates. The statements of our main theorems (Theorem 2.5 and Corollary 2.6)
come in Sect 2.3. The proofs constitute the bulk of Sect. 3; applications to recent results estab-
lished by means of chessboard estimates are discussed in Sect. 4. The Appendix (Sect. 5) contains
the proof of Theorem 4.4 which is a refined version of Theorem 3 of [11]. This result is needed
for one of our applications in Sect. 4.

2. MAIN RESULT

In order to formulate our principal claims we will first recall the standard setup for proofs of
first-order phase transitions by chessboard estimates and introduce the necessary notations. The
actual theorems are stated in Sect. 2.3.

2.1 Models of interest.

We will work with the standard class of spin systems onZd and so we will keep our discussion
of general concepts at the minimum possible. We refer the reader to Georgii’s monograph [14]
for a more comprehensive treatment and relevant references.
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Our spins,sx, will take values in a compact separable metric space�0. We equip�0 with theσ-
algebraF0 of its Borel subsets and consider ana priori probability measureν0 on(�0, F0). Spin
configurations onZd are the collections(sx)x∈Zd . We will use� = �Zd

0 to denote the set of all
spin configurations onZd andF to denote theσ-algebra of Borel subsets of� defined using
the product topology. If3 ⊂ Zd, we defineF3 to be the sub-σ-algebra of events depending
only on (sx)x∈3. For eachx ∈ Zd, the mapτx : � → � is the “translation byx” defined
by (τxs)y = sx+y. It is easy to check thatτx is a continuous and hence measurable for allx ∈ Zd.
We will write 3 b Zd to indicate that3 is a finite subset ofZd.

To define Gibbs measures, we will consider a family of Hamiltonians(H3)3bZd . These will be
defined in terms of interaction potentials(8A)AbZd . Namely, for eachA b Zd, let 8A : � → R
be a function with the following properties:
(1) The function8A is FA-measurable for eachA b Zd.
(2) The interaction(8A) is translation invariant, i.e.,8A+x = 8A ◦ τx for all x ∈ Zd and

all A b Zd.
(3) The interaction(8A) is absolutely summable in the sense that

|||8||| =

∑
AbZd

0∈A

‖8A‖∞ < ∞. (2.1)

The Hamiltonian on a set3 b Zd is a functionH3 : � → R defined by

H3 =

∑
AbZd

A∩36=∅

8A. (2.2)

For eachβ ≥ 0, let Gβ be the set of Gibbs measures for the Hamiltonian (2.2). Specifically,
µ ∈ Gβ if and only if the conditional probabilityµ( · |F3c)—which exists since� is a Polish
space—satisfies, for all3 b Zd andµ-almost alls, the (conditional) DLR equation

µ(ds3|F3c)(s) =
e−βH3(s)

Z3

∏
x∈3

ν0(dsx). (2.3)

HereZ3 = Z3(β, s3c) is a normalization constant which is independent ofs3 = (sx)x∈3.

Remark2.1 The results of the present paper can be generalized even to the situations with un-
bounded spins and interactions; see Theorem 4.5. However, the general theory of Gibbs measures
with unbounded spins features some unpleasant technicalities that would obscure the presenta-
tion. We prefer to avoid them and to formulate the bulk of the paper for systems with compact
spins. Our restriction to translation-invariant interaction in (2) above is mostly for convenience of
exposition. Actually, the proofs in Sect. 3 can readily be modified to include periodic interactions
as well.

2.2 Chessboard estimates.

As alluded to before, chessboard estimates are one of the principal tool for proving phase coex-
istence. In order to make this tool available, we have to place our spin system on torus. LetTL

be the torus ofL × · · · × L sites and letHL : �TL
0 → R be the function defined as follows.
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Given a configurations = (sx)x∈TL , we extends periodically to a configuration̄s on all of Zd.
Using HTL to denote the Hamiltonian associated with the embedding ofTL into Zd, we de-
fine HL(s) = HTL (s̄). Thetorus measurePL ,β then simply is

PL ,β(ds) =
e−βHL (s)

ZL

∏
x∈TL

ν0(dsx). (2.4)

HereZL = ZL(β) is the torus partition function.
Chessboard estimates will be implied by the condition ofreflection positivity. While this condi-

tion can already be defined in terms of interactions(83)3bZd , it is often easier to check it directly
on torus. Let us consider a torusTL with evenL and let us split it into two symmetric halves,T+

L
andT−

L , sharing a “plane of sites” on their boundary. We will refer to the setP = T+

L ∩ T−

L
as aplane of reflection. Let F+

P andF−

P denote theσ-algebras of events depending only on
configurations inT+

L andT−

L , respectively.
We assume that the naturally-defined (spatial) reflectionϑP : T+

L ↔ T−

L gives rise to a map
θP : �TL

0 → �TL
0 which obeys the following constraints:

(1) θP is aninvolution, θP ◦ θP = id.
(2) θP is a reflectionin the sense that ifA ∈ F+

P depends only on configurations in3 ⊂ T+

L ,
thenθP(A) ∈ F−

P depends only on configurations inϑP(3).

In many cases of interest,θP is simply the mapping that is directly induced by the spacial reflec-
tion ϑP, i.e.,θP = ϑ∗

P, where
(
ϑ∗

P(s)
)

x
= sϑP(x); our definition permits us to combine the spatial

reflection with an involution of the single-spin space.

Reflection positivity is now defined as follows:

Definition 2.2 Let P be a probability measure on�TL
0 and letE be the corresponding expecta-

tion. We say thatP is reflection positive, if for any plane of reflectionP and any two bounded
F+

P -measurable random variablesX andY the following inequalities hold:

E
(
XθP(Y)

)
= E

(
YθP(X)

)
(2.5)

and

E
(
XθP(X)

)
≥ 0. (2.6)

Here,θP(X) denotes theF−

L -measurable random variableX ◦ θP.

Remark2.3 Here are some standard examples of summable two-body interactions that are re-
flection positive. Consider spin systems with vector-valued spinssx and interaction potentials

8{x,y} = Jx,y (sx, sy), x 6= y, (2.7)

whereJx,y are coupling constants and(·, ·) denotes a positive-semidefinite inner product on�.
Then the corresponding torus Gibbs measure withβ ≥ 0 is reflection positive for the following
choices ofJx,y’s:

(1) Nearest and next-nearest neighbor couplings: Jx,y = λ if x and y are nearest neigh-
bors,Jx,y = κ with λ ≥ 2(d − 1)|κ| if x andy are next-nearest neighbors andJx,y = 0
in the remaining cases.
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(2) Yukawa-type potentials:

Jx,y = e−µ|x−y|1, (2.8)

whereµ > 0 and|x − y|1 is the`1-distance betweenx andy.
(3) Power-law decaying interactions:

Jx,y =
1

|x − y|
s
1

, (2.9)

with s > 0.

The proofs of these are based on the general theory developed in [12, 13]; relevant calculations
can also be found in [1, Sect. 4.2].

Of course, any linear combination of the above—as well as other reflection-positive interactions—
with positive coefficients is still reflection positive.

Now, we are finally getting to the setup underlying chessboard estimates. Suppose thatL is
an integer multiple of an (integer) numberB. (To rule out various technical complications with
the following theorem, we will actually always assume thatL/B is a power of 2.) Let3B ⊂ TL

be the box of(B + 1) × · · · × (B + 1) sites with the “lower-left” corner at the origin—we will
call such box aB-block. We can tileTL by translates of3B by B-multiples of vectors from the
factor torus, T̃ = TL/B. Note that the neighboring translates of3B will have a side in common.
LetA be an event depending only on configurations in3B; we will call suchA a B-block event.
For eacht ∈ T̃, we define the eventθt(A) as follows:

(1) If t has all components even, thenθt(A) is simply the translation ofA by vectorBt, i.e.,
θt(A) = τ−1

Bt (A) = {s ∈ �TL
0 : τBt(s) ∈ A}.

(2) For the remainingt ∈ T̃, we first reflectA through the “midplane” of3B in all directions
whose component oft is odd, and then translate the result byBt as before.

Thus,θt(A) will always depend only on configurations in theB-block3B + Bt.

The desired consequence of reflection positivity is now stated as follows.

Theorem 2.4(Chessboard estimate)LetP be a measure on�TL
0 which is reflection-positive with

respect toθP. Then for any B-block eventsA1, . . . ,Am and any distinct sitest1, . . . , tm ∈ T̃,

P
( m⋂

j =1

θt j (A j )
)

≤

m∏
j =1

P
( ⋂

t∈T̃

θt(A j )
)1/

|T̃|

. (2.10)

Proof. See [12,13]. �

The moral of this result—whose proof is nothing more than an enhanced version of the Cauchy-
Schwarz inequality applied to the inner productX, Y 7→ E(XθP(Y))—is that the probability of
any number of events factorizes, as a bound, into the product of probabilities. This is particularly
useful for contour estimates; of course, provided that the word contour refers to a collection of
boxes on each of which some “bad” event occurs. Indeed, by (2.10) the probability of a contour
will automatically be suppressed exponentially in the number of constituting “bad” boxes.
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2.3 Main theorems.

For anyB-block eventA, we introduce the quantity

pβ(A) = lim
L→∞

(
PL ,β

( ⋂
t∈T̃

θt(A)
))1/

|T̃|

, (2.11)

with the limit taken over multiples ofB. The limit exists by standard subadditivity arguments.
While the definition would suggest thatpβ(A) is a large-deviation rate, chessboard estimates
(2.10) show thatpβ(A) can also be thought of as the “probability ofA regardless of the status
of all other B-blocks.” This interpretation is supported by the fact thatA 7→ pβ(A) is an outer
measure onF3B with pβ(�) = 1, cf. Lemma 6.3 of [4].

Furthermore, recalling that3N−1 is the block ofN ×· · ·× N sites with the “lower-left” corner
at the lattice origin, let

RN(A) =
1

|3N−1|

∑
x∈3N−1

1A ◦ τBx (2.12)

be the fraction ofB-blocks (in3N B−1) in whichA occurs. Wheneverµ ∈ Gβ is a Gibbs state for
the Hamiltonian (2.2) at inverse temperatureβ that is invariant with respect to the shifts(τBx)x∈Zd ,
the limit

ρµ(A) = lim
N→∞

RN(A) (2.13)

existsµ-almost surely. In the following, we will useρµ(A) mostly for measures that are actually
ergodic with respect to the shifts by multiples ofB. In such cases the limit is self-averaging,
ρµ(A) = µ(A) almost surely. Notwithstanding, we will stick to the notationρµ(A) to indicate
that claims are being made about almost-sure properties of configurations and not just expecta-
tions. To keep our statements concise, we will refer to measures which are invariant and ergodic
with respect to the translations(τBx)x∈Zd asB-shift ergodic.

Our principal result is now as follows:

Theorem 2.5 Consider a spin system as described above and suppose that the torus measure is
reflection positive for allβ ≥ 0 and all even L≥ 2. LetG1, . . . ,Gn be a finite number of “good”
B-block events and letB = (G1 ∪ · · · ∪Gn)

c be the corresponding “bad” B-block event. Suppose
that the good block events are mutually exclusive and non-compatible (different types of goodness
cannot occur in neighboring translates of3B):
(1) Gi ∩ G j = ∅ for all i 6= j .
(2) If t1, t2 ∈ T̃ are nearest neighbors, then

θt1(Gi ) ∩ θt2(G j ) = ∅, 1 ≤ i < j ≤ r. (2.14)

Then for everyε > 0, there existsδ > 0 such that for anyβ ≥ 0 with pβ(B) < δ we have

ρµ(B) ∈ [0, ε] (2.15)

and
ρµ(Gi ) ∈ [0, ε]∪[1 − ε, 1] (2.16)

for every B-shift ergodic Gibbs stateµ ∈ Gβ and all i = 1, . . . , r .
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We remark that the conclusion of Theorem 2.5 holds even when the requirement of compact
spin-spin space and norm-bounded interactions are relaxed to the condition offinite average
energy. We state the corresponding generalization in Theorem 4.5. Theorem 2.5 directly implies
the standard conclusion of chessboard estimates (cf. [9, Propositions 3.1-3.3] or [16, Theorem 4]):

Corollary 2.6 Let β1 < β2 be two inverse temperatures and letG1 and G2 be two mutually
exclusive and non-compatible good B-block events (conditions (1) and (2) in Theorem 2.5). Then,
for everyε > 0 there exists a constantδ > 0 such that the conditions
(1) pβ(B) < δ for all β ∈ [β1, β2] and
(2) pβ1(G2) < δ andpβ2(G1) < δ

imply an existence of an inverse temperatureβt ∈ (β1, β2) and of two distinct B-shift ergodic
Gibbs measuresµ1, µ2 ∈ Gβt such that

ρµ j (G j ) ≥ 1 − ε, j = 1, 2. (2.17)

The above assumptions (1) and (2) appear in some form in all existing proofs based on chess-
board estimates; see Sect. 4 for some explicit examples. The conclusions about the set of coex-
istence points can be significantly strengthened when, on the basis of thermodynamic arguments
and/or stochastic domination, the expected amount of goodnessG2 increases (andG1 decreases)
with increasingβ. Forε � 1 the phase diagram then features a unique (massive) jump at someβt

from states dominated byG1 to those dominated byG2. Theorem 2.5 implies that the bulk of the
values inside the jump are not found in any ergodic Gibbs state. Both Theorem 2.5 and Corol-
lary 2.6 are proved in Sect. 3.2.

3. PROOFS OF MAIN RESULTS

We will assume that there is an ergodic Gibbs measureµ ∈ Gβ that violates one of the condi-
tions (2.15–2.16), and derive a contradiction. Various steps of the proof will be encapsulated in
technical lemmas in Sect. 3.1; the actual proofs come in Sect. 3.2.

3.1 Technical lemmas.

Our first step is to convert the information about infinite-volume densities into a finite volume
event. Using the sites from3N−1 to translate theB-block3B by multiples ofB in each coordinate
direction, we get

⋃
x∈3N−1

(3B + Bx) = 3N B. Similarly, considering translates of3N B by
vectorsN Bx wherex ∈ 3M−1, we get

⋃
x∈3M−1

(3N B + N Bx) = 3M N B . The important point
is that, while the neighboring translates3N B + N Bx and3N B + N Byare not disjoint, they have
only one of their(d − 1)-dimensional sides in common.

LetBN andE j,N , j = 1, . . . , r , be events defined by

BN =
{
RN(B) > ε

}
(3.1)

and

E j,N =
{
RN(G j ) > ε

}
, j = 1, . . . , r. (3.2)
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Introducing the event

EN = BN ∪

⋃
1≤i < j ≤r

(Ei,N ∩ E j,N) (3.3)

and the fractionRM,N(EN) of BN-blocks (in3M N B) in whichEN occurs,

RM,N(EN) =
1

|3M−1|

∑
x∈3M−1

1EN ◦ τN Bx, (3.4)

we have:

Lemma 3.1 Letε < 1/2 and consider a B-shift ergodic Gibbs measureµ ∈ Gβ that violates one
of the conditions (2.15–2.16). Then there exists an N0 < ∞ and, for each N≥ N0, there exists
an M0 = M0(N) such that for all N≥ N0 and all M ≥ M0(N), one has

µ
(

RM,N(EN) > 1/2
)

>
1

2Nd
. (3.5)

Proof. The proof is based on a two-fold application of the Pointwise Ergodic Theorem. Indeed,
by ergodicity ofµ and Fatou’s lemma we know that

lim inf
N→∞

µ(BN) ≥ µ
(
ρµ(B) > ε

)
(3.6)

and
lim inf
N→∞

µ(Ei,N ∩ E j,N) ≥ µ
( {

ρµ(Gi ) > ε
}

∩
{
ρµ(G j ) > ε

})
. (3.7)

But µ violates one of the conditions (2.15–2.16) and so eitherρµ(B) > ε or ρµ(Gi ) > ε
and ρµ(G j ) > ε for somei 6= j . All of these inequalities are validµ-almost surely and so it
follows that

µ(EN) −→
N→∞

1. (3.8)

Now, let us fixN so thatµ(EN) ≥ 3/4. Then ergodicity with respect to translates by multiples
of B implies that

µ
( ⋃

y∈3N−1

{
RM,N(EN) ◦ τBy > 1/2

})
≥ µ

( 1

Nd

∑
y∈3N−1

RM,N(EN) ◦ τBy >
1

2

)
= µ

(
RM N(EN) > 1/2

)
−→
M→∞

1.

(3.9)

It follows that the left-hand side exceeds1/2 onceM is sufficiently large, which in conjunction
with subadditivity andτBy-invariance ofµ directly implies (3.5). �

Our next task will be to expressEN solely in terms of conditions on badB-blocks in3N B =⋃
x∈3N−1

(3B + Bx). Given two distinct sitesx, y ∈ 3N−1, let {x = y} denote the event that
there is no nearest-neighbor pathπ = (x1, . . . , xk) on3N−1 such that

(1) π connectsx to y, i.e.,x1 = x andxk = y.
(2) all B-blocks “along”π are good, i.e.,τBxj (Bc) occurs for all j = 1, . . . , k.

Note that{x = y} automatically holds when one of the blocks3B + Bx or 3B + By is bad.
Further, letYN be the (F3N B-measurable) random variable

YN = #
{
(x, y) ∈ 3N−1 × 3N−1 : x 6= y & x = y

}
(3.10)
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and letCN be the event

CN =
{
YN ≥ (εNd)2

}
. (3.11)

Conditions (1) and (2) from Theorem 2.5 now directly imply:

Lemma 3.2 For all N, we haveEN ⊂ CN .

Proof. Clearly, we haveBN ⊂ CN , and so we only have to show that

Ei,N ∩ E j,N ⊂ CN, 1 ≤ i < j ≤ r. (3.12)

Let us fix i 6= j and recall that onEi,N ∩ E j,N , at least anε-fraction of all B-blocks in3N B

will be i -good and at least anε-fraction of them will be j -good. By conditions (1) and (2)
from Theorem 2.5, no twoB-blocks of different type of goodness can be connected by a path of
good B-blocks, and so there are at least(εNd)2 pairs of distinctB-blocks in3N B that are not
connected to each other by a path of good blocks. This is exactly what defines the eventCN . �

The eventsEN andCN have the natural interpretation asN B-block events onTL wheneverL is
divisible by N B. If A is such anN B-block event, let̃pβ(A) denote the analogue of the quantity
from (2.11) where theθt ’s now involve translations by multiples ofN B. Our next technical
lemma provides an estimate onp̃β(CN) in terms ofpβ(B):

Lemma 3.3 Let d be the dimension of the underlying lattice and suppose that d≥ 2. For
eachε > 0—underlying the definitions ofBN , EN and CN—and eachη > 0, there exists a
numberδ = δ(ε, η, d) > 0 such that ifpβ(B) < δ, thenp̃β(CN) < η.

Proof. Let us use5L ,β(CN) to abbreviate the quantity

5L ,β(CN) = PL ,β

( ⋂
t∈T̃

θt(CN)
)
, (3.13)

whereT̃ = TL/(N B) is the factor torus in the present context. Observing thatCN is preserved
by reflections through the “midplanes” of3N B, a multivariate version of Chebyshev’s inequality
then yields

5L ,β(CN) ≤ EL ,β

( ∏
t∈T̃

YN ◦ τBNt

(εNd)2

)
. (3.14)

HereEL ,β is the expectation with respect toPL ,β .
To estimate the right-hand side of (3.14), we will rewriteYN as a sum. Letx, y ∈ 3N−1 be

distinct. A connected subset0 ⊂ 3N−1 is said toseparate x from y(in 3N−1) if each nearest-
neighbor pathπ from x to y on 3N−1 intersects0. We useS(x, y) to denote the set of all such
sets0 ⊂ 3N−1. Notice that{x}, {y} ∈ S(x, y). We claim that, whenever(x, y) is a pair of points
contributing toYN , there exists0 ∈ S(x, y) separatingx from y such that every block3B + Bz
with z ∈ 0 is bad. Indeed, if3B + Bx is a bad block we take0 = {x}. If 3B + Bx is a
good block, then we defineCx to be the maximal connected subset of3N−1 containingx such
that 3B + Bz is a good block for allz ∈ Cx, and let0 be its external boundary. Using10 to
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denote the indicator of the event that every block3B + Bzwith z ∈ 0 is bad, we get

YN ≤

∑
x,y∈3N−1

∑
0∈S(x,y)

10. (3.15)

Let K = ( L
BN )d be the volume of the factor torus and lett1, . . . , tK be an ordering of all sites

of T̃. Then we have

5L ,β(CN) ≤
1

(εNd)2K

∑
(x j ,y j )

j =1,...,K

∑
01,...,0K

EL ,β

( K∏
j =1

10 j ◦ τBNt j

)
, (3.16)

where the first sum runs over collections of pairs(x j , y j ), j = 1, . . . , K , of distinct sites in3N−1

and the second sum is over all collections of separating surfaces0 j ∈ S(x j , y j ), j = 1, . . . , K .
To estimate the right-hand side of (3.16) we definepL ,β(B) to be the quantity on the right-hand

side of (2.11), before taking the limitL → ∞, with A = B. Since each indicator10 j ◦ τBNt j

enforces bad blocks3B + B(z + Nt j ) for z ∈ 0 j , and the set of blocks3B + B(z + Nt j ),
z ∈ 3N−1, is, for t i 6= t j , disjoint from the set3B + B(z + Nt i ), z ∈ 3N−1, we can use
chessboard estimates (Theorem 2.4) to get

EL ,β

( K∏
j =1

10 j ◦ τBNt j

)
≤

[
pL ,β(B)

]|01|+···+|0K |
. (3.17)

A standard contour-counting argument now shows that, for any distinctx, y ∈ 3N−1,∑
0∈S(x,y)

[
pL ,β(B)

]|0|
≤ c1pL ,β(B)d (3.18)

with some constantc1 = c1(d), provided thatpL ,β(B) is sufficiently small. The sum over collec-
tions of pairs(x j , y j ), j = 1, . . . , K , contains at most(N2d)K terms, allowing us to bound

5L ,β(CN) ≤

(
c1pL ,β(B)d

ε2

)K

. (3.19)

Since5L ,β(CN)
1/K → p̃β(CN) as L → ∞, it follows that p̃β(CN) ≤ c1pβ(B)dε−2, which

for pβ(B) small enough, can be made smaller than anyη initially prescribed. �

Our final technical ingredient is an estimate on the Radon-Nikodym derivative of a Gibbs
measureµ ∈ Gβ and the torus measure at the same temperature:

Lemma 3.4 Let 3L ⊂ Zd be an L-block and letT2L be a torus of side2L. Let us view3L as
embedded intoT2L and letP2L ,β be the torus Gibbs measure onT2L . Then for any a> 0 there
exists L0 such that

e−βaLdP2L ,β(A) ≤ µ(A) ≤ eβaLdP2L ,β(A). (3.20)

for all L ≥ L0, anyµ ∈ Gβ , and anyF3L -measurable eventA.

Proof. For finite-range interaction, this lemma is completely standard. However, since our setting
includes also interactions with infinite range, we provide a complete proof. We will prove only
the right-hand side of the above inequality; the other side is completely analogous.
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First, from the DLR equation we know that there exists a configurations = (sx)x∈Zd , such that

µ(A|F3c)(s) ≥ µ(A) (3.21)

with the left-hand side of the form (2.3). Lets′ be a configuration onT2L . We will show that
µ( · |F3c

L
)(s) and P2L ,β( · |F3c

L
)(s′) are absolutely continuous with respect to each other—as

measures onF3L —and the Radon-Nikodym derivative is bounded above by eβaLd
regardless of

the “boundary conditions”s ands′.
Suppose thats′

x = sx for all x ∈ 3L and let s̄′ be its 2L-periodic extension to all ofZd.
Then the Radon-Nikodym derivative ofP2L ,β( · |F3c

L
)(s′) with respect to the product measure∏

x∈3L
ν0(dsx) is e−βH3L (s̄′)/Z3L (s̄

′

3c
L
) while that ofµ( · |F3c

L
)(s) is e−βH3L (s)/Z3L (s3c

L
). It thus

suffices to show, uniformly in(sx)x∈3L , that∣∣H3L (s) − H3L (s̄
′)
∣∣ ≤

a

2
Ld (3.22)

onceL is sufficiently large. To this end, we first note that∣∣H3L (s) − H3L (s̄
′)
∣∣ ≤ 2

∑
A: A∩3L 6=∅

A∩3c
L 6=∅

‖8A‖∞. (3.23)

To estimate the right-hand side, we will decompose3L into “shells,”3n \ 3n−1, and use the fact
that if A intersects3n \3n−1 as well as3c

L , then the diameter ofA must be at leastL − n. Using
the translation invariance of the interactions, we thus get∑

A: A∩3L 6=∅

A∩3c
L 6=∅

‖8A‖∞ ≤

L∑
n=1

|3n \ 3n−1|
∑

A: 0∈A
diam(A)≥L−n

‖8A‖∞. (3.24)

But |||8||| < ∞ implies that the second sum tends to zero asL −n → ∞ and since|3n \3n−1| =

o(Ld) while
∑

1≤n≤L |3n \ 3n−1| = Ld, the result is thuso(Ld). In particular, forL sufficiently
large, the right-hand side of (3.23) will be less thana

2 Ld. �

3.2 Proofs of Theorem 2.5 and Corollary 2.6.

Now we are ready to prove our main theorem:

Proof of Theorem 2.5.Fix ε < 1/2 and letµ ∈ Gβ be aB-shift ergodic Gibbs measure for which
one of the conditions (2.15–2.16) fails. Applying Lemma 3.1 and the inclusion in Lemma 3.2 we
find that

µ
(
RM,N(CN) > 1/2

)
>

1

2Nd
(3.25)

once N ≥ N0 and M ≥ M0(N). Now, consider the torusTL of side L = 2M N B and em-
bed3M N B =

⋃
x∈3M−1

(3N B + N Bx) into TL in the “usual” way. By Lemma 3.4 we know that
for anyfixed N≥ N0, there exists a sequenceaM of positive numbers withaM ↓ 0 asM → ∞,
such that we have

PL ,β

(
RM,N(CN) > 1/2

)
>

1

2Nd
e−β(N B)daM Md

, M → ∞. (3.26)



12 M. BISKUP AND R. KOTECKÝ

Our goal is to show that, onceN is chosen sufficiently large, the left-hand side is exponentially
small in Md, thus arriving at a contradiction.

By conditioning on which of theMd/2 translates of3BN haveCN satisfied, and applying the
chessboard estimates in blocks of sideN B, we get

PL ,β

(
RM,N(CN) > 1/2

)
≤ 2Md

p̃2L ,β(CN)Md/2, (3.27)

wherep̃2L ,β(CN) is the finite-torus version of̃pβ(CN). Next we chooseη < 1/4 and letδ > 0
andN ≥ N0 be such that the bounds in Lemma 3.3 apply. Then for all sufficiently largeM (and
hence all largeL) we havep̃2L ,β(CN) < η and so

PL ,β

(
RM,N(CN) > 1/2

)
≤ (4η)Md/2. (3.28)

But this is true for allM � 1 and so the bound (3.26) must be false. Hence, no suchµ ∈ Gβ

could exist to begin with; i.e., (2.15–2.16) must hold for allB-shift ergodicµ ∈ Gβ . �

To finish our proofs, we will also need to establish our claims concerning phase coexistence:

Proof of Corollary 2.6.Suppose thatε andδ are such that Theorem 2.5 applies. By condition (1),
the conclusions (2.15–2.16) of this theorem are thus available for allβ ∈ [β1, β2]. This implies

ρµ(G j ) ∈ [0, ε]∪[1 − ε, 1], j = 1, 2, (3.29)

for everyB-shift ergodicµ ∈ Gβ at everyβ ∈ [β1, β2]. We claim thatρµ(G2) is small in every
ergodic stateµ ∈ Gβ1. Indeed, by Lemma 6.3 of [4] and condition (2) of the corollary, we have

pβ1(B ∪ G2) ≤ pβ1(B) + pβ1(G j ) < 2δ. (3.30)

Hence, if theδ in Corollary 2.6 was so small that Theorem 2.5 applies for someε < 1/2 even
when δ is replaced by 2δ, we can regardB ∪ G2 as a bad event atβ = β1 and conclude
that ρµ(G2) < 1/2, and henceρµ(G2) ≤ ε, by (3.29), in every ergodicµ ∈ Gβ1. A similar ar-
gument proves thatρµ(G1) ≤ ε in every ergodicµ ∈ Gβ2. Usual weak-limit arguments then yield
the existence of at least one pointβt ∈ (β1, β2) where both types of goodness coexist. �

4. APPLICATIONS

The formulation of our main result is somewhat abstract. In the present section, we will pick
several models in which phase coexistence has been proved using chessboard estimates and use
them to demonstrate the consequences of our main theorem. Although we will try to stay rather
brief, we will show that, generally, the hypothesis of our main result—i.e., the assumption on
smallness of the parameterpβ(B)—is directly implied by the calculations already carried out in
the corresponding papers. The reader should consult the original articles for more motivation and
further details concerning the particular models.

4.1 Potts model.

Theq-state Potts model serves as a paradigm of order-disorder transitions. The existence of the
transition has been proved by chessboard estimates in [16]. While the completness of the phase
diagram has, in the meantime, been established with the help of Pirogov-Sinai theory [18], we
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find it useful to illustrate our general claims on this rather straightforward example. Later on we
will pass to more complex systems where no form of “completness” has so far been proved.

The spinsσx of the q-state Potts model take values in the set{1, . . . , q} with a priori equal
probabilities. The formal Hamiltonian is

H(σ) = −

∑
〈x,y〉

δσx,σ y, (4.1)

where〈x, y〉 runs over all (unordered) nearest-neighbor pairs inZd. The states of minimal energy
have all neighboring spins equal, and so we expect that low temperature states are dominated
by nearly constant spin-configurations. On the other hand, at high temperatures the spins should
be nearly independent and, in particular, neighboring spins will typically be different from each
other. This leads us to consider the following good events on 1-block31:

Gdis
=

{
σ : σx 6= σ y for all x, y ∈ 31, |x − y| = 1

}
,

Gord,m
=

{
σ : σx = m for all x ∈ 31

}
, m = 1, . . . , q.

(4.2)

Using similar events, it was proved [16] that, ford ≥ 2 andq sufficiently large, there exists an
inverse temperatureβt andq+1 ergodic Gibbs statesµdis

∈ Gβt andµord,m
∈ Gβt , m = 1, . . . , q,

such that the corresponding 1-block densities satisfy

ρµdis(Gdis) ≥ 1 − ε (4.3)

and
ρµord,m(Gord,m) ≥ 1 − ε, m = 1, . . . , q, (4.4)

whereε = ε(q) tends to zero asq → ∞. In addition, monotonicity of the energy density as a
function ofβ can be invoked to show thatρµ(Gdis) is large in all translation-invariantµ ∈ Gβ

whenβ < βt, while it is small in all such states whenβ > βt.
The full completeness [18] asserts that above mentionedq + 1 states exhaust the set of all

shift-ergodic Gibbs states inGβt . A weaker claim follows as a straightforward application of our
Theorem 2.5: There isnoshift-ergodic Gibbs stateµ ∈ Gβt such that

ρµ(Gdis) ∈ [ε, 1 − ε] or ρµ(Gord,m) ∈ [ε, 1 − ε], (4.5)

for somem = 1, . . . , q. The main hypothesis of our theorem amounts to the smallness of the
quantitypβ(B), where

B =

(
Gdis

∪

q⋃
m=1

Gord,m
)c

, (4.6)

which in turn boils down to an estimate on the probability of the disseminated eventB on the right-
hand side of (2.11). The needed estimate coincides with the bound provided in [16] by evaluating
directly (i.e., “by hand”) the energy and the number of contributing configurations. The result—
which in [16] appears right before the last formula on p. 506 is used to produce (4.4′)—reads

pβ(B) ≤

[ qd−2−(d−1)

(q − 2d)d

] 1
2d

. (4.7)

This implies the needed bound onceq � 1.
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Remark4.1 Analogous calculations establish the corresponding forbidden gap in more compli-
cated variants of the Potts model; see e.g. [3].

4.2 Intermediate phases in dilute spin systems.

Another instance where our results provide new insight are dilute annealed ferromagnets exhibit-
ing staggered order phases at intermediate temperatures. These systems have been studied in the
context of both discrete [6] and continuous spins [7]. The characteristic examples of these classes
are thesite-diluted Potts modelwith the Hamiltonian

H(n, σ) = −

∑
〈x,y〉

nxny(δσx,σ y − 1) − λ
∑

x

nx − κ
∑
〈x,y〉

nxny (4.8)

and thesite-diluted XY -modelwith the Hamiltonian

H(n, φ) = −

∑
〈x,y〉

nxny
[
cos(φx − φy) − 1

]
− λ

∑
x

nx − κ
∑
〈x,y〉

nxny. (4.9)

Here, as before,σx ∈ {1, . . . , q} are the Potts spins,φx ∈ [−π, π) are variables representing the
“angle” of the correspondingO(2)-spins, andnx ∈ {0, 1} indicates the presence or absence of a
particle (that carries the Potts spinσx or the angle variableφx) at sitex.

On the basis of “usual” arguments, the high temperature region is characterized by disordered
configurations while the low temperatures features configurations with a strong (local) order, at
least at small-to-intermediate dilutions. The phenomenon discovered in [6, 7] is the existence
of a region of intermediate temperatures and chemical potentials, sandwiched between the low
temperature/high density ordered region and the high temperature/low density disordered region,
where typical configurations exhibit preferential occupation of one of the even/odd sublattices.
The appearance of such states is due to aneffective entropic repulsion. Indeed, at low tempera-
tures the spins on particles at neighboring sites are forced to be (nearly) aligned while if a particle
is completely isolated, its spin is permitted to enjoy the full freedom of the available spin space.
Hence, at intermediate temperatures and moderate dilutions, there is an entropic advantage for
the particles to occupy only one of the sublattices.

Let us concentrate on the portion of the phase boundary between the staggered region and the
low temperature region. The claim can be stated uniformly for both systems in (4.8–4.9) provided
we introduce the relevant good events in terms of occupation variablen. Namely, we let:

Gdense
=

{
(σ, n) : nx = 1 for all x ∈ 31

}
,

Geven
=

{
(σ, n) : nx = 1{x even} for all x ∈ 31

}
,

Godd
=

{
(σ, n) : nx = 1{x odd} for all x ∈ 31

}
.

(4.10)

Again, using slightly modified versions of these events, it was shown in [6, 7] that there exist
positive numbersε, κ0 � 1 and, for everyκ ∈ (0, κ0), an interval I (κ) ⊂ R such that the
following is true: For anyλ ∈ I there exist inverse temperaturesβ1(κ, λ) andβ2(κ, λ), and a
transition temperatureβt(κ, λ) ∈ [β1, β2] such that

(1) for anyβ ∈ [βt, β2] there exists an “densely occupied” stateµdense
∈ Gβ , for which

ρµdense(Gdense) ≥ 1 − ε, (4.11)
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(2) for anyβ ∈ [β1, βt] there exist two statesµeven, µodd
∈ Gβ satisfying

ρµeven(Geven) ≥ 1 − ε and ρµodd(Godd) ≥ 1 − ε. (4.12)

The errorε is of orderβ−1/8 (cf. the bound (2.15) in [7]) in the case of theXY-model ind = 2,
and it tends zero asq → ∞ in the case of the diluted Potts model.

A somewhat stronger conclusion can be made for the diluted Potts model. Namely, atβ = βt,
there are actuallyq + 2 distinct states, two staggered statesµeven andµodd andq ordered states
µdense,m, with the latter characterized by the condition

ρµdense,m(Gdense,m) ≥ 1 − ε, (4.13)

where

Gdense,m
=

{
(σ, n) : nx = 1 andσx = m for all x ∈ 31

}
. (4.14)

It is plausible that an analogous conclusion applies to the XY-model ind ≥ 3 because there the
low-temperature phase should exhibit magnetic order. However, ind = 2 such long-range order
is not permitted by the Mermin-Wagner theorem and so there one expects to have only 3 distinct
ergodic Gibbs states atβt.

A weaker form of the expected conclusions is an easy consequence of our Theorem 2.5: There
exists no shift-ergodic Gibbs stateµ ∈ Gβt such that

ρµ(G) ∈ [ε, 1 − ε] for some G ∈ {Gdense,Geven,Godd
} (4.15)

and, in the case of diluted Potts model, also

ρµ(Gdense,m) ∈ [ε, 1 − ε] for some m ∈ {1, . . . , q}. (4.16)

In particular, no ergodic Gibbs stateµ ∈ Gβt has particle density in [ε, 1/2 − ε]∪[1/2 + ε, 1 − ε].
The proof of these observations goes by noting that the smallness ofpβ(B) for the bad event
B = (Gdense

∪ Geven
∪ Godd)c is a direct consequence of the corresponding bounds from [6, 7]

of the “contour events.” In the case of the XY-model in dimensiond = 2, this amounts to the
bounds (2.9) and (2.15) from [7].

Remark4.2 A more general class of models, with spin taking values in a Riemannian manifold,
is also considered in [7]. A related phase transition in an annealed dilutedO(n) Heisenberg
ferromagnet has been proved in [8].

4.3 Order-by-disorder transitions.

Another class of systems where our results provide new information are theO(2)-nearest and
next-nearest neighbor antiferromagnet [2], the 120-degree model [4], and the orbital-compass
model [5]. All of these are continuum-spin systems whose common feature is that the infinite
degeneracy of the ground states is broken, at positive temperatures, by long-wavelength (spin-
wave) excitation. We will restrict our attention to the first of these models, theO(2)-nearest and
next-nearest neighbor antiferromagnet. The other two models are somewhat more complicated—
particularly, due to the presence of non-translation invariant ground states—but the conclusions
are fairly analogous.
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Consider a spin system onZ2 whose spins,Sx, take values on the unit circle inR2 with a priori
uniform distribution. The Hamiltonian is

H(S) =

∑
x

(
Sx · Sx+ê1+ê2 + Sx · Sx+ê1−ê2

)
+ γ

∑
x

(
Sx · Sx+ê1 + Sx · Sx+ê2

)
, (4.17)

whereê1 andê2 are the unit vectors in the coordinate lattice directions and the dot denotes the
usual scalar product. Note that both nearest and next-nearest neighbors are coupled antiferro-
magnetically but with a different strength. The following are the ground state configurations
for γ ∈ (−2, 2): Both even and odd sublattices enjoy a Neél (antiferromagnetic) order, but the
relative orientation of these sublattice states is arbitrary.

It is clear that, at low temperatures, the configurations will be locally near one of the afore-
mentioned ground states. Due to the continuous nature of the spins, the fluctuation spectrum
is dominated by “harmonic perturbations,” a.k.a.spin waves. A heuristic spin-wave calculation
(cf. [4, Sect. 2.2] for an example in the context of the 120-degree model) suggests that among
all 2π possible relative orientations of the sublattices, the parallel and the antiparallel orienta-
tions are those entropically most favorable. And, indeed, as was proved in [2], there exist two
2-periodic Gibbs statesµ1 andµ2 with the corresponding type of long-range order. However, the
existence of Gibbs states with other relative orientations has not been ruled out.

We will now state a stronger version of [2, Theorem 2.1]. LetB be a large even integer and
consider twoB-block eventsG1 andG2 defined as follows: fixing a positiveκ � 1, let

G1 =

⋂
x,y∈3B

(y−x)·ê2=0

{Sx · Sy ≥ 1 − κ} ∩

⋂
x,x+ê2∈3B

{Sx · Sx+ê2 ≤ −1 + κ}, (4.18)

i.e.,G1 enforces horizontal stripes all over3B. The eventG2 in turn enforces vertical stripes; the
definition is as above with the roles ofê1 andê2 interchanged. Then we have:

Theorem 4.3 Letγ ∈ (0, 2) and letκ � 1. For eachε > 0 there exists aβ0 ∈ (0, ∞) and, for
eachβ ≥ β0, there exists an integer B≥ 1 such that for anyµ ∈ Gβ that is ergodic with respect
to shifts by multiples of B we have

ρµ(G j ) ∈ [0, ε]∪[1 − ε, 1], j = 1, 2. (4.19)

In particular, there exist two ergodic Gibbs statesµ1, µ2 ∈ Gβ , such that

ρµ j (G j ) ≥ 1 − ε, j = 1, 2, (4.20)

The second conclusion—the existence of Gibbs states with parallel and antiparallel relative
orientation of the sublattices—was the main content of Theorem 2.1 of [2]. What we have added
here is that the corresponding configurations dominateall ergodic Gibbs states. TheO(2) ground-
state symmetry of the relative orientation of the sublattices is thus truly broken at positive temper-
atures, which bolsters significantly the main point of [2]. Note that no restrictions are posed on the
overall orientation of the spins. Indeed, by the Mermin-Wagner theorem (see [2, Theorem 2.2])
everyµ ∈ Gβ is invariant under simultaneous rotations of all spins.

Proof of Theorem 4.3.As expected, the proof boils down to showing that, for a proper choice
of scaleB we havepβ(B) � 1 for B = (G1 ∪ G2)

c. In [2] this is done by decomposingB into
more elementary events—depending on whether the “badness” comes from excessive energy or
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insufficient entropy—and estimating each of them separately. The relevant bounds are proved
in [2, Lemmas 4.4 and 4.5] and combined together in [2, Eq. (4.20)]. Applying Theorem 2.5 of
the present paper, we thus know that everyB-shift ergodicµ ∈ Gβ is dominated either by blocks
of typeG1 or by blocks of typeG2. Sinceρµ(B) ≤ ε in all states, the existence ofµ1, µ2 ∈ Gβ

satisfying (4.20) follows by symmetry with respect to rotation (of the lattice) by 90-degrees.�

4.4 Nonlinear vector models.

A class of models with continuous symmetry that are conceptually close to the Potts model has
been studied recently by van Enter and Shlosman [11]. As for our previous examples with con-
tinuous spins, Pirogov-Sinai theory is not readily available and one has to rely on chessboard
estimates. We will focus our attention on one example in this class, anonlinear ferromagnet,
although our conclusions apply with appropriate, and somewhat delicate, modifications also to
liquid crystal models and lattice gauge models discussed in [11].

Let us consider anO(2)-spin system onZ2 with spins parametrized by the angular variables
φx ∈ (−π, π ]. The Hamiltonian is given by

H(φ) = −

∑
〈x,y〉

(1 + cos(φx − φy)

2

)p
, (4.21)

wherep is a nonlinearity parameter. Thea priori distribution of theφx ’s is the Lebesgue measure
on (−π, π ]; the differenceφx − φy is always taken modulo 2π .

In order to define the good block events, we first split all bonds into three classes. Namely,
given a configuration(φx)x∈Z2, we say that the bond〈x, y〉 is

(1) strongly orderedif |φx − φy| ≤
1

C
√

p ,

(2) weakly orderedif 1
C

√
p < |φx − φy| < C

√
p , and

(3) disorderedif |φx − φy| ≥
C

√
p .

HereC is a large number to be determined later. If a bond is either strongly or weakly ordered,
we will call it simply ordered.

On the basis of (4.21), it is clear that strictly ordered bonds are favored energetically while
the disordered bonds are favored entropically. The main observation of [11] is that, at least in
torus measures, ordered and disordered bonds are unlikely to occur in the same configuration.
Unfortunately, ordered bonds can be continuously deformed to become disordered andvice versa
and so to prove the existence of an order-disorder transition, one needs to supplement this by the
observation that it is unlikely to have many bonds in the “borderline” region|φx − φy| ≈

C
√

p .
In order to correct for this problem, and to enable the use of our main theorems, we will have to
prove the existence of a free-energy barrier between thestronglyordered and disordered phases.

Let 31 be a 1-block (i.e., a plaquette) and let us consider the following good events on31:
The event that all bonds on31 are strongly ordered,

Gso =

{
|φx − φy| ≤

1

C
√

p
: ∀x, y ∈ 31, |x − y| = 1

}
, (4.22)
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and the event that all bonds on31 are disordered,

Gdis =

{
|φx − φy| ≥

C
√

p
: ∀x, y ∈ 31, |x − y| = 1

}
. (4.23)

As usual, letB = (Gso ∪ Gdis)
c be the corresponding bad block event. Then we have:

Theorem 4.4 For eachε > 0 and each sufficiently large C> 1, there exists p0 > 0 such that
for all p > p0, all β ≥ 0 and all shift-ergodicµ ∈ Gβ , we have

ρµ(Gdis), ρµ(Gso) ∈ [0, ε]∪[1 − ε, 1] (4.24)

and
ρµ(B) ≤ ε. (4.25)

Moreover, for every p> p0 there exists a numberβt ∈ (0, ∞) and two distinct, shift-ergodic
Gibbs statesµso, µdis

∈ Gβt such that

ρµso(Gso) ≥ 1 − ε and ρµdis(Gdis) ≥ 1 − ε. (4.26)

Finally, the left inequality applies to every ergodicµ ∈ Gβ whenβ > βt, while the right inequal-
ity applies to every ergodicµ ∈ Gβ whenβ < βt.

This theorem settles, somewhat more apparently than Theorem 3 of [11], the controversy in
the physics literature about whether this system does or does not undergo a first-order transition
as the temperature varies; see [10] for more discussion and relevant references. The proof of
Theorem 4.4 is fairly technical and it is therefore deferred to Sect. 5.

4.5 Magnetostriction transition.

Our final example is the magnetostriction transition studied recently by Shlosman and Zagreb-
nov [21]. The specific system considered in [21] has the Hamiltonian

H(σ, r ) = −

∑
〈x,y〉

J(rx,y)σxσ y + κ
∑
〈x,y〉

(rx,y − R)2
+ λ

∑
〈x,y〉,〈z,y〉

|x−z|=
√

2

(rx,y − rz,y)
2. (4.27)

Here the sitesx ∈ Zd label the atoms in a crystal; the atoms have magnetic moments represented
by the Ising spinsσx. The crystal is not rigid; the variablesrx,y ∈ R, rx,y > 0, play the role of
spatial distance between neighboring crystal sites.

The wordmagnetostrictionrefers to the phenomenon where a solid undergoes a magnetic
transition accompanied by a drastic change in the crystalline structure. In [21] such a transition
was proven for interaction potentialsJ = J(rx,y) that are strong at short distances and week at
large distances. The relevant states are characterized by disjointcontracted,

Gcontr
=

{
(r, σ) : rx,y ≤ η, ∀x, y ∈ 31, |x − y| = 1

}
, (4.28)

andexpanded,

Gexp,±
=

{
(r, σ) : rx,y ≥ η + ε, ∀x, y ∈ 31, |x − y| = 1

}
∩

{
σx = ±1, ∀x ∈ 31

}
, (4.29)

block events. The parametersη andε can be chosen so that there existsβt ∈ (0, ∞) for which
the following holds:
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(1) For allβ ≤ βt there exists anexpandedGibbs stateµexp
∈ Gβ such thatρµexp(Gexp) ≥ 3/4;

(2) For all β ≥ βt there exist two distinctcontractedGibbs statesµcontr,±
∈ Gβ such that

ρµcontr,±(Gcontr,±) ≥ 3/4.

In particular atβ = βt there exist three distinct Gibbs states; one expanded and two contracted
with opposite values of the magnetization. The authors conjecture that these are the only shift-
ergodic Gibbs states atβ = βt.

Unfortunately, the above system has unbounded spins and interactions and so it is not strictly
of the form for which Theorem 2.5 applies. Instead we will use the following generalization:

Theorem 4.5 Consider a spin system with translation-invariant finite-range interaction poten-
tials (8A)AbZd such that the torus measure is reflection positive for all even L. LetG1, . . . ,Gn

be a collection of good B-block events satisfying the requirements in Theorem 2.5 and letB be
the corresponding bad event. Then for allε > 0 there existsδ > 0 such that for allβ ≥ 0 for
whichpβ(B) < δ the following is true: Ifµ ∈ Gβ is a B-shift invariant Gibbs state with∑

A: AbZd

0∈A

Eµ

(
|8A|

)
< ∞, (4.30)

then we have
ρµ(B) ∈ [0, ε] (4.31)

and
ρµ(Gi ) ∈ [0, ε]∪[1 − ε, 1], (4.32)

for all i = 1, . . . , n.

Proof. The proof is virtually identical to that of Theorem 2.5 with one exception: Since the
interactions are not bounded, we cannot use Lemma 3.4 directly. Suppose we have a Gibbs
stateµ that obeys (4.30) but violates one of the conditions (4.31–4.32). LetRM,N(CN) be as in
(3.4). Lemma 3.1 still applies and so we have (3.5) for someN.

Let L = M N B and letDM be the event that the boundary energy in the box3 is less
thancMd−1, i.e.,

DM =

{ ∑
A: A∩3L 6=∅

A∩3c
L 6=∅

|8A| ≤ cMd−1

}
. (4.33)

wherec is a positive constant. In light of the condition (4.30), the fact that the interaction has a
finite range, and the Chebyshev bound, it is clear that we can choosec so thatµ(Dc

M) < (4Nd)−1

for all M . Hence, we have

µ
(
DM ∩ {RM,N(CN) > 1/2}

)
>

1

4Nd
. (4.34)

Next lets ands′ be as in the proof of Lemma 3.4 and suppose that boths ands′ belong toDM .
Then, by definition, ∣∣H3L (s) − H3L (s

′)
∣∣ ≤ 2cMd−1 (4.35)

and, applying the rest of the proof of Lemma 3.4, we thus have

µ
(
DM ∩ {RM,N(CN) > 1/2}

)
≤ e2βcMd−1P2L ,β

(
DM ∩ {RM,N(CN) > 1/2}

)
. (4.36)
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NeglectingDL on the right-hand side and invoking (3.28), we again derive the desired contradic-
tion onceM is sufficiently large. �

With Theorem 4.5 in the hand, we can extract the desired conclusion for the magnetostriction
transition. First, the energy condition is clearly satisfied in any state generated by tempered
boundary conditions. We then know that, in every such ergodic stateµ, only a small number
blocks will feature bonds that are neither contracted (and magnetized) nor expanded (and non-
magnetized):

ρµ(Gexp), ρµ(Gexp,±) ∈ [0, ε]∪[1 − ε, 1] and ρµ(B) ≤ ε. (4.37)

The existence of a phase transition follows by noting that the contracted states have less energy
than the expanded ones; there is thus a jump in the energy density as the temperature varies.

5. APPENDIX

The goal of this section is to prove Theorem 4.4 which concerns non-linear vector model with
interaction (4.21). The technical part of the proof is encapsulated into the following claim:

Proposition 5.1 There exists a constant C0 > 0 such that for allδ > 0 and all C ≥ C0 the
following holds: There exists p0 > 0 such that for all p≥ p0 we have

sup
β≥0

pβ(B) < δ (5.1)

and
lim

β→∞

pβ(Gdis) = 0 and lim
β↓0

pβ(Gso) < δ. (5.2)

To prove this proposition, we will need to carry out a sequence of energy and entropy bounds.
To make our energy estimates easier, and uniform inp, we first notice that there are constants 0<
a < b such that

e−bx2
≤

1 + cos(x)

2
≤ e−ax2

, −1 ≤ x ≤ 1. (5.3)

The argument commences by splittingB into two events: The eventBwo that 31 contains a
weakly-ordered bond, andBmix = B \ Bwo which, as a moment’s thought reveals, is the event
that31 contains two adjacent bonds one of which is strongly ordered and the other disordered.
The principal chessboard estimate yields the following lemma:

Lemma 5.2 Suppose that C≤
√

p. Then

pβ(Bwo) ≤ 4

(
min

{
C2

κ
e−2β[e−bκ2/C2

−e−a/C2
], C

π
√

p e2βe−a/C2})1/4

(5.4)

and

pβ(Bmix) ≤ 4

(
min

{
e−2β[ 3

2e−b/C2
−1−e−aC2

], e2β
(

1
πC

√
p

)3/4
})1/2

(5.5)

for all β ≥ 0 and allκ ∈ (0, 1). Moreover, we have

pβ(Gdis) ≤ πC
√

p exp
{
−2β[e−

b
C2 − e−aC2

]
}

(5.6)



FORBIDDEN GAP ARGUMENT AND CHESSBOARD ESTIMATES 21

and

pβ(Gso) ≤
1

π

e2β

C
√

p
. (5.7)

Proof. Let ZL be the partition function obtained by integrating e−βHL over all allowed configura-
tions. Consider the following reduced partition functions:

(1) Zdis
L , obtained by integrating e−βHL subject to the restriction that every bond inTL is disor-

dered.
(2) Zso

L , obtained similarly while stipulating that every bond inTL is strongly ordered.
(3) Zwo

L , in which every bond inTL is asked to be weakly ordered.
(4) Zmix

L , enforcing that every other horizontal line contains only strongly-ordered bonds, and
the remaining lines contain only disordered bonds. A similar periodic pattern is imposed on
vertical lines as well.

To prove the lemma, we will need upper and lower bounds on the partition functions in (1-2), and
upper bounds on the partition functions in (3-4).

We begin by upper and lower bounds onZdis
L . First, using the fact that the Hamiltonian is

always non-positive, we have e−βHL ≥ 1. On the other hand, the inequalities (5.3) and a natural
monotonicity of the interaction imply that(1 + cos(φx − φy)

2

)p
≤

(1 + cos(C/
√

p)

2

)p
≤ e−aC2

(5.8)

whenever〈x, y〉 is a disordered bond. In particular,−βHL is less than 2βe−aC2
|TL | for every

configuration contributing toZdis
L . Using these observations we now easily derive that

(2π)|TL |
≤ Zdis

L ≤ (2π)|TL | e2βe−aC2
|TL |. (5.9)

Similarly, for the partition functionZso
L get(

e2βe−bκ2/C2 2κ

C
√

p

)|TL |

≤ Zso
L ≤ 2πe2β|TL |

( 2

C
√

p

)|TL |−1
. (5.10)

Indeed, for the upper bound we first note that−βHL ≤ 2β|TL |. Then we fix a tree spanning all
vertices ofTL , disregard the constraints everywhere except on the edges in the tree and, starting
from the “leaves,” we sequentially integrate all site variables. (Thus, each site is effectively forced
into an interval of length 2

C
√

p , except for the “root” which retains all of its 2π possibilities.) For
the lower bound we fix a numberκ ∈ (0, 1) and restrict the integrals to configurations such that
|φx −φy| ≤

κ
C

√
p for all bonds〈x, y〉 in TL . The bound−βHL ≥ 2βe−bκ2/C2

|TL | then permits us
to estimate away the Boltzmann factor for all configurations; the entropy factor reflects the fact
that each site can vary throughout an interval of length at least2κ

C
√

p .
Next we will derive good upper bounds on the remaining two partition functions. First, similar

estimates as those leading to the upper bound in (5.10) give us

Zwo
L ≤ 2π

(
e2βe−a/C2 2C

√
p

)|TL |

. (5.11)
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For the partition functionZmix
L we note that1/4 of all sites are adjacent only to disordered bonds,

while the remaining3/4 are connected to one another via a grid of strongly-ordered bonds. Esti-
mating−βHL ≤ β(1 + e−aC2

)|TL | for all relevant configuration, similar calculations as those
leading to (5.10) again give us

Zmix
L ≤ 2πeβ(1+e−aC2

)|TL | (2π)
|TL |

4

( 2

C
√

p

) 3
4 |TL |−1

. (5.12)

It now remains to combine these estimates into the bounds on the quantities on the left-hand side
of (5.4–5.5) and (5.6–5.7).

We begin with the bound (5.6). Clearly,pβ(Gdis) is theL → ∞ limit of (Zdis
L /ZL)1/|TL |, which

using the lower boundZL ≥ Zso
L with κ = 1 easily implies (5.6). The bound (5.7) is obtained

similarly, except that now we use thatZL ≥ Zdis
L . The remaining two bounds will conveniently

use the fact that for two-dimensional nearest-neighbor models, and square tori, the torus mea-
surePL ,β is reflection positive even with respect to the diagonal planes inTL . Indeed, focusing
on (5.4) for a moment, we first note thatBwo is covered by the union of four (non-disjoint) events
characterized by the position of the weakly-ordered bond on31. If B(1)

wo is the event that the
lower horizontal bond is the culprit, the subadditivity property ofpβ—see Lemma 6.3 of [4]—
gives uspβ(Bwo) ≤ 4pβ(B(1)

wo). DisseminatingB(1)
wo using reflections in coordinate directions, we

obtain an event enforcing weakly-ordered bonds on every other horizontal line. Next we apply a
reflection in a diagonal line of even parity to make this into an even parity grid. From the per-
spective of reflections in odd-parity diagonal lines—i.e., those not passing through the vertices of
the grid—half of the “cells” enforces all four bonds therein to be weakly ordered, while the other
half does nothing. Applying chessboard estimates for these diagonal reflections, we get rid of the
latter cells. The result of all these operations is the bound

pβ(Bwo) ≤ lim
L→∞

4
( Zwo

L

ZL

) 1
4|TL |

. (5.13)

EstimatingZL from below by the left-hand sides of (5.9–5.10) now directly implies (5.4).
The eventBmix is handled similarly: First we fix a position of the ordered-disordered pair

of bonds and use subadditivity ofpβ to enforce thesamechoice at every lattice plaquette; this
leaves us with four overall choices. Next we use diagonal reflections to produce the event under-
lying Zmix

L . EstimatingZL from below by1/4-th power of the lower bound in (5.9) and3/4-th power
of the lower bound in (5.10) withκ = 1, we get the first term in the minimum in (5.5). To get the
second term, we use thatZL ≥ Zdis

L , apply (5.12) and invoke the bound 1+ e−aC2
≤ 2. �

Proof of Proposition 5.1. The desired properties are simple consequences of the bounds in
Lemma 5.2. Indeed, ifC is so large that e−b/C2

> e−aC2
, then (5.6) implies thatpβ(Gdis) → 0

asβ → ∞. On the other hand, (5.7) shows that theβ → ∞ limit of pβ(Gso) is order1/√p, which
can be made as small as desired by choosingp sufficiently large.

To prove also (5.1), we first invoke Lemma 6.3 of [4] one last time to see thatpβ(B) ≤

pβ(Bwo)+pβ(Bmix). We thus have to show that bothpβ(Bwo) andpβ(Bmix) can be made arbitrary
small by increasingp appropriately. We begin withpβ(Bmix). Let C be so large that

3
2e−b/C2

− 1 − e−aC2
> 0. (5.14)
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Then forβ such that e2β > p
1/4 the first term in the minimum in (5.6) decays like a negative

power of p, while for the complementary values ofβ, the second term isO(p−1/8). As to the
remaining term,pβ(Bwo), here we chooseκ ∈ (0, 1) such that

e−bκ2/C2
− e−a/C2

> 0, (5.15)

and apply the first part of the minimum in (5.4) forβ with e2β
≥

√
p, and the second part for the

complementaryβ, to show thatpβ(Bwo) is also bounded by constants time a negative power ofp,
independently ofβ. Choosingp large, (5.1) follows. �

Now we can finally prove Theorem 4.4:

Proof of Theorem 4.4.We will plug into our main theorem. First, it is easy to check that the
good block eventsGso andGdis satisfy the conditions (1) and (2) of Theorem 2.5. Then (5.1) and
(2.15–2.16) imply (4.24–4.25). The limits (5.2) and Corollary 2.6 then imply the existence of
the transition temperatureβt and of the corresponding coexisting states. Since the negative of the
energy density undergoes a jump atβt from values' e−b/C2

to values/ e−aC2
—which differ

by almost one onceC � 1—all ergodic states forβ > βt must have small energy density while
the states forβ < βt will have quite a lot of energy. Applying (4.24–4.25), all ergodicµ ∈ Gβ

for β > βt must be dominated by strongly-order bonds, while those forβ < βt must be dominated
by disordered bonds. �
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