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Abstract.

We consider fermionic lattice systems with Hamiltonian H = H(0) + λHQ, where

H(0) is diagonal in the occupation number basis, while HQ is a suitable “quantum

perturbation”. We assume that H(0) is a finite range Hamiltonian with finitely many

ground states and a suitable Peierls condition for excitations, while HQ is a finite

range or exponentially decaying Hamiltonian that can be written as a sum of even

monominals in the fermionic creation and annhilation operators. Mapping the d

dimensional quantum system onto a classical contour system on a d + 1 dimensional

lattice, we use standard Pirogov-Sinai theory to show that the low temperature phase

diagram of the quantum system is a small perturbation of the zero temperature phase

diagram of the classical system, provided λ is sufficiently small. Particular attention is

paid to the sign problems arrising from the fermionic nature of the quantum particles.

As a simple application of our methods, we consider the Hubbard model with an

addidional nearest neighbor repulsion. For this model, we rigorously establish the

existence of a paramagnetic phase with commensurate staggered charge order for the

narrow band case at sufficiently low temperatures.

1. Introduction

In recent years, the Hubbard model has become one of the most important
models in the theory of strongly correlated electron systems. Since its invention
by Hubbard and others [1–3], it has been used to describe, amoung others, an-
tiferromagnetism [4], ferromagnetism [5], paramagnetism [6], the metal-insulator
transition [7–9], and, more recently, high-Tc superconductivity [10, 11].

As already pointed out by Hubbard in his original paper [1], the standard Hub-
bard model is a very crude approximation to the actual behaviour of electrons in
these systems. Many terms, some of which may drastically change the phase di-
agram, have been neglected. The largest and most important of these terms is
the nearest neighbor Coulomb repulsion. The modification of the Hubbard model
which contains this term is usually referred to as the extended Hubbard model. Most
relevant for physical applications is the so called narrow band case of this model,
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characterized by a hopping constant t that is small with respect to the Coulomb
interaction.

In this paper we rigorously establish the existence of a low temperature phase
with staggered charge order in the narrow band extended Hubbard model in d ≥ 2
dimensions. This phase is characterized by an electron density which, rather than
being constant, varies from one sublattice to the next of a bipartite lattice Λ. While
the existence of such a phase has been predicted by many authors (see e.g. [12–16]),
the only previous rigorous results consider the atomic limit t = 0 [17, 18].

In order to obtain our results for the narrow band extended Hubbard model, we
combine the methods of reference [18] with our recent extension of Pirogov-Sinai
theory to quantum spin systems [19] to obtain a convergent expansion about the
atomic limit. Actually, this expansion will be derived for a more general class of
strongly interacting fermionic lattice system, see Section 3 below.

The extended Hubbard model is defined by the Hamiltonian

HΛ = −t
∑
〈x,y〉

(
c†x,↑cy,↑ + c†x,↓cy,↓ + c†y,↑cx,↑ + c†y,↓cx,↓

)

+ U
∑

x

n̂x,↑n̂x,↓ + W
∑
〈x,y〉

n̂xn̂y −
(
µ + zW +

U

2
) ∑

x

n̂x (1.1)

where the second and fourth sum run over the points x of a bipartite lattice Λ
with constant coordination number z, while the first and third sum run over the
set B(Λ) of all nearest neighbor pairs 〈x, y〉 in Λ. The symbols c†x,σ and cx,σ,
denote the creation and annihilation operators of the electron with up and down
spin, σ = ↑, ↓, while n̂x,σ : = c†x,σcx,σ and n̂x : = n̂x,↑ + n̂x,↓ are the corresponding
number operators. As usual, the electron creation and annihilation operators satisfy
canonical anticommutation relations.

The first term of the Hamiltonian (1.1) stands for the isotropic nearest neighbour
hopping of electrons, the second one is the familiar on-site Hubbard interaction, the
third term represents the isotropic nearest neighbour interaction, and the last one
the contribution of the particle reservoir characterized by the chemical potential µ.
We have introduced the shift zW + U

2 in order to move the hole-particle symmetry
point (the half-filled band) to the value1 µ = 0. Originally, the second and the
third terms were supposed to simulate the effect of the Coulomb repulsion between
the electrons, hence only positive U and W were considered. Later on, in various
applications of the model, the parameters t, U and W represented the effective
interaction constants that take into account also other interactions (for instance
with phonons). Therefore U and W could take negative values as well. In this
paper U will be allowed to change its sign while W always stays positive.

Before stating our main result for the narrow band model at low temperatures,
we recall the ground state diagram of the atomic limit model (t = 0). In order
to simplify the notation, we restrict ourselves to the simple hypercubic lattice Z

d,
although our results should hold for other bipartite lattices as well. Observing that

1For more general biparite lattices where the coordination number z varies from sublattice to

sublattice, one would need a shift which is different for the two sublattices. Even though our

methods do not require any symmetry between the two sublattices and would allow us to analyse

this asymmetric model as well, we don’t consider it here in order to simplify our notation.
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the potential term in (1.1) can be written as a sum over pair potentials,

HΛ = −t
∑

〈x,y〉∈B(Λ)

(
c†x,↑cy,↑ + c†x,↓cy,↓ + c†y,↑cx,↑ + c†y,↓cx,↓

)
+

∑
〈x,y〉∈B(Λ)

v(n̂x, n̂y) ,

(1.2)
with

v(n̂x, n̂y) = W
(
n̂x−1

)(
n̂y−1

)
+

U

4d

(
(n̂x−1)2+(n̂y−1)2

)
− µ

2d

(
n̂x+n̂y−2

)
, (1.3)

the ground states of the t = 0 model are easily determined. The corresponding
ground state diagram is shown in Figure 1. One finds three regions Ha, a = 0, 1, 2
with homogeneous particle density 〈n̂x〉 = a, and three regions S{a,b}, {a, b} =
{0, 1}, {0, 2}, {1, 2} with a commensurate charge density wave: 〈n̂x〉 = ρ+(−1)x∆,
where ρ = a+b

2 and ∆ = ± b−a
2 .

H0

Sf0;2g

H2

�W

�W=2

W=2

W

�=2d

W=2

Sf0;1g

Sf1;2g

H1

U=4d

Fig.1. Ground state phase diagram of the t = 0 model

In this paper we will prove that, for all ε > 0, and for all (U, µ) in the subregion

S
(ε)
{0,2} =

{
(U, µ) ∈ R

2
∣∣ U < 2d(W−ε) , |µ| < 2d min{W−ε , W−ε−U/4d}

}
(1.4)

of the region S{0,2} = S
(0)
{0,2}, the staggered charge order persists for sufficiently

low temperatures and sufficiently small t. We also establish that the corresponding
phase is paramagnetic,2 see Section 2 for the precise statements of our results.

2It would be very interesting to establish the existence of a phase with ferro- or antiferro-

magnetic order in this model. Unfortunately, this is a very difficult task, due to the Goldstone

boson which is expected as a consequence of spontaneous symmetry breaking of the corresponding

continuous symmetry. Note that this problem does not arise in the asymetric t−J model studied

in [20], where the symmetry to be broken is a discrete symmetry.
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The more general class of fermionic systems we consider is described by a Hamil-
tonian H = H(0) + λHQ, where H(0) is diagonal in the occupation number basis,
while HQ is a suitable “quantum perturbation”. We assume that H(0) is a finite
range Hamiltonian with finitely many ground states and a suitable Peierls condition
for excitations, while HQ is a finite range or exponentially decaying Hamiltonian
that can be written as a sum of even monominals in the fermionic creation and
annhilation operators. For these models, we derive a convergent cluster expan-
sion about the “classical theory” with λ = 0, folowing closely the methods used in
[19]: In a first step, we use the Duhamel-Phillips (or Schwinger-Dyson) expansion
to derive a path integral representation of the model. In the next step, we block
the configurations contributing to the path integral onto lattice configurations on a
suitable space-time lattice Λ×{1, 2, . . . , M}. Applying Pirogov-Sinai theory [21,22]
in the form developed in [23] to the resulting classical contour system, we obtain
our main results.

Namely, we determine the stable phases in dependence on the external parame-
ters (construction of the phase diagram), and show that the corresponding infinite
volume states are periodic, pure states with exponential clustering for truncated
expectation values. We also control the thermodynamic limit for periodic boundary
conditions and prove that it is a convex combination of the stable states with equal
weight for each of them. Finally, we discuss conservation laws for the quantum
system in a general setup. Under the condition that the full Hamiltonian com-
mutes with an operator QΛ, we show that the density ρQ = limΛ→Zd

1
|Λ| 〈QΛ〉 in the

ground state 〈 · 〉 of the quantum system exactly coincides with the density of the
corresponding classical ground state, see Section 3.6 for the precise statement.

In a parallel work, Datta, Fröhlich and Fernández [20] have also derived conver-
gent expansions for fermionic lattice systems, leading to results that are similar to
ours. In contrast to our methods that are based on renormalization group ideas
and the reduction to a contour model on a space-time lattice with a subsequent ap-
plication of standard Pirogov-Sinai theory, they study directly the contour model
emerging from the functional integral, extending Pirogov-Sinai theory to contour
models with continuous time.

The organization of this paper is as follows. In the next section, we state our
main result concerning the extended Hubbard model, Theorem 2.1. In Section 3,
we define the general model and state our results in this case. Section 4 is devoted
to the derivation of the contour representation of the model, paying particular
attention to the factorization properties of the signs coming from the permutation
of fermions. In Section 5 we proof exponential decay of contours and use these
bound, together with standard cluster expansion methods, to prove the results of
Section 3. Theorem 2.1 is proved in Section 6.

2. Statement of Results for the Extended Hubbard Model

For any even L we consider a finite box Λ = Λ(L) = {−L/2, . . . , L/2− 1}d with
Ld points, the fermionic creation and annhilation operators c†x,σ and cx,σ (x ∈ Λ,
σ = ↑, ↓), the corresponding Fock-space HΛ, the algebra AΛ that is generated by
even monominals in the creation and annhilation operators and the algebra of local
observables, A = ∪AΛ, where the union runs over all finite sets Λ ⊂ Z

d.
Chosing periodic boundary conditions, we define the partition function at the
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inverse temperature β = 1/kT as

Zβ
per,Λ = TrHΛe−βHΛ , (2.1)

and the expectation value of an observable Ψ ∈ AΛ,

〈Ψ〉βper,Λ =
1

Zβ
per,Λ

TrHΛΨ e−βHΛ . (2.2)

Assuming for a moment that the corresponding limit exits for all local observables
Ψ ∈ A, we define the infinite volume Gibbs state

〈Ψ〉βper = lim
Λ→Zd

〈Ψ〉βper,Λ , (2.3)

where the limit is taken along cubic boxes Λ(L) of even side length L.3

Next, we define, for an arbitrary periodic state 〈·〉 on A, the density,

ρ = lim
Λ→∞

|Λ|−1
∑
x∈Λ

〈nx〉 , (2.4)

and the staggered density,

∆ = lim
Λ↗∞

|Λ|−1
∑
x∈Λ

(−1)x〈nx〉, . (2.5)

Introducing, in addition to the number operators

n̂x = n̂x,↑ + n̂x,↓ , n̂x,σ = c†x,σcx,σ , (2.6)

also the spin operators

S3
x = 1

2

(
n̂x,↑ − n̂x,↓

)
, S+

x = c†x,↑cx,↓ and S−
x = c†x,↓cx,↑ . (2.7)

our main theorem is:

Theorem 2.1. For d ≥ 2 there are constants C1 = C1(d) <∞ and C2 = C2(d) > 0
such that, for 0 < ε < W , βε > C1, |t| < εC2 and all (U, µ) ∈ S

(ε)
{0,2}:

i) The thermodynamic limit (2.3) exists for all local observables Ψ ∈ A. It is a
convex combination,

〈·〉βper = 1
2 〈·〉

β
even + 1

2 〈·〉
β
odd , (2.8)

of two pure states 〈·〉βeven and 〈·〉βodd with charge density waves

〈n̂x〉βeven = ρ + (−1)x∆ , x ∈ Z
d

〈n̂x〉βodd = ρ− (−1)x∆ , x ∈ Z
d ,

(2.9)

where ∆ > 0. Here ∆ = ∆even = −∆odd and ρ = ρeven = ρodd are given by (2.4)
and (2.5).

3The existence of the limit (2.3) in the relevant region (1.4) is part of our results.
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ii) For all x ∈ Z
d, and m = even or odd, 〈%Sx〉βm = 0.

iii) Let tx(·) be the translation by x ∈ Z
d, and let Ψ, Φ ∈ A be arbitrary local

observables. Then, for m = even or odd, and all x ∈ Z
d

∣∣〈Ψ tx(Φ)〉βm − 〈Ψ〉βm〈tx(Φ)〉βm
∣∣ ≤ C(Ψ,Φ)e−|x|/ξ . (2.10)

Here C(Ψ,Φ) <∞ and ξ <∞ are constants.
iv) At zero temperature, the compressibility ∂ρ/∂µ vanishes for all (U, µ) ∈ S

(ε)
{0,2}.

Remarks.
i) By Statement iii), 〈·〉βeven and 〈·〉βodd are pure phases.
ii) Statement ii) implies the absence of magnetic ordering in the phases 〈·〉βeven

and 〈·〉βodd. Our methods can actually be extended to include non-zero magnetic
fields, giving paramagnetism in the usual sense.

3. General Setting and Results

In this section, we state our results for a general class of fermionic models on
Z

d. We consider a finite index set Σ = {1, 2, . . . , |Σ|} labelling internal degrees of
freedom, finite subsets Λ ⊂ Z

d, fermionic creation and annhilation operators c†x,σ

and cx,σ labelled by indices x = (x, σ) ∈ Λ = Λ× Σ, the corresponding Fock-space
HΛ, the algebra AΛ that is generated by even monominals in the creation and
annhilation operators, and the algebra of local observables, A = ∪AΛ, where the
union runs over all finite sets Λ ⊂ Z

d. In order to define an occupation number
basis in HΛ, we introduce an arbitrary total order on Z

d × Σ. We then define, for
a classical configuration n : Z

d × Σ → {0, 1}: (x, σ) �→ nx,σ, the vector |n〉Λ as

|n〉Λ = P
∏
x∈Λ

(c†x)nx |0〉Λ , (3.1)

where |0〉Λ is the Fock vacuum in HΛ, and P denotes ordering with respect to the
order on Z

d × Σ. Finally we define the projection operator onto the classical state
n in a finite set U ⊂ Z

d as

PU (n) =
∏

x∈U×Σ

Px(n) (3.2a)

where
Px(n) = nx(c†xcx) + (1− nx)(1− c†xcx) (3.2b)

and U is a finite subset of Z
d. Note that PU (n) is a local observable in AΛ provided

U ⊂ Λ.
We assume that the Hamiltonian H of the model is a sum of two terms,

H = H(0) + λHQ , (3.3)

where the “classical part” H(0) is diagonal in the occupation number basis and the
“quantum part” HQ is a sum of even monominals in the creation and annhilation
operators. In order to prove the results of this paper, we will need several additional
assumption on the classical and the quantum part of the Hamiltonian. We start
with the assumptions on the classical part.
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3.1. Assumptions on the classical model.

Since H(0) is diagonal in the occupation number basis, it defines a classical lattice
gas with |Σ| different species, occupation numbers nx,σ in {0, 1}, configurations
n : Z

d ×Σ → {0, 1}, (x, σ) �→ nx,σ, and a suitable Hamilton function H(0)(n). We
assume that this Hamilton function is given in terms of finite range, translation
invariant interactions, depending on a vector parameter µ ∈ U , where U is an open
subset of R

ν . Due to these assumptions, H(0)(n) can be written in the form

H(0)(n) =
∑

x

Φx(n), (3.4)

where Φx(n) ∈ R depends on n only via the occupation numbers ny,σ for which
dist(x, y) ≤ R0, where R0 is a finite number. In our notation we supress the
dependence of H(0) and Φx on µ.

As usually, a configuration g which minimizes the Hamiltonian (3.4) is called a
ground state configuration. For the purpose of this paper, we will assume that the
number of ground states of the Hamiltonian (3.4) is finite, and that all of them are
periodic. More precisely, we will assume that there is a finite number of periodic
configurations g(1), . . . , g(r), with (specific) energies

em = em(µ) = lim
Λ→Zd

1
|Λ|

∑
x∈Λ

Φx(g(m)), (3.5)

such that for each µ ∈ U , the set of ground states G(µ) is a subset of {g(1), . . . , g(r)}.
Obviously, G(µ) is given by those configurations g(m) for which em(µ) is equal to
the “ground state energy”

e0 = e0(µ) = min
m

em(µ). (3.6)

Note that we may assume, without loss of generality, that Φx(g(m)) is independent
of the point x for all ground state configurations g(m), because this condition can
always be achieved by averaging Φx(n) in (3.4) over the minimal common period
L0 of g(1), . . . , g(r).

Our goal will be to prove that the low temperature phase diagram of the quantum
model is a small perturbation of the classical ground state diagram provided the
quantum perturbation is sufficiently small. In order to formulate and prove this
statement, we need some assumptions on the structure of the ground state diagram.
Here we assume that for some value of µ0 ∈ U all states in {g(1), . . . , g(r)} are ground
states,

em(µ0) = e0(µ0) for all m = 1, . . . , r, (3.7)

that em(µ) are C1 functions in U , and that the matrix of derivatives

E =
(∂em(µ)

∂µi

)
(3.8)

has rank r−1 for all µ ∈ U , with uniform bounds on the inverse of the corresponding
submatrices. We remark that this condition implies that the zero temperature phase
diagram has the usual structure of a ν − (r − 1) dimensional coexistence surface
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S0 where all states g(m) are ground states, r different ν − (r − 1)− 1 dimensional
surfaces Sn ending in S0 where all states but the state g(m) are ground states, ...

Next, we formulate a suitable Peierls condition. Recalling that Φx(n) does not
depend on ny,σ if dist(x, y) > Ro, we define U(x) as the minimal set of points y
such that Φx(n) depends on ny,σ.4 We then introduce, for a given configuration n,
the notion of excited sites x ∈ Z

d. We say that a site x is in the state g(m) if the
configuration n coincides with the configuration g(m) on U(x); a site is excited, if it
is not in any of the states g(1), . . . , g(r). Given this notation, the Peierls assumption
used in this paper is that there exists a constant γcl > 0, independent of µ, such
that

Φx(n) ≥ e0(µ) + γcl for all excited sites x of all configurations n. (3.9)

Finally, we assume that the derivatives of Φx are uniformly bounded in U . More
explicitely, we assume that there is a constant C0 <∞, such that

∣∣∣ ∂

∂µi
Φx(n)

∣∣∣ ≤ C0 (3.10)

for all i = 1, . . . , ν, µ ∈ U , x ∈ Z
d, and all configurations n.

Remarks.
i) Given the assumptions stated in this subsection, standard Pirogov-Sinai theory

implies that the low temperature phase diagram of the classical model has the same
topological structure as the corresponding zero temperature phase diagram (see
above).

ii) Let n̂x be the number operator c†xcx. Recalling that all these operators com-
mute with each other, we define

H(0)
x = Φx(n̂) . (3.11)

With this definition, H(0) is the formal sum

H(0) =
∑

x

H(0)
x . (3.12)

3.2. Assumptions on the quantum perturbation.

We assume that HQ is given in the form

HQ =
∑
A

tAhA (3.13)

where the sum runs over sequences A = (ã1, . . . , ã2k) of labels ãi = (ai, αi, εi) ∈
Z

d × Σ× {−1, 1}, tA ∈ C is a suitable hopping parameter, and

hA = c(ã2k)c(ã2k−1) . . . c(ã1) , (3.14a)

4If H is given as a sum of the form
∑

M φM , where φM depends only on ny,σ with y ∈ M ,

then U(x) is the union over all M such that x ∈ M .
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with

c((a, α, ε)) =
{

c†a,α if ε = +1
ca,α if ε = −1 .

(3.14b)

It will be convenient to assume that the creation and annihilation operators in
HQ have been ordered in such a way that for each sequence A = (ã1, . . . , ã2k)
contributing to (3.13) there exists 3 ∈ {0, 1, . . . , 2k} such that
i) εi = −1 for 1 ≤ i ≤ 3 and εi = +1 for i > 3, and
ii) with respect to the given order on Z

d × Σ one has (a1, α1) < (a2, α2) < · · · <
(a�, α�), and (a�+1, α�+1) > (a�+2, α�+2) > · · · > (a2k, α2k).
In the sequel, we call such a sequence a standard sequence and write Ao for the set
of all standard sequences.

Given the above representation of HQ (we sometimes call it the standard form
for HQ), our assumptions on HQ are now formulated in terms of the coefficients tA.
First, in order to assure that the quantum perturbation is selfadjoint, we assume
that

t̄A = tA� , (3.15)

where the bar denotes complex conjugation, and A� is the sequence

A� = (ã�
2k, . . . , ã�

1) , (3.16a)

with
(a, α, ε)� = (a, α,−ε) . (3.16b)

Note that A� is a standard sequence if and only if A is a standard sequence.
Next, we assume that the hopping parameters tA are translation invariant, and

that that tA and its derivatives decays sufficiently fast in the support of the sequence
A, defined as the minimal connected set containing A. To state this more precisely,
for A = (ã1, . . . , ã2k), we consider connected sets of bonds B that connect all points
in {a1, · · · , a2k}. Restricting ourselves to those of minimal size, we define B0 as
the first in some arbitrary (but fixed) lexiographic order, and define the support,
suppA, of A as the union of all points which are connected by this minimal set
Bo. Note that by definition suppA depends only on the set {a1, · · · , a2k}. As a
consequence supp A = suppA�.

Introducing, for each γ ≥ 0, the Sobolev norm

||t||γ =
∑

A:x∈supp A

(
|tA|+

ν∑
i=1

∣∣∣ ∂

∂µi
tA

∣∣∣
)

eγ| supp A| , (3.17)

our decay assumption for the quantum perturbation is the assumption that

||t||γQ
<∞ (3.18)

for a sufficiently large constant γQ.

Remarks.
i) For a finite range quantum perturbation, this assumption is obviously fulfilled

for any γQ <∞.
ii) If the quantum perturbation is of infinite range, we need that |tA| and

|∂tA/∂µi| decay exponentially fast in the size of the support of A. Assuming ex-
ponential decay with a sufficiently large decay constant γ, and observing that the
number of connected sets B of size s that contain a given point x ∈ Z

d is bounded by
(2d)2s, while the number of standard sequences A with suppA = B is bounded by
22|B||Σ|, the condition (3.18) can be satisfied provided γ > γQ+2 log(2d)+2|Σ| log 2.
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3.3. Finite volume states for the quantum system.

In order to discuss the phase diagram of the quantum spin system, we will
consider suitable finite volume states 〈·〉βq,Λ which are analogues of the classical
states with boundary condition q, with q = 1, . . . , r. Given a finite set Λ ⊂ Z

d, we
define n̂

(q,Λ)
x as the number g

(q)
x if x ∈ Λc = Z

d \ Λ, and as the operator c†xcx if
x ∈ Λ. With this definition, the operators

H(0)
q,x = Φx(n̂(q,Λ)) , (3.19)

H
(0)
q,Λ =

∑
x∈Λ

H(0)
q,x (3.20)

and
Hq,Λ = H

(0)
q,Λ + λ

∑
A:supp A⊂Λ

tAhA (3.21)

are selfadjoint operators in HΛ provided λ ∈ R (recall that the sets suppA have
been chosen in such a way that suppA = suppA�).

Given the Hamiltonian with boundary conditions q, we introduce the quantum
state 〈·〉βq,Λ by

〈Ψ〉βq,Λ =
1

Zβ
q,Λ

TrHΛ(Ψ e−βHq,Λ), (3.22)

where
Zβ

q,Λ = TrHΛe−βHq,Λ . (3.23)

We close this section with the definition of the support and norm of a local observ-
able Ψ . Recalling that, by definition, any local observable Ψ is a finite sum of the
form

Ψ =
∑
A

λΨ
AhA, (3.24)

where the hA are even monominals in creation and annihilation operators (cf.
(3.13)), we say that Ψ is given in its standard form, if all sequences contribut-
ing to (3.24) are standard sequences. Let now Ψ be a local observable, and let
(3.24) be its standard form. Then the support of Ψ is defined as

supp Ψ =
⋃

A:λΨ
A �=0

suppA, (3.25)

and its norm as
||Ψ|| =

∑
A∈A0

∣∣λΨ
A

∣∣. (3.26)

3.4. Statement of results for non-zero temperatures.

In order to state our results in the form of a theorem we introduce, for each x
in Z

d and any local obserbable Ψ ∈ A, the corresponding translate tx(Ψ). Defining
finally Λ(L) as the box

Λ(L) =
{

x ∈ Z
d

∣∣∣ − L

2
≤ xi <

L

2
for all i = 1, . . . , d

}
, (3.27)

our main results are stated in the following two theorems.
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Theorem 3.1. Let d ≥ 2 and let H = H(0) +λHQ be a Hamiltonian satisfying the
assumptions of Section 3.1 and 3.2. Then there are constants 0 < γ0 = γ0(d, |Σ|) <
∞ and α = α(d, |Σ|) > 0 such that for all γ ≥ γ0, all finite β ≥ β0 = γ/γcl and all
λ ∈ C with

|λ| ≤ λ0 :=
1

2eβ0(γ)||t||γ
(3.28)

there are functions fq(µ, β), q = 1, . . . , r, continuously differentible in µ, such that
the following statements hold true whenever

aq(µ, β, λ) := Re fq(µ, β)−min
m

Re fm(µ, β) = 0 . (3.29)

i) The infinite volume free energy corresponding to Zβ
q,Λ(L) exists and is equal to

fq:

fq = − 1
β

lim
L→∞

1
|Λ(L)| log Zβ

q,Λ(L). (3.30)

ii) The infinite volume limit

〈Ψ〉βq = lim
L→∞

〈Ψ〉βq,Λ(L) (3.31)

exists for all local observables Ψ and has the same period as the corresponding
classical ground state g(q).

iii) For all local observables Ψ and Φ, there exists a constant CΨ,Φ <∞, such that

∣∣〈Ψtx(Φ)〉βq − 〈Ψ〉βq 〈tx(Φ)〉βq
∣∣ ≤ CΨ,Φe−αγ|x|. (3.32)

iv) The projection operators P
(m)
x = PU(x)(g(m)) onto the “classical states” g

(m)
U(x)

obey the bounds ∣∣〈P (m)
x 〉βq − δm,q

∣∣ < Ce−γ , (3.33)

where C <∞ is a constant that depends only on d and |Σ|.
v) With C <∞ as above, and C0 as in (3.10), one has

|fq(µ, β)− eq(µ)| ≤ Ce−γ (3.34a)

and ∣∣∣ d

dµi

(
fq(µ, β)− eq(µ

)∣∣∣ ≤ CC0e
−γ . (3.34b)

Remarks.
i) Following the usual terminology of Pirogov-Sinai theory, we call a phase with

aq = 0 stable. By (3.34b) and our assumptions on the derivative matrix (3.8), the
matrix

F =
(∂Re fm(µ, β)

∂µi

)
(3.34)

has rank r−1, and the inverse of the corresponding submatrix is uniformly bounded
in U , provided γ is sufficiently large. By the inverse function theorem, statement v)
of the Theorem therefore implies that the phase diagram of the quantum system has
the same structure as the zero temperature phase diagram of the classical sytem,
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with a ν − (r − 1) dimensional coexistence surface S̃0 where all states are stable, r

different ν − (r − 1)− 1 dimensional surfaces S̃n ending in S̃0 where all states but
the state m are stable, · · · .

ii) Choosing β sufficiently large and λ sufficiently small, the bounds (3.33) can be
made arbitrary sharp. In this sense, the quantum states 〈·〉q are small perturbations
of the corresponding classical state whenever q is stable.

iii) While Theorem 3.1 is stated (and proven) for general complex λ, the phys-
ical situation corresponds, of course, to real values of λ, as required by the self-
adjointness of the Hamiltonian H. The “meta-stable free energies” fq are real in
this case5, making the real part in (3.29) and (3.34) superfluous.

iv) As stated, Theorem 3.1 is only valid for β < ∞. Some care is needed when
stating the corresponding results for zero temperature, since the thermodynamic
limit and the limit of zero temperature, in general, do not commute. Theorem 3.1
does hold for zero temperature, if fq(µ, β) is replaced by

fq(µ) = lim
β→∞

fq(µ, β) (3.35)

and the equalities (3.30) and (3.31) are replaced by

fq(µ) = − lim
L→∞

lim
β→∞

1
β|Λ(L)| log Zβ

q,Λ(L) (3.30′)

and
〈Ψ〉q = lim

L→∞
lim

β→∞
〈Ψ〉βq,Λ(L) . (3.31′)

For a statement concerning the possibility to interchange the order of limits see
Section 3.5 below.

In order to state the next theorem, we define states with periodic boundary
conditons on Λ(L). To this end, we consider the torus Λper(L) =

(
Z/LZ

)d and the
corresponding Hamiltonian

Hper,Λ(L) =
∑

x∈Λper(L)

H(0)
x + λ

∑
A : supp A⊂Λper(L)

tAhA , (3.36)

where the second sum goes over sequences A whose support suppA does not wind
around the torus Λper(L). With these definitions, we then introduce the quantum
state with periodic boundary conditions as

〈·〉βper,Λ(L) =
1

Zβ
per,Λ(L)

TrHΛ(L)(· e−βHper,Λ(L)), (3.37)

where
Zβ

per,Λ(L) = TrHΛ(L)e
−βHper,Λ(L) . (3.38)

5Given our constructions in Section 4 and 5, the proof of this fact is identical to the corre-

sponding proof in [19].
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Theorem 3.2. Let H(0), HQ, β and λ as in Theorem 3.1, and let L0 be the smallest
common period of the ground states g(1), . . . , g(r). Assume in addition that λ is
real. Then the infinite volume state with periodic boundary conditions,

〈Ψ〉βper = lim
n→∞

〈Ψ〉βper,Λ(nL0)
(3.39)

exists for all local observables Ψ, and is a convex combination (with equal weights)
of the stable states,

〈Ψ〉βper =
∑
q∈Q

1
|Q| 〈Ψ〉

β
q , (3.40)

with
Q = Q(µ, β, λ) = {q ∈ {1, . . . , r} | aq(µ, β, λ) = 0} . (3.41)

Remark:. The statement of the theorem remains true if the sequence of volumes
in (3.39) goes over volumes Λ(L) with L = nL0(Q), where L0(Q) is the smallest
common period of all stable ground states g(q), q ∈ Q = Q(µ, β, λ).

3.5. Quantum states at zero temperature.

As discussed in Remark iv) above, some care is needed when considering zero
temperature states since the zero temperature limit β →∞ and the thermodynamic
limit Λ → Z

d, in general, do not commute. In order to discuss this further, let us
consider the modified partition function

Zβ,np
q,Λ = 〈g(q)

Λ | e−βHq,Λ |g(q)
Λ 〉 , (3.42)

where np indicates non-periodic boundary conditions. Namely, represented as a
contour partition function on a suitable space-time lattice, see Section 4, the par-
tition function Zβ,np

q,Λ is characterized by the boundary conditions g
(q)
Λ at times 0

and β, instead of the periodic b.c. in time corresponding to Zβ
q,Λ. As a conse-

quence, Zβ
q,Λ might contain contours wrapped around the lattice in time direction,

while Zβ,np
q,Λ does not. Since these contours may force a state that is stable at zero

temperature to be unstable at finite β, the cluster expansion for log Zβ
q,Λ might be

divergent for arbitrary large β, even though the phase q becomes stable as β →∞.
This phenomen does not occur for Zβ,np

q,Λ that does not allow for the dangerous
contours wrapped around the lattice in time direction. Therefore, the partition
function Zβ,np

q,Λ can be analysed by the convergent expansion provided β ≥ β0 and
q is stable for β =∞. The same will be true for the modified expectation values

〈Ψ〉β,np
q,Λ = 〈Ωβ

q,Λ|Ψ |Ω
β
q,Λ〉, (3.43)

where

|Ωβ
q,Λ〉 =

1√
Zβ,np

q,Λ

e−
β
2 Hq,Λ |g(q)

Λ 〉. (3.44)

As a consequence, we obtain the following lemma.
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Lemma 3.3. Let d ≥ 2 and let H(0), HQ, α, γ, β0, β and λ be as in Theorem 3.1.
Let q be a phase with

lim
β→∞

aq(µ, β, λ) = 0, (3.45)

and let 〈·〉q and fq(µ) be as defined in (3.31′) and (3.30′). Then

∣∣∣ 1
β|Λ| log Zβ,np

q,Λ + fq(µ)
∣∣∣ ≤ O

( 1
β

+
1
β0

|∂Λ|
|Λ|

)
, (3.46)

and ∣∣〈Ψ〉β,np
q,Λ − 〈Ψ〉q

∣∣ ≤ CΨe−αγ min{β/β0,dist(supp Ψ,∂Λ)} , (3.47)

where CΨ <∞ depends on d, |Σ|, the norm ||Ψ|| of Ψ, and the size | supp Ψ| of the
support of Ψ.

Remarks.
i) Lemma 3.3 implies, in particular, that the limits β → ∞ and Λ → Z

d commute
for the modified partition function and expectation values (3.42) and (3.43).
ii) The statement (and the above consequence) of Lemma 3.3 remains true for the
unmodified partition function and expectation values, Zβ

q,Λ and 〈Ψ〉βq,Λ, if the phase
q is stable for all β̃ in [β,∞], i.e. if aq(µ, β̃, λ) = 0 for all β̃ ∈ [β,∞]. In fact, the
error term O( 1

β ) in (3.46) gets replaced by an error term O(e−β/β0) in this case.

3.6. Low temperature states and global symmetries.

In this section we consider the case in which the Hamiltonian Hq,Λ commutes
with some operator QΛ, which is extensive in the sense that

QΛ =
∑
x∈Λ

Qx,Λ, (3.48)

where Qx,Λ are local observables in AΛ for which | suppQx,Λ| and ‖Qx,Λ‖ is uni-
formly bounded in both x and Λ. A typical example would be the operator of total
particle number

NΛ =
∑
x∈Λ

nx, (3.49)

or the operator of the total number of particles of a given spin σ,

NΛ,σ =
∑
x∈Λ

nx,σ. (3.50)

In addition to the assumption that QΛ is a symmetry of the quantum system,

[Hq,Λ, QΛ] = 0, (3.51)

we will assume that |g(q)
Λ 〉 is an eigenstate of QΛ,

QΛ |g(q)
Λ 〉 = ρ

(q)
Λ |Λ| |g(q)

Λ 〉, (3.52)

and that the classical density ρ
(q)
Λ has a limit as Λ →∞,

ρ
(q)
class = lim

Λ→Zν
ρ
(q)
Λ . (3.53)
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In the above examples, ρ
(q)
class is the average density or the average density of particles

with spin σ, respectively, in the classical state |g(q)
Λ 〉. The following Theorem states

that the “quantum density”

ρ
(q)
quant(β) = lim

Λ→Zd

1
|Λ| 〈QΛ〉βq (3.54)

approaches the classical density ρ
(q)
class as β →∞.

Theorem 3.4. Let d ≥ 2, let H(0), HQ, β0, and λ0 be as in Theorem 3.1., and
let |λ| ≤ λ0. Assume that QΛ is an operator that is extensive in the sense de-
scribed above, and that satisfies (3.51) through (3.53) for some q. Then there exist
constants C = C <∞ and c > 0 such that
i) If q is stable at β =∞, i.e. if limβ→∞ aq(µ, β, λ) = 0, then

ρ
(q)
quant ≡ lim

Λ→Zd

1
|Λ| 〈QΛ〉q = ρ

(q)
class , (3.55)

where 〈·〉q is the zero temperature state defined in (3.31′).
ii) If β̃0 ≥ β0 and if q is stable for all β ≥ β̃0, then

∣∣∣ρ(q)
quant(β)− ρ

(q)
class

∣∣∣ ≤ Ce−βc , (3.56)

provided β ≥ β̃0.

Remark. For many models, the classical density ρ
(q)
class is constant in some range of

parameters µ. For these models, Theorem 3.4 implies that the compressibilities

χ(i) =
∂

∂µi
ρ
(q)
quant(β) (3.57)

vanish at zero temperature. An example of such a model is the extended Hubbard
model in the staggered phase considered in Section 2.

4. Contour Representation

We consider a fixed finite volume Λ = Λ(L) = {x ∈ Z
d | |xi| ≤ L for all

i = 1, . . . , d}, and a fixed value q ∈ {1, . . . , r} for the boundary condition; further,
we are not explicitely specifying this in our notation.

Fixing an interger M to be determined later, and setting β̃ = β/M , we introduce
the transfer matrices

T (0) = e−β̃H
(0)
q,Λ (4.1)

and
T = e−β̃Hq,Λ , (4.2)

and rewrite the partition function Zq,Λ as

Zq,Λ = TrHΛTM . (4.3)



16 C. Borgs, R.Kotecký

4.1. Duhamel Series and Path Integral Representation.

In a first step, we expand the transfer matrix T around the matrix T (0) using
the Duhamel (or Dyson) series for the operator T (for a reference on the Duhamel
series, see e.g. [25]). Introducing the family A0 of all sequences A contributing to
(3.21), and, for each multiindex m : A0 → {0, 1, . . . , }, the notation

|m| =
∑

A∈A0

mA ,

(−λt)m =
∏

A∈A0

(−λtA)mA ,

m! =
∏

A∈A0

mA!

and ∫
dτm =

∏
A∈A0:mA �=0

∫ β̃

0

dτ1
A· · ·

∫ β̃

0

dτmA

A ,

the Duhamel series for the operator T can be written in the form

T =
∑
m

(−λt)m

m!

∫
dτm T (τ ,m) . (4.4)

Here the sum goes over multiindices m : A0 → {0, 1, . . . , }, τ = {τ1
A, . . . , τmA

A , A ∈
A0}, and the operator T (τ ,m) is obtained from T (0) by “inserting” the operator
hA at the times τ1

A, . . . , τmA

A , A ∈ A0. Formally, it can be defined as follows. For
a given m and τ , let A = {A1, . . . , Ak} be the set of all A ∈ A0 with mA �= 0,
mi = mAi , and hi = hAi . Let

(s1, . . . , s|m|) = π(τ1
A1

, . . . , τm1
A1

, . . . , τ1
Ak

, . . . , τmk

Ak
) (4.5)

be a permutation of the times τ such that s1 ≤ s2 ≤ · · · ≤ s|m|, and set

(h̃1, . . . , h̃|m|) = π(h1, . . . , h1, . . . , hk, . . . , hk), (4.6)

where on the right-hand side each hi appears exactly mi times. Then T (τ ,m) is
defined by

T (τ ,m) = e−(β̃−s|m|)H
(0)
q,Λ h̃|m|e

−(s|m|−s|m|−1)H
(0)
q,Λ h̃|m|−1 . . .

. . . e−(s2−s1)H
(0)
q,Λ h̃1e

−s1H
(0)
q,Λ . (4.7)

For later reference, we also define the time ordered monminals

R(τ ,m) = h̃|m|h̃|m|−1 . . . h̃1. (4.8)

(Notice that, formally, R(τ ,m) ≡ TH(0)≡0(τ ,m).)
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Inserting the expansion (4.4) into (4.3), and using the occupation number basis
(3.1) to express the trace as a sum of expectation values, we get

Zq,Λ =
∑
n

∑
m1

· · ·
∑
mM

( M∏
k=1

(−λt)mk

mk!

∫
dτmk

k

)
〈n|T (τM ,mM ) · · ·T (τ1,m1) |n〉 ,

(4.9)
where mk, k = 1, . . . , M are multiindices mk : A0 → {0, 1, . . . , } : A �→ mk,A and
τk = {τ1

k,A, . . . , τ
mk,A

k,A , A ∈ A0} are the corresponding integration variables.
Each term on the right hand side of (4.9) can be interpreted, in a standard

manner, in terms of a classical path n(·) : [0, β] → {0, 1}Λ determined uniquely
by the vector |n〉 and sequences (τ1,m1), . . . , (τM ,mM ). To get the assignement
τ �→ n(τ) we start with the observation that an operator hA applied to a vector
of the form (3.1) yields either zero or again a vector of the form (3.1). Combined
with the fact that H

(0)
q,Λ is diagonal in the basis (3.1),

H
(0)
q,Λ|n〉 =

∑
x∈Λ

Φx(n) |n〉 , (4.10)

we infer that T (τM ,mM ) · · ·T (τ1,m1) |n〉 and R(τM ,mM ) · · ·R(τ1,m1) |n〉 are
parallel vectors of HΛ and that 〈n|T (τM ,mM ) · · ·T (τ1,m1) |n〉 is non zero if and
only if 〈n|R(τM ,mM ) · · ·R(τ1,m1) |n〉 does not vanish. The classical path n(·)
is now obtained in the standard way. Starting from n(0) = n, n(τ) is piecewise
constant, with a jump whenever

τ = (k − 1)β̃ + τ i
k,A (4.11)

for some k ∈ {1, . . . , M}, A ∈ A0, and i ∈ {1, . . . , mk,A}. At these times, n(·)
jumps from n(τ) to n(τ + 0) defined by

|n(τ + 0)〉 := hA(τ)|n(τ)〉 , (4.12)

with A(τ) implicitely defined by (4.11). Note that n(τ + 0) is not defined if the
right hand side of (4.12) is zero. It is easy to see, however, that the correspond-
ing terms do not contribute to the right hand side of (4.9), since the matrix ele-
ments 〈n|R(τM ,mM ) · · ·R(τ1,m1) |n〉 and 〈n|T (τM ,mM ) · · ·T (τ1,m1) |n〉 van-
ish in this case. In a similar way, paths with n(β) �= n(0) ≡ n do not contribute to
(4.9). Note also that there may be several values for A, k and i which fulfill (4.11).
Since such “events” have measure zero in the integration on the right hand side of
(4.9), we may assume, without loss of generality, that this does not happen. Given
the above construction and the definition (4.8) of the matrix T (τ ,m), one immedi-
ately gets the following explicit formula for the vector T (τM ,mM ) · · ·T (τ1,m1) |n〉
in terms of R(τM ,mM ) · · ·R(τ1,m1) |n〉. Namely,

T (τM ,mM ) · · ·T (τ1,m1) |n〉 =

= exp
{
−

∑
x∈Λ

∫ β

0

Φx(n(τ))dτ
}

R(τM ,mM ) · · ·R(τ1,m1) |n〉 . (4.13)

Inserting the equality (4.13) into (4.9), and introducing the symbol S(n, {τk,mk})
for the “sign”

S(n, {τk,mk}) = 〈n|R(τM ,mM ) · · ·R(τ1,m1) |n〉 , (4.14)
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we obtain the representation

Zq,Λ =
∑
n

∑
{mk}

( M∏
k=1

(−λt)mk

mk!

∫
dτmk

k

)
exp

{
−

∑
x∈Λ

∫ β

0

Φx(n(τ))dτ
}
×

× S(n, {τk,mk}) , (4.15)

where the second sum stands for the M sums over m1, . . . ,mM .

Remarks.
i) Note that for x near to the boundary, the value of Φx(n(τ)) depends on the

configuration outside Λ, which we assumed to be the ground state configuration g(q)

by assuming boundary conditions q. We suppress this dependence in our notation.
ii) As discussed above, configurations {n, {τk,mk}} only contribute to the par-

tition function Zq,Λ if they correspond to a classical configuration n(·) with n(0) =
n(β). To make this condition more explicit, it is convenient to consider time ordered
monominals Mx(τ ,n) which are obtained from R(τ ,n) by leaving out all creation
and annhilation operators c†y and cy with y �= x. A configuration {n, {τk,mk}}
then contributes to the partition function Zq,Λ if and only if, for each x, the monom-
inals Mx(τM ,mM ) · · ·Mx(τ1,m1) are of the form c†xcxc†x · · · cx if nx = 1, and of
the form cxc†xcx · · · c†x if nx = 0.

4.2. Ground State Cells, Excited Cells and Contours.

In order to define contours, we introduce a suitable space time lattice, the notion
of an elementary cell, and the definition of ground state cells and excited cells. We
define the lattices

L = Z
d × β̃{0, . . . , M}per (4.16a)

and
LΛ = Λ× β̃{0, . . . , M}per , (4.16b)

where the index “per” stands for the identification of (x, 0) and (x, Mβ̃) = (x, β),
and the continuum tori

T = R
d × [0, β]per (4.17a)

and
TΛ = {y ∈ R

d | dist(y, Λ) ≤ 1
2} × [0, β]per , (4.17b)

again with periodic boundary conditions in the “time direction”.
An elementary cell C(x, k), labbeled by an index (x, k) ∈ Z

d × {1, . . . , M} (we
identify 0 and M), is now defined as the set

C(x, k) = {y ∈ R
d | dist(y, x) ≤ 1

2} × β̃[k − 1, k] . (4.18)

Given a “configuration” ω = {n, {τk,mk}} contributing to the right hand side of
(4.15), we distinguish between elementary cells C(x, k) with constant occupation
numbers nx,σ(τ), and those which are “visited” by a hopping term hA. We define
an elementary cell C(x, k) ⊂ TΛ to be a quantum cell, if x ∈ suppmk, where
suppmk :=

⋃
A:mk,A �=0 suppA, and to be a classical cell if x /∈ suppmk. Note

that with this definition, the occupation number nx,σ(τ) is constant inside classical
cells, so that nx,σ(τ) = nx,σ(kβ̃) =: nσ(C(x, k)) if C(x, k) is a classical cell and
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(k − 1)β̃ ≤ τ ≤ kβ̃. We say that a cell C(x, k) is in the ground state m, if all cells
C(y, k) with y ∈ U(x) are classical cells, and nσ(C(y, k)) = g

(m)
y,σ . A cell which is not

in a ground state is called an excited cell, and the set of excited cells corresponding
to the configuration ω is denoted by D = D(ω).

At this point, the definion of contours is standard. One defines a (labeled)
contour Y as a pair (suppY, α), where suppY ⊂ T is a finite, connected union of
elementary cells, while α is an asignment of labels α(F ) to faces of ∂ suppY which
is constant on the boundary of all connected components of T \ suppY .

The contours Y1, . . . , Yn corresponding to a configuration ω = {n, {τk,mk}} are
then defined by taking the connected components of the set D of excited cells in TΛ

for their supports suppY1, . . . , suppYn and by taking the labels m of the ground
states for the elementary cells C that touch the face F , see above, for the corre-
sponding labels αi(F ). The ground state regions Vm, m = 1, . . . , r, corresponding
to ω, on the other hand, are defined as the union of all elementary cells that are in
the ground state m.

Note that for each configuration ω = {n, {τk,mk}} contributing to (4.15), the
set of contours corresponding to ω is a set of mutually compatible contours with
matching labels and external boundary condition q. Here, as usually, two contours
Y and Y ′ are called compatible whenever suppY ∩ suppY ′ = ∅, a set {Y1, . . . , Yn}
of pairwise compatible contours is called a set with matching labels, if the labels
α(F ) of the contours Y1, . . . , Yn are constant on the boundary of each component
of T \ (suppY1 ∩ · · · ∩ suppYn), and a set of mutually compatible contours with
matching labels is said to have external boundary condition q if these labels take the
value q on the boundary of the infinite component of T \ (suppY1 ∩ · · · ∩ suppYn).

Note also that, by our definition of ground state cells, the function Φx(n(τ)) in
the exponent in (4.15) is constant and equal to em for all (x, τ) in the ground state
region Vm. As a consequence, the contribution of the ground state region Vm to
the exponent in (4.15) is −β̃|Vm|em, where |Vm| is the number of elementary cells
in Vm.

In a final step, we now sum (and integrate) over all configurations leading to
the same set of contours {Y1, . . . , Yn}. Extracting further the factor e−

∑
m β̃em|Vm|

for the classical energy of the ground state regions, ∪mVm = TΛ \ (suppY1 ∩ · · · ∩
suppYn), and denoting the numerical value of the sum over the remaining factors
by ρ(Y1, . . . , Yn), we obtain the contour representation

Zq,Λ =
∑

{Y1,...,Yn}
e−

∑
m β̃|Vm|emρ(Y1, . . . , Yn) , (4.19)

where the sum goes over all sets of mutually compatible contours with matching
labels, external boundary condition q, and support suppYi ⊂ TΛ. Note that the
external boundary condition q refers to the set {Y1, . . . , Yn}, not to the individual
contours Y ∈ {Y1, . . . , Yn}.

Our goal, now, is to show that it is possible to define contour activities ρ(Y ) so
that

ρ(Y1, . . . , Yn) =
n∏

i=1

ρ(Yi) , (4.20)

and hence

Zq,Λ =
∑

{Y1,...,Yn}
e−

∑
m β̃|Vm|em

n∏
i=1

ρ(Yi) . (4.21)
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Given this representation, the partition function can then be analysed using a
slightly modified version [19] of standard Pirogov-Sinai theory, provided ρ(Y ) is
decaying sufficiently fast in the size of Y (which will be easy to show, see Section 5).

4.3. Factorization of the contour activities.

In this subsection we prove the factorization (4.20). Let us first introduce the
notation ω(V ) for a configuration living on a set V ⊂ TΛ; namely, such a configura-
tion is given by ω(V ) = {n(V ), {τk(V ),mk(V )}} with n(V ) = {nx, C(x, 1) ⊂ V },
mk(V ) = {mk,A;∪x∈supp AC(x, k) ⊂ V }, τk(V ) = {τ i

k,A;∪x∈supp AC(x, k) ⊂ V }.
Inspecting now the mapping ω �→ {Y1, . . . , Yn} assigning a set of mutually com-
patible contours to a configuration ω = {n, {τk,mk}} contributing to Zq,Λ (see
Remark ii) after (4.15) for an explicit condition), we define the indicator function
χY1,...,Yn(ω) to be 1 if Y1, . . . , Yn are the contours corresponding to ω and to be 0
otherwise. Note that this definition implicitely gives χY1,...,Yn(ω) = 0 if ω does not
contribute to Zq,Λ, since such a configuration does not correspond to a classcial
path n(τ) and hence not to any assignment of contours.

The indicator function χY1,...,Yn(ω) can now be decomposed into a product

χY1,...,Yn(ω) =
∏
m

χm(ω(Vm))
n∏

i=1

χYi(ω(suppYi)). (4.22)

Here ω(Vm) and ω(suppYi) are the corresponding restrictions of the configuration
ω. The function χm(ω(Vm)) indicates that mk(Vm) = 0 for all k and nx = g

(m)
x for

all x such that C(x, 1) ⊂ Vm. Given a contour Y and extending the configuration
ω(suppY ) by putting mk(TΛ \ suppY ) = 0 and fixing nx = g

(m)
x for every cell

C(x, 1)∩ suppY = ∅ contained in the component of TΛ \ suppY whose boundary is
labeled by α = m, the function χY (ω(suppY )) indicates that Y is the only contour
of this extension of ω(suppY ). Note that the conditions according to Remark ii)
after (4.15) are fullfilled for ω if and only if they are fullfilled for the extension of
ω(suppY ), for all contours Y corresponding to ω, a condition that is, in turn, again
implicit in χY (ω(suppY )).

Next, we introduce the classical energy β̃E(ω(suppY )) of a contour Y :

β̃E(ω(suppY )) =
M∑

k=1

∑
x:C(x,k)⊂supp Y

∫ kβ̃

(k−1)β̃

Φx(nY (τ)) dτ , (4.23)

where nY (·) is the classical path obtained from the above extension of ω(suppY )
to TΛ. With these notations,

ρ(Y1, . . . , Yn) =
∑
n

∑
{mk}

( M∏
k=1

(−λt)mk

mk!

∫
dτmk

k

)
χ

Y1,...,Yn
(ω)×

× S(ω)
n∏

i=1

e−β̃E(ω(supp Yi)) , (4.24)

where ω = {n, {τk,mk}}, and S(ω) = S(n, {τk,mk}) is given by (4.14).
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Thus to prove the factorization (4.20), it remains to show the factorization for
the sign S(ω). Our task is to introduce signs S(ω(suppY )) ∈ {−1, 1} so that, for
a configuration ω with contours {Y1, . . . , Yn}, one has

S(ω) =
n∏

i=1

S(ω(suppYi)) . (4.25)

We need some notation. As ususal, the interior IntY of a contour Y = (suppY, α)
is defined as the union of all finite6 components C of T \ suppY , while the exterior
ExtY is defined as the infinite component of T \ suppY . One says that Y is a
contour with external boundary condition q, or shorter: a q-contour, if α(F ) = q
for all faces F in the boundary of ExtY , and one defines Intm Y as the union
of all components C of IntY such that α

∣∣
∂C

= m. Finally, V (Y ) is defined as
suppY ∪ IntY .

We now proceed by determining the signs of contours one by one, starting from
the most inner ones, “erasing” them simultaneously from the configuration ω. Let
thus Yi be a contour with external boundary condition qi, such that there is no
contour Yj , j �= i, with suppYj ⊂ IntYi. Consider the configuration ω̃ obtained by
extending the configuration ω(TΛ \V (Yi)) by taking m̃k(V (Yi)) = 0 and ñx = g

(qi)
x

for all x such that C(x, 1) ⊂ V (Yi). We will now introduce the sign S(ω(suppYi))
(independently of the configuration ω(TΛ \ V (Yi))) in such a way that

S(ω) = S(ω(suppYi))S(ω̃) (4.26)

with S(ω̃) defined from the configuration ω̃ by (4.14). Iterating the erasure proce-
dure and formula (4.26), we get a final configuration with no contours and sign +1,
establishing thus the equality (4.25).

To determine the sign S(ω(suppYi)), we begin by considering for each x ∈ Λ the
intersection I(x) of the line {x}×[0, β]per with V (Yi), I(x) = ({x}×[0, β]per)∩V (Yi).
If nonempty, the set I(x) is either a union of disjoint intervals I(x) = ∪l[k−

l , k+
l ]

or I(x) = [0, β]per. In the former case (I(x) �= [0, β]per), we use the fact that
all boundary cells of V (Yi) are classic cells with the same ground state g(m) and
thus the path n(τ) (corresponding to ω for which χY (ω(suppYi)) �= 0 ) necessarily
attains the values nx(τ = k−

l ) = nx(τ = k+
l ) = g

(m)
x . Assuming for a moment that

the interval (k−
l , k+

l ) does not contain the time τ = 0, let us consider the product

h̃a · · · h̃b (4.27)

consisting of those terms hA in the product
∏

R(τk,mk) for which the times τ i
k,A

fall into the interval (k−
l , k+

l ). If the corresponding term is to be nonvanishing (i. e.
if χY (ω(suppYi)) �= 0 ), there must be in (4.27) the same number of creation and
annihilation operators c+

x and cx. Commuting them through all remaining terms
until they mutually annihilate, we produce a sign sx,l(ω(suppYi)). Notice that this
sign does not depend on the configuration ω(TΛ \ suppYi), since if (4.27) contains
a term hA corresponding to any other contour, then necessarily x �∈ suppA and,
since A is a product of an even number of creation and annihilation operators, the

6In the sense that C is a finite union of unit cells.
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operator c+
x (resp. cx) commutes with such hA producing no additional sign. If

the interval (k−
l , k+

l ) contains the time τ = 0, we consider separately the product
of the form (4.27) for the interval (k−

l , 0), and that for the interval (0, k+
l ). We

then commute all creation and annihilation operators c+
x and cx that correspond to

times in (k−
l , 0) with the remaining operators in the product (4.27) until they hit

time zero, and similarly for those in (0, k+
l ). After annihilating all pairs, we will be

left with monomials R+ and R− in the operators c+
x and cx, such that

R+ |n〉〈n|R− = |ñ(x)〉〈ñ(x)| , (4.28)

where ñ(x) is obtained from n by substituting ñx = g
(m)
x for nx . Combining the

steps described so far, we get a sign sx(ω(suppYi)) =
∏

l sx,l(ω(suppYi)) and the
new state ñ(x) at τ = 0, with ñx = g

(m)
x , as required by our definition of ω̃.

If I(x) = [0, β]per, then the values nx(τ = 0) = nx(τ = β) = nx and we can
reason in a similar fashion as in the first case above. Then all operators c+

x and cx are
annihilated after the commutations are performed yielding the sign sx(ω(suppYi)),
without any change in the state n at time τ = 0. Since all operators c+

x and cx

corresponding to the concerned x have been cancelled, the value of S(ω̃) does not
depend on the state nx and we may replace it, without any additional change in
sign, by ñx = g

(m)
x .

Iterating the above procedure for all x (chosen in a fixed (say, lexicographic)
order) such that I(x) is nonempty, we pass to the configuration ω̃ and produce the
sign S(ω(suppYi)) =

∏
x sx(ω(suppYi)).

5. Exponential Decay of Contour Activities,
Proof of Theorems 3.1–3.4

5.1. Bound on the contour activities ρ(Y ).

Given the contour representation (4.21), the proof of Theorems 3.1 and 3.2 is an
easy exercise in Pirogov-Sinai theory, once a suitable bound on the weights ρ(Y ) is
established. This is done in this subsection.

Proposition 5.1. Let λ ∈ R, β̃ > 0, and γQ ≥ 1 be such that

(e− 1)β̃|λ|‖t‖γQ
≤ 1. (5.1)

Then
|ρ(Y )| ≤ e−(β̃e0+γ̃)| supp Y | (5.2)

where
γ̃ = min{β̃γcl, γQ − 1} − (1 + |Σ|) log 2. (5.3)

Proof. Since |S(ω)| = 1, we get from (4.24) (for n = 1) the bound

|ρ(Y )| ≤ e−β̃e0| supp Y |2|Σ|| supp Y |×

×
∑

X⊂supp Y

∑
{mk}

∪k supp mk=X

( M∏
k=1

(|λ||t|)mk

mk!
β̃|mk|

)
e−β̃γcl| supp Y \X|. (5.4)
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The second sum is over all unions X of unit cells in suppY (corresponding to the
quantum cells on the right hand side of (4.24)) . The factor 2|Σ|| supp Y | comes
from the sum over occupation numbers n, observing that, for a q-contour Y , the
occupation numbers are fixed, nx,σ = g

(q)
x,σ, whenever C(x, 1)∩ suppY �= ∅, and the

last factor in (5.4) comes from the fact that all cells in suppY that are not quantum
cells must be classically excited. In a similar manner as in [19], we use the bound

∞∑
mk,A=1

(|λ|β̃|tA|)mk,A

mk,A!
≤ (e− 1)|λ|β̃|tA|, (5.5)

valid whenever |λ|β̃|tA| ≤ 1, to get

|ρ(Y )| ≤ e−β̃e0| supp Y |2|Σ|| supp Y |×
×

∑
X⊂supp Y

e−β̃γcl| supp Y \X|
∏
k

(∑
Bk

∏
A∈Bk

(e− 1)|λ|β̃|tA|
)
. (5.6)

The
∑

Bk
is over all finite collections Bk ⊂ A0 such that ∪A∈Bk

A = Xk, where, for
a fixed k ∈ {1, . . . , M}, the set Xk is the union of all unit cells C(x, k) contained
in X. Using now (5.1) we get the bound∑

Bk={A1,...,A�}
∪Ai=Xk

∏
Ai∈Bk

(e− 1)|λ|β̃|tAi | ≤

≤ e−γ̃Q|Xk|
∞∑

�=1

1
3!

�∏
i=1

( ∑
Ai∈A0

Ai∩Xk �=∅

(e− 1)|λ|β̃|tAi |eγQ| supp Ai|
)
≤

≤ e−γQ|Xk|
∞∑

�=1

1
3!

�∏
i=1

( ∑
x∈Xk

∑
Ai∈A0
Ai�x

(e− 1)|λ|β̃|tAi |eγQ| supp Ai|
)
≤

≤ e−γQ|Xk|
∞∑

�=1

1
3!
|Xk|� ≤ e−(γQ−1)|Xk|. (5.7)

Since ∑
X⊂supp Y

e−(γQ−1)|X|e−β̃γcl| supp Y \X| ≤ e−min(β̃γcl,γQ−1)| supp Y |2| supp Y |, (5.8)

we finally get (5.2) with γ̃ given by (5.3). �

5.2. Bound on the derivaties ∂ρ(Y )/ ∂µi.

Proposition 5.2. Let λ ∈ R, β̃ > 0, and γQ ≥ 1 be such that (5.1) is satisfied.
Then ∣∣∣ ∂

∂µi
ρ(Y )

∣∣∣ ≤ (
β̃C0 +

e

e− 1
)
| suppY |e−(β̃e0+γ̃)|Y |. (5.9)

Here C0 is the constant from (3.10) and γ̃ is the constant defined in (5.3).

Proof. We start again from the expression (4.24) for n = 1 and bound∣∣∣ ∂

∂µi
e−β̃E(ω(supp Y ))

∣∣∣ ≤ β̃
∣∣∣ ∂

∂µi
E(ω(suppY ))

∣∣∣e−β̃E(ω(supp Y )) ≤

≤ β̃C0| suppY |e−β̃E(ω(supp Y )) (5.10)
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with the help of (4.23) and (3.10), as well as

∣∣∣ ∂

∂µi

M∏
k=1

(λt)mk

mk!

∣∣∣ ≤ ( M∏
k=1

(|λ||t|)mk

mk!
) ∑

k̄,Ā

mk̄,Ā

∣∣∣ ∂

∂µi
log tĀ

∣∣∣. (5.11)

Using then (5.5) and

∞∑
mk̄,Ā=1

mk̄,Ā

(|λ|β̃|tĀ|)mk̄,Ā

mk̄,Ā!

∣∣∣∂tĀ
∂µi

∣∣∣ 1
|tĀ|

=

= |λ|β̃
∣∣∣∂tĀ
∂µi

∣∣∣
∞∑

mk̄,Ā=0

(|λ|β̃|tĀ|)mk̄,Ā

mk̄,Ā!
≤ |λ|β̃e

∣∣∣∂tĀ
∂µi

∣∣∣, (5.12)

we get

∣∣∣ ∂

∂µi
ρ(Y )

∣∣∣ ≤ e−β̃e0| supp Y |2|Σ|| supp Y |
∑

X⊂supp Y

e−β̃γcl| supp Y \X|×

×
{

β̃C0| suppY |
∏
k

(∑
Bk

∏
A∈Bk

(e− 1)|λ|β̃|tA|
)

+

+
∑
k̄,Ā

Ā∩Xk̄ �=∅

|λ|β̃e
∣∣∣∂tĀ
∂µi

∣∣∣ ∑
Bk̄

Ā/∈Bk̄

∏
A∈Bk̄

(e− 1)|λ|β̃|tĀ|
∏
k �=k̄

(∑
Bk

∏
A∈Bk

(e− 1)|λ|β̃|tA|
)}

(5.13)

with the sum on the last line running through all Ā and Bk̄ such that the union of
Ā with all A in Bk̄ is Xk̄. Hence

∣∣∣ ∂

∂µi
ρ(Y )

∣∣∣ ≤ e−β̃e0| supp Y |2|Σ|| supp Y |×

×
∑

X⊂supp Y

e−β̃γcl| supp Y \X|
{

β̃C0| suppY |+ |X| e

e− 1

}
e−(γQ−1)|X|. (5.14)

The rest of the proof then follows the same argument as above in the proof of
Proposition 5.1. �
5.3. Proof of Theorem 3.1 and 3.2.

Given the representation (4.21) and the bounds of Propositions 5.1 and 5.2, the
proof of Theorem 3.1 i) and v) is essentially identical to the proof of Theorem 2.1
i) and v) in [19]. Actually, it is an almost standard application of Pirogov-Sinai
theory, with two modifications: the fact that the contour weights ρ(Y ) are in general
not positive, and the fact that (4.21) describes a contour model in a finite slab, see
[19] for the details. The constants can be chosen as follows. Taking any sufficiently
large γ, we put β0 = γ/γcl and assume that λ fulfils (3.28). Taking now γQ = γ and
β̃ ∈ [β0, 2β0), the condition (5.1) is satisfied and we can infer that the bounds (5.2)
and (5.9) are fulfiled with γ̃ = γ − 1− (1 + |Σ|) log 2. Finally, whenever β ≥ β0, we
choose M ∈ N so that β̃ = β/M ∈ [β0, 2β0).
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In order to prove the remaining parts of Theorem 3.1, we need a representation
of the form (4.21) for expectation values of local observables. By linearity and
the fact that a local observable is a finite sum of even monominals in the creation
annihilation operators, we may restrict ourselves to local observables that are of
the form

Ψ = hA(Ψ) Φ = hA(Φ). (5.15)

Rewriting the expectation value of a local observable Ψ as

〈Ψ〉q,Λ =
TrHΛ(Ψe−βHq,Λ)
TrHΛ(e−βHq,Λ)

=
TrHΛ(ΨTM )
TrHΛ(TM )

=
ZΨ

q,Λ

Zq,Λ
, (5.16)

we now derive a contour representation for the modified partition function ZΨ
q,Λ.

Retracing the steps leading to representation (4.15), we get the expression

ZΨ
q,Λ =

∑
n

∑
{mk}

( M∏
k=1

(−λt)mk

mk!

∫
dτmk

k

)
exp

{
−

∑
x∈Λ

∫ β

0

Φx(n(τ))dτ
}
×

× S(n, {τk,mk}; Ψ) , (5.17)

where
S(n, {τk,mk}; Ψ) = 〈n|R(τM ,mM ) · · ·R(τ1,m1)Ψ |n〉 . (5.18)

In order to define the contours corresponding to a configuration ω = {n, {τk,mk}}
we then introduce, in addition to the set of excited cells D(ω), the d+1 dimensional
support of Ψ as

D(Ψ) :=
⋃

x∈supp Ψ

C(x, 1) , (5.19)

where we localized the observable Ψ, by definition, in the first time slice. Consid-
ering all cells in D(ω) ∪ D(Ψ) as excited, we then define the set suppYΨ as the
union of all connected components of D(ω) that are connected to D(Ψ), and the
set suppYΨ as suppYΨ ∪ D(Ψ). The contours corresponding to the configuration
ω are defined by taking the set suppYΨ, and the remaining components of D(ω),
denoted by suppY1, . . . , suppYn as their support. Since the cell in D(Ψ) have to
be considered as excited as well, a slight variance will apear in the definition of the
ground state regions Vm, which now, by definition, does not contain the cells in
D(Ψ).

With these definitions, we get the contour representation

ZΨ
q,Λ =

∑
YΨ

∞∑
n=0

∑
{Y1,...,Yn}

e−
∑

m β̃|Vm|emρ(YΨ, Y1, . . . , Yn) , (5.20)

with

ρ(YΨ, Y1, . . . , Yn) =
∑
n

∑
{mk}

( M∏
k=1

(−λt)mk

mk!

∫
dτmk

k

)
χ

YΨ,Y1,...,Yn
(ω)×

× S(ω; Ψ)e−β̃E(ω(supp YΨ))
n∏

i=1

e−β̃E(ω(supp Yi)) , (5.21)
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where ω = {n, {τk,mk}}, and S(ω; Ψ) = S(n, {τk,mk}; Ψ) is given by (5.18).
Since the observable Ψ is of the form (5.15), the factorization proof now goes
through without modifications, leading to the representation

ZΨ
q,Λ =

∑
YΨ

∞∑
n=0

∑
{Y1,...,Yn}

e−
∑

m β̃|Vm|emρ(YΨ)
n∏

i=1

ρ(Yi) , (5.22)

with ρ(Yi) defined as before, and ρ(YΨ) defined by

ρ(YΨ) =
∑
n

∑
{mk}

( M∏
k=1

(−λt)mk

mk!

∫
dτmk

k

)
χ

YΨ (ω)S(ω; Ψ)e−β̃E(ω(supp YΨ)) . (5.23)

Given the contour representation (5.22), we can now proceed as in [19] to complete
the proof of Theorem 3.1. In the same way, Theorem 3.2 follows from the corre-
sponding representation for the modified partition function ZΨ

per,Λ = 〈Ψ〉per,ΛZper,Λ.

5.4. Proof of Lemma 3.3.

Given the results of Section 4 and 5, the proof of Lemma 3.3 is almost a textbook
exercise. We therefore only indicate the main steps, and leave the details to the
reader.

Starting with the partition function Zβ,np
q,Λ , we note that it has a representation

of the form (4.15), with the only difference that the sum over n is replaced by the
single term n = g

(q)
Λ . Represented as the partition function of a contour model,

Zβ,np
q,Λ is then given as a sum over sets of contours in a volume V (Λ) ⊂ R

d+1,

V (Λ) = {y ∈ R
d | dist(y, Λ) ≤ 1

2} × [0, β] , (5.24)

with boundary condition q on ∂V (Λ)
The partition function Zβ,np

q,Λ can be analysed by standard Pirogov-Sinai theory
as developped in [21–24]. We follow [23,24], with a slight variant in the definition of
truncated contour models. Namely, for a contour Y with support suppY ⊂ R

d+1,
we define δ(Y ) as the diameter of the projection of suppY on R

d, and then proceed
by induction on δ(Y ), see [19], equations (5.8) – (5.10). Denoting the corresponding
truncated partition functions by Z̄np

q (V (Λ)), we define the truncated free energies

f̄q(µ) = − lim
V →Rd+1

log Z̄np
q (V )
|V | , (5.25)

where V denotes the euclidean volume of V (note that |V | is nothing but the number
of elementary cells C(x, k) in V multiplied by β̃).

As usual, the untruncated partition functions Zβ,np
q,Λ and the corresponding trun-

cated partition functions Z̄np
q (V (Λ)) are identical whenever aq(µ) = 0, where

aq(µ) = 0 is defined as
aq(µ) = f̄q(µ)−min

m
f̄m(µ) . (5.26)

For aq(µ) = 0, the partition function Zβ,np
q,Λ can therefore be analyzed by a conver-

gent cluster expansion, giving a representation for

log Zβ,np
q,Λ + f̄q(µ) |V (Λ)| = log Zβ,np

q,Λ + f̄q(µ) β|Λ|
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in terms of clusters connected to the boundary ∂V (Λ). Defining ∂iV (Λ) as the
union over all faces in ∂V (Λ) that are orthogonal to the direction i, and recalling
that an elementary cell C(x, k) has extension β̃ in the “time direction”, we therefore
get the bound

log Zβ,np
q,Λ = −f̄q(µ)β|Λ|+ O

(
|∂0V (Λ)|+ 1

β̃

d∑
i=1

|∂iV (Λ)|
)

= −f̄q(µ)β|Λ|+ O
(
|Λ|+ β

β̃
|∂Λ|

)
. (5.27)

In order to complete the proof of (3.46), we need a relation between the truncated
free energies f̄q(µ) introduced above and the truncated free energies fq(µ, β) of the
model on the torus T. To this end, we note that the truncated activity of a contour
Y with suppY ⊂ T is the same for both truncated models, as long as the support
of Y does not wind arround the torus T. The cluster expansions for β̃f̄q(µ) and
β̃fq(µ, β) therefore only differ by terms involving clusters winding arround T in the
time direction. As a consequence,

β̃fq(µ, β) = β̃f̄q(µ) + O(e−αγ(β/β̃)) , (5.28)

where γ and α > 0 are the constants from Theorem 3.1. From (5.28) we get
fq(µ) ≡ limβ→∞ fq(µ, β) = f̄q(µ) and as a consequence

aq(µ) = lim
β→∞

aq(µ, β, λ) . (5.29)

Observing finally that β̃ ∈ [β0, 2β0), see the proof of Theorem 3.1 above, the bound
(3.46) follows from (5.27).

As for the proof of (3.47), we note that the above methods also give a convergent
cluster expansion for 〈Ψ〉β,np

q,Λ if aq(µ) = 0. Comparing this cluster expansion to the
corresponding cluster expansion in the thermodynamic limit V (Λ) → R

d+1, we get

〈Ψ〉β,np
q,Λ = lim

Λ→Zd

β→∞

〈Ψ〉β,np
q,Λ + O(e−αγ min{dist(supp Ψ,∂Λ),β/2β̃}) , (5.30)

provided aq(µ) = 0. In order to complete the proof, we need to controll the limit
in (3.31′), showing that it is identical to the limit in the right hand side of (5.30).
To this end, we note that the condition aq(µ) = 0 implies that

β̃aq(µ, β, λ) ≤ O(e−αγ(β/β̃)) . (5.31)

Standard Pirogov-Sinai theory, here in the form derived in [19], on the other hand,
gives that Zq,Λ and 〈Ψ〉βq,Λ can be analysed by a convergent cluster expansion if

β̃aq(µ, β, λ) diam(Λ) ≤ O(1) . (5.32)

The limits in (3.30′) and (3.31′) can therefore be analysed by a convergent expan-
sion. Comparing the resulting expansion for 〈Ψ〉q to that for 〈Ψ〉β,np

q,Λ , we obtain
the desired bound (3.47). �
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Proof of Theorem 3.4.

Let β ≥ β0, where β0 is the constant from Theorem 3.1. Using (3.51), (3.52),
Lemma 3.3, and the fact that the norm and support of Qx,Λ are uniformly bounded
in Λ, we get

∣∣∣ 1
|Λ| 〈QΛ〉q − ρ

(q)
Λ

∣∣∣ =
1
|Λ|

∣∣∣〈QΛ〉q − 〈QΛ〉β,np
q,Λ

∣∣∣ =
1
|Λ|

∣∣∣∑
x∈Λ

(
〈Qx,Λ〉q − 〈Qx,Λ〉β,np

q,Λ

)∣∣∣ ≤

≤ C

|Λ|
∑
x∈Λ

exp{−αγ min{dist(suppQx,Λ, ∂Λ), β/β0}}. (5.33)

Taking the limit β →∞, this gives

∣∣∣ 1
|Λ| 〈QΛ〉q − ρ

(q)
Λ

∣∣∣ ≤ C

|Λ|
∑
x∈Λ

exp{−αγ dist(suppQx,Λ, ∂Λ)} ≤ O
( |∂Λ|
|Λ|

)
(5.34)

which in turn implies the bound (3.55).
In order to prove (3.56), we have to bound the difference of 〈Qx,Λ〉βq and 〈Qx,Λ〉q.

Since q is stable for all β ≥ β̃0, both 〈Qx,Λ〉βq and 〈Qx,Λ〉q can be analysed by
a convergent cluster expansion. Comparing then the expansions, one obtains a
representation for 〈Qx,Λ〉βq − 〈Qx,Λ〉q that only involves clusters which either wind
around the torus T in the time direction or are contained in infinite volume R

d+1

and “do not fit” into the torus T. In either case, one gets only contribution of the
order O

(
e−(β/β0)αγ

)
yielding the bound

∣∣∣〈Qx,Λ〉q − 〈Qx,Λ〉βq
∣∣∣ ≤ Ce−(β/β0)αγ , (5.35)

which in turn implies the bound (3.56).

6. Application to the Extended
Hubbard Model: Proof of Theorem 2.1

The claims i) and iii) are a straightforward corollary of Theorem 3.1. For the
choice of constants we notice that γcl ≥ c(d)ε everywhere in S

(ε)
{0,2}, where c(d) is

a strictly positive constant. As a consequence, β0 ∼ 1
ε and λ0 ∼ ε. The bound

|t| < εC2 corresponds to (3.28) (with t replacing λ and 2de8γ replacing ||t||γ ). The
long range order expressed in (2.9) follows from the bound (3.33) and the staggered
order of the ground states of H(0) (see [18] for a detailed discussion of the classical
states of H(0)).

Using Theorem 3.4 for the (quantum) density ρ(β) defined in (2.4) and noticing
that the density of classical ground state ρclass is actually constant throughout the
region S

(0)
{0,2}, ρclass = 1, we get the claim iv).

To prove ii), we first show that 〈S3
x〉βm = 0. Taking into account Theorem 3.1 ii),

it is enough to show that

TrHΛ(L)(S3
x e−βHm,Λ(L)) = 0 (6.1)

for every Λ(L) with even L and Hm,Λ defined as in (3.21) with g(m) being the
corresponding {0, 2} staggered ground configuration. Using (2.7) and expressing
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the trace in terms of the base |n〉 of occupation numbers n : Λ × Σ → {0, 1}, we
want to show that

∑
n

〈n| (n̂x,↑ − n̂x,↓) e−βHm,Λ(L) |n〉 = 0. (6.2)

Indeed, taking into account that

∑
n

〈n| (n̂x,↑ − n̂x,↓) e−βHm,Λ(L) |n〉 =
∑
n

〈n| e−βHm,Λ(L) |n〉(nx,↑ − nx,↓) (6.3)

and that the matrix element 〈n| e−βHm,Λ(L) |n〉 is symmetric under the overall spin
flip n→ ñ, ñx,↑ = nx,↓ and ñx,↓ = nx,↑, we get (6.1).

The Hamiltonian above is invariant under rotations and has actually an identical
expression in terms of the creation and annihilation operators of the electron with
up and down spin with respect to, say, the 1-axis. To get 〈S1

x〉βm = 0 and 〈S2
x〉βm = 0

it is therefore enough to repeat the above argument in the corresponding occupation
number bases. �
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[18] C. Borgs, J. Jȩdrzejewski, R.Kotecký, The staggered charge-order phase of the low-tempe-

rature extended Hubbard model in the atomic limit, J. Phys. A 29 (1996), 733–747.
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[22] Zahradńık, M., An Alternate Version of Pirogov-Sinai Theory, Commun. Math. Phys. 93

(1984), 559–581.

[23] Borgs, C., Imbrie, J., A Unified Approach to Phase Diagrams in Field Theory and Statis-

tical Mechanics, Commun. Math. Phys. 123 (1989), 305–328.
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