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Abstract: Existence of first-order phase transitions is often proved with the aid of reflection posi-
tivity and chessboard estimates. The standard approach relies on estimates of correlations in torus
measures which yield the existence of a transition point where the free energy has a discontinuous
derivative with respect to a suitably chosen variable. In addition, at the transition point, two distinct
translation-invariant Gibbs states are extracted from torus measures in which the one-sided deriva-
tives of the free energy are realized as expectations of a local obseXalblere we show that

(most of) the gap between these extreme expected values is forbidden: There are no shift-ergodic
Gibbs states for which the expectation Xflies deep inside the gap. We point out several re-
cent results based on chessboard estimates where our main theorems provide important additional
information concerning the structure of the set of possible thermodynamic equilibria.

1. INTRODUCTION

One of the basic tasks of mathematical statistical mechanics is to find a rigorous approach to var-
ious first-order phase transitions in lattice spin systems. Here, two methods of proof are generally
available: Pirogov-Sinai theory and chessboard estimates. The former, developed in [19, 20],
possesses an indisputable advantage of robustness with respect to (general) perturbations, but its
drawback is the (nearly strict) restriction to finite sets of possible spin values. The latter method,
which goes back to [12,13], is limited, for the most part, to systems with nearest-neighbor attrac-
tive interactions but it poses almost no limitations on the individual spin space. In particular, the
method of chessboard estimates is still the only tool we have for a general control of asymmetric
phase transitions in continuum spin systems.

A closer look at the results proved using the aforementioned methods reveals one important
additional difference. Namely, while both techniques ultimately produce a proof of phase coex-
istence, Pirogov-Sinai theory offers significantly better control of the number of possible Gibbs
states. In fact, one can prove the so cattethpleteness of phase diagr§22] which essentially
asserts that the states constructed by the theory exhaust the set of all shift-ergodic Gibbs states. In
a more technical language, there is a one-to-one correspondence between the shift-ergodic Gibbs
states and the “stable phases” defined in terms of minimal “metastable free energy”. No state-
ment of this kind has been available in the approaches based solely on chessboard estimates. This
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makes many of the conclusions based on this technique—see [2,4, 8,11, 21] for a modest sample
of recent references—seem to be somewhat “incomplete.”

To make the distinction more explicit, let us consider the example of temperature-driven first-
order phase transition in thg-state Potts model witlq > 1. In dimensionsd > 2, there
exists a transition temperaturg, at which there arg ordered states—related by an underlying
symmetry of the model—that are low on both entropy and energy, and one disordered state which
is abundant in both quantities. The transition is accompanied by a massive jump in the energy
density (as a function of temperature). Here the proof based on chessboard estimates [16] seems
to produce “only” the existence of a temperature where the aforementipset states coexist,
but it does not rule out the existence of other states; particularly, those with energies “inside”
the jump. On the other hand, Pirogov-Sinai approaches [15, 17] permit us to conclude that
otherthan the above + 1 shift-ergodic Gibbs states can existSaand, in particular, there is a
forbidden gapof energy densities where no shift ergodic Gibbs states are allowed to enter.

The purpose of this note is to show that, after all, chessboard estimates can also be sup-
plemented with a corresponding forbidden-gap argument. As a consequence, the theorems of,
e.g., [2,4,8,11,16,21] imply not only tlexistencef particular states at the corresponding tran-
sition temperature, but also tlasenceof states that differ significantly from those proved to
exist. Our arguments are fairly general; indeed, apart from the necessary condition of reflection
positivity we require only translation invariance and absolute summability of interactions. The
main idea of the proof is that all Gibbs states (at the same temperature) have the same large-
deviation properties on the scale that is exponential in volume. This permits us to compare any
translation-invariant Gibbs state with a corresponding measure on torus, where chessboard esti-
mates can be used to rule out most of undesirable scenarios.

The rest of this paper is organized as follows: In Sect. 2.1 and 2.2 we define the class of mod-
els to which our techniques apply and review various elementary facts about reflection positivity
and chessboard estimates. The statements of our main theorems (Theorem 2.5 and Corollary 2.6)
come in Sect 2.3. The proofs constitute the bulk of Sect. 3; applications to recent results estab-
lished by means of chessboard estimates are discussed in Sect. 4. The Appendix (Sect. 5) contains
the proof of Theorem 4.4 which is a refined version of Theorem 3 of [11]. This result is needed
for one of our applications in Sect. 4.

2. MAIN RESULT

In order to formulate our principal claims we will first recall the standard setup for proofs of
first-order phase transitions by chessboard estimates and introduce the necessary notations. The
actual theorems are stated in Sect. 2.3.

2.1 Models of interest.

We will work with the standard class of spin systemsZShand so we will keep our discussion
of general concepts at the minimum possible. We refer the reader to Georgii’'s monograph [14]
for a more comprehensive treatment and relevant references.
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Our spinss, will take values in a compact separable metric sfgagaNe equipy with theo-
algebra%, of its Borel subsets and considerapriori probability measureg on (g, -%p). Spin
configurations orZ¢ are the collection$s,)y.z¢. We will useQ = QOZd to denote the set of all
spin configurations ofZ® and.Z to denote ther-algebra of Borel subsets 61 defined using
the product topology. IA ¢ Z¢, we defineZ, to be the sulbr-algebra of events depending
only on (S)xea- FoOr eachx e 79, the mapzy: Q — Q is the “translation byx” defined
by (7xS)y = Sc4y. Itis easy to check that, is a continuous and hence measurable fox allzd.
We will write A € Z9 to indicate that\ is a finite subset of.¢.

To define Gibbs measures, we will consider a family of Hamilton{@#g) , cz«. These will be
defined in terms of interaction potentidl® ) acze. Namely, for eacA € Z9, let®5: Q — R
be a function with the following properties:

(1) The function® 4 is .#a-measurable for each € VA
(2) The interaction(®,) is translation invariant, i.e@a.x = ®a o 7 for all x € Z¢ and

all A e Z9.
(3) The interaction(®,) is absolutely summable in the sense that
Il = > IPalle < oo. (2.1)
Aczd
OeA
The Hamiltonian on a set € Z% is a functionH, : Q — R defined by
Hy= D @a (2.2)
Aezd
ANA£D

For eachp > 0, let &4 be the set of Gibbs measures for the Hamiltonian (2.2). Specifically,
u € &g if and only if the conditional probability: (- |.#xc)—which exists since& is a Polish
space—satisfies, for al € Z9 andu-almost alls, the (conditional) DLR equation

—BHA(S)

Z

u(dsa| Fae)() = [ vo(dso. (2:3)

XeA

HereZ, = ZA (B, sac) is a normalization constant which is independerg,0f (S¢)xen-

Remark2.1 The results of the present paper can be generalized even to the situations with un-
bounded spins and interactions; see Theorem 4.5. However, the general theory of Gibbs measures
with unbounded spins features some unpleasant technicalities that would obscure the presenta-
tion. We prefer to avoid them and to formulate the bulk of the paper for systems with compact
spins. Our restriction to translation-invariant interaction in (2) above is mostly for convenience of
exposition. Actually, the proofs in Sect. 3 can readily be modified to include periodic interactions
as well.

2.2 Chessboard estimates.

As alluded to before, chessboard estimates are one of the principal tool for proving phase coex-
istence. In order to make this tool available, we have to place our spin system on tor{ig. Let
be the torus oL x --- x L sites and letH, : QE,TL — R be the function defined as follows.
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Given a configuratios = (Sx)xet, , We extends periodically to a configuratios on all of Z9.
Using Hy, to denote the Hamiltonian associated with the embedding ofnto Z9, we de-
fine H_(s) = Hr (5). Thetorus measuré®, ; then simply is

e AHL®)
PLg(ds) =

[T votdso. (2.4)

L XETL

HereZ_ = Z, (p) is the torus partition function.

Chessboard estimates will be implied by the conditioreéiéction positivity While this condi-
tion can already be defined in terms of interactiohs ) , <z, it is often easier to check it directly
on torus. Let us consider a torlis with evenL and let us split it into two symmetric halves,
and Ty, sharing a “plane of sites” on their boundary. We will refer to theBet T} N T
as aplane of reflection Let #3 and.Z; denote thes-algebras of events depending only on
configurations irll;” andT|, respectively.

We assume that the naturally-defined (spatial) reflection T, <> T| gives rise to a map
0p: Qy" — Q" which obeys the following constraints:

(1) Op is aninvolution, 8p o fp = id.
(2) 0p is areflectionin the sense that ifl € .#7 depends only on configurations in c T},
thendp (A) € .#5 depends only on configurationsaitp (A).

In many cases of interegt, is simply the mapping that is directly induced by the spacial reflec-
tionvp, i.e.,0p = V5, where(ﬁ;,(s))X = Syp(x); OuUr definition permits us to combine the spatial
reflection with an involution of the single-spin space.

Reflection positivity is now defined as follows:
Definition 2.2 Let P be a probability measure cmE)TL and letE be the corresponding expecta-

tion. We say tha® is reflection positiveif for any plane of reflectior and any two bounded
Z & -measurable random variabl¥sandY the following inequalities hold:

E(X0p(Y)) = E(YOp(X)) (2.5)
and
E(X6p(X)) > 0. (2.6)
Here,fp (X) denotes the# -measurable random variab¥eo 6p.
Remark2.3 Here are some standard examples of summable two-body interactions that are re-
flection positive. Consider spin systems with vector-valued spiasid interaction potentials
(D{X’y} = ‘]X,y (S(’ Sy)’ X 75 ya (27)

where J, y are coupling constants arfd -) denotes a positive-semidefinite inner producttan
Then the corresponding torus Gibbs measure With 0 is reflection positive for the following
choices ofJy y's:

(1) Nearest and next-nearest neighbor couplingg, = 4 if x andy are nearest neigh-
bors, Jxy = x with 4 > 2(d — 1)|«| if x andy are next-nearest neighbors ajd, = 0
in the remaining cases.
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(2) Yukawa-type potentials
iy = e, (2.8)

wherey > 0 and|x — y|; is the/!-distance betweex andy.
(3) Power-law decaying interactions

1

- - 2.9
Ix —yI3 29)

‘]X,Y

with s > 0.

The proofs of these are based on the general theory developed in [12, 13]; relevant calculations
can also be found in [1, Sect. 4.2].

Of course, any linear combination of the above—as well as other reflection-positive interactions—
with positive coefficients is still reflection positive.

Now, we are finally getting to the setup underlying chessboard estimates. Suppolsdghat
an integer multiple of an (integer) numbBr (To rule out various technical complications with
the following theorem, we will actually always assume thatis a power of 2.) LetAg c T,
be the box of B + 1) x --- x (B + 1) sites with the “lower-left” corner at the origin—we will
call such box aB-block We can tileT, by translates of\g by B-multiples of vectors from the
factor torus T = T, s. Note that the neighboring translates/of will have a side in common.
Let A be an event depending only on configurationgigt we will call suchA a B-block event
For eacht e T, we define the evertk (A) as follows:

(1) If t has all components even, thé.A) is simply the translation ofd by vectorBt, i.e.,
6 (A) = 151 (A) = (s € Q" : re(S) € A}

(2) For the remaining e T, we first reflectA through the “midplane” o in all directions
whose component dfis odd, and then translate the resultBias before.

Thus,8;(A) will always depend only on configurations in tBeblock Ag + Bt.
The desired consequence of reflection positivity is now stated as follows.

Theorem 2.4(Chessboard estimate).etP be a measure oﬁgL which is reflection-positive with
respect t&p. Then for any B-block event4,, ..., Ay, and any distinct sitesy, ..., t € T,

P(ﬁ@tj(/lj)) <
j=1 i

Proof. See [12,13]. O

m

2(Narcan) " (2.10)
LA

teT

The moral of this result—whose proof is nothing more than an enhanced version of the Cauchy-
Schwarz inequality applied to the inner prodoGtY — E(X6p(Y))—is that the probability of
any number of events factorizes, as a bound, into the product of probabilities. This is particularly
useful for contour estimates; of course, provided that the word contour refers to a collection of
boxes on each of which some “bad” event occurs. Indeed, by (2.10) the probability of a contour
will automatically be suppressed exponentially in the number of constituting “bad” boxes.
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2.3 Main theorems.

For anyB-block eventA4, we introduce the quantity

Y
pp(A) = L@go(m,ﬁ( N etuo)) , (2.11)
teT

with the limit taken over multiples oB. The limit exists by standard subadditivity arguments.
While the definition would suggest thag(A) is a large-deviation rate, chessboard estimates
(2.10) show thap;(A) can also be thought of as the “probability dfregardless of the status
of all other B-blocks.” This interpretation is supported by the fact tHat> p;(A) is an outer
measure o, With p;(Q) = 1, cf. Lemma 6.3 of [4].

Furthermore, recalling that y_; is the block ofN x - - - x N sites with the “lower-left” corner
at the lattice origin, let

1
Rn(A) = lyo1t 2.12
VA = R AZ o (212)
N-1
be the fraction oB-blocks (inAng-1) in which A occurs. Whenever € &, is a Gibbs state for
the Hamiltonian (2.2) at inverse temperatgirthat is invariant with respect to the shiftss x) yezd,
the limit

pu(A) = Jim Ru(A) (2.13)

existsy-almost surely. In the following, we will use, (A) mostly for measures that are actually
ergodic with respect to the shifts by multiples Bf In such cases the limit is self-averaging,
pu(A) = u(A) almost surely. Notwithstanding, we will stick to the notatign(A) to indicate

that claims are being made about almost-sure properties of configurations and not just expecta-
tions. To keep our statements concise, we will refer to measures which are invariant and ergodic
with respect to the translatiornisgy)x.7z¢ asB-shift ergodic

Our principal result is now as follows:

Theorem 2.5 Consider a spin system as described above and suppose that the torus measure is
reflection positive for alp > 0and all even L> 2. LetG,, ..., G, be a finite number of “good”
B-block events and |é8 = (G; U - - U G)° be the corresponding “bad” B-block event. Suppose
that the good block events are mutually exclusive and non-compatible (different types of goodness
cannot occur in neighboring translates afs):

(1) Gng;=gforalli # j.

(2) Ift, tyo € T are nearest neighbors, then

0, (G) N6, (G)) =0, l<i<j<r. (2.14)
Then for every > 0, there exist$ > 0 such that for any? > 0 with p;(B) < J we have
pu(B) €0, ¢€] (2.15)
and
p,u (gl) € [07 G]U[l - 69 1] (216)

for every B-shift ergodic Gibbs stajee &g andalli=1,...,r.
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We remark that the conclusion of Theorem 2.5 holds even when the requirement of compact
spin-spin space and norm-bounded interactions are relaxed to the conditimiteofaverage
energy We state the corresponding generalization in Theorem 4.5. Theorem 2.5 directly implies
the standard conclusion of chessboard estimates (cf. [9, Propositions 3.1-3.3] or [16, Theorem 4]):

Corollary 2.6 Let 1, < po be two inverse temperatures and {gt and G, be two mutually
exclusive and non-compatible good B-block events (conditions (1) and (2) in Theorem 2.5). Then,
for everye > 0O there exists a constaat> 0 such that the conditions

(1) pp(B) < oforall g e[p1, o] and

(2) pp(G2) <dandpg,(Gr) <0

imply an existence of an inverse temperatfire= (f1, 2) and of two distinct B-shift ergodic
Gibbs measureg, u» € &4 such that

pui(G)=1—¢,  j=12 (2.17)

The above assumptions (1) and (2) appear in some form in all existing proofs based on chess-
board estimates; see Sect. 4 for some explicit examples. The conclusions about the set of coex-
istence points can be significantly strengthened when, on the basis of thermodynamic arguments
and/or stochastic domination, the expected amount of goodhessreases (and; decreases)
with increasing3. Fore « 1 the phase diagram then features a unigue (massive) jump afgome
from states dominated k¥, to those dominated b§,. Theorem 2.5 implies that the bulk of the
values inside the jump are not found in any ergodic Gibbs state. Both Theorem 2.5 and Corol-
lary 2.6 are proved in Sect. 3.2.

3. PROOFS OF MAIN RESULTS

We will assume that there is an ergodic Gibbs meagure &, that violates one of the condi-
tions (2.15-2.16), and derive a contradiction. Various steps of the proof will be encapsulated in
technical lemmas in Sect. 3.1; the actual proofs come in Sect. 3.2.

3.1 Technical lemmas.

Our first step is to convert the information about infinite-volume densities into a finite volume
event. Using the sites fromy _; to translate th@-block Ag by multiples ofB in each coordinate
direction, we get J,.,,_,(As + BX) = Ans. Similarly, considering translates dfyg by
vectorsN Bxwherex € Ay_1, we getUXGAMfl(ANB + NBX) = Ayng - The important point
is that, while the neighboring translatés g + N BxandAyg + N Byare not disjoint, they have
only one of their(d — 1)-dimensional sides in common.

Let By and&jn, j =1,...,r1, be events defined by

BN = {RN(B) > E} (31)

and

Sj,N:{RN(gj)>e}, j =1...,r. (3.2)
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Introducing the event

Ev=BvU |J @EnnéEn) (3.3)
I<i<j<r
and the fractiorRy n(En) of BN-blocks (inAumns) in which &y occurs,
R = 1 3.4
M.N(EN) Al Xe%l En © TNBx (3.4)

we have:

Lemma3.1 Lete < Y, and consider a B-shift ergodic Gibbs measure &, that violates one
of the conditions (2.15-2.16). Then there exists an\oo and, for each N> Ng, there exists
an My = Mg(N) such that for all N> Ng and all M > Mg(N), one has

,u( RM,N(gN) > l/2) > (35)

2Nd”

Proof. The proof is based on a two-fold application of the Pointwise Ergodic Theorem. Indeed,
by ergodicity ofu and Fatou’s lemma we know that

liminf 1 (Bn) > p(pu(B) > €) (3.6)
and
”,\VITLigofﬂ(fi,N NEN) = u({pu(G) > e} N{pu(G)) > €}). (3.7)

But x violates one of the conditions (2.15-2.16) and so eifhgi3) > € or p,(Gi) > €
and p,(Gj) > € for somei # j. All of these inequalities are valig-almost surely and so it
follows that
w(En) — 1 (3.8)
N— oo
Now, let us fixN so thatu(En) > 34 Then ergodicity with respect to translates by multiples
of B implies that

ﬂ( U {RM,N(gN)OTBy>1/2})2,u($ Z RM,N(gN)OTBy>%)

YeAN-1 YeAN-1 (3.9)
= u(Run(€n) > 1) e 1.
It follows that the left-hand side exceetisonceM is sufficiently large, which in conjunction
with subadditivity andrgy-invariance ofu directly implies (3.5). O

Our next task will be to expres& solely in terms of conditions on bdg-blocks inAng =
Uxeay_,(As + BX). Given two distinct sitex, y € An-1, let {x « y} denote the event that

there is no nearest-neighbor path= (x4, ..., Xx) on Ay_1 such that
(1) 7 connectx toy,i.e.,x; = X andxx = .
(2) all B-blocks “along”z are good, i.e.7gy, (B8°) occurs forallj = 1,..., k.

Note that{x <> y} automatically holds when one of the blocks + Bx or Ag + By is bad.
Further, letYy be the (5, ,-measurable) random variable

Yn =#{(X,Y) € An—1 X Anc1i X # Y& X Y} (3.10)
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and letCy be the event
Cn = {Yn > (eN9?}. (3.11)
Conditions (1) and (2) from Theorem 2.5 now directly imply:

Lemma 3.2 Forall N, we havefy c Cy.
Proof. Clearly, we haveBy ¢ Cy, and so we only have to show that
EnNéEjn CCn, 1<i<j<r. (3.12)

Let us fixi # j and recall that orf; y N & n, at least are-fraction of all B-blocks in Ang

will be i-good and at least an-fraction of them will bej-good. By conditions (1) and (2)
from Theorem 2.5, no tw@-blocks of different type of goodness can be connected by a path of
good B-blocks, and so there are at legsiNY)? pairs of distinctB-blocks in Ayg that are not
connected to each other by a path of good blocks. This is exactly what defines thégveii

The event€y andCy have the natural interpretation BlsB-block events o', whenevell is
divisible by N B. If A is such anN B-block event, lep;(.A) denote the analogue of the quantity
from (2.11) where thé;’s now involve translations by multiples dfi B. Our next technical
lemma provides an estimate pp(Cn) in terms ofpz(B):

Lemma 3.3 Let d be the dimension of the underlying lattice and suppose that 8 For
eache > 0O—underlying the definitions dfy, &y and Cy—and eachy > 0, there exists a
numberd = d(e, 5, d) > Osuch that ifpz(B) < J, thenps(Cn) < 7.

Proof. Let us usdI_ z(Cn) to abbreviate the quantity

ML) =Pug( N acn), (313)

teT

whereT = T e is the factor torus in the present context. Observing thats preserved
by reflections through the “midplanes” éfy g, @ multivariate version of Chebyshev’s inequality
then yields

v
M p(Cn) < EL,ﬂ(H M) (3.14)

Nd)2
teT (E )

HereE_ ;4 is the expectation with respect .

To estimate the right-hand side of (3.14), we will rewritg as a sum. Lek,y € An_;1 be
distinct. A connected subsEt c Ayn_; is said toseparate x from ¥in Ay_1) if each nearest-
neighbor pathr from x to y on An_; intersectd”. We useS(x, y) to denote the set of all such
setsI" C An-1. Notice that{x}, {y} € &(x, y). We claim that, whenevek, y) is a pair of points
contributing toYy, there existd™ € &(x, y) separatingk from y such that every blockg + Bz
with z € T is bad. Indeed, ifAg + Bx is a bad block we tak& = {x}. If Ag + Bxis a
good block, then we defin®, to be the maximal connected subsetAg§_; containingx such
that Ag + Bzis a good block for alz € %, and letI” be its external boundary. Usirlg- to
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denote the indicator of the event that every blacgk+ Bzwith z € T is bad, we get

Wws > > 1. (3.15)

X,YeAN-1 TeB(X,y)

Let K = (ﬁ)d be the volume of the factor torus and tef. .., tx be an ordering of all sites
of T. Then we have

T 4(Cn) < 7 Nd)ZK Z Z Ep ﬁ(le, OTBNt,) (3.16)

(X »Yj ) | T
where the first sum runs over coIIectlons of pais yj), ] = 1,..., K, of distinct sites imAn_1
and the second sum is over all collections of separating surfacesS(x;, y;), j =1,..., K.

To estimate the right-hand side of (3.16) we defipg; (B) to be the quantity on the right-hand
side of (2.11), before taking the limit — oo, with A = B. Since each indicatdlr; o rgny
enforces bad blockdg + B(z + Nt;) for z € I'j, and the set of blockdg + B(z + Nt;),
zZ € An-1, IS, fort; # tj, disjoint from the setAg + B(z + Ntj), z € An-1, We can use
chessboard estimates (Theorem 2.4) to get

K
EL,ﬁ(H 1r; o TBth) < [PL,ﬁ(B)]lrlH“'HFKL (3.17)
j=1
A standard contour-counting argument now shows that, for any distince Ay_1,
> Ipes®]" < cpLs®B) (3.18)
TeS(x,y)
with some constart; = ¢;(d), provided thap,_ ;(B) is sufficiently small. The sum over collec-
tions of pairs(xj, yj), ] = 1,..., K, contains at mogtN2%)K terms, allowing us to bound
c B\«
ML 4(Cn) < (—”OL:’Z( ) ) . (3.19)

SinceHL,/;(CN)l/K — Pg(Cn) asL — oo, it follows that ps(Cn) < cips(B)%e2, which
for ps(B) small enough, can be made smaller than amyitially prescribed. d

Our final technical ingredient is an estimate on the Radon-Nikodym derivative of a Gibbs
measureu € &, and the torus measure at the same temperature:

Lemma 3.4 LetA, c Z% be an L-block and lef',, be a torus of sid@L. Let us viewA, as
embedded int@,. and letP 4 be the torus Gibbs measure @, . Then for any a> 0 there
exists lg such that

e PPy L(A) < u(A) < 2Py 4(A). (3.20)

forall L > Lo, anyu € &, and any.#,, -measurable evend.
Proof. For finite-range interaction, this lemma is completely standard. However, since our setting

includes also interactions with infinite range, we provide a complete proof. We will prove only
the right-hand side of the above inequality; the other side is completely analogous.
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First, from the DLR equation we know that there exists a configuratien(s,)..z¢, such that
H(ALF AN (S) = p(A) (3.21)
with the left-hand side of the form (2.3). Let be a configuration off,_.. We will show that

w(- | Fae)(s) andPo 4(- |- Fac)(S)) are absolutely continuous with respect to each other—as

measures o, —and the Radon-Nikodym derivative is bounded above/{?}'fderegardless of
the “boundary conditions$ ands'.

Suppose thag, = s, for all x € A_ and let§ be its A -periodic extension to all o¥d.
Then the Radon-Nikodym derivative &% 4(-|#a¢)(s) with respect to the product measure
[Txen, vo(dsy) is €M)z, (S\¢) while that of (- |- Zag)(s) is e /MG Z, (sae). Itthus
suffices to show, uniformly itisy)xea, , that

i a
[Ha (8) — HA ()] < E"d (3.22)
oncel is sufficiently large. To this end, we first note that
[Ha (9 —Ha )] <2 D7 [Palle- (3.23)
A: ANAL A0
ANAS £

To estimate the right-hand side, we will decompadseinto “shells,” A, \ An_1, and use the fact
that if A intersects\p \ An—1 as well asA, then the diameter oA must be at leadt — n. Using
the translation invariance of the interactions, we thus get

L

D ®allo < D 1A\ Ancal D P4l (3.24)
A ANAL#D n=1 . A OcA
ANAT #0 diam(A)>L—n
But||®|| < oo implies that the second sum tends to zerb asn — oo and sincgAn\ An_1| =
o(L%) while 37, _ . [An\ An_z| = L9, the resultis thus(L?). In particular, forL sufficiently
large, the right-hand side of (3.23) will be less tt‘%irf‘. O

3.2 Proofs of Theorem 2.5 and Corollary 2.6.

Now we are ready to prove our main theorem:

Proof of Theorem 2.5Fix € < 1> and letu € &, be aB-shift ergodic Gibbs measure for which
one of the conditions (2.15-2.16) fails. Applying Lemma 3.1 and the inclusion in Lemma 3.2 we
find that

1 (Rv.n(CN) > Ya) > >Nd (3.25)
onceN > NgandM > Mp(N). Now, consider the toru¥, of sideL = 2MNB and em-
bedApyng = UXEAM,l(ANB + N Bx) into T, in the “usual” way. By Lemma 3.4 we know that
for anyfixed N > Ng, there exists a sequenag of positive numbers witlay, | 0 asM — oo,
such that we have

1
Py g (Run(Cn) > 1) > Ne—NNB)"aMM“, M — oo. (3.26)
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Our goal is to show that, ondd is chosen sufficiently large, the left-hand side is exponentially
small in M9, thus arriving at a contradiction.

By conditioning on which of thev1¥/2 translates of\ gy haveCy satisfied, and applying the
chessboard estimates in blocks of shii&, we get

PLg(Run(Cn) > Y2) < oM* f’ZL,ﬁ(CN)Md/Z, (3.27)

wherep, 45(Cn) is the finite-torus version df;(Cn). Next we choose; < %4 and lets > 0
andN > Ny be such that the bounds in Lemma 3.3 apply. Then for all sufficiently lsrdand
hence all large.) we havep, ;(Cn) < 1 and so

Py s(Run(Cn) > ) < (4p™M72. (3.28)
But this is true for allM > 1 and so the bound (3.26) must be false. Hence, no gueh®,
could exist to begin with; i.e., (2.15-2.16) must hold forBdbhift ergodicu € &;. O

To finish our proofs, we will also need to establish our claims concerning phase coexistence:

Proof of Corollary 2.6.Suppose that ando are such that Theorem 2.5 applies. By condition (1),
the conclusions (2.15-2.16) of this theorem are thus available fgrall 1, £>]. This implies

p.(Gj) € [0, €]U[1 — ¢, 1], 1=12, (3.29)

for every B-shift ergodicu € &, at everyp € [f1, f2]. We claim thatp, (G-) is small in every
ergodic statg: € 8y,. Indeed, by Lemma 6.3 of [4] and condition (2) of the corollary, we have

Pp(BUG2) < pp(B) + pp (Gj) < 20. (3.30)

Hence, if thed in Corollary 2.6 was so small that Theorem 2.5 applies for seme 1, even
when ¢ is replaced by & we can regard3 U G, as a bad event g8 = p; and conclude
that p,(G2) < Y2, and hence,(G2) < €, by (3.29), in every ergodigz € &p,. A similar ar-
gument proves that, (G1) < € in every ergodiq: € &;,. Usual weak-limit arguments then yield
the existence of at least one pojhte (51, 2) where both types of goodness coexist. O

4. APPLICATIONS

The formulation of our main result is somewhat abstract. In the present section, we will pick
several models in which phase coexistence has been proved using chessboard estimates and use
them to demonstrate the consequences of our main theorem. Although we will try to stay rather
brief, we will show that, generally, the hypothesis of our main result—i.e., the assumption on
smallness of the parametgy (8)—is directly implied by the calculations already carried out in

the corresponding papers. The reader should consult the original articles for more motivation and
further details concerning the particular models.

4.1 Potts model.

The g-state Potts model serves as a paradigm of order-disorder transitions. The existence of the
transition has been proved by chessboard estimates in [16]. While the completness of the phase
diagram has, in the meantime, been established with the help of Pirogov-Sinai theory [18], we
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find it useful to illustrate our general claims on this rather straightforward example. Later on we
will pass to more complex systems where no form of “completness” has so far been proved.

The spinsoy of the g-state Potts model take values in the get . ., q} with a priori equal
probabilities. The formal Hamiltonian is

H(o) == dsays (4.1)
(x,y)

where(x, y) runs over all (unordered) nearest-neighbor pai&4inThe states of minimal energy
have all neighboring spins equal, and so we expect that low temperature states are dominated
by nearly constant spin-configurations. On the other hand, at high temperatures the spins should
be nearly independent and, in particular, neighboring spins will typically be different from each
other. This leads us to consider the following good events on 1-bigck
G¥={o:ox#ayforallx,y e Ay, [x —y| =1}, 42)

Gom = {5: oy = mforall x € A4}, m=1,...,q. '
Using similar events, it was proved [16] that, fbr> 2 andq sufficiently large, there exists an
inverse temperaturg andq + 1 ergodic Gibbs states™ e &4 andu®@™ e &5, m=1,...,q,
such that the corresponding 1-block densities satisfy

Pus(GH) > 1— € (4.3)

and
p#ordm(gord’m) >1-— €, m= l, ...»q, (44)

wheree = €(q) tends to zero ag — oo. In addition, monotonicity of the energy density as a
function of # can be invoked to show that, (G9s) is large in all translation-invariant e Gy
wheng < f;, while it is small in all such states whe¢h> f;.

The full completeness [18] asserts that above mentianedl states exhaust the set of all
shift-ergodic Gibbs states iti;. A weaker claim follows as a straightforward application of our
Theorem 2.5: There iso shift-ergodic Gibbs state € &g, such that

p(G™) ele,1—€] or p,(G°™ e e, 1—¢], (4.5)

for somem = 1,...,q. The main hypothesis of our theorem amounts to the smallness of the
quantitypz(B), where

B = (gdisu O gord,m)c’ (4.6)
m=1

which in turn boils down to an estimate on the probability of the disseminated Byemthe right-
hand side of (2.11). The needed estimate coincides with the bound provided in [16] by evaluating
directly (i.e., “by hand”) the energy and the number of contributing configurations. The result—

which in [16] appears right before the last formula on p. 506 is used to produce-4eéds
qd—2-<d-1> A
b®) = | o =pa] (4.7)

This implies the needed bound onges> 1.
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Remark4.1 Analogous calculations establish the corresponding forbidden gap in more compli-
cated variants of the Potts model; see e.g. [3].

4.2 Intermediate phases in dilute spin systems.

Another instance where our results provide new insight are dilute annealed ferromagnets exhibit-
ing staggered order phases at intermediate temperatures. These systems have been studied in the
context of both discrete [6] and continuous spins [7]. The characteristic examples of these classes
are thesite-diluted Potts modetith the Hamiltonian

H(,0) = = > My(@roy — D — A D N — 1 D y0y (4.8)
(X,y) X (x,y)
and thesite-diluted XY -modetith the Hamiltonian
H(n, ¢) = = D nny[codgy — gy) — 1] = 2D n—x D~ nyn,. (4.9)
(X,y) X (X,y)
Here, as beforesy € {1, ..., q} are the Potts spingx € [—x, =) are variables representing the

“angle” of the correspondin® (2)-spins, andy € {0, 1} indicates the presence or absence of a
particle (that carries the Potts spip or the angle variable,) at sitex.

On the basis of “usual” arguments, the high temperature region is characterized by disordered
configurations while the low temperatures features configurations with a strong (local) order, at
least at small-to-intermediate dilutions. The phenomenon discovered in [6, 7] is the existence
of a region of intermediate temperatures and chemical potentials, sandwiched between the low
temperature/high density ordered region and the high temperature/low density disordered region,
where typical configurations exhibit preferential occupation of one of the even/odd sublattices.
The appearance of such states is due teféattive entropic repulsionindeed, at low tempera-
tures the spins on particles at neighboring sites are forced to be (nearly) aligned while if a particle
is completely isolated, its spin is permitted to enjoy the full freedom of the available spin space.
Hence, at intermediate temperatures and moderate dilutions, there is an entropic advantage for
the particles to occupy only one of the sublattices.

Let us concentrate on the portion of the phase boundary between the staggered region and the
low temperature region. The claim can be stated uniformly for both systems in (4.8—4.9) provided
we introduce the relevant good events in terms of occupation variaiNamely, we let:

Gene={(s,n): ny = Lforallx e A1},
G®®"={(,n): Ny = Lixeven forall x e Ay}, (4.10)
G = {(,n): Ny = Lixouq forall x € Aq}.

Again, using slightly modified versions of these events, it was shown in [6, 7] that there exist
positive numbersg, xg < 1 and, for everyk € (0, xg), an intervall (x) c R such that the
following is true: For anyl € | there exist inverse temperatur@gx, 1) and S2(x, A), and a
transition temperaturg(«, 1) € [f1, f2] such that

(1) foranyp e [B, B2] there exists an “densely occupied” stat®"see & 4, for which
P uensd GI™5g > 1 — e, (4.11)



FORBIDDEN GAP ARGUMENT AND CHESSBOARD ESTIMATES 15

(2) foranyp e [1, Bi] there exist two stateg®®", ,°% e & satisfying
pﬂeven(gever) > 1-—¢ and pluodd(gc)dd) > 1-—-ec (412)

The errore is of order/?‘l/8 (cf. the bound (2.15) in [7]) in the case of tiY-model ind = 2,
and it tends zero ag — oo in the case of the diluted Potts model.

A somewhat stronger conclusion can be made for the diluted Potts model. Nameky, A
there are actually + 2 distinct states, two staggered stai€¥" and 4°% andq ordered states
w9ensem with the latter characterized by the condition

pludensem(gdensem) > 1- €, (413)

where
giensem — {(g,n): ny = 1 andox = mforall x € Aq}. (4.14)

It is plausible that an analogous conclusion applies to the XY-mod#I#n3 because there the
low-temperature phase should exhibit magnetic order. Howevdr=2 such long-range order
is not permitted by the Mermin-Wagner theorem and so there one expects to have only 3 distinct
ergodic Gibbs states #&t.

A weaker form of the expected conclusions is an easy consequence of our Theorem 2.5: There
exists no shift-ergodic Gibbs statee &4 such that

pu(G) ele,1—€] forsome G e (GUense geven goddy (4.15)
and, in the case of diluted Potts model, also
pu(GE"e™ c[e,1—¢] forsome me(1,...,q}. (4.16)

In particular, no ergodic Gibbs statee &g, has particle density ine[ Y2 — e]U[Y2 + €, 1 — €].

The proof of these observations goes by noting that the smallngsg(B§ for the bad event

B = (gUensey geveny goddye s a direct consequence of the corresponding bounds from [6, 7]
of the “contour events.” In the case of the XY-model in dimengdog: 2, this amounts to the
bounds (2.9) and (2.15) from [7].

Remark4.2 A more general class of models, with spin taking values in a Riemannian manifold,
is also considered in [7]. A related phase transition in an annealed dii{ayl Heisenberg
ferromagnet has been proved in [8].

4.3 Order-by-disorder transitions.

Another class of systems where our results provide new information ar® tBenearest and
next-nearest neighbor antiferromagnet [2], the 120-degree model [4], and the orbital-compass
model [5]. All of these are continuum-spin systems whose common feature is that the infinite
degeneracy of the ground states is broken, at positive temperatures, by long-wavelength (spin-
wave) excitation. We will restrict our attention to the first of these modelsQOu-nearest and
next-nearest neighbor antiferromagnet. The other two models are somewhat more complicated—
particularly, due to the presence of non-translation invariant ground states—but the conclusions
are fairly analogous.
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Consider a spin system @f whose spinsS,, take values on the unit circle i®? with a priori
uniform distribution. The Hamiltonian is

H(S) = D (St Screrrer + Sc - Scrar-er) +7 D (Sc- Scue +Sc- Sve). (417)
X X

whereg&; and&, are the unit vectors in the coordinate lattice directions and the dot denotes the

usual scalar product. Note that both nearest and next-nearest neighbors are coupled antiferro-

magnetically but with a different strength. The following are the ground state configurations

for y € (=2, 2): Both even and odd sublattices enjoy aéNgantiferromagnetic) order, but the

relative orientation of these sublattice states is arbitrary.

It is clear that, at low temperatures, the configurations will be locally near one of the afore-
mentioned ground states. Due to the continuous nature of the spins, the fluctuation spectrum
is dominated by “harmonic perturbations,” a.ksain waves A heuristic spin-wave calculation
(cf. [4, Sect. 2.2] for an example in the context of the 120-degree model) suggests that among
all 2z possible relative orientations of the sublattices, the parallel and the antiparallel orienta-
tions are those entropically most favorable. And, indeed, as was proved in [2], there exist two
2-periodic Gibbs states; andu» with the corresponding type of long-range order. However, the
existence of Gibbs states with other relative orientations has not been ruled out.

We will now state a stronger version of [2, Theorem 2.1]. Bébe a large even integer and
consider twoB-block eventsj; andg, defined as follows: fixing a positive « 1, let

Gi= (] (S-S 21-x,1n () {Sc-Sue < -1+l (4.18)
( X’y)E{\B 0 X,X+&eAp
y—X)-&=

i.e.,G1 enforces horizontal stripes all ovArg. The eventy, in turn enforces vertical stripes; the
definition is as above with the roles &f and&, interchanged. Then we have:

Theorem 4.3 Lety € (0, 2) and letk « 1. For eache > 0 there exists &, € (0, co) and, for
eachp > fo, there exists an integer B 1 such that for any: € &, that is ergodic with respect
to shifts by multiples of B we have

pu(G) €0, e]lUl—€ 1], j=12 (4.19)
In particular, there exist two ergodic Gibbs states, 1> € &4, such that
p/‘j (gj) 2 1- €, J = 13 25 (420)

The second conclusion—the existence of Gibbs states with parallel and antiparallel relative
orientation of the sublattices—was the main content of Theorem 2.1 of [2]. What we have added
here is that the corresponding configurations domiakitergodic Gibbs states. Th&(2) ground-
state symmetry of the relative orientation of the sublattices is thus truly broken at positive temper-
atures, which bolsters significantly the main point of [2]. Note that no restrictions are posed on the
overall orientation of the spins. Indeed, by the Mermin-Wagner theorem (see [2, Theorem 2.2])
everyu € &y is invariant under simultaneous rotations of all spins.

Proof of Theorem 4.3As expected, the proof boils down to showing that, for a proper choice

of scaleB we haveps(B) « 1 for B = (G1 U G2). In [2] this is done by decomposing into
more elementary events—depending on whether the “badness” comes from excessive energy or
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insufficient entropy—and estimating each of them separately. The relevant bounds are proved
in [2, Lemmas 4.4 and 4.5] and combined together in [2, Eq. (4.20)]. Applying Theorem 2.5 of
the present paper, we thus know that evBrghift ergodicu € &4 is dominated either by blocks

of type G, or by blocks of typ&j,. Sincep, (B) < € in all states, the existence pf;, u» € &y
satisfying (4.20) follows by symmetry with respect to rotation (of the lattice) by 90-degrées.

4.4 Nonlinear vector models.

A class of models with continuous symmetry that are conceptually close to the Potts model has
been studied recently by van Enter and Shlosman [11]. As for our previous examples with con-
tinuous spins, Pirogov-Sinai theory is not readily available and one has to rely on chessboard
estimates. We will focus our attention on one example in this classnénear ferromagnet
although our conclusions apply with appropriate, and somewhat delicate, modifications also to
liquid crystal models and lattice gauge models discussed in [11].

Let us consider a®(2)-spin system orZ? with spins parametrized by the angular variables
¢x € (—=r, r]. The Hamiltonian is given by

Hp = - 3 (LIt (4.2)

2
x,y)

wherep is a nonlinearity parameter. Tlagpriori distribution of thep,'s is the Lebesgue measure
on (—=, z]; the differencepy — ¢y is always taken moduloz2

In order to define the good block events, we first split all bonds into three classes. Namely,
given a configurationigy)y.72, we say that the bonk, y) is

(1) strongly orderedf |<;§X — ¢yl < CLﬁ
(2) weakly orderedf Cf <lgx — byl < % and

(3) disorderedif |y — ¢yl > fﬁ

HereC is a large number to be determined later. If a bond is either strongly or weakly ordered,
we will call it simply ordered

On the basis of (4.21), it is clear that strictly ordered bonds are favored energetically while
the disordered bonds are favored entropically. The main observation of [11] is that, at least in
torus measures, ordered and disordered bonds are unlikely to occur in the same configuration.
Unfortunately, ordered bonds can be continuously deformed to become disordereckavetrsa
and so to prove the existence of an order-disorder transition, one needs to supplement this by the
observation that it is unlikely to have many bonds in the “borderline” regiign- ¢| ~
In order to correct for this problem, and to enable the use of our main theorems, we will have to
prove the existence of a free-energy barrier betweesttbaglyordered and disordered phases.

Let A; be a 1-block (i.e., a plaquette) and let us consider the following good evems:on
The event that all bonds of; are strongly ordered,

0= {I¢x = X,y € A, x -yl =1}, (4.22)

¢y_Cf
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and the event that all bonds dn are disordered,
C
Guis = {|¢x—¢y| > ﬁ: UX,y € Ay, [X=Y| 21}- (4.23)

As usual, letB = (Gso U Ggis)© be the corresponding bad block event. Then we have:

Theorem 4.4 For eache > 0 and each sufficiently large G 1, there exists > 0 such that
forall p > po, all # > 0and all shift-ergodicu € &, we have

Pu (gdis), Pu (gSO) € [O, G]U[l — €, 1] (424)
and
pu(B) < €. (4.25)
Moreover, for every p> po there exists a numbes; € (0, co) and two distinct, shift-ergodic
Gibbs stateg:*°, u% € &, such that
puso(Gso) > 1—€ and p,as(Gais) > 1 — . (4.26)
Finally, the left inequality applies to every ergodice &, wheng > f;, while the right inequal-
ity applies to every ergodig € &5 wheng < f.

This theorem settles, somewhat more apparently than Theorem 3 of [11], the controversy in
the physics literature about whether this system does or does not undergo a first-order transition
as the temperature varies; see [10] for more discussion and relevant references. The proof of
Theorem 4.4 is fairly technical and it is therefore deferred to Sect. 5.

4.5 Magnetostriction transition.

Our final example is the magnetostriction transition studied recently by Shlosman and Zagreb-
nov [21]. The specific system considered in [21] has the Hamiltonian

H(o.r) == J(txy)oxoy +x D (y —RZ+4 D (rxy —Tzy) (4.27)
X,y (X,y) (X,¥),(z,y)
IX—2=+/2

Here the sites e Z9 label the atoms in a crystal; the atoms have magnetic moments represented
by the Ising sping . The crystal is not rigid; the variableg , € R, ryy > 0, play the role of
spatial distance between neighboring crystal sites.

The word magnetostrictiorrefers to the phenomenon where a solid undergoes a magnetic
transition accompanied by a drastic change in the crystalline structure. In [21] such a transition
was proven for interaction potentials= J(ry y) that are strong at short distances and week at
large distances. The relevant states are characterized by djoinacted

GO =A{(r,o):rxy <7, VX, Yy € Ag, X —y| =1}, (4.28)
andexpanded
GHPE={(r,0) Iy > n+e VX, ye Ay, Ix—yl =1} N{ox==£1 ¥x e A1}, (4.29)

block events. The parametejaande can be chosen so that there exigts= (0, co) for which
the following holds:
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(1) Forallp < i there exists aexpandedsibbs state:®** € &4 such thafp ,exw(G*P) > 34;
(2) For all p > g there exist two distinctontractedGibbs stateq:®""* e &, such that
P ycontr (gcomr’i) > 3/4.
In particular atp = p; there exist three distinct Gibbs states; one expanded and two contracted
with opposite values of the magnetization. The authors conjecture that these are the only shift-
ergodic Gibbs states &t= p;.
Unfortunately, the above system has unbounded spins and interactions and so it is not strictly

of the form for which Theorem 2.5 applies. Instead we will use the following generalization:

Theorem 4.5 Consider a spin system with translation-invariant finite-range interaction poten-
tials (P a) aeze Such that the torus measure is reflection positive for all even L Glet. ., G,

be a collection of good B-block events satisfying the requirements in Theorem 2.5 &hdet
the corresponding bad event. Then foralk 0 there exist® > 0 such that for allg > 0 for
whichp;(B) < J the following is true: Ifu € ¢ is a B-shift invariant Gibbs state with

> Eu(1®al) < oo, (4.30)
A: Aezd
0cA
then we have
pu(B) €0, €] (4.31)
and
Pu (gl) € [09 E]U[l — €, 1]9 (432)
foralli =1,...,n.

Proof. The proof is virtually identical to that of Theorem 2.5 with one exception: Since the
interactions are not bounded, we cannot use Lemma 3.4 directly. Suppose we have a Gibbs
stateu that obeys (4.30) but violates one of the conditions (4.31-4.32) Rket(Cn) be as in
(3.4). Lemma 3.1 still applies and so we have (3.5) for sdime
Let L = MNB and letDy be the event that the boundary energy in the Boxs less
thancM9-1, j.e.,
Dy = [ > @Al cM‘H]. (4.33)

A: ANAL £
ANAS £0

wherec is a positive constant. In light of the condition (4.30), the fact that the interaction has a
finite range, and the Chebyshev bound, it is clear that we can cleaosthatu (D,) < (4N9)~1
for all M. Hence, we have

1 (D N {RuN(CN) > Y2}) > NG (4.34)

Next lets ands’ be as in the proof of Lemma 3.4 and suppose that bathds’ belong toDy,.
Then, by definition,

[Ha, (S) — Ha (8)]| < 2cM! (4.35)
and, applying the rest of the proof of Lemma 3.4, we thus have

#(Dw N {Ru,N(Cn) > Y2}) < ezﬁCMd_lsz,ﬂ(DM N {Ru,n(CNn) > Y2}). (4.36)
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NeglectingD_ on the right-hand side and invoking (3.28), we again derive the desired contradic-
tion onceM is sufficiently large. O

With Theorem 4.5 in the hand, we can extract the desired conclusion for the magnetostriction
transition. First, the energy condition is clearly satisfied in any state generated by tempered
boundary conditions. We then know that, in every such ergodic gtately a small number
blocks will feature bonds that are neither contracted (and magnetized) nor expanded (and non-
magnetized):

pu(G™P), p, (GPF) € [0,€]U[l —€,1] and p,(B) <e. (4.37)

The existence of a phase transition follows by noting that the contracted states have less energy
than the expanded ones; there is thus a jump in the energy density as the temperature varies.

5. APPENDIX

The goal of this section is to prove Theorem 4.4 which concerns non-linear vector model with
interaction (4.21). The technical part of the proof is encapsulated into the following claim:

Proposition 5.1 There exists a constant,C> 0 such that for allo > 0 and all C > Cj the
following holds: There existsgp> 0 such that for all p> po we have

suppg(B) <o (5.1)
>0
and
ﬁ“_rﬁoo ps(Gais) =0 and %Tg P4(Gso) < 0. (5.2)

To prove this proposition, we will need to carry out a sequence of energy and entropy bounds.
To make our energy estimates easier, and uniforp) ine first notice that there are constants 0
a < bsuch that

e_bxz < 1+ CZOS(X) < e_aX2’

The argument commences by splittiflginto two events: The everif,, that A; contains a
weakly-ordered bond, anfinix = B \ By Which, as a moment’s thought reveals, is the event
that A; contains two adjacent bonds one of which is strongly ordered and the other disordered.
The principal chessboard estimate yields the following lemma:

Lemma 5.2 Suppose that G2 ,/p. Then

—-1l<x<1l (5.3)

Y,
k22 _a/c2 _a/c2
Ps(Buwo) < 4(min{%2 g 2ple™ /" —ema/C I %eme /c }) (5.4)
and .
72
. _opr3a-b/C2_4_-ac? 3
Ps (Bri) < 4(mm{e e e (L) /“}) (5.5)

forall # > 0Oand allx € (0, 1). Moreover, we have

Ps(Gais) < TC/P exp(—2p[e” ¢t — e=2%"]) (5.6)
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and
1 e
Ps(Gso) < ;C—\/_p

Proof. Let Z, be the partition function obtained by integratirngfgL over all allowed configura-
tions. Consider the following reduced partition functions:

(5.7)

(1) z%s, obtained by integrating @ subject to the restriction that every bondip is disor-
dered.

(2) Z7° obtained similarly while stipulating that every bondlip is strongly ordered.

(3) Z*°, in which every bond ifT_ is asked to be weakly ordered.

(4) Z'L“ix, enforcing that every other horizontal line contains only strongly-ordered bonds, and
the remaining lines contain only disordered bonds. A similar periodic pattern is imposed on
vertical lines as well.

To prove the lemma, we will need upper and lower bounds on the partition functions in (1-2), and
upper bounds on the partition functions in (3-4).

We begin by upper and lower bounds @®. First, using the fact that the Hamiltonian is
always non-positive, we have &'t > 1. On the other hand, the inequalities (5.3) and a natural
monotonicity of the interaction imply that

(1+cos(gﬁx —¢y))p . (1+cos;C/¢_p))p < e

(5.8)

whenever(x, y) is a disordered bond. In particularHy is less than ,Be‘aCZ|TL| for every
configuration contributing t(Z‘L“S. Using these observations we now easily derive that

2r)" <z < (27)™! e2be I, (5.9)

Similarly, for the partition functiorZ{° get

(ezﬂe—bxz/czz_")m' < 7% < Zﬂezp’lTLl(i)lTLl_l. (5.10)
CJ/p CJ/p
Indeed, for the upper bound we first note thatH, < 28|T|. Then we fix a tree spanning all
vertices ofT_, disregard the constraints everywhere except on the edges in the tree and, starting
from the “leaves,” we sequentially integrate all site variables. (Thus, each site is effectively forced
into an interval of IengthCZTﬁ, except for the “root” which retains all of itsz2possibilities.) For
the lower bound we fix a number € (0, 1) and restrict the integrals to configurations such that
lpx — pyl < #ﬁ for all bonds(x, y) in T,.. The bound-gH_ > Z,Be‘b"z/cz|'JI‘L| then permits us
to estimate away the Boltzmann factor for all configurations; the entropy factor reflects the fact
that each site can vary throughout an interval of length at Ié%t

Next we will derive good upper bounds on the remaining two partition functions. First, similar
estimates as those leading to the upper bound in (5.10) give us

w2 2C N 1T
e —) o (5.11)

Z‘l’_"°§27r( NG
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For the partition functiorz™ we note that/, of all sites are adjacent only to disordered bonds,
while the remaining/, are connected to one another via a grid of strongly-ordered bonds. Esti-
mating—pH, < (1 + e‘acz)|TL| for all relevant configuration, similar calculations as those
leading to (5.10) again give us

mix (l+e*acz)|'ﬂ'|_| Tl i %lTLl_l
ZM* < 27 ef (27) (Cﬁ) . (5.12)

It now remains to combine these estimates into the bounds on the quantities on the left-hand side
of (5.4-5.5) and (5.6-5.7).

We begin with the bound (5.6). Clearly; (Gqis) is theL — oo limit of (z%S/z )1/1TtI, which
using the lower bound@, > Z°with x = 1 easily implies (5.6). The bound (5.7) is obtained
similarly, except that now we use thaf > Z‘L“S. The remaining two bounds will conveniently
use the fact that for two-dimensional nearest-neighbor models, and square tori, the torus mea-
sureP g4 is reflection positive even with respect to the diagonal planéd inindeed, focusing
on (5.4) for a moment, we first note th&f, is covered by the union of four (non-disjoint) events
characterized by the position of the weakly-ordered bond\gn If B{Y is the event that the
lower horizontal bond is the culprit, the subadditivity propertypgf—see Lemma 6.3 of [4]—
gives usps(Buwo) < 4p;(BR). Disseminating3{y) using reflections in coordinate directions, we
obtain an event enforcing weakly-ordered bonds on every other horizontal line. Next we apply a
reflection in a diagonal line of even parity to make this into an even parity grid. From the per-
spective of reflections in odd-parity diagonal lines—i.e., those not passing through the vertices of
the grid—nhalf of the “cells” enforces all four bonds therein to be weakly ordered, while the other
half does nothing. Applying chessboard estimates for these diagonal reflections, we get rid of the
latter cells. The result of all these operations is the bound

ZVLVO) i (5.13)

by (Bue) < lim 45
EstimatingZ,_ from below by the left-hand sides of (5.9-5.10) now directly implies (5.4).
The eventBnix is handled similarly: First we fix a position of the ordered-disordered pair
of bonds and use subadditivity pf to enforce thesamechoice at every lattice plaquette; this
leaves us with four overall choices. Next we use diagonal reflections to produce the event under-
lying Z"*. EstimatingZ,_ from below byY,-th power of the lower bound in (5.9) afd-th power
of the lower bound in (5.10) witk = 1, we get the first term in the minimum in (5.5). To get the

second term, we use that > z%, apply (5.12) and invoke the boundtle3¢* < 2. O

Proof of Proposition 5.1. The desired properties are simple consequences of the bounds in
Lemma 5.2. Indeed, i€ is so large that €”/¢”* > e=2%" then (5.6) implies thap;(Ggis) — O
asf — oo. Onthe other hand, (5.7) shows that the> oo limit of p;(Gso) is orderY s, which
can be made as small as desired by choogisgfficiently large.

To prove also (5.1), we first invoke Lemma 6.3 of [4] one last time to seepthd?) <
P5(Bwo) + 95 (Bmix). We thus have to show that bath (Bwo,) andp s (Bmix) can be made arbitrary
small by increasing appropriately. We begin with; (Bmix). Let C be so large that

_ 2 a2
3e P _1-e“ >0 (5.14)
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Then for g such that & > pl/4 the first term in the minimum in (5.6) decays like a negative
power of p, while for the complementary values gf the second term i@(p‘l/S). As to the
remaining termps(Buwo), here we choose € (0, 1) such that

e~?/C* _gma/C? o (5.15)

and apply the first part of the minimum in (5.4) féwith e/ > /P, and the second part for the
complementary, to show thap;(Byo) is also bounded by constants time a negative powey, of
independently off. Choosingp large, (5.1) follows. O

Now we can finally prove Theorem 4.4

Proof of Theorem 4.4We will plug into our main theorem. First, it is easy to check that the
good block eventgs, andGgs satisfy the conditions (1) and (2) of Theorem 2.5. Then (5.1) and
(2.15-2.16) imply (4.24-4.25). The limits (5.2) and Corollary 2.6 then imply the existence of
the transition temperatugg and of the corresponding coexisting states. Since the negative of the
energy density undergoes a jumpgatrom valueszg e b/ to valuesg e~aC’_which differ

by almost one onc€ > 1—all ergodic states fof > f; must have small energy density while
the states fopp < g will have quite a lot of energy. Applying (4.24-4.25), all ergogicc &

for g > B must be dominated by strongly-order bonds, while thosg fer g, must be dominated

by disordered bonds. d

ACKNOWLEDGMENTS

The research of M.B. was supported by the NSF grant DMS-0306167 and that of R.K. by the
grants GACR 201/03/0478 and MSM 0021620845. Large parts of this paper were written while
both authors visited Microsoft Research in Redmond.

REFERENCES

[1] M. Biskup, L. Chayes, and N. Crawfordlean-field driven first-order phase transitions in systems with long-
range interactionssubmitted.

[2] M. Biskup, L. Chayes, and S.A. KivelsoQrder by disorder, without order, in a two-dimensional spin system
with O(2)-symmetryAnn. Henri Poinca 5 (2004), no. 6, 1181-1205.

[3] M. Biskup, L. Chayes, and R. KotegkCoexistence of partially disordered/ordered phases in an extended Potts
mode] J. Statist. Phy€9 (2000), no. 5/6, 1169-1206.

[4] M. Biskup, L. Chayes, and Z. Nussino@rbital ordering in transition-metal compounds: |. The 120-degree
mode] Commun. Math. Phy®55(2005) 253-292.

[5] M. Biskup, L. Chayes, and Z. Nussind@rbital ordering in transition-metal compounds: Il. The orbital-compass
mode] in preparation.

[6] L. Chayes, R. Koteck and S. B. Shlosmarmggregation and intermediate phases in dilute spin syst€om-
mun. Math. Phys171(1995) 203-232.

[7] L. Chayes, R. Koteck and S. B. Shlosmafstaggered phases in diluted systems with continuous,spamsmun.
Math. Phys189(1997) 631-640.

[8] L. Chayes, S. Shlosman, and V. Zagrebnbiscontinuity in magnetization in diluted @)-Models J. Statist.
Phys.98 (2000) 537-549.

[9] R.L. Dobrushin and S.B. Shlosmanhases corresponding to minima of the local ene&glecta Math. Soviel
(1981), no. 4, 317-338.



24 M. BISKUP AND R. KOTECKY

[10] A.C.D. van Enter and S.B. Shlosmdfirst-order transitions for n-vector models in two and more dimensions:
Rigorous proofPhys. Rev. Lett89 (2002) 285702.

[11] A.C.D. van Enter and S.B. Shlosmarrovable first-order transitions for nonlinear vector and gauge models
with continuous symmetrig€ommun. Math. Phy255(2005) 21-32.

[12] J. Fibhlich, R. Israel, E. H. Lieb, and B. SimoRhase transitions and reflection Positivity. |. General theory and
long range modelsCommun. Math. Phy$2 (1978) 1-34.

[13] J. Fibhlich, R. Israel, E. H. Lieb, and B. SimoRhase transitions and reflection positivity. Il. Lattice systems
with short range and Coulomb interactigrk Statist. Phy22 (1980) 297-347.

[14] H.-O. Georgii,Gibbs Measures and Phase Transitipde Gruyter Studies in Mathematics, vol. 9, Walter de
Gruyter & Co., Berlin, 1988.

[15] R. Koteck, L. Laanait, A. Messager and J. Ruihe g-state Potts model in the standard Pirogov-Siheaory:
surface tensions and Wilson loggs Statist. Phy<$8 (1990), no. 1-2, 199-248.

[16] R. Koteck and S.B. ShlosmanFirst-order phase transitions in large entropy lattice modelSom-
mun. Math. Phys83(1982), no. 4, 493-515.

[17] L. Laanait, A. Messager, S. Miracle-89U. Ruiz and S. Shlosménterfaces in the Potts model. I. Pirogov-Sinai
theory of the Fortuin-Kasteleyn representati@ommun. Math. Phy<.40(1991), no. 1, 81-91.

[18] D.H. Martirosian, Translation invariant Gibbs states in the g-state Potts mo@&mmun. Math. Phys105
(1986), no. 2, 281-290.

[19] S.APirogov and Ya.G. SinaPhase diagrams of classical lattice systgRassian), Theor. Math. Phy25(1975)
no. 3, 358-369.

[20] S.A Pirogov and Ya.G. SinaRhase diagrams of classical lattice systems. Continugfarssian), Theor. Math.
Phys.26 (1976), no. 1, 61-76.

[21] S. Shlosman and V. Zagrebndagnetostriction transitionJ. Statist. Physl14(2004) 563-574.

[22] M. Zahradnk, An alternate version of Pirogov-Sinai theo§ommun. Math. Phy€3 (1984) 559-581.



