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Using the Pirogov–Sinai theory, we study finite-size effects for the ferromagnetic
q-state Potts model in a cube with boundary conditions that interpolate between
free and constant boundary conditions. If the surface coupling is about half of
the bulk coupling and q is sufficiently large, we show that only small perturba-
tions of the ordered and disordered ground states are dominant contributions to
the partition function in a finite but large volume. This allows a rigorous control
of the finite-size effects for these ‘‘weak boundary conditions.’’ In particular, we
give explicit formulæ for the rounding of the infinite-volume jumps of the
internal energy and magnetization, as well as the position of the maximum of
the finite-volume specific heat. While the width of the rounding window is of
order L−d, the same as for periodic boundary conditions, the shift is much
larger, of order L−1. For ‘‘strong boundary conditions’’—the surface coupling
is either close to zero or close to the bulk coupling—the finite size effects at
the transition point are shown to be dominated by either the disordered or the
ordered phase, respectively. In particular, it means that sufficiently small
boundary fields lead to the disordered, and not to the ordered Gibbs state. This
gives an explicit proof of A. van Enter’s result that the phase transition in the
Potts model is not robust.
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1. INTRODUCTION

First-order phase transitions are characterized by discontinuities in the
mean values of order parameters in the thermodynamic limit. However, in



a finite volume the transition is rounded and, possibly, shifted with respect
to the infinite-volume transition point.

The details of the finite-size effects depend crucially on the choice of
boundary conditions that, in turn, depend on the physical situation under
consideration. The simplest and best studied case is that of classical lattice
systems with periodic boundary conditions. This investigation goes back to
the work of Imry, (1) Fisher and Berker, (2) Blöte and Nightingale, (3) Binder
and co-workers, (4, 5) and others. Rigorous results concerning finite-size
effects with periodic boundary conditions (6–11) show a universal behaviour
of the rounded transition and yield details of the asymptotics of the finite-
size shift of the transition. One of the results of these papers is that for
cubic volumes of linear size L, the inflection point ht(L) of the mean value
of the order parameter is shifted by a correction which is typically of order
L−d, where d \ 2 is the dimension of the lattice under consideration. For
the special case of two phase coexistence, this shift is much smaller, namely,
of order O(L−2d). (More precisely, the required property is that both phases
have the same finite degeneracy.)

While periodic boundary conditions are studied most often (and are
also the easiest to implement in computer simulations), free boundary
conditions, constant boundary conditions, and, more generally, boundary
conditions with boundary fields are more natural from the point of view of
realistic systems. The case of fixed constant boundary conditions, where
one has to investigate the balancing effect of boundary conditions and an
opposite driving force (say, the external magnetic field) is rather difficult to
control rigorously, and only results for two-dimensional Ising model are
available. (12) On the other hand, when boundary conditions are sufficiently
weak (‘‘close’’ to the free boundary conditions), a rather general class of
models was rigorously studied in ref. 13. The asymptotics of the rounding
and the shift of the transition point were precisely evaluated. In contrast to
periodic boundary conditions, the shift is typically of order L−1, due to the
contribution of the surface free energies.

Even though the results of ref. 13 cover a rather general class of
systems, the case of the temperature-driven transition for the Potts model is
included only in principle. The details of the contour analysis depend on a
slightly different type of contours and, in addition, the discussion of the
Fortuin–Kasteleyn representation with the corresponding boundary condi-
tion has to be included. Given also the fact that the Potts model is often
used as a typical case of a weak and asymmetric first-order transition for
computer simulations, we find it useful to analyze it separately in the
present paper. Finally, it is interesting to discuss the very meaning of
‘‘weak’’ boundary conditions for the Potts model. Fixing the bulk coupling
constant J to 1, we consider a variable strength l with which the spins on
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the inner boundary of the volume are enforced to align with a fixed spin
value, say, 1. The particular value l=1 corresponds to standard fixed
boundary conditions yielding, at the phase coexistence temperature, the
ordered 1-phase. On the other hand, the value l=0 (i.e., the free boundary
conditions) does not correspond to a ‘‘uniform mixture’’ of pure phases—it
actually strongly enforces the disordered phase. The role of ‘‘weak’’
boundary conditions, where the contributions of the ordered and disor-
dered phases are of comparable importance, turns out to be played by the
values l ’ 1

2 . To see this in the leading approximation, let us take, for the
main contributions to the partition function in a hypercube Ld, the terms
e−b(dLd−dLd−1+l2dLd−1) corresponding to the ground state for the ordered
1-phase and qL

d
corresponding to the disordered state. Their equality at

the approximate coexistence inverse temperature b0=
log q
d yields l=1

2 . Of
course, the important task of the rigorous analysis will be to show that
this reasoning remains approximately true even when allowing arbitrary
excitations.

In the following section we introduce the model and present our
results. In accordance with the discussion of the preceding paragraph, it is
useful to consider three separate regions for the strength l of the boundary
condition: the interval [1−m

2 , 1+m

2 ] containing the value l=1
2 , with an arbi-

trary fixed parameter m ¥ (0, 1), and the complementary intervals [0, 1−m

2 ]
and [1+m

2 ,.). For l in the latter two intervals, the Gibbs state is close to
the corresponding pure (disordered and ordered, respectively) phase, as
described in Theorem 2.1, while the former yields a transition region where
the interpolation between the two phases occurs. The corresponding results
are presented in Theorem 2.3, including the claim that the maximum of the
specific heat occurs at the inverse temperature

b (l)max(L)=bt 51+
d

De
11

2
− l+O 1 q−n

log q
22 1

L
+O(L−2)6

with De denoting the latent heat at bt and n being of the order (1 − m)/4d.
Theorems 2.1 and 2.3 extend the results of the Master thesis of one of the
authors, (14) who proved similar statements for |l − 1

2| [ d and | b

bt
− 1| [ d,

where d=d(d) < 1/52d.
Note that our results in the window [0, 1−m

2 ] imply that the phase
transition in the Potts model is not robust. Here robustness is defined in
the sense introduced by Pemantle and Steif in ref. 15: A phase transition is
said to be robust if the different extremal states are obtained as limits of
Gibbs states with arbitrarily weak boundary fields. More precisely,
robustness is defined in terms of (limiting) marginal single site measures at
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the origin instead of Gibbs states. Theorem 2.1 immediately implies that
the temperature driven first-order phase transition of the Potts model is not
robust, since sufficiently small boundary fields lead to the disordered, and
not the ordered Gibbs state.4 A proof of this statement was already

4 This statement already follows from the results of ref. 14, which imply that for b=bt and
l=1

2 (1 − d) the limiting Gibbs state is the disordered state. Using FKG-monotonicity, we
conclude that any l ¥ (0, 12 (1 − d)) leads to a limiting Gibbs state that is identical to the one
obtained from free boundary conditions.

sketched in ref. 16.
After stating our results in Section 2, we use, in Section 3, the For-

tuin–Kasteleyn representation to derive a suitable contour representation
of the model, paying particular attention to the specific boundary condi-
tions. Section 4 is devoted to the cluster expansion analysis of the finite-
volume partition functions. In particular, the needed results from the
Pirogov–Sinai theory are discussed with a special view on boundary con-
tours and smoothness of truncated contour weights. The proofs of
Theorems 2.1 and 2.3 are then presented in Sections 5 and 6, respectively.
Proofs of several technical lemmas are deferred to the appendix.

2. RESULTS

In this paper, we consider the q-state Potts model in the d-dimensional
cube

L=L(L)=3x ¥ Zd : − L
2

< xi [
L
2

for all i=1,..., d4, L=1, 2,...,
(2.1)

with boundary conditions interpolating between free and constant 1-boundary
conditions.5 As usual, the spin configurations of this model are maps sL

5 Without loss of generality, we use 1-boundary conditions, sx=1 for all x ¥ Zd0L, instead of
general fixed boundary conditions.

from L into Q={1,..., q}. We use B=B(L) to denote the set of all bonds
Ox, yP of nearest-neighbour sites x, y ¥ Zd with both end-points in L and
“B=“B(L) to denote the set {Ox, yP | x ¥ L, y ¥ Zd0L}. We consider the
Hamiltonian

H (l)(sL)=− C
Ox, yP ¥ B

dsx, sy − l C
Ox, yP ¥ “B :
x ¥ L

dsx, 1, (2.2)
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where l \ 0 is the surface coupling. The value l=0 represents free bound-
ary conditions, while l=1 represents standard 1-boundary conditions. The
Gibbs state corresponding to the Hamiltonian (2.2) is given by

O ·P (b, l)L =
1

ZL(b, l)
C

sL ¥ QL

· e−bH(l)(sL), (2.3)

where ZL(b, l) is the partition function,

ZL(b, l)= C
sL ¥ QL

e−bH(l)(sL). (2.4)

It is well known by now that for all d \ 2 and all q \ 2 the infinite-
volume system exhibits a phase transition at some value bt characterized
by the appearance of a spontaneous magnetization for b > bt. For q
sufficiently large, this transition is known to be first-order (17) with a
discontinuity in both the magnetization6

6 The existence of the limits (2.5) and (2.6) with the constant 1-boundary conditions follows
from either GKS-inequalities (18) or FK-monotonicity, see, e.g., ref. 19. By the same methods,
one can also show that the functions m and e are right continuous, m(b)=m(b+0),
e(b)=e(b+0).

m(b)= lim
LQ.

1
Ld

1
q − 1
7 C
x ¥ L(L)

(q dsx, 1 − 1)8
(b, l=1)

L
(2.5)

and the mean energy

e(b)= lim
LQ.

1
Ld

OH (l=1)(sL(L))P
(b, l=1)
L . (2.6)

The magnetization m(b) is zero for b < bt, it jumps from

mdis(bt)=0

to

mord(bt)=lim
b a bt

m(b)=m(bt) > 0

at bt, and it is strictly increasing for b > bt, while the mean energy e(b) is
strictly decreasing for all b, with a jump from

edis(bt)=lim
b ‘ bt

e(b)
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to

eord(bt)=lim
b a bt

e(b)=e(bt)

at bt.
Here we study the finite-volume magnetization and the mean energy

defined by

ML(b, l)=
1

q − 1
7 C
x ¥ L(L)

(qdsx, 1 − 1)8
(b, l)

L
(2.7)

and

EL(b, l)=OH (l)(sL)P (b, l)L = −
“

“b
log ZL(b, l), (2.8)

respectively. The case of the free boundary conditions (l=0) can, for q
sufficiently large, be analyzed by the standard Pirogov–Sinai theory as long
as b [ bt, while the case of the standard 1-boundary conditions (l=1) can
be analyzed as long as b \ bt. This, in particular, gives

lim
LQ.

1
Ld

ML(bt, 0)=0, lim
LQ.

1
Ld

EL(bt, 0)=edis(bt) (2.9)

and

lim
LQ.

1
Ld

ML(bt, 1)=mord(bt), lim
LQ.

1
Ld

EL(bt, 1)=eord(bt). (2.10)

The main contribution of this paper is the analysis of the asymptotic
behaviour (as L Q.) of ML(b, l) and EL(b, l) for any l \ 0 and q large.
It turns out that the behaviour for l ¥ (0, 12) and b [ bt is qualitatively the
same as that for the free boundary conditions: the specific magnetization
1

|L(L)|ML(b, l) and the specific mean energy 1
|L(L)|EL(b, l) still converge to

the bulk quantities in the disordered phase with corrections of the order
L−1. Similarly, for l ¥ (12 ,.) and b \ bt, we are still in the ordered phase.
These two cases are jointly referred to as the strong boundary conditions.
Finite-size behaviour for intermediate values of l—‘‘around’’ l=1

2 , the
weak boundary conditions—and any b > 0 is governed by the competition
between contributions coming from the configurations which are either in
the ordered or in the disordered phase for the whole of L. Surface effects,
in dependence on the particular value of l, then determine the resulting
finite-size rounding of the phase transition.
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Our results are summarized in the following theorems. In order to
state them, we first introduce the specific heat

CL(b, l)=b2 (O(H (l)(sL))2P (b, l)L − (OH (l)(sL)P (b, l)L )2)=−b2
“EL(b, l)
“b

(2.11)

and the shorthands mg=m(bt), the derivative c(b)=−b2 de(b)db (known to
exist as a smooth function as long as b ] bt),

e0=
edis(bt)+eord(bt)

2
, and De=

edis(bt) − eord(bt)
2

. (2.12)

Theorem 2.1. Let d \ 2 and m ¥ (0, 1]. For q and L sufficiently
large, we have:

(a) If 0 [ l [ 1
2 (1 − m) and b [ bt, then

ML(b, l)=O(Ld−1) (2.13)

and

EL(b, l)=e(b − 0) Ld+O(Ld−1). (2.14)

(b) If l \ 1
2 (1+m) and b \ bt, then

ML(b, l)=m(b) Ld+O(Ld−1) (2.15)

and

EL(b, l)=e(b+0) Ld+(1+l) O(Ld−1). (2.16)

Remark 2.2. In the above theorem, as well as in the rest of this
paper, all constants implicit in the O-symbols depend only on d and m. In
particular, the corresponding bounds are uniform in b, L, and q.

Our second theorem concerns weak boundary conditions, i.e., values
of l in the interval [1−m

2 , 1+m

2 ], where m is an arbitrary fixed parameter
m ¥ (0, 1). For these boundary conditions we control the finite-size behav-
iour of ML(b, l), EL(b, l), and CL(b, l) for all b ¥ (0,.).

Theorem 2.3. Let d \ 2 and 0 < m < 1 and let n=min{1/12d,
(1 − m)/4d}. Then, for q and L sufficiently large, and |l − 1

2 | [ m

2 , we have:
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(a) There exists a unique point b (l)max(L) at which the specific heat
CL(b, l) attains its maximum. Furthermore, there exists a function b(l, q)
such that

b (l)max(L)=bt 51+
b(l, q)

L
+O(L−2)6 (2.17)

and

b(l, q)=
d

De
11

2
− l+O 1 q−n

log q
22 . (2.18)

(b) For all b \ 1, we have

ML(b, l)=
mg

2
Ld+

mg

2
Ld tanh(De(b − b (l)max(L)) Ld)

+O 1b − bt

bt
Ld2+O(Ld−1), (2.19)

EL(b, l)=e0Ld− De Ld tanh(De(b − b (l)max(L)) Ld)

+O 1b − bt

bt
Ld2+O(Ld−1), (2.20)

and

CL(b, l)=b2(De)2 L2d cosh−2(De(b − b (l)max(L)) Ld)

+b2t O 1
b − bt

bt
L2d 2+b2t O(L2d−1). (2.21)

(c) Let

|b − bt |
bt

\
md
De

1
L

. (2.22)

Then

ML(b, l)=m(b) Ld+O(Ld−1), (2.23)

EL(b, l)=e(b) Ld+O(Ld−1), and (2.24)

CL(b, l)=c(b) Ld+b2t O(Ld−1). (2.25)
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Remark 2.4. (i) As can be seen from the proof of the theorem, the
function b(l, q) can actually be written as

btb(l, q)=2d
sdis(bt) − sord(bt)
edis(bt) − eord(bt)

, (2.26)

where sdis and sord are the surface free energies of the disordered and
ordered phase, respectively. See Section 4 for the definition of the surface
free energies. The explicit terms in (2.18) come from the ground state
energy contributions to the surface free energies. Notice that the shift can
actually be made to be of order L−2 by tuning l in such a way that
sdis(bt)=sord(bt), and thus b(l, q)=0. As can be seen from (2.18), this
happens for l=1

2+O( q
− n

log q).

(ii) Notice that the results of Theorem 2.1 and Theorem 2.3 are, in
the regions of overlapping parameters, in agreement. Indeed, let l ¥ (0, 12)
and b [ bt first. If b < bt, then Theorem 2.3(c) yields (2.13) and (2.14),
respectively, whenever one takes L such that |b−bt |

bt
\ md

De
1
L . If b=bt, the

Eqs. (2.13) and (2.14) follow from Theorem 2.3(a) and (b): one just uses
that tanh x=1+O(e−2x) for x ± 1 and observes that bt − b (l)max(L) is nega-
tive and of the order L−1 by virtue of (2.17). The case l ¥ (12 , 1) and b \ bt
is similar.

(iii) In order to prove the above theorems, one in fact needs to
exclude the values of b close to 0 (cf. Lemma A.1), and we take b \ 1
where necessary. Nevertheless, the restriction of b to the interval [1,.) is
not serious: if b [ 1, we may use, for q large, a standard high-temperature
expansion to obtain the results of Theorem 2.1(a) and Theorem 2.3(a)
and (c).

(iv) The techniques used in this paper do not allow to study the finite-
size scaling of ML(b, l) and EL(b, l) for boundary conditions which
strongly favour the ordered or the disordered phase near the boundary
of L. In this case, the leading contributions to ZL(b, l) feature a flip along
a large contour from one of the two phases near the boundary to the other
phase within the bulk. To analyze the finite-size scaling, a control over the
behaviour of this large contour would be necessary, involving, in particu-
lar, the analysis of the so-called Wulff shape of a contour filling essentially
the whole volume. This is out of the scope of this paper. As will be shown
in Section 4, such a detailed analysis of large contours is not necessary in
the case of the weak boundary conditions.

(v) In the general setting of the Pirogov–Sinai theory, surface-
induced finite-size effects for first-order phase transitions were studied in
ref. 13, and one could try to apply this approach to our model. To this end,
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the model must be first rewritten in terms of contours and then the
assumptions under which ref. 13 can be used have to be checked; this was
done in ref. 14. Whereas the assumptions (3.7) to (3.9) of ref. 13 are ful-
filled in our situation (if we suppose that, say, b \ 1), the assumption (3.11)
of ref. 13 imposes drastic constrains on the values of l and b. Namely, one
must assume that |l − 1

2 | [ d and | b

bt
− 1| [ d, where d=d(d) < 1

52d , see
(4.47b) in ref. 13. With such restrictions, the general setting of ref. 13
enables us to establish the results of Theorem 2.3. Here we weakened these
constrains (both for l and b), using the methods of ref. 13 with a more
careful evaluation of boundary terms.

3. CONTOUR REPRESENTATIONS

In order to analyze the finite-volume quantities ML(b, l) and EL(b, l),
we use the machinery of the Pirogov–Sinai theory in the form developed in
ref. 13. To this end, we first rewrite the partition function (2.4) in terms of
contours.

Throughout this section, we assume that d \ 2, l \ 0 and b > 0.
Moreover, the cube L (and, thus, the sets B=B(L) and “B) is fixed, and
we write Bb for B 2 “B.

First, we express ZL(b, l) with the help of the Fortuin–Kasteleyn
random-cluster representation. (20) Modifying the approach of ref. 8 to take
into account the effect of the boundary, one obtains

ZL(b, l)= C
X … Bb

e−G(X)q−
1
2d
||dX||+Cin(X), (3.1)

see ref. 14 for details. Here Cin(X) is the number of the connected compo-
nents of X which do not include any bond of “B, ||dX||=|d1X|+2 |d2X|,
where

diX={Ox, yP ¥ Bb 0X : |{x, y} 5 S(X)|=i}, i=1, 2,

with

S(X)={x ¥ L : Ox, yP ¥ X for some y ¥ Zd},

and G(X)=;b ¥ Bb gX(b), with

gX(b)=˛ − log(eb − 1) if b ¥ B 5 X,

− log(elb − 1) if b ¥ “B 5 X,

gX(b)=˛ −
1
d log q if b ¥ B0X,

− 1
2d log q if b ¥ “B0X.

(3.2)
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Remark 3.1. Note that for the free boundary conditions, l=0, the
contribution of any random-cluster configuration X … Bb to ZL(b, l)
vanishes unless X 5 “B=”.

Next, let us introduce V=V(L) as the closed d-dimensional cube
in Rd, of side length7 L+1, centred at the same point as L. As usual, the

7 Note that V(L) is thus defined to be the smallest closed cube containing all bonds from Bb.

boundary “W of any set W … Rd is the set of points x with dist(x, W)=
dist(x, Rd0W)=0, where dist(x, W)=infy ¥W dist(x, y), with dist(x, y)
standing for the a.-distance dist(x, y)=maxi=1,..., d |xi − yi |. If W … V, we
will also consider the inner boundary of W, defined as “VW={x ¥ V :
dist(x, W)=dist(x, V0W)=0}.

Our aim is to rewrite every random-cluster configuration X … Bb in
terms of collections of contours. It turns out that it is convenient to intro-
duce two different types of contours, depending on the boundary condi-
tions: for weak boundary conditions it is natural to consider open contours
‘‘ending on the boundary “V,’’ while for strong boundary conditions the
natural setting is to consider closed contours only. Accordingly, the
following definition distinguishes these cases. Nevertheless, the differences
concern only contours ‘‘touching’’ the boundary “V—for those in the
interior, all the definitions are independent of the boundary conditions.

Let X … Bb be a random-cluster configuration. In order to define con-
tours, we first identify the bonds Ox, yP ¥ X with the corresponding line
segments in Rd, and then define a closed k-dimensional unit hypercube
c … Rd with vertices in Zd to be occupied if all bonds b … c are bonds in X.
We use P(X) to denote the union of all occupied hypercubes. In a similar
way, we define Pa(X) ‡P(X) as the union of all closed unit hypercubes c
with vertices in Zd for which all bonds b … c lie in X 2 “V. Next, we
introduce the sets Pw, Po, and Pd as

(a) the intersection of the 14-neighbourhood of Pa(X)0“V with V,

(b) the intersection of the 14-neighbourhood of Pa(X) with V,

(c) the 14-neighbourhood of P(X) 5 {x ¥ V : dist(x, “V) \ 1
2}.

Here the neighbourhood is defined with respect to the a. distance.
Given these sets, we define the set of contours Yo(X) and Yd(X) as the

sets of connected components of the boundaries of Po and Pd, respectively,
and the set of contours Y(X) as the set of connected components of the
inner boundary “VPw of Pw, see Fig. 1. Elements of Y(X) are called w-con-
tours, while elements of Yo(X) or Yd(X) are called s-contours, and we
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Y(X)

Yo (X) Yd (X)

Fig. 1. Contours under different boundary conditions.

shall use c to denote any of them. Furthermore, we say that a set “ of
w-contours (s-contours) is admissible if there exists a configuration X … Bb

such that “=Y(X) (“=Yo(X) or “=Yd(X)). This configuration is neces-
sarily unique whenever “ is not empty, while

Y(Bb)=Y(”)=Yo(Bb)=Yd(”)=”.

If “ ]”, we use X(“) to denote the unique configuration corresponding
to “.

Define the ‘‘octant’’ O(k) of each corner k=[k1,..., kd] of the box V
by

O(k)={x ¥ Rd : xi \ ki if i ¥ I− , xi [ ki if i ¥ I+}, (3.3)
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where i ¥ I− as long as yi \ ki for all y ¥ V, while i ¥ I+ as long as yi [ ki
for all y ¥ V. If, for a given c, there is a corner k of V such that
c 5 “V … “O(k), then Int c, the interior of c, is defined as the finite compo-
nent of O(k)0c.8 However, if there is no such a corner, then Int c is defined

8 This definition clearly does not depend on the choice of k if more corners are possible.

as the smaller of the two components of V0c.9 In addition, we set

9 If both the components of V0c are of the same size, take the one which contains the corner
k of V for which ki [ xi, i=1,..., d, for all x ¥ V.

V(c)=c 2 Int c and Ext c=V0V(c). Any c from an admissible set of w- or
s-contours “ is external if there is no c̃ ¥ “ such that c … Int c̃.

The set {c} with c arbitrary is admissible and non-empty, and thus
there exists a unique configuration Xc … Bb for which Y(Xc)={c} if c is a
w-contour, while Yo(Xc)={c} or Yd(Xc)={c} if c is an s-contour. We call
c ordered (or o-labeled ) if Xc … Ext c and disordered (or d-labeled ) if
Xc … Int c. If Xc=”, one necessarily has {c}=Yo(Xc), and we say that c

is o-labeled. Note that all the external contours of an admissible set of
w- or s-contours are either ordered or disordered; for instance, the external
contours of Ym(X) with m=o, d and any X … Bb are m-labeled.

Let the length ||c|| of a contour c be the number of its intersections with
the bonds of Bb. Observing that, for any set of admissible contours “, the
number of disordered contours in “ with dist(c, “V) \ 3

4 is Cin(X(“)), we
introduce the weight of c by

+(c)=˛q
− 1
2d
||c|| if c is ordered or if c is disordered with dist(c, “V) [ 1

4 ,

q−
1
2d
||c||+1 if c is disordered with dist(c, “V) \ 3

4 .

(3.4)

If “ is a non-empty admissible set of w-contours, then one easily sees that

C
c ¥ “

||c||=||dX(“)||, (3.5)

whereas if “ is a non-empty admissible set of s-contours, then

C
c ¥ “

||c||=˛ ||dX(“)||+|“B0X(“)| if external s-contours in “ are ordered,

||dX(“)||+|“B 5 X(“)| if external s-contours in “ are disordered.

(3.6)

Here X(“) is the unique configuration corresponding to “.
A set {c1,..., cn} of w-contours (s-contours) is called a set of non-over-

lapping w-contours (s-contours) if dist(ci, cj) \
1
2 for all 1 [ i < j [ n. Any

admissible set of w-contours (s-contours) may serve as an example.
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Let W … V be of the form

V0 0
c ¥ “

g
V(c) or Int c00 0

c ¥ “̃
g

V(c), (3.7)

where c0 is a w-contour (s-contour) and “g and “̃g are, possibly empty,
sets of non-overlapping w-contours (s-contours) with V(c) … Int c0 for all
c ¥ “̃g. Then B(W) and “B(W) stand for the sets of all bonds of B and “B,
respectively, whose centres lie in W and Bb(W)=B(W) 2 “B(W). Further,
let ||“iW||, ||“eW||, and ||“W||=||“iW||+||“eW|| be the number of intersections
of bonds from Bb with “W0“V, “W 5 “V, and “W, respectively. Notice that
for any contour c, the closure of “ Int c0“V actually equals c, implying
that ||c||=||“i Int c||. Note further that |“B(W)|=||“eW|| if c0 and all
contours from “g and “̃g in (3.7) are w-contours.

In order to express the weight of a configuration X in terms of its
contours, we also introduce the ordered and disordered ‘‘regions,’’

Wm(W, “)=˛B
b(W) 5 X(“) if m=o,

Bb(W)0X(“) if m=d,
(3.8)

for any admissible set of w- or s-contours “, where we set X(”) to be equal
to Bb if m=o and to” if m=d.

When expressing the partition function in terms of contour weights,
we distinguish the case of weak and strong boundary conditions.

Weak b.c. For every B … Bb and m=o, d, we set

Gm(B)=
gm
d

|B 5 B|+hm |“B 5 B| (3.9)

with

go=−d log(eb − 1), gd=−log q, ho=−log(elb − 1), hd=−
1

2d
log q.
(3.10)

Let us call c short if10 diam c < w(L) and long otherwise; the parameter

10 The diameter of any subset W of Rd, diam W, is defined here as the length of the side of the
smallest square box in Rd into which W can fit.

w(L), to be specified later, is supposed to be fixed so that 1 < w(L) [ L+1.
For W of the form (3.7), we define

Zm, W(b, l)= C(m)
“ ˘W

e−Go(Wo(W, “))−Gd(Wd(W, “)) D
c ¥ “

+(c), m=o, d, (3.11)
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where the sum is taken over all admissible sets “ of short w-contours such
that the external contours in “ are m-labeled and V(c) … W for all c ¥ “.

As it is standard in the Pirogov–Sinai theory, one may derive another,
more suitable expression for the partition function (3.11) (in a context
similar to the present one, see, e.g., Section 4.2 of ref. 13), namely,

Zm, W(b, l)=e−Gm(Bb(W)) C(m)
“
g
˘W

D
c ¥ “

g
Km(c), m=o, d. (3.12)

Here the summation is over all sets “g of non-overlapping short m-labeled
w-contours with V(c) … W for every c ¥ “g and

Ko(c)=+(c)
Zd, Int c(b, l)
Zo, Int c(b, l)

, Kd(c)=+(c)
Zo, Int c(b, l)
Zd, Int c(b, l)

, (3.13)

where we skipped the dependence of Km(c) on b and l.
In addition, we introduce

Zbig, V(b, l)=C(long)
“

e−Go(Wo(V, “))−Gd(Wd(V, “)) D
c ¥ “

+(c) (3.14)

with the sum going over all the admissible sets “ of w-contours which
contain at least one long c ¥ “. Given such a set “, let “l be the set of its
long w-contours; it is obviously admissible. Then V0“l splits into con-
nected components C1,..., CN and, for each i=1,..., N, either Bb(Ci) …
Wo(V, “l) or Bb(Ci) … Wd(V, “l). We use Wo(“l) to denote the union of the
former components and Wd(“l) to denote the union of the latter ones.
Now, let us decompose “ into the disjoint union “l 2 “o 2 “d, where “m,
m=o, d, is the set of all the short w-contours of “ with V(c) … Wm(“l) for
every c ¥ “m. Clearly, the external w-contours of “m are m-labeled and

Wm(V, “)=Wm(Wm(“l), “m) 2 Wm(Wmc(“l), “mc) (3.15)

is also a disjoint union (here mc=o if m=d and vice versa). Re-summing
all the short w-contours contributing to Zbig, V(b, l), we therefore obtain

Zbig, V(b, l)=C
“l

Zo, Wo(“l)(b, l) Zd, Wd(“l)(b, l) D
c ¥ “l

+(c). (3.16)

Let “ be an admissible set of w-contours. Then the number of disor-
dered w-contours in “ with dist(c, “V) \ 3

4 is Cin(X(“)). Hence,

D
c ¥ “

+(c)=q−
1
2d
||dX(“)||+Cin(X(“)) (3.17)
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by (3.5) and the definition (3.4) of +(c). Combining this with (3.1), we get
the contour representation

ZL(b, l)=C
“

e−Go(Wo(V, “))−Gd(Wd(V, “)) D
c ¥ “

+(c) (3.18)

with the sum going over all the admissible sets “ of w-contours. Here we
use the convention that the empty set of contours counts twice: once with
X(“)=”, and once with X(“)=Bb, corresponding to the weights e−Gd(Bb)

and e−Go(Bb), respectively. This is made more explicit in the following
representation, which follows immediately from (3.11) and (3.14),

ZL(b, l)=Zo, V(L)(b, l)+Zd, V(L)(b, l)+Zbig, V(L)(b, l). (3.19)

To analyze the magnetization, we will also introduce ‘‘modified’’
partition functions. Namely, for W of the form (3.7) and x ¥ L, we define

Z (x)
m, W(b, l)= C(m)

“ ˘W
I[x ¥M(W, “)] e−Go(Wo(W, “))−Gd(Wd(W, “)) D

c ¥ “

+(c),

m=o, d, (3.20)

where the sum is as in (3.11), M(W, “) is the set of points x ¥ L that are
endpoints of a bond in a component of Wo(W, “) that contains bonds from “B,
and I[x ¥M(W, “)] is the indicator function of the event x ¥M(W, “). For
“=”, we set M(W, “)=” if m in (3.20) is d, and M(W, “)=L if m=o.

The partition function Z (x)
big, V(b, l) is defined analogously. With these

definitions,

ML(b, l)= C
x ¥ L

Z (x)
o, V(b, l)+Z(x)d, V(b, l)+Z(x)big, V(b, l)

ZL(b, l)
. (3.21)

Again, one may rewrite the partition functions Z (x)
m, W(b, l) in a form similar

to (3.12). To this end, we introduce the notion of a weak x-contour cx.
Such a contour is either a standard contour with x ¥ Int cx 5 L, or the
empty set. We then define

K (x)
m (cx)=

Z (x)
mc, Int cx

(b, l)
Zmc, Int cx

(b, l)
Km(cx), (3.22)

where
Z
(x)
mc, Int cx

(b, l)

Zmc, Int cx
(b, l) stands for the Kronecker delta dm, o if cx=”. Finally, we

say that a standard contour c − is compatible with cx if ({x} 2 cx) 5 V(c −)
=”. With these definitions, we rewrite Z (x)

m, V(b, l) as

Z (x)
m, V(b, l)=e−Gm(Bb(V)) C(m)

cx

K (x)
m (cx) C(m)

“
g
’ cx

D
c ¥ “

g
Km(c), m=o, d.

(3.23)
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Here the first sum goes over all weak x-contours in V, while the second
goes over all sets “g of non-overlapping short m-labeled w-contours in V
such that each of them is compatible with cx.

Strong b.c. For these boundary conditions, our definitions are
slightly more involved. This stems in part from our definition of contours,
in particular from the extra terms in (3.6), and in part from our desire
to rewrite ZL(b, l) as a partition function with disordered or ordered
boundary conditions, depending on whether we are in the situation of
Theorem 2.1(a) or (b).

For every B … Bb, let

GmmŒ(B)=
gmŒ
d

|B 5 B|+hmmŒ |“B 5 B|, m, mŒ=o, d, (3.24)

where go and gd were defined in (3.10) and

hmo =˛ − log(elb − 1) if m=o,

− log(elb − 1) − 1
2d log q if m=d,

hmd =˛ −
1
d log q if m=o,

− 1
2d log q if m=d.

(3.25)

Moreover, for any W of the form (3.7), we define

Z̃m, W(b, l)= C(m)
“ ˘W

e−G
m
o (Wo(W, “))−G

m
d (Wd(W, “)) D

c ¥ “

+(c), m=o, d,
(3.26)

where the sum goes over all admissible sets “ of s-contours such that the
external s-contours in “ are m-labeled and V(c) … W for every c ¥ “. With
this definition, we get

ZL(b, l)=Z̃o, V(L)(b, l)=Z̃d, V(L)(b, l). (3.27)

Indeed, consider Z̃o, V(b, l) defined by (3.26). Then every “ contributing to
it contains exactly Cin(X(“)) disordered s-contours, all with dist(c, “V) \ 3

4 .
Analogously, any “ contributing to Z̃d, V(b, l) contains Cin(X(“)) disor-
dered s-contours for which dist(c, “V) \ 3

4 . Combining this with (3.1), (3.4),
(3.6), and (3.24)–(3.26), we obtain (3.27), and hence two more contour
representations for our model. They will be used to prove Theorem 2.1.

Again, it will be useful to rewrite Z̃m, W(b, l) as

Z̃m, W(b, l)=e−G
m
m(Bb(W)) C(m)

“
g
˘W

D
c ¥ “

g
K̃m(c), m=o, d, (3.28)

Finite-Size Effects for the Potts Model 83



where the sum goes over all collections “g of non-overlapping m-labeled
s-contours such that V(c) … W for every c ¥ “g and

K̃o(c)=+(c) q
1
2d
|“B(Int c)| Z̃d, Int c(b, l)

Z̃o, Int c(b, l)
, K̃d(c)=+(c) q

1
2d
|“B(Int c)| Z̃o, Int c(b, l)

Z̃d, Int c(b, l)
.

(3.29)

Defining Z̃ (x)
m, W(b, l) as in (3.20), we now get

ML(b, l)= C
x ¥ L

Z̃ (x)
o, V(b, l)

Z̃o, V(b, l)
= C
x ¥ L

Z̃ (x)
d, V(b, l)

Z̃d, V(b, l)
. (3.30)

Defining K̃ (x)
m (cx) as in (3.22), the modified partition function Z̃ (x)

m, W(b, l)
again has a contour representation of the form (3.23):

Z̃ (x)
m, V(b, l)=e−G

m
m(Bb(V)) C(m)

cx

K̃ (x)
m (cx) C(m)

“
g
’ cx

D
c ¥ “

g
K̃m(c), m=o, d.

(3.31)

Remark 3.2. Since the partition functions defined by (3.11) and
(3.26) depend on l only through Go((Wo(W, “)) and Gmo ((Wo(W, “)),
respectively, they are independent of l once “B(W)=”, i.e., once
dist(W, “V) \ 3

4 . As a result, the activities Km(c) and K̃m(c), m=o, d, are
independent of l if dist(c, “V) \ 3

4 .
11 Notice also that the partition func-

11 Note that in this case the multiplicative factor q
1
2d
|“B(Int c)| in (3.29) vanishes.

tions Zm, W(b, l) and Z̃m, W(b, l) coincide whenever W is ‘‘not too large
and not touching the boundary.’’ Namely, we have Zm, W(b, l)=Z̃m, W(b, l)
and Km(c)=K̃m(c) as soon as diam W < w(L), dist(W, “V) \ 3

4 and
diam c < w(L), dist(c, “V) \ 3

4 , respectively. The same holds for K (x)
m (cx) and

K̃ (x)
m (cx) as well as for Z (x)

m, W(b, l) and Z̃ (x)
m, W(b, l).

We close this section with the following straightforward lemma.

Lemma 3.3. There exist constants Dk <. such that for any k=
1, 2,..., m=o, d, l ¥ [0,.), and b in the interval [1,.), we have

: “k
“bk

Zm, W(b, l) : [ Dk(|“B(W)| (1+l)+|B(W)|)k Zm, W(b, l), (3.32)

provided W … V is a volume of the form (3.7), and

: “k
“bk

Km(c) : [ Dk(|“B(Int c)| (1+l)+|B(Int c)|)k Km(c), (3.33)
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provided c is a short m-labeled w-contour. The same bounds hold for the
partition functions Zbig, V(b, l), Z̃m, W(b, l), and the contour weights K̃m(c),
as well as for the modified partition functions Z (x)

m, W(b, l), Z (x)
big, V(b, l), and

Z̃ (x)
m, W(b, l), and the modified contour weights K (x)

m (c) and K̃ (x)
m (c).

Proof. The bound (3.32) follows directly from definition (3.11), the
fact that +(c) does not depend on b, and Lemmas A.1 and A.9, which, in
turn, immediately implies (3.33). L

4. CLUSTER EXPANSION AND PIROGOV–SINAI THEORY FOR

WEAK BOUNDARY CONDITIONS

The decomposition (3.19) of the partition function ZL(b, l) suggests
that the finite-size scaling for the energy EL(b, l) and the heat capacity
CL(b, l) may be evaluated with the help of a cluster-expansion analysis of
the partition functions Zm, V(b, l), m=o, d. To this end, a bound Km(c) [ E ||c||,
where E > 0 is small, would be needed for every short w-contour c.

Before proving such a bound, let us summarize the implications of the
cluster expansions for the finite-size asymptotics. We will formulate these
results in a generic situation, which will allow us to apply them to weak
boundary conditions (done later in this section) as well as to strong
boundary conditions (see Section 5).

Let us consider contours of a single type (ordered s-contours, disor-
dered s-contours, ordered w-contours, or disordered w-contours), and use
LV to denote the set of all contours in V of given type. Further, let L̃V be
the set of those contours c ¥LV with dist(c, “V) \ 3/4, and let L.=
1L L̃V(L).

We also introduce a set of contours L< attached to the hyperplane
x1=0. To this end, let P(L)={x ¥ “V(L) | x1=KL+12 L}, and let TL: RdQ Rd

be the translation that maps (x1, x2,..., xd) into (x1 − KL+12 L, x2,..., xd). We
say that a contour c ¥LV touches only the face P(L) if dist(c, P(L)) [ 1/4
and dist(c, “V0P(L)) \ 3/4, and similarly for the remaining 2d − 1 faces
of V. We then define L(L)

< as the set of all contours c̃ that are translations
by TL of contours c touching only the face P(L) and introduce L<=
1LL(L)

< .

Lemma 4.1. Let KV: LV Q R be a contour weight such that

(i) there exists a translation-invariant weight K: L. Q R such that
KV(c)=K(c) whenever dist(c, “V) \ 3/4;

(ii) there exists a weight K< : L< Q R, invariant under translations
parallel to the hyperplane x1=0, such that KV(c)=K<(TL(c)) whenever
c ¥LV is a contour that touches only the face P(L);
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(iii) the weight KV is invariant under lattice rotations around the
center of V; and

(iv) |KV(c)| [ E ||c|| with E > 0 sufficiently small.

Let w: NQ (0,.] with w(L)/log L Q. as L Q.; for any W of the form
(3.7), let

Z(W)= C
“
g
˘W

D
c ¥ “

g
KV(c),

where the sum is over all families “g of non-intersecting contours such that
V(c) … W and diam c < w(L) for every c ¥ “g. Then Z(W) ] 0 for all
volumes W of the form (3.7), the limits

f=− lim
LQ.

1
Ld

log Z(V(L)) and

s=− lim
LQ.

1
2 dLd−1

(log Z(V(L))+f|B|/d) (4.1)

exist, and

log Z(W)=−F(W)+O(E) ||“iW||+O(E) ||“ (d−2)W|| (4.2)

where F(W)=f |B(W)|/d+s ||“eW||, while ||“ (d−2)W|| is the (d − 2)-dimen-
sional area of the intersection of “W with the union of all (d − 2)-
dimensional edges of V. Here, the error terms O(E) are uniform in L and
W … V(L), provided that L is sufficiently large (how large depends on the
function w).

Remark 4.2. The formula (4.2) is a suitable generalization of the
standard expression log Z(W)=−f |B(W)|/d+O(E ||“W||). An important
fact to notice is that if W is touching the boundary “V(L), ||“eW|| ] 0, the
term proportional to ||“eW|| is explicitly considered and not included into
the error term.

Proof. Let us first prove the lemma without the restriction diam c

< w(L), i.e., putting formally w(L)=.. By the usual Mayer expansion
for polymer systems, the logarithm of Z(W) can be expanded in the form

log Z(W)= C
Y: V(Y) …W

a(Y) KY
V. (4.3)

Here the sum goes over all multi-indices Y: LV QN0 with |Y|=;c ¥LV
Y(c)

<., V(Y)=1c: Y(c) > 0 V(c), KY
V=<c ¥LV

KV(c)Y(c), and a(Y) ¥ Z is a
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combinatorial coefficient that does not depend on V, see, any standard
exposition on cluster expansions like ref. 21, or more recently, refs. 22
and 23).

First, let us split the sum on the right hand side of (4.3) into two
terms,

log Z(W)= C
Y: V(Y) …W,
Bb(Y) … B(W)

a(Y) KY
V+ C

Y: V(Y) …W,
“B(Y) ]”

a(Y) KY
V, (4.4)

where Bb(Y)=1c: Y(c) > 0 Bb(c) and “B(Y)=1c: Y(c) > 0 “B(c). For the first
sum, observing that KV=K for all contributing terms and introducing the
explicit expression

f=− C
Y: Bb(Y) ¦ b

a(Y)
|Bb(Y)|

KY, (4.5)

where the sum is over multi-indices Y: L. QN0 and b is any fixed bond,
we get

C
Y: V(Y) …W,
Bb(Y) … B(W)

a(Y) KY=−f |B(W)| − C
Y: Bb(Y) …̂ B(W)

a(Y) KY |B(W) 5 Bb(Y)|
|Bb(Y)|

− C
Y: V(Y) …̂W,
Bb(Y) … B(W)

a(Y) KY. (4.6)

Using (4.4) for W=V(L) and noticing that the second sum in (4.4) as well
as both sums on the right hand side in (4.6) are of he order of |“V(L)|, the
existence of the first limit in (4.1) and the fact that it equals (4.5) follows.

Let now “B< be the set of bonds of the form b=O(−1, x2,..., xd),
(0, x2,..., xd)P, B< be the set of bonds b=O(x1, x2,..., xd), (y1, y2,..., yd)P}
with x1, y1 [ − 1, P< be the halfspace P<={x ¥ Rd; x1 [ 0}, and, for any
multiindex Y on L< , let “B<(Y)=Bb(Y) 5 “B< . Further, let us introduce

s1=− C
Y: “B<(Y) ¦ b

a(Y)
|“B<(Y)|

KY
< (4.7)

with the sum over multiindices on L< and b any bond from “B< , as well as

s2= C
Y: “+B(Y) ¦ b,
Bb(Y) …̂ B<

a(Y)
|“+B(Y)|

|B< 5 Bb(Y)|
|Bb(Y)|

KY (4.8)
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and

s3= C
Y: “+B(Y) ¦ b,
V(Y) …̂ P<,
Bb(Y) … B<

a(Y)
|“+B(Y)|

KY. (4.9)

Here, again b ¥ “B< , the sums are over multiindices on L., and

“+B(Y)={b ¥ “B< : dist(b, V(Y)) [ 1
2}. (4.10)

Let us observe that all terms in the second sum in (4.4) touching only one
face of V can be attributed to the expression s1 ||“eW||. The terms not
accounted for are necessarily such that, either bonds from Bb(Y) intersect
“W0“V or “B(Y) is intersecting at least two faces of V. Their sum is
yielding an error of the order O(E)(||“iW||+||“ (d−2)W||). Similarly, we can
evaluate the two sums on the right hand side of (4.6) by (s2+s2) ||“eW||,
again with error O(E)(||“iW||+||“ (d−2)W||). Taking s=s1+s2+s3, we get
the claim (4.2) and thus, applying it to W=V(L), also the existence of the
second limit in (4.1).

Returning now to the case of a general function w: NQ (0,.) obeying
the condition w(L)/log L Q., we observe that the restriction to contours
of diameter diam c < w(L) introduces an extra error term of the form
O(Ld(CE)w(L)), where C is a dimension dependent constant. The condition
w(L)/log L Q. ensures that the error term can be bounded by O(E),
which in turn can be absorbed into the error terms already present in
(4.2). L

In order to apply the lemma to the partition functions Zm, V(b, l),
m=o, d, a bound12 Km(c) [ E ||c||, where E > 0 is small, would be needed

12 Actually, as will be explained below, we will consider such a bound in two different forms in
dependence on whether the considered contour is (or is not) touching the boundary “V.

for every short w-contour c. It turns out, though, that a bound of this
form does not hold for both m=o, d and for all b > 0. Therefore, one first
constructs (6, 13) truncated contour activities K̄m(c) and the corresponding
partition functions13

13 The sum in (4.11) runs over the same collections of w-contours as in (3.12).

Z̄m, W(b, l)=e−Gm(Bb(W)) C(m)
“
g
˘W

D
c ¥ “

g
K̄m(c), m=o, d, (4.11)
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defined for every W of the form (3.7). This will be done in such a way that
K̄m(c) is a smooth function of b and K̄m(c) [ E ||c|| for some small E > 0 and
all short w-contours c. In addition, whenever

fm(b)=− lim
LQ.

1
Ld

log Z̄m, V(L)(b, l) (4.12)

equals

f(b)=min{fo(b), fd(b)}, (4.13)

then, necessarily, K̄m(c)=Km(c) so that Z̄m, W(b, l)=Zm, W(b, l).
Different approaches for a construction of the truncated model were

proposed (see, for example, ref. 13 or ref. 24). Even though the contours
with weights depending on their position with respect to the boundary “V
were discussed already in ref. 24, we need a more careful evaluation of the
boundary terms to get weaker constrains on the surface coupling l. On the
other hand, the truncation procedure in the spirit of ref. 24 is simpler in
our case since we effectively have only two coexisting phases.

First, let qg(u1, u2) be a smoothed version of min(u1, u2) satisfying the
following conditions:

(i) qg(u) [ min(u),

(ii) qg(u)=ui whenever ui [ min{uj; j ] i} − g,

(iii) qg is C., 0 [
“qg(u)

“ui
[ 1, and || “

k
qg(u)

“uk1
|| [ g−k+1ck for k \ 2 and some

ck <..

As shown in ref. 24, one can define such function by a convolution of min
with a suitable function. Here, we take any fixed nonnegative symmetric
function f ¥ C.(R2) such that >R2 f(u) du=1 and f(u)=0 whenever ||u|| \ 1

2 ,
and define

qg(u)=g F f 1u
g

− v2 min(v) dv. (4.14)

Further, let

n0=
1

12d
and n=min 3n0,

1 − m

4d
4 (4.15)

and, for any contour c, let

y(c)=˛n0 ||c|| if dist(c, “V) \ 3/4

n ||c|| otherwise.
(4.16)
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We introduce the truncated activities K̄m(c), m=o, d, for any short
w-contour c, in the following manner:

K̄m(c)=exp{q||c||(log Km(c), −y(c) log q)}, (4.17)

where we took the function qg with g=||c||. Notice that K̄m(c) is well
defined since Km(c) > 0 by definition. We also introduce the truncated
equivalent of the modified weights K (x)

m (c) as

K̄ (x)
m (cx)=

Z (x)
mc, Int cx

(b, l)
Zmc, Int cx

(b, l)
K̄m(cx), (4.18)

with K̄m(”)=1, so that, in particular, K̄ (x)
m (”)=K(x)

m (”)=dm, o. We also
define a truncated version of the modified partition functions Z (x)

m, V(b, l) as

Z̄ (x)
m, V(b, l)=e−Gm(Bb(V)) C(m)

cx

K̄ (x)
m (cx) C(m)

“
g
’ cx

D
c ¥ “

g
K̄m(c), m=o, d.

(4.19)

Lemma 4.3. Let d \ 2, 0 [ m < 1, and k0 ¥ Z, k0 \ 0. Then there
exists a finite positive constant D0 such that the following statements are
true for m=o, d and all m-labelled w-contours c.

(a) For b > 0 and l ¥ [1−m

2 , 1+m

2 ], one has

K̄m(c) [ q−y(c). (4.20)

(b) For any l ¥ [1−m

2 , 1+m

2 ], the activity K̄m(c) is a Ck0 function of b in
the interval [1,.), and

: “k
“bk

K̄m(c) : [ (D0 |Bb(Int(c)|)k q−y(c) for all k [ k0. (4.21)

(c) With the conventions y(”)=0 and |Bb(Int(”))|=0, the same
bounds hold for the modified activities K̄ (x)

m (cx).

Proof. The claim (a) is a direct consequence of the definition (4.17)
and the property (i) of qg. For the bound on derivatives, we use Lemma A.9
to combine the property (iii) of qg with (3.33). The bounds for K̄ (x)

m (cx) are
obtained in an identical way. L

Lemma 4.3 allows us to apply convergent cluster expansions to
analyze the functions log Z̄m, V(L)(b, l), m=o, d. In particular, the limits
(4.12) and

sm(b)=− lim
LQ.

1
2 dLd−1
1 log Z̄m, V(L)(b, l)+

1
d

fm(b) |B|2 , (4.22)
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exist for q large enough and all b > 0, the functions fm and sm are Ck0

functions of b on the interval [1,.), and

dkfm
dbk

=
dkgm
dbk

+O(q−n0) and
dksm
dbk

=
dkhm
dbk

+O(q−n) (4.23)

for any k=0,..., k0. For k=0, the bounds (4.23) are valid for all b ¥

(0,.).
Lemma 4.3 also allows us to analyze the functions log Z̄m, W(b, l),

m=o, d for more general volumes W. Assuming that q and L are suffi-
ciently large, taking W … V to be a volume of the form (3.7), with c0 and all
contours from “g and “̃g being w-contours, so that, in particular, |“B(W)|=
||“eW||, and introducing

Fm(W)=
1
d

fm |B(W)|+sm ||“eW||, (4.24)

we get

“
k

“bk
log Z̄m, W(b, l)=−

“
kFm(W)
“bk

+O(q−n ||“iW||)+O(q−n ||“ (d−2)W||),
(4.25)

provided l ¥ [1−m

2 , 1+m

2 ], b ¥ [1,.), and k [ k0. For k=0, this bound again
holds for all b > 0. While (4.25) can be used to analyze the ratio
Z̄m, W(b, l)/Z̄m, V(b, l), it is sometimes useful to have a better bound.
Expressing log Z̄m, V(b, l) − log Z̄m, W(b, l) with the help of the cluster
expansion of the form (4.3), we notice that only terms with clusters in
Wc=V0W or those intersecting its boundary will not be cancelled. As a
result, we get

“
k

“bk
1 log

Z̄m, W(b, l)
Z̄m, V(b, l)
2=“

kFm(Wc)
“bk

+O(q−n ||“iWc||)+O(q−n ||“ (d−2)Wc||)
(4.26)

or, less precisely,

“
k

“bk
1 log

Z̄m, W(b, l)
Z̄m, V(b, l)
2=“

kFm(Wc)
“bk

+O(q−n ||“Wc||). (4.27)
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Finally, Lemma 4.3(c) allows us to use convergent cluster expansions
to analyze the ratios Z̄(x)m, V(b, l)

Z̄m, V(b, l)
, and thus the ‘‘meta-stable’’ magnetizations

Mm, L(b, l) defined as

Mm, L(b, l)= C
x ¥ L

Z̄ (x)
m, V(L)(b, l)

Z̄m, V(L)(b, l)
. (4.28)

In particular, the limits

mm(b)= lim
LQ.

1
Ld

Mm, L(b, l) (4.29)

exist, they are independent of l and obey the bounds

mm(b)=dm, o+O(q−n0) (4.30)

and

dkmm(b)
dbk

=O(q−n0), 1 [ k [ k0. (4.31)

In addition, we get the following bounds on finite-size corrections,

“
kMm, L(b, l)
“bk

=
dkmm(b)

dbk
Ld+O(q−n) Ld−1, 0 [ k [ k0. (4.32)

Lemma 4.4. Let d \ 2, 0 [ m < 1, and let w: NQ [0,.] be a func-
tion with w(L) [ L+1 and w(L)/log L Q. as L Q.. Define

a=
n log q − 2

4
and a0=

n0 log q − 2
4

, (4.33)

and assume that q, L are sufficiently large. For any m-labeled short w-con-
tour c, m=o, d, and any volume W of the form (3.7), the truncated acti-
vity K̄m(c) and the corresponding partition function Z̄m, W(b, l) satisfy the
following claims (a)–(f), provided |l − 1

2 | [ m

2 and b > 0:

(a) Let am(b)=fm(b) − f(b). If am(b) diam c [ 2 da, then K̄m(c)=
Km(c).

(b) If am(b) diam c [ 2 da0 and dist(c, “V) \ 3
4 , then K̄m(c)=Km(c).

(c) Ifam(b) min{diam W, w(L)} [ 2 da, then Z̄m, W(b, l)=Zm, W(b, l).
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(d) If am(b) min{diam W, w(L)} [ 2 da0 and dist(W, “V) \ 3
4 , then

Z̄m, W(b, l)=Zm, W(b, l).
(e) If am(b) > 0, then

Zm, W(b, l) [ e−Fmc(W)+
m

2d
log q ||“eW||+O(q

− n) ||“W||, (4.34)

with mc defined as in (3.15).

Proof. The claims of the lemma will be proven by induction in
|Bb(Int c)| and v(W), where

v(W)= max
c: V(c) …W,

c short w-contour

|Bb(Int c)|. (4.35)

• Proof of (a)–(e) for |Bb(Int c)|=0 and v(W )=0. Since there is no
w-contour c with |Bb(Int c)|=0, there is nothing to prove in the claims (a)
and (b).

Next, let v(W)=0. Then (3.12) directly yields

Zm, W(b, l)=e−Gm(Bb(W))=Z̄m, W(b, l), (4.36)

proving thus (c) and (d). Further, in view of (4.2), and the fact that
fm \ fmc if am(b) \ 0, we get

Zm, W(b, l)=Z̄m, W(b, l)=e−Fm(W)+O(q
− n) ||“W||

[ e−Fmc(W)+(smc −sm) |“B(W)|+O(q
− n) ||“W||

(4.37)

whenever am(b) \ 0. Referring to (4.23), and using first Lemma A.6(b)
with t=0, and then the bound (A.9) of Lemma A.6(a), we get

sup
b: am(b) > 0

(smc − sm)(b) [
m

2d
log q+O(q−n) (4.38)

and hence the claim (e).
Next, assume that n \ 1 and that the lemma has already been proven

for all c such that |Bb(Int c)| < n and all W such that v(W) < n.

• Proof of (a) and (b) for c with |Bb(Int c)|=n. Using, by the induc-
tive assumption, the claim (c) for Zm, Int c(b, l), the bound ||“ Int c||=
||c||+|“B(Int c)| [ 2 ||c||, and, in dependence on the value of b, either the
claim (c) or (e) for Zmc, Int c(b, l), we get

Zmc, Int c(b, l)
Zm, Int c(b, l)

=eam |B(Int c)|/d+(sm−smc) |“B(Int c)|+O(q − n) ||c|| (4.39)
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for all b > 0 such that amc diam c [ 2 da (the former case) and

Zmc, Int c(b, l)
Zm, Int c(b, l)

[ e (
m

2d
log q+O(q − n)) |“B(Int c)|+O(q − n) ||c|| (4.40)

otherwise (the latter case).
Observing that am \ fm − fmc and using Lemma A.4, we get

(fm − fmc) |Bb(Int c)|/d [ am |Bb(Int c)|/d [
2
d

am diam c ||c||. (4.41)

As a result,

Zmc, Int c(b, l)
Zm, Int c(b, l)

[ max{sup
b > 0

e
2
d
amdiam c ||c||+(sm−smc −am/d) |“B(Int c)|,

e (
m

2d
log q+O(q − n)) |“B(Int c)|} eO(q

− n) ||c||. (4.42)

Using first Lemma A.6(c) and Lemma A.6(a) to bound (sm − smc − am/d),
and then Lemma A.2 to bound |“B(Int c)|, we get

Zmc, Int c(b, l)
Zm, Int c(b, l)

[ e (
2
d
amdiam c+O(q − n)) ||c||+

m

2d
log q |“B(Int c)|. (4.43)

If |“B(Int c)|=0, we have dist(c, “V) \ 3
4 and +(c) [ q−

1
6d
||c||.14 Then (3.13),

14 To see the latter bound, we use (3.4) and realize that the shortest disordered contour c with
dist(c, “V) \ 3

4 has the length 4d − 2.

(4.33), and (4.43) combined with the assumption am diam c [ 2 da0 yield

Km(c) [ q (−
1
6d
+n0) ||c||e−||c|| [ q−y(c)e−||c||, (4.44)

provided that q is large enough to guarantee that the error term O(q−n) ||c||
in (4.43) is smaller than ||c||. Referring to the definition (4.17) and to the
property (ii) of the function qg, we get K̄m(c)=Km(c), proving thus (b).

On the other hand, if |“B(Int c)| \ 1, then dist(c, “V)=0 and +(c)=
q−

1
2d
||c||. The bound (4.43) combined with the assumption am diam c [ 2 da

now yields

Km(c) [ q (−
1−m

2d
+n) ||c||e−||c|| [ q−y(c)e−||c||, (4.45)

implying again K̄m(c)=Km(c) and thus verifying (a).

• Proof of (c) and (d) for v(W )=n. This part is an immediate con-
sequence of the just proved claims (a) and (b).
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• Proof of (e) for v(W )=n. We call a contour c stable if
am(b) diam c [ 2 da and unstable if am(b) diam c > 2 da. Splitting the
external w-contours of every set “ contributing to Zm, W(b, l) in (3.11) into
stable and unstable and summing over non-external and stable external
w-contours of “, we get

Zm, W(b, l)= C(m)
“ext ˘W

Z stable
m, Ext(b, l) D

c ¥ “ext

[+(c) Zmc, Int c(b, l)]. (4.46)

Here the sum is over sets of m-labelled unstable short w-contours such that
every c ¥ “ext is external and V(c) … W. Moreover, we use Ext to denote
W01c ¥ “ext

V(c) and Z stable
m, Ext(b, l) is obtained from Zm, Ext(b, l) by dropping

all the unstable external short w-contours.
Since all external w-contours contributing to Z stable

m, Ext(b, l) are stable, so
is any other m-labeled w-contour contributing to its representation in
the form (3.12). Thus, using Lemma 4.3 and the inductive assumption (c),
we can control this partition function by a convergent cluster expansion,
obtaining

Z stable
m, Ext(b, l)=e−F

stable
m (Ext)+O(q − n) ||“i Ext ||+O(q

− n) ||“(d−2) Ext ||, (4.47)

where F stablem (Ext)=f stablem |B(Ext)|/d+sstablem |“B(Ext)| with f stablem and s stablem

corresponding to the contour model with the activities

K stable
m (c)=˛ K̄m(c) if c is a stable short w-contour,

0 otherwise.
(4.48)

Since 2 ||c|| \ diam c for any w-contour c, we have a lower bound on the
length of every unstable w-contour, namely, ||c|| > z — da

am(b)
. Hence,

|fm − f stablem | [ (D̃1q−n)z [ q−
nz

2 [
2

da n log q
am(b) [

e

2
am(b) (4.49)

and, similarly,

|sm − s stablem | [ q−
nz

2 [
e

2
am(b) (4.50)

for any e > 0 once q is sufficiently large. Consequently,

Z stable
m, Ext(b, l) [ e−Fm(Ext)+

e

2 am(|B(Ext)|/d+|“B(Ext)|)+O(q
− n) ||“i Ext ||+O(q

− n) ||“(d−2) Ext ||.
(4.51)
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Consider now a contour c ¥ “ext. Since v(Int c) < v(W) [ n and amc(b)
=0 by assumption, we can apply the proven claims (a) through (d) of the
lemma to Zmc, Int c(b, l). In view of (4.2) this allows us to get

Zmc, Int c(b, l)=Z̄mc, Int c(b, l)=e−Fmc(Int c)+O(q − n) ||c|| (4.52)

for all b > 0 such that amc(b)=0.
Combining (4.46), (4.51), and (4.52) with

|B(W)|=|B(Ext)|+ C
c ¥ “ext

|B(Int c)|, |“B(W)|=|“B(Ext)|+ C
c ¥ “ext

|“B(Int c)|,
(4.53)

and ||“i Ext ||=||“iW||+;c ¥ “ext
||c||, while ||“ (d−2) Ext || [ ||“ (d−2)W||, it follows

that

Zm, W(b, l) [ e−Fmc(W)+O(q
− n) ||“iW||+O(q

− n) ||“(d−2)W|| C(m)
“ext ˘W

e−(1−
e

2) am |B(Ext)|/d

× e (smc −sm+
e

2 am) |“B(Ext)| D
c ¥ “ext

[+(c) eO(q
− n) ||c||] (4.54)

[ e−Fmc(W)+O(q
− n) ||“iW||+O(q

− n) ||“(d−2)W||+max{smc −sm+eam, 0} |“B(W)|

× C(m)
“ext ˘W

e−
e

2 am(|B(Ext)|/d+|“B(Ext)|) D
c ¥ “ext

[+(c) e ||c||]. (4.55)

Next, we apply Lemma A.5, taking KV(c)=+(c) e ||c|| if c is a w-contour
contributing to the sum in (4.55), whereas KV(c)=0 otherwise. Since +(c) [
q−

1
6d
||c|| (cf. the footnote on p. 94), we have KV(c) [ (eq−2n) ||c||. Since ||c|| > z,

where z > 0 is the constant from (4.49) and (4.50), the quantities fg and
sg introduced in Lemma A.5 satisfy the bounds 0 [ − fg [ q−

nz

2 and
0 [ − sg [ q−

nz

2 . As q−
nz

2 [ e

2am, Lemma A.5 allows us to bound the sum in
(4.55), yielding

Zm, W(b, l) [ e−Fmc(W)+O(q
− n) ||“iW||+O(q

− n) ||“(d−2)W||+max{smc −sm+eam, 0} |“B(W)|. (4.56)

Moreover, Lemma A.6(b) and (a) with o2=n yield

sup
b: am(b) > 0

(smc − sm+eam)(b)=
m

2d
log q+O(q−n) (4.57)

for all |l − 1
2 | [ m

2 and e [ l
2

d . Since e > 0 can be chosen arbitrarily small (for
q large enough) and, by assumption, we consider b such that am(b) > 0, we
get (4.34). L
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The next lemma states that the quantity f(b) defined by (4.13) is
actually the free energy of our model, and that the transition point bt is
identical to the unique point where fo and fd coincide. Here, the the tran-
sition point bt is defined by the onset of a spontaneous magnetization,
bt=inf{b: m(b) > 0}.

Lemma 4.5. Under the conditions of Lemma 4.4, the quantity f(b)
defined by (4.13) is the free energy of our model,

− lim
LQ.

1
Ld

log ZL(b, l)=min{fo(b), fd(b)}. (4.58)

The transition point bt is the unique point where fo and fd coincide, and

f(b)=˛fo(b) if b \ bt,

fd(b) if b [ bt.
(4.59)

Furthermore

bt=
log q

d
+O(q−n0), (4.60)

and

De=
1
2

d(fd − fo)
db
:
bt

=
d
2

+O(q−n0). (4.61)

Remark 4.6. By (4.23) and (3.10),

d(fd − fo)
db
:
b

\ d+O(q−n0) > 0 if b \ 1. (4.62)

In view of this bound and (4.59), the functions ao(b) and ad(b) vanish for
b \ bt and b [ bt, respectively. Moreover, for 1 [ b < bt, the function
ao(b)=(fo − fd)(b) > 0 is decreasing, whereas for b > bt the function
ad(b)=−(fo − fd)(b) > 0 is increasing.

Proof of Lemma 4.5. Given b > 0, let m be such that am=0. By
Lemma 4.4 and the definition (4.12) of fm we then have

− lim
LQ.

1
Ld

log Zm, V(L)(b, l)=− lim
LQ.

1
Ld

log Z̄m, V(L)(b, l)=fm=f.
(4.63)
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Next we use (4.25) in combination with Lemma 4.4(c) to estimate
Zm, V(L)(b, l) and the bound (4.34) of Lemma 4.4 to estimate Zmc, V(L)(b, l).
We conclude that

Zmc, V(L)(b, l)
Zm, V(L)(b, l)

[ e
m

2d
log q ||“eV||+O(q

− n) ||“V||=e (m log q+O(q
− n)) Ld−1, (4.64)

where we have used that ||“V||=||“eV||=|“B|=2 dLd−1.
In order to bound the ratio

dm(b)=
Zbig, V(b, l)

Zm, V(L)(b, l)
, (4.65)

let us consider a set of contours “l contributing to (3.16). Using the short-
hand Wo=Wo(“l) and Wd=Wd(“l), and applying the bounds (4.27) and
(4.34), we get

Zo, Wo (b, l) Zd, Wd (b, l)
Zm, V(L)(b, l)

[ e
m

2d
log q ||“eWmc||+O(q

− n) ||“Wmc||+O(q
− n) ||“iWm ||. (4.66)

Observing that ||“iWm ||=||“iWmc ||=;c ¥ “l
||c||, while ||“eWmc || [ ||“eV||=

2 dLd−1, we obtain the bound

Zo, Wo (b, l) Zd, Wd (b, l)
Zm, V(L)(b, l)

[ e (m log q+O(q
− n)) Ld−1 D

c ¥ “l

eO(q
− n) ||c||. (4.67)

Observing that 2 ||c|| \ diam c holds for every contour c, any long w-contour
c satisfies ||c|| \ a0 —

1
2 w(L). Then (3.4) gives +(c) [ q−c ||c|| with c= 1

2d−
2

w(L) .
Combined with (3.16) and (4.67), we get that the ratio (4.65) can be
bounded by

dm(b) [ e (m log q+O(q
− n)) Ld−1 C

“l

D
c ¥ “l

q−
1
4d
||c|| (4.68)

for all q and L large enough. Now,

C
“l

D
c ¥ “l

q−
1
4d
||c|| [ C

.

n=1
C

“l : |“l |=n
D
c ¥ “l

q−
1
4d
||c|| [ C

.

n=1

1
n!
1C

c

q−
1
4d
||c||2n, (4.69)

where the last sum is over all long w-contours c in V(L). Bounding the
number of w-contours in V(L) whose length is a by CaLd, where C > 0 is a
constant depending on d, it follows that
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C
c

q−
1
4d
||c|| [ C

.

a=a0

C
c: ||c||=a

q−
1
4d
a [ C

.

a=a0

CaLdq−
1
4d
a [ Ld C

.

a=a0

q−
1
5d
a

[ q−
1
6d
a0=q−

1
12d

w(L) (4.70)

whenever q and L are taken large enough. As a result,

dm(b) [ e (m log q+O(q
− n)) Ld−1(eq

− 1
12d

w(L)
− 1) [ e (m log q+O(q

− n)) Ld−1q−
1
14d

w(L)

(4.71)

as soon as q and L are sufficiently large. Combining (4.63) and (4.64) with
(4.65) and (4.71), we get (4.58).

In order to prove the remaining statements, we first use the well know
fact that for large q, the transition point bt can be equivalently defined as
the unique point where the derivative of the free energy jumps, see refs. 17
and 25. By (4.23) and Lemma A.6, there is a unique point b̂ where fo and
fd coincide. Combined with (4.62), we conclude that f(b)=fd(b) if b [ b̂,
and f(b)=fo(b) if b \ b̂, implying in particular that at b̂ the derivative of
the free energy is discontinuous. This identifies bt, and proves at the same
time (4.59) and (4.60), see Lemma A.6(a).

To prove (4.61), we invoke (3.10) and (4.23), together with the obser-
vation that

De :=
1
2
1df

db
:
bt −0

−
df
db
:
bt+0

2=1
2

d(fd − fo)
db
:
bt

. L (4.72)

5. PROOF OF THEOREM 2.1

We now prove Theorem 2.1, restricting our attention to b \ 1, see
Remark 2.4(iii). We consider strong boundary conditions, recall the defini-
tion (3.26) of the corresponding partition functions Z̃m, W(b, l) in terms of
s-contours, and their reformulation (3.28) in terms of the weights K̃m(c).
Throughout this section, fo and fd are the meta-stable free energies defined
in (4.12), n0 is the constant defined in (4.15), y(c) is as in (4.16), D0 <. is
the constant from Lemma 4.3, and am, m=o, d, is defined in Lem-
ma 4.4(a).

Lemma 5.1. Let d \ 2, k0=0, 1,... . If q and L are sufficiently
large, b \ 1, l \ 0, 0 [ k [ k0, and m=o, d, we have:
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(a) For any m-labeled s-contour c with dist(c, “V) \ 3
4 , the activity

K̃m(c) does not depend on l. Moreover, if am(b) diam c [ 2 da0, then
K̃m(c) is a Ck0 function of b, and | “

k

“b
k K̃m(c)| [ (D0 |Bb(Int(c)|)k q−y(c).

(b) For any volume W of the form (3.7) with dist(W, “V) \ 3
4 , the

partition function Z̃m, W(b, l) is independent of l. In addition, if am(b) diam W
[ 2 da0, then

“
k

“bk
log Z̃m, W(b, l)=−

1
d
“
kfm
“bk

|B(W)|+O(q−n0) ||“W||. (5.1)

(c) The same bounds as in (a) hold also for activities K̃ (x)
m (cx).

Proof. Let c and cx be m-labeled s-contours with dist(c, “V) \ 3
4 and

dist(cx, “V) \ 3
4 , and let W be the volume of the form (3.7) with

dist(W, “V) \ 3
4 . Then, in view of Remark 3.2, the activities K̃m(c) and

K̃ (x)
m (cx), and the partition function Z̃m, W(b, l) are independent of l.

Choosing w(L)=L+1, we have K̃m(c)=Km(c), K̃ (x)
m (cx)=K(x)

m (cx), and
Z̃m, W(b, l)=Zm, W(b, l). Taking now into account Lemmas 4.3 and 4.4
combined with (4.25), the remaining claims readily follow. L

Lemma 5.2. Let d \ 2, assume that q and L are sufficiently large,
b \ 1, and l \ 1

2bt
. Let c0 be a s-contour, W=Int c0, and let

d̃o, W(b)=
Z̃d, W(b, l)
Z̃o, W(b, l)

and d̃d, W(b)=
Z̃o, W(b, l)
Z̃d, W(b, l)

. (5.2)

Then the function d̃o, W(·) is decreasing on the interval [bt,.), while the
function d̃d, W(·) is increasing on the interval [1, bt].

Proof. We will explicitly only prove the monotonicity of d̃o, W(·).
The monotonicity of d̃d, W(·) is proven analogously and will be left to the
reader.

We first rewrite the partition function Z̃d, W(b, l). Namely, in its
expression in the form (3.26), we resum over all sets “ whose external
contours are fixed, to get

Z̃d, W(b, l)= C (d)

“ext ˘W
e−G

d
d(Bb(Ext))Z̃o, Int(b, l) D

c ¥ “ext

q
1
2d
|“B(Int c)|+(c). (5.3)

Here, the summation is over sets “ext of mutually external, short, d-labelled
s-contours with V(c) … W, Int=1c ¥ “ext

Int c, and Ext=W01c ¥ “ext
V(c).

In this way we get

Z̃d, W(b, l)
Z̃o, W(b, l)

= C (d)

“ext ˘W
et(b) D

c ¥ “ext

+(c), (5.4)
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where

t(b)=−Gdd(Bb(Ext))+log
Z̃o, Int(b, l)
Z̃o, W(b, l)

. (5.5)

Notice that t is the only term in (5.4) depending on b. Notice also that,
since the distance of any pair of non-overlapping (s- or w-) contours must
be at least 12 , any contour c contributing to Z̃o, Int(b, l) or Z̃o, W(b, l) has
dist(c, “V) \ 3

4 . By Lemma 5.1(a), we may use the cluster expansion of the
form (4.3) to analyze log Z̃o, Int(b, l) − log Z̃o, W(b, l). Defining

F̃m(Bb(W))=
1
d

fm |B(W)|+hm |“B(W)|, (5.6)

we get

dt

db
=

d
db

[F̃o(Bb(Ext)) − Gdd(Bb(Ext))]+||“(Ext)|| O(q−n). (5.7)

The first term can be explicitly estimated,

d
db

(F̃o(Bb(Ext)) − Gdd(Bb(Ext))) < (−l+O(q−n)) |Bb(Ext)| (5.8)

due to (4.23) and (3.24). Hence,

dt

db
< (−l+O(q−n)) |Bb(Ext)|+||“(Ext)|| O(q−n). (5.9)

Since, obviously, ||“(Ext)|| [ O(|Bb(Ext)|) with |Bb(Ext)| \ 1, while 1
2bt

\ d
4 log q ,

we get dtdb [ − l

2 < 0 for all q large and l \ 1
2bt

. L

Lemma 5.3. Let d \ 2, 0 < m [ 1, k0=0, 1,..., and ñ=min(n0,
m

4d).
There exist a finite constant D̃0 <. such that, for all q and L sufficiently
large and 0 [ k [ k0, we have:

(a) If 1 [ b [ bt and 0 [ l [ 1
2 (1 − m), then K̃d(c) is a Ck0 function of

b for any disordered s-contour c, and | “
k

“b
k K̃d(c)| [ D̃0q−ñ ||c||.

(b) If b \ bt and l \ 1
2 (1+m), then K̃d(c) is a Ck0 function of b for

any ordered s-contour c, and | “
k

“b
k K̃o(c)| [ D̃0q−ñ ||c||.

(c) The same bounds hold for the activities K̃ (x)
d (cx) and K̃ (x)

o (cx).
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Proof. According to Lemma 5.1(b) and (c), the claims hold for any
s-contour c (respectively cx) for which dist(c, “V) \ 3

4 . Hence, let us con-
sider only the remaining contours, i.e., those with distance 1

4 from the
boundary.

To bound the derivatives, we evoke Lemmas 3.3 and A.3 to get

: “k
“bk

K̃m(c) : [ D̃0((1+l) |“B(Int c)|+|B(Int c)|)k0 K̃m(c)

[ D̃0el |“B(Int c)|edk0 ||c|| K̃m(c) (5.10)

for some constant D̃0=D̃0(k0) <..
Consider now the case k=0 and observe that, since the distance of

any pair of non-overlapping (s- or w-) contours must be at least 12 , any
contour c contributing to Z̃m, Int c(b, l) has dist(c, “V) \ 3

4 . According to
Lemma 5.1(a), the corresponding activity K̃m(c) is independent of l.
Taking now into account the explicit expression (3.28), we observe that
neither Z̃d, Int c(b, l) nor the ratio Z̃o, Int c(b, l)

(elb−1)||“B(Int c)|| is depending on l. Using
temporarily K̃ (b, l)

m (c) to denote explicitly the dependence of the weights
K̃m(c) on b and l, the above observation yields

el |“B(Int c)|K̃ (b, l)
m (c) [ K̃ (b, lm)

m (c), (5.11)

where ld=
1
2 (1 − m)+ 1

2bt
and lo=

1
2 (1+m) − 1

2bt
. Here we used the fact that

for the case m=d we assume that b [ bt and l [ 1
2 (1 − m), while for m=o

we assume that b \ bt and l \ 1
2 (1+m). Further, let us notice that the

monotonicity in b according to Lemma 6.3 is true, with the same proof,
also for the ratio Z̃mc, W(b, lm)

Z̃m, W(b, lm)
. Hence,

Z̃mc, Int c(b, lm)
Z̃m, Int c(b, lm)

[
Z̃mc, Int c(bt, lm)
Z̃m, Int c(bt, lm)

(5.12)

and, combining it with (5.11), we get

el |“B(Int c)|K̃ (b, l)
m (c) [ +(c) q

1
2d
|“B(Int c)| Z̃mc, Int c(bt, lm)

Z̃m, Int c(bt, lm)
. (5.13)

Applying now, for both phases, l-independent cluster expansions
according to Lemma 5.1(b) and taking explicitly into account the boundary
terms hmm and hm

c

mc from (3.28), we get

K̃m(c) [ e−l |“B(Int c)|+(c) q
1
2d
||c|| e (h

m
m−h

mc
mc)(bt, lm) ||“B(Int c)||+O(q − n0) ||“ Int c||. (5.14)
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Using the fact that +(c)=q−
1
2d
||c|| if dist(c, “V)=1/4, see (3.4), and applying

Lemma A.4, we get

K̃d(c) [ e−l |“B(Int c)| 1ebtld − 1

q
1
2d

2 ||c|| eO(q − n0) ||c|| (5.15)

and

K̃o(c) [ e−l |“B(Int c)| 1 q
1
2d

ebtlo − 1
2 ||c|| eO(q − n0) ||c||. (5.16)

Using further the explicit bound on bt from (4.60), we obtain in both cases

K̃m(c) [ e−l |“B(Int c)|q−(
m

2d
+O(q − n0)+O( 1log q)) ||c|| [ e−l |“B(Int c)|q−

m

3d
||c||. (5.17)

Thus, we got the claims (a) and (b) for k=0 and, applying (5.10), also for
k=1,..., k0.

To prove (c), we note that as before,

: “k
“bk

K̃ (x)
m (cx) : [ D̃0el |“B(Int cx)|edk0 ||cx|| K̃ (x)

m (cx). (5.18)

Combined with the fact that K̃ (x)
m (cx) [ K̃m(cx), this completes the proof.

L

Proof of Theorem 2.1. First, let us prove the claim (a). By virtue of
(3.28) and Lemma 5.3(a), the function log Z̃d, V(b, l) and its derivatives
can be analyzed by convergent cluster expansions for q, L large and any
0 [ l < 1

2 (1 − m) whenever 1 [ b [ bt. Taking an arbitrary k [ k0, we have

“
k

“bk
log Z̃d, V(b, l)=−

dkF̃d(Bb)
dbk

+O(q−ñLd−1), (5.19)

where F̃d is defined in (5.6). Combining this with (3.27), (2.8), and (3.10),
we get

“
k−1

“bk−1
EL(b, l)=

“fd
“b

Ld+Ld−1O(q−ñ),

which, together with (4.59), proves (2.14).
To prove (2.13), we use the representation (3.30) of ML(b, l) in terms

of the ratios Z̃ (x)
V, d(b, l)/Z̃V, d(b, l). Next, we use the contour representa-

tions (3.28) and (3.31), together with the fact that for b [ bt, the phase d is
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stable and thus | “
k

“b
k K̃d(c)| [ D̃0q−ñ ||c|| and | “

k

“b
k K̃ (x)

d (cx)| [ D̃0q−ñ ||cx||, see
Lemma 5.3. This allows us to analyze the terms in (3.30) by a convergent
cluster expansion, yielding, in particular, the existence and l-independence
of the limit

m̃d(b)= lim
LQ.

1
Ld

ML(b, l), (5.20)

as well as the following bounds on finite-size corrections:

ML(b, l)=m̃d(b) Ld+O(q−n) Ld−1. (5.21)

Combining the observation that ML(b, l)=0 if l=0 with the l-indepen-
dence of m̃d(b), we conclude that m̃d(b)=0 whenever b [ bt. The bound
(5.21) is then identical with the claim (2.13).

The proof of the claim (b) is similar, noticing that for the derivatives
of ho one can use the bounds from Lemma A.1. In particular, “ho

“b
[ 1+l.

We also note that for b \ bt, the limit

m̃o(b)= lim
LQ.

1
Ld

ML(b, l) (5.22)

is again independent of l, and can be identified with the value at l=1,
which equals m(b) as defined in (2.5). L

Remark 5.4. Notice that, for b [ bt, the convergent cluster expan-
sions for md(b) (cf. (4.29)) and for m̃d(b) (cf. (5.20)) are identical. Indeed,
taking into account Remark 3.2 and Lemma 4.4(b), the corresponding
cluster expansion terms have contributions only from contours from L.
for which the corresponding weights do not depend on l and one has
K̃d(c)=Kd(c)=K̄d(c) and K̃ (x)

d (cx)=K(x)
d (cx)=K̄ (x)

d (cx). Hence, md(b)=
m̃d(b)=0.

Similarly, for b \ bt, one can identify mo(b)=m̃o(b)=m(b).

6. FINITE SIZE EFFECTS FOR WEAK BOUNDARY CONDITIONS

In this section we prove Theorem 2.3. We start with a more accurate
bound on the derivatives of fm and sm near b=bt.

Lemma 6.1. Let k0 ¥N, and let 0 [ m < 1. If q is sufficiently large,
then

dkfm
dbk

=O(q−n0) and
dksm
dbk

=O(q−n) (6.1)
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provided b \ bt/2, |l − 1
2 | [ m

2 and 2 [ k [ k0. For m=d, these bounds
remain true for all b \ 1.

Proof. This follows immediately from (4.23), Lemma A.1, (4.60),
and the definitions (4.15) of n and n0. L

The next lemma is the first step in the proof of (2.17).

Lemma 6.2. Let d \ 2, 0 [ m < 1 and let n and a be defined by
(4.15) and (4.33), respectively. Let w: NQ [0,.) be a function satisfying
the conditions

lim sup
LQ.

w(L)
L

[
n

6
and lim inf

LQ.

w(L)
log L

=.. (6.2)

For q and L sufficiently large and |l − 1
2 | [ m

2 , we have:

(a) The equation am(b)= a

w(L) , m=o, d, has a single solution bm(L),
and ao(b) [ a

w(L) iff b \ bo(L), while ad(b) [ a

w(L) iff b [ bd(L). Further-
more, we have bm(L)=bt(1+O((w(L))−1)), and, more precisely,

bo(L)=bt −
a

2 De
1

w(L)
+1 a

w(L)
22 O(q−n),

bd(L)=bt+
a

2 De
1

w(L)
+1 a

w(L)
22 O(q−n).

(6.3)

(b) There is a unique point b (l)= (L) ¥ (bo(L), bd(L)) at which
Zo, V(b, l) and Zd, V(b, l) coincide, and b (l)= (L)=bt(1+O(L−1)). More
precisely,

b (l)= (L)=bt+
J(l, q, L)

L
+1J(l, q, L)

L
22 O(q−n), (6.4)

where J(l, q, L) is a function that obeys the bounds

J(l, q, L)=
dbt

De
11

2
− l+O 1 q−n

log q
22(1+O(L−1)) (6.5)

and

J(l, q, L)=
d(sd − so)(bt)

De
+O(btL−1). (6.6)
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Proof. (a) Let us consider m=o, for instance. For 0 < b [ 1, we
have

ao(b) −
a

w(L)
\ log q − d log(e − 1)+O(q−n) −

a

w(L)
> 0

whenever q and L are large enough; we used (4.23) with k=0 and the fact
that w(L) Q. by the second condition in (6.2). Since ao(b) is continuous
and decreasing on [1, bt) once q is large, while ao(b)=0 for b \ bt, there
is a single solution bo(L) ¥ (1, bt). The Lagrange mean-value theorem then
yields

a

w(L)
=ao(bo(L))=(fo − fd)(bo(L))=(bo(L) − bt)

d(fo − fd)
db
:
b̃

(6.7)

for some b̃ between bo(L) and bt. Since the derivative of fo − fd is bounded
away from zero by (4.62), it follows that bo(L) − bt=aO((w(L))−1)=
btO((w(L))−1). Using this and Lemma 6.1, the Taylor expansion around bt
gives

a

w(L)
=(fo − fd)(bo(L))

=(bo(L) − bt)
d(fo − fd)

db
:
bt

+(w(L))−2 O(q−n log2 q), (6.8)

which along with (4.61) directly implies the first equality of (6.3). One
proceeds similarly for m=d.

(b) Let us introduce

tL(b)=log
Zo, V(L)(b, l)
Zd, V(L)(b, l)

. (6.9)

If b ¥ [bo(L), bd(L)], we may use the proved part (a) of this lemma,
Lemma 4.4(c), the relation (4.25) with k=0, Eq. (4.23), and Lemma A.1 to
get

tL(bm(L))=−
1
d

(fo − fd)(bm(L)) |B|

−5(so − sd)(bt)+aO 1 1
w(L)
26 |“B|+Ld−2O(q−n)
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for m=o, d. By Lemma A.6(a) with o2=n, we have

(so − sd)(bt)=−
1
d
1l −

1
2
2 log q+O(q−n). (6.10)

Observing that

|B|=|B(L(L))|=dLd−1(L − 1), |“B|=|“B(L(L))|=2 dLd−1, (6.11)

and taking into account (6.7), (4.33), and (6.2), we eventually obtain

tL(bo(L))=5− a

log q
L − 1
w(L)

+2 1l −
1
2
2+O 1 q−n

log q
26 Ld−1 log q+aO 1 L

d−1

w(L)
2

[ 5−1 n
4

−
1

2 log q
2 5

n
+m+O 1 q−n

log q
26 Ld−1 log q+aO 1 L

d−1

w(L)
2

[ −
1
5

Ld−1 log q 51+O 1 1
w(L)
26 [ −

1
6

Ld−1 log q < 0 (6.12)

for q, L large. Similarly,

tL(bd(L)) \ 1
6 Ld−1 log q > 0 (6.13)

once q, L are large enough.
Next, for large q and L and any b ¥ [bo(L), bd(L)], we have

t −L(b)=
“tL

“b
=
“Go(Bb)
“b

+LdO(q−n) \ (d+O(q−n)) Ld−1(L − 1) \
d
2

Ld.
(6.14)

Taking into account that tL(b) is continuous, a result of (6.12), (6.13), and
(6.14) is that the equation Zo, V(b, l)=Zd, V(b, l) has necessarily a unique
solution b (l)= (L) on the interval (bo(L), bd(L)). To find its position, we first
use the Lagrange mean-value theorem to write

0=tL(b (l)= (L))=tL(bt)+(b (l)= (L) − bt) t −L(b̂) (6.15)

where b̂ is a point between b (l)= (L) and bt. In view of (6.14), we get

b (l)= (L) − bt=tL(bt) O(L−d) (6.16)

and due to (4.25), (4.23), and Lemma A.1, we have

t −L(bt)=2 De Ld[1+O(L−1)] (6.17)
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and, using also Lemma 6.1,

“
2tL

“b2
=LdO(q−n) (6.18)

for any b ¥ [bo(L), bd(L)]. The Taylor expansion of tL(b (l)= (L)) around bt
then implies

0=tL(bt)+(b (l)= (L) − bt) t −L(bt)+[tL(bt)]2 L−dO(q−n). (6.19)

Defining

J(l, q, L)=
tL(bt)
t −L(bt)

L, (6.20)

and referring to (6.17), we immediately get (6.4).
Due to (4.25), (6.10), and (6.11), we have

tL(bt)=(sd − so)(bt) |“B|+Ld−2O(q−n)

=2 51l −
1
2
2 log q+O(q−n)6 Ld−1. (6.21)

Combining (6.21) and (4.60) with (6.16) gives the bound b (l)= (L)=
bt(1+O(L−1)), while (6.21), (4.60), and (6.17) yields the more precise
bound (6.5). L

For a more detailed bounds on Zbig, V(L)(b, l) then those in the proof
of Lemma 4.5, we use the following claims to restrict its evaluation to b

from a suitably chosen small range.

Lemma 6.3. Let W be a volume of the form (3.7). Under the
conditions of Lemma 6.2 we have:

(a) The functions

do(b)=
Zbig, V(L)(b, l)
Zo, V(L)(b, l)

and do, W(b)=
Zd, W(b, l)
Zo, W(b, l)

(6.22)

are decreasing on the interval [bo(L),.).
(b) The functions

dd(b)=
Zbig, V(L)(b, l)
Zd, V(L)(b, l)

and dd, W(b)=
Zo, W(b, l)
Zd, W(b, l)

(6.23)

are increasing on the interval [1, bd(L)].
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Proof. We will explicitly only prove the monotonicity of do(b). The
remaining cases are proven analogously and will be left to the reader.

We proceed similarly as in the proof of Lemma 5.2. To evaluate
Zbig, V(L)(b, l), we rewrite the factor Zd, Wd(“l)(b, l) in (3.16) in analogy with
(5.3),

Zd, Wd(“l)(b, l)= C (d)

“ext ˘Wd(“l)
e−Gd(Bb(Ext))Zo, Int(b, l) D

c ¥ “ext

+(c). (6.24)

Here, the summation is over sets “ext of mutually external, short, d-labelled
w-contours with V(c) … Wd(“l), Int=1c ¥ “ext

Int c, and Ext=Wd(“l)0
1c ¥ “ext

V(c). In this way we get

Zbig, V(b, l)
Zo, V(b, l)

=C
“l

D
c ¥ “l

+(c) C (d)

“ext ˘Wd(“l)
et(b) D

c̃ ¥ “ext

+(c̃), (6.25)

where

t(b)=−Gd(Bb(Ext))+log
Zo, Wo(“l)(b, l) Zo, Int(b, l)

Zo, V(b, l)
. (6.26)

Using now the cluster expansion of the form (4.3) to analyze log Zo, Wo(“l)
(b, l)+log Zo, Int(b, l) − log Zo, V(b, l), we get

dt

db
=

d
db

(Fo(Ext) − Gd(Bb(Ext)))+||“(Ext)|| O(q−n). (6.27)

Hence, in view (4.23) and (3.10),

dt

db
< (−l+O(q−n)) |Bb(Ext)|+||“(Ext)|| O(q−n) [ −

l

2
< 0 (6.28)

for all q large, in the same way as for (5.9). L

Remark 6.4. The above proof shows that in the interval [bo(L),.),
the derivatives of log do(b) and log do, W(b) are at most − l

2 , while on the
interval [1, bd(L)], the derivatives of log dd(b) and log dd, W(b) are at
least l

2 .

Lemma 6.5. Let d \ 2 and 0 [ m < 1. Let w: NQ [0,.) be a func-
tion satisfying the conditions (6.2) from Lemma 6.2, and let k0 ¥ Z, k0 \ 0.
For all q and L sufficiently large, |l − 1

2 | [ m

2 , and 0 [ k [ k0, we have:
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(a) If b ¥ [1,.), then

: “k
“bk

Zbig, V(L)(b, l)
Zo, V(L)(b, l)+Zd, V(L)(b, l)

: < q−
1−m

16d
w(L). (6.29)

(b) If b \ bd(L), then

: “k
“bk

Zd, V(L)(b, l)+Zbig, V(L)(b, l)
Zo, V(L)(b, l)

: < q−
1−m

16d
w(L). (6.30)

(c) If 1 [ b [ bo(L), then

: “k
“bk

Zo, V(L)(b, l)+Zbig, V(L)(b, l)
Zd, V(L)(b, l)

: < q−
1−m

16d
w(L). (6.31)

Proof. For k=0 we will actually prove a stronger claim with the
right hand sides above replaced by q−

1−m

14d
w(L). Taking into account the first

condition in (6.2), the claim for k > 0 then follows by Lemma 3.3.

(a) Let

d==
Zbig, V(L)(b (l)= (L), l)
Zo, V(L)(b (l)= (L), l)

=
Zbig, V(L)(b (l)= (L), l)
Zd, V(L)(b (l)= (L), l)

(6.32)

where b (l)= (L) is the point where Zo, V(b, l)=Zd, V(b, l), see Lemma 6.2.
Applying Lemma 6.3, we get

sup
b ¥ [1,.)

Zbig, V(b, l)
Zo, V(b, l)+Zd, V(b, l)

[ sup
b ¥ [1,.)

min{do(b), dd(b)} [ d=, (6.33)

where do and dd are the quantities defined in Lemma 6.3. Referring to
(3.16), we now have to bound the factor

Zo, Wo (b (l)= (L), l) Zd, Wd (b (l)= (L), l)
Zo, V(b (l)= (L), l)

=
Zo, Wo (b (l)= (L), l) Zd, Wd (b (l)= (L), l)

Zd, V(b (l)= (L), l)
,

(6.34)

where we used the shorthand Wo=Wo(“l) and Wd=Wd(“l). Notice that, due
to Lemma 6.2, both phases at b=b(l)= (L) can be analyzed by convergent
cluster expansions. For each particular configuration “l, let m=m(“l) be the
label for which

||“eWm ||=min{||“eWo ||, ||“eWd ||}. (6.35)
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Choosing the form of (6.34) with denominator Zmc, V(b (l)= (L), l), and using
the bounds (4.25) and (4.27), together with the observation that ||“iWm ||=
||“iWmc ||, we get the estimate

Zo, Wo (b (l)= (L), l) Zd, Wd (b (l)= (L), l)
Zmc, V(b (l)= (L), l)

[ eFmc(Wm)−Fm(Wm)+||“Wm || O(q
− n), (6.36)

and hence

d= [C
“l

eFmc(Wm)−Fm(Wm)+||“eWm || O(q
− n) D

c ¥ “l

+(c) eO(q
− n) ||c||. (6.37)

Here we used that ||“Wm ||=||“iWm ||+||“eWm || and ||“iWm ||=;c ¥ “l
||c||.

As Fo(V)=Fd(V)+Ld−2 O(q−n) at b (l)= (L) by virtue of Lemma 6.2(b)
and the bound (4.25), we have

(fo − fd)(b (l)= (L)) |B|/d=−(so − sd)(b (l)= (L)) |“B|+Ld−2O(q−n). (6.38)

In conjunction with (6.11), we get

|Fmc(Wm) − Fm(Wm)|

[ |(so − sd)(b (l)= (L))| :2 |B(Wm)|
L − 1

− |“B(Wm)| :+|B(Wm)|
L2

O(q−n). (6.39)

Further, by Lemma 6.2(b), b (l)= (L)=bt(1+o(1)), implying that the deri-
vative of (so − sd)(b) is bounded between b (l)= (L) and bt. Since b (l)= (L) −
bt=log q O(L−1) by the same lemma and Eq. (4.60), we can conclude that

|(so − sd)(b (l)= (L))|=|(so − sd)(bt)|+log q O(L−1)

[
m

2d
+log q O(L−1)+O(q−n), (6.40)

where we have used (6.10) in the last step. Combining (6.37) with (6.39),
(6.40), and Lemma A.7, we arrive at

d= [C
“l

e ||“eWm || O(q
− n) D

c ¥ “l

+(c) e (
m

2d
+O(q − n)+log q O(L −1)) ||c||. (6.41)

Using now Lemma A.8 to bound ||“eWm || and then continuing as in the
proof of (4.71), we get

d= [ q−
1−m

14d
w(L) (6.42)

as soon as q and L are sufficiently large.
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(b) Using the proven claim (a), it is sufficient to bound do, V(b)=
Zd, V(b, l)
Zo, V(b, l)

. In view of monotonicity of do, V(b) according Lemma 6.3, we can
bound it by do, V(bd(L)), at which point we can control both log Zo, V(b, l)
and log Zd, V(b, l) by convergent cluster expansions,

do, V(bd(L)) [ e−Fd(V)+Fo(V)+L
d−2 O(q − n) [ e−

a

w(L) |B|+(
m

2d
log q+O(q − n)) |“B|+Ld−2 O(q − n)

(6.43)

since ad(bd(L))= a

w(L) and (so − sd)(bd(L)) [ m

2d log q+O(q−n) due to (4.57)
with e=0. Using now (6.11) and the first condition in (6.2), we get

a

w(L)
|B| −1 m

2d
log q+O(q−n)2 |“B|

\ 113(L − 1)
4L

−
m

2d
2 log q+O(q−n) −

3(L − 1)
2Ln
2 |“B| \

1
2L

|“B| log q.
(6.44)

As a result, we get

do, V(bd(L)) [ q−dL
d−1

(6.45)

for q and L large.
(c) The proof of the claim (c) is analogous to the proof of (b). L

Let us now use Lemmas 4.4, 6.2, and 6.5, to study the behaviour of the
finite-volume mean energy EL(b, l) and its derivatives (with respect to b)
for large values of q and L.

Lemma 6.6. Let d \ 2, 0 [ m < 1, and k0=1, 2... For q and L large
enough, |l − 1

2 | [ m

2 , b \ 1, and 2 [ k [ k0, we have

ML(b, l)=
mg

2
Ld+

mg

2
Ld tanh(De(b − b (l)= (L)) Ld)

+O(|b − bt | Ldq−n0)+O(Ld−1), (6.46)

EL(b, l)=e0 Ld− De Ld tanh(De(b − b (l)= (L)) Ld)

+O(|b − bt | Ldq−n0)+O(Ld−1), (6.47)

and

“
k−1

“bk−1
EL(b, l)=−(De Ld)k

dk−1

dxk−1
tanh x:

x=De(b−b
(l)
= (L)) L

d

+O(|b − bt | Lkdq−n0)+O(Lkd−1). (6.48)

Here b (l)= (L) is the temperature introduced in Lemma 6.2(b).
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Proof. We first prove the statements for the mean energy EL(b, l)
and its derivatives. Using (3.19), we have

EL(b, l)=−
“

“b
5log(Zo, V(b, l)+Zd, V(b, l))

+log 11+
Zbig, V(L)(b, l)

Zo, V(b, l)+Zd, V(b, l)
26

=−
1
2
“

“b
log(Zo, V(b, l) Zd, V(b, l))

−
1
2
1 “
“b

log
Zo, V(b, l)
Zd, V(b, l)
2 tanh 11

2
log

Zo, V(b, l)
Zd, V(b, l)
2

−
“

“b
log 11+

Zbig, V(L)(b, l)
Zo, V(b, l)+Zd, V(b, l)

2. (6.49)

Applying Lemma A.9 to k1(x)=log x and k2(b)=1+ Zbig, V(b, l)
Zo, V(b, l)+Zd, V(b, l)

and
using Lemma 6.5(a), we get

“
k

“bk
log 11+

Zbig, V(L)(b, l)
Zo, V(b, l)+Zd, V(b, l)

2=

=C
k

j=1
(1+O(q−

1−m

16d
w(L)))−j O(q−j

1−m

16d
w(L))=O(q−

1−m

16d
w(L)) (6.50)

for any k [ k0.
Suppose now that b ¥ [bo(L), bd(L)]. Taking into account (4.25),

(4.23), Lemmas A.1, 6.1, and using the shorthand (6.9), we get

EL(b, l)=e0 Ld− De Ld tanh(12 tL(b))+|b − bt | LdO(q−n0)

+O(Ld−1)+O(q−
1−m

16d
w(L)). (6.51)

Here e0 introduced in (2.12) is, taking into account Lemma 4.5 and the fact
that dfddb =O(q−n0) according to (4.23) and (3.10),

e0=
1
2

d(fo+fd)
db
:
bt

=−
d
2

+O(q−n0). (6.52)

Next, let us find expressions for the derivatives of EL(b, l). Since the
derivatives of tanh x are bounded due to (A.21), we may use Lemma A.9,
(4.25), (4.23), Lemma A.1 and Lemma 6.1 to get
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“
k−1

“bk−1
51

2
1 “
“b

log
Zo, V(b, l)
Zd, V(b, l)
2 tanh 11

2
log

Zo, V(b, l)
Zd, V(b, l)
26

=11
2
“

“b
log

Zo, V(b, l)
Zd, V(b, l)
2k dk−1

dxk−1
tanh x:

x=1
2 tL(b)

+C
k−1

j=1
L jdO(q−n)

=(De Ld)k (1+|b − bt | O(q−n0)+O(L−1))

×
dk−1

dxk−1
tanh x:

x=1
2 tL(b)

+L(k−1) dO(q−n).

Along with (6.49), (4.25), (6.50), and the observation that the derivatives
of the first term on the right hand side of (6.49) can be bounded by
LdO(q−n) [ L (k−1) dO(q−n), this implies

“
k−1

“bk−1
EL(b, l)=(De Ld)k (1+|b − bt | O(q−n0)+O(L−1))

×
dk−1

dxk−1
tanh x:

x=1
2 tL(b)

+L(k−1) dO(q−n). (6.53)

Finally, we Taylor expand tL(b)=log Zo, V(b, l)Zd, V(b, l)
around the point

b (l)= (L) of Lemma 6.2(b). Using (4.25), (4.61), Lemma A.1, Lemma 4.5, we
obtain

log
Zo, V(b, l)
Zd, V(b, l)

=(b − b (l)= (L))1d(fd − fo)
db
:
bt

Ld+O(Ld−1)

+(|b − b (l)= (L)|+|bt − b (l)= (L)|) LdO(q−n0)2

=2 De (b − b (l)= (L)) Ld(1+O(L−1)+|b − bt | O(q−n0)),
(6.54)

wherewe observedthat |b − b(l)= (L)| [ |b − bt |+|bt− b(l)= (L)| and |bt− b(l)= (L)|
=log q O(L−1). Using now Lemma A.10, we get

dk−1

dxk−1
tanh x:

x=1
2 tL(b)

=
dk−1

dxk−1
tanh x:

x=De(b−b
(l)
= (L)) L

d
+O(L−1)+|b − bt | O(q−n0) (6.55)

for any k=1,... . The relations (6.51), (6.53), and (6.55) complete the proof
of (6.47) and (6.48) for b in the interval [bo(L), bd(L)].
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Using (3.21) and (3.19), and referring to the bounds Z (x)
o, V(b, l)

[ Zo, V(b, l), Z (x)
d, V(b, l) [ Zd, V(b, l), and Z (x)

big, V(b, l) [ Zbig, V(b, l),
Lemma 6.5 implies that

ML(b, l)= C
x ¥ L

Z (x)
o, V(b, l)+Z(x)d, V(b, l)

Zo, V(b, l)+Zd, V(b, l)
+LdO(q−

1−m

16d
w(L)). (6.56)

Let us now assume that b ¥ [bo(L), bd(L)], so that Zm, V(b, l)=Z̄m, V(b, l)
and Z (x)

m, V(b, l)=Z̄ (x)
m, V(b, l) for both m=d and m=o. Taking into

account the definition (4.28), we then get

Mm, L(b, l)=
Mo, L(b, l)+Md, L(b, l)

2
+

Mo, L(b, l) − Md, L(b, l)
2

× tanh 11
2

log
Zo, V(b, l)
Zd, V(b, l)
2+LdO(q−

1−m

16d
w(L)). (6.57)

Combined with the finite-size scaling bound (4.32), this gives

Mm, L(b, l)=
mo(b)+md(b)

2
Ld+

mo(b) − md(b)
2

Ld

× tanh 11
2

log
Zo, V(b, l)
Zd, V(b, l)
2+Ld−1O(q−n). (6.58)

Finally, using first the bound (4.31) for k=1 to bound the difference
between mm(b) and mm(bt) by |b − bt | O(q−n0) and then Remark 5.4 to
conclude that md(bt)=0 and mo(bt)=mg, we get

Mm, L(b, l)=
mg

2
Ld+

mg

2
Ld tanh 11

2
log

Zo, V(b, l)
Zd, V(b, l)
2+

+Ld−1O(q−n)+|b − bt | LdO(q−n0). (6.59)

Combined with (6.55), this gives the bound (6.46) for b ¥ [bo(L), bd(L)].
For b outside this interval, the claims of the lemma follow from the

more precise estimates of the next lemma. L

Lemma 6.7. Let d \ 2, 0 [ m < 1, and k0=1, 2... . Assume that q
and L are sufficiently large, |l − 1

2 | [
m

2 , 1 [ k [ k0 and b \ 1. If

|b − bt | \
mdbt

De
1
L

, (6.60)
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one has

ML(b, l)=m(b) Ld+O(Ld−1) (6.61)

and

“
k−1

“bk−1
EL(b, l)=

dkf(b)
dbk

Ld+O(Ld−1). (6.62)

Here f is the free energy introduced by (4.13), and

dkf(b)
dbk

=˛
dkfd(b)

dbk
if b < bt,

dkfo(b)
dbk

if b > bt.
(6.63)

Proof. Let b±=bt ±
mdbt
De

1
L . By Lemma 6.2(b), the condition (6.60)

and the fact that we assumed |l − 1
2 | [

m

2 , we have

b− [ b (l)= (L) −
mdbt

3De
1
L

and b+ \ b (l)= (L)+
mdbt

3De
1
L

, (6.64)

provided L and q are large enough. Assume that b \ b+. Using first the
monotonicity according to Lemma 6.3(a), then the bound (6.14) to
control the difference of log[Zo, V(b (l)= (L), l)/Zd, V(b (l)= (L), l)]=0 and
log[Zo, V(b+, l)/Zd, V(b+, l)] and finally the bound (6.64) to control the
difference between b+ and b (l)= (L), we get

1
2

log
Zo, V(b, l)
Zd, V(b, l)

\
1
2

log
Zo, V(b+, l)
Zd, V(b+, l)

\
d
4

Ld(b+− b (l)= (L)) \ g Ld−1,
(6.65)

where g=md2bt
12 De . Combining this bound with the fact that tanh x=

sign x+O(e−2 |x|), we now use (6.58) and Remark 5.4 to get the claim (6.61)
for b \ b+.

For the mean energy, we combine (6.65) with (6.49) and Lemmas 3.3
and 6.5(a) to get

EL(b, l)=−
“

“b
log Zo, V(b, l)+O(Lde−2g L

d−1
)+O(q−

1−m

16d
w(L)). (6.66)

On the other hand, (6.49) combined with Lemmas 3.3 and 6.5(a) and the
fact that the leading term in the derivatives of the second term on the right
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hand side of (6.49) does not contain derivatives of tanh x since dk

dxk
tanh x=

O(e−2x) whenever k \ 1, leads to

“
k−1

“bk−1
EL(b, l)=−

“
k

“bk
log Zo, V(b, l)+O(Ldke−2g L

d−1
)+O(q−

1−m

16d
w(L)).

(6.67)

Finally, the relation (4.25) and Lemma A.1 imply that

“
k

“bk
log Zo, V(b, l)=−

dkfo
dbk

Ld+O(Ld−1). (6.68)

Inserted into (6.66) and (6.67) this completes the proof of the lemma for
b \ b+. The proof for b [ b− is almost identical. L

Finally, we prove the following

Lemma 6.8. Let d \ 2 and 0 [ m < 1. For q and L sufficiently large
and |l − 1

2 | [ m

2 , the specific heat CL(b, l) attains its maximal value at a
unique temperature b (l)max(L). Moreover,

b (l)max(L)=b (l)= (L)+b−1t O(L−2d), (6.69)

where b (l)= (L) was introduced in Lemma 6.2(b).

Proof. Let b± be as in the proof of Lemma 6.7. We first prove that

CL(b, l)=b2t O(Ld) (6.70)

uniformly in b ¥ (0, b−] 2 [b+,.). In the interval [0, 1], this claim
follows from the standard high temperature expansion, while in the interval
[1, b−] it follows from Lemma 6.7. For b \ b+, however, Lemma 6.7
yields only a bound CL(b, l)=b2 O(Ld), which is not uniform in b. To
improve this bound, we first use Remark 6.4 to sharpen the bound of
Lemma 6.5(a). For b \ b (l)= (L), this gives

: “k
“bk

Zbig, V(L)(b, l)
Zo, V(L)(b, l)+Zd, V(L)(b, l)

: < e−
l

2
(b−b

(l)
= (L))q−

1−m

16d
w(L). (6.71)

In a similar way, the bound (6.65) can be sharpened to

1
2

log
Zo, V(b, l)
Zd, V(b, l)

\ gLd−1+
l

2
(b − b+). (6.72)
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This leads to the following improvement of (6.67):

“
k−1

“bk−1
EL(b, l)=−

“
k

“bk
log Zo, V(b, l)

+e−
l

2
(b−b+)(O(Ldke−2g L

d−1
)+O(q−

1−m

16d
w(L))). (6.73)

As a final application of Remark 6.4, we obtain that for any w-contour c,
the ratio of partition functions Zd, Int c(b, l)

Zo, Int c(b, l)
can be bounded by its value at bt

multiplied by e−
l

2
(b−bt). This leads to the bound

Ko(c) [ q−y(c)e−
l

2
(b−bt) (6.74)

and similar improvements for the derivatives. As a consequence,

“
k

“bk
log Zo, V(b, l)=−

“
k

“bk
Go(Bb(V))+Lde−

l

2
(b−bt)O(q−n) (6.75)

and

“
k

“bk
[log Zo, V(b, l)+foLd−1(L − 1)]

=−
“
kho
“bk

|“Bb(V)|+Ld−1e−
l

2
(b−bt)O(q−n). (6.76)

Combining the bounds (6.73) and (6.75) with Lemma A.1(b), we obtain
that CL(b, l)=b2 e−(b−b+) O(Ld) [ b2tO(Ld) whenever b \ b+.

On the other hand, the bound (6.48) of Lemma 6.6 and the fact that
b (l)= (L)=bt(1+O(L−1)) (see Lemma 6.2(b)) yield that

CL(b (l)= (L), l)=b2t (De Ld)2 (1+O(L−1)). (6.77)

We conclude that

CL(b, l) < CL(b (l)= (L), l)

for all b ¨ [b− , b+] and q, L large enough. In other words, if the tempera-
ture b (l)max(L) exists, then b (l)max(L) ¥ [b− , b+].

Let us, therefore, take b ¥ [b− , b+] in the following. Then Lemma 6.6
gives

“
2CL(b, l)
“b2

=b2(De Ld)4
d3

dx3
tanh x:

x=De(b−b
(l)
= (L)) L

d
+b2O(L4d−1). (6.78)
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Observing that there exist constants A, B > 0 such that d3 tanh x
dx3

< − B < 0
once |x| [ A, we conclude that

“
2CL(b, l)
“b2

[ − b2(De Ld)4B+b2O(L4d−1) [ −
B
2

b2(De Ld)4 (6.79)

whenever |b − b (l)= (L)| [ A
De
1
Ld

and q, L are large. On the other hand, (2.11),
(6.53), Lemma 6.2, and the fact that d

2 tanh x
dx2

=0 at x=0 imply that

“CL(b, l)
“b
:
b
(l)
= (L)

=−2b
“EL(b, l)
“b
:

b=b
(l)
= (L)

+O(L2db2t q
−n)=O(btL2d).

(6.80)

Combining (6.80) with the bound (6.79), we conclude that, for q and L
large, there exists a unique temperature b0(L) such that |b0(L) − b (l)= (L)|=
O(b−1t L−2d) and

CL(b0(L), l) > CL(b, l)

for all b ] b0(L) and |b − b (l)= (L)| [ A
De
1
Ld

. However, if |b − b (l)= (L)| > A
De
1
Ld

,
then, in view of (2.11) and Lemma 6.6,

CL(b, l)=b2(De Ld)2 cosh−2(De(b − b (l)= (L)) Ld)+O(L2d−1)

< b2(De Ld)2 [cosh−2A+O(L−1)] (6.81)

so that

CL(b (l)= (L), l) − CL(b, l) \ b2(De Ld)2 [1 − cosh−2A+O(L−1)] > 0
(6.82)

once q and L are large. Hence, b0(L)=b(l)max(L), which proves Lemma 6.8. L

Proof of Theorem 2.3. The claim (a) of the theorem, with

b(l, q)=
d(sd − so)(bt)

btDe
(6.83)

follows from Lemmas 6.8 and 6.2(b), taking into account that

b−1t |(sd − so)(bt)|2 O(q−n) [ bt O(q−n)=O(1).

To get (2.18), we use (6.10) and (4.60).
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To prove the claim (b), we first note that in view of the preceding
lemma and Lemma A.10, we have

dk

dxk
tanh x|x=De(b−b

(l)
= (L)) L

d=
dk

dxk
tanh x|x=De(b−b

(l)
max(L)) L

d+b−1t O(L−d).
(6.84)

Combined with Lemma 6.6, this implies statement (b) of Theorem 2.3,
except for (2.21), which is stronger than the resulting bound if, say,
b \ 2bt. But in this region, b \ b+, and we can use (6.70) to get
CL(b, l)=b2t O(Ld), which is, in fact, a much stronger bound than (2.21) if
b \ 2bt since x2 cosh−2x Q 0 as x Q..

For |b − bt | \
m dbt

De
1
L , the first two claims of Theorem 2.3(c) are con-

tained in Lemma 6.7. The same is true for the last claim in the region
b [ b− , where b [ bt. For b \ b+, we insert (6.76) into (6.73). This
improves the bound (6.62) to

“
k−1

“bk−1
EL(b, l)=

dk

dbk
[fo(b) Ld−1(L − 1)+2 dhoLd−1]

+Ld−1e−
l

2
(b−b+)O(q−n). (6.85)

Observing finally that for k \ 2, we have dkfo
dbk

=e−
l

2
(b−b+)O(q−n) and “

kho
“b
k=

O(e−
l

2
(b−b+)) by (6.75) and Lemma A.1, we conclude that

“

“b
EL(b, l)=

d2fo(b)
db2

Ld+Ld−1 O(e−
l

2
(b−b+)), (6.86)

which implies the final claim of the theorem. L

APPENDIX: AUXILIARY LEMMAS

Lemma A.1. For any k ¥N, there exists a finite constant Dk such
that, for all b \ 1, the kth derivative (with respect to b) of any of the func-
tions go, ho, and hmo , m=o, d, defined by (3.10) and (3.25), respectively,
can be bounded by

(a) a
1−e −a

if k=1,

(b) Dk(1+a)k e−ab if k \ 2.

Here a=1 for the function go, and a=l otherwise.
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Proof. Let us consider the function f(x)=−log(eax− 1). Obviously,
the absolute value of

df
dx

=−
a

1 − e−ax

is bounded by a
1−e −a

[ 1+a on [1,.). Using the identity

d2f
dx2

=e−ax 1df
dx
22,

one shows by induction that, for any k=2, 3,..., there exist constants
Ck1,..., Ck(k−1) such that

dkf
dxk

=C
k−1

a=1
Cka ak−1− a e−aax 1df

dx
2a+1.

Using the bound |df/dx| [ 1+a, we thus get the bound

:dkf
dxk
: [Dk(1+a)k e−ax, k \ 2, (A.1)

where Dk=;a |Cka |. Taking into account the definitions (3.10) and (3.25),
the lemma is proved. L

Lemma A.2. Let c be a contour with diam c < diam V. Then |“B(Int c)|
[ ||c||.

Proof. The lemma is trivial if c is an s-contour, or if it is a w-contour
with dist(c, “V) \ 3

4 (in the first case all bonds in “B(Int c) intersect c, and
in the second case |“B(Int c)|=0). Assume therefore that c is a w-contour
with dist(c, “V) [ 1

4 . Since diam c < diam V, there is a corner k of V for
which c 5 “V … “O(k). Necessarily, the line p(b) … Rd that passes through
the end-points of b ¥ “B(Int c), intersects the boundary of V(c) at least
twice, and at most one of these intersections can occur on “V (recall that
diam c=diam V(c) < diam V). As a consequence, introducing the segment

s(b)={Ox, yP ¥ Bb : x, y ¥ p(b)}, (A.2)

at least one of its bonds intersects the contour c. Observing that s(b) 5
s(bŒ)=” for any two different bonds b, bŒ of “B(Int c), the lemma is
proved. L
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Lemma A.3. Let c be an arbitrary contour. Then

(i) diam c [ ||c||+1,

(ii) |Bb(Int c)| [ (||c||+|“B(Int c)|) diam c, and

(iii) |Bb(Int c)| [ 2d ||c||d.

Proof. The claim (i) is a direct consequence of the fact that the
contour is connected and that it is touching two opposite faces of a cube
of side diam c. Indeed, any of Ndiam cM \ diam c − 1 parallel hyperplanes
between this two faces, necessarily containes at least one bond intersecting c.
Otherwise, the contour c would split into two disconnected pieces.

To prove (ii), consider the set S(c)={s(b)}b ¥ Bb(Int c) of all segments
s(b), as defined in (A.2), associated with the bonds of Bb(Int c). Then
|s 5 Bb(Int c)| [ diam c+1

2 , so that

|Bb(Int c)| [ 2 |S(c)| diam c. (A.3)

Since, for every segment from S(c), we have 2 [ |s 5 “B(Int c)|+||c||s,
where ||c||s is the number of intersections of bonds from s with c, we have

2 |S(c)| [ ||c||+|“B(Int c)|. (A.4)

Finally, to prove (iii), we notice that for diam c < diam V it is a direct
consequence of the claims (i), (ii), and Lemma A.2. If diam c=
diam V=L+1, we have |Bb(Int c)| [ |Bb|=dLd+2d

2 Ld−1 [ 2 dLd implying
(iii) since L=diam c − 1 [ ||c|| according to (i). L

Lemma A.4. Let c be a contour with diam c < diam V.
Then |Bb(Int c)| [ 2 ||c|| diam c.

Proof. The claim follows from Lemma A.3(ii) combined with
Lemma A.2. L

Lemma A.5. Let KV: LV Q R be a contour weight obeying the
conditions (i)–(iv) of Lemma 4.1. Let us define

Zg(W)= C
“
g
˘W

D
c ¥ “

g
(KV(c) e ||c||)

for any W of the form (3.7), where the sum is over all families “g of non-
intersecting contours with V(c) … W for every c ¥ “g. Further, let
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fg=− lim
LQ.

1
Ld

log Zg(V), and

sg=− lim
LQ.

1
2 dLd−1

(log Zg(V)+fg |B|/d).

Then, for any c1 \ − fg and c2 \ − sg,

C
“ext ˘W

e−c1|B(Ext)|/d−c2 ||“eExt || D
c ¥ “ext

KV(c) [ eO(E) ||“iW||+O(E) ||“
(d−2)W||,

where the sum goes over sets “ext of contours which are all external with
V(c) … W for any c ¥ “ext and Ext=W01c ¥ “ext

V(c).

Proof. If KV(c) [ E ||c||, then KV(c) e ||c|| [ Ẽ ||c||with Ẽ=eE. By Lemma 4.1,

log Zg(W)=−Fg(W)+O(E) ||“iW||+O(E) ||“ (d−2)W|| (A.5)

with Fg(W)=fg|B(W)|/d+sg ||“eW||, where we used that O(Ẽ)=O(E).
Assuming now that c1 \ − fg and c2 \ − sg and using (A.5) together with
the fact that for all contours c we have ||“i Int c||=||c||, we get

C
“ext ˘W

e−c1|B(Ext)|/d−c2 |“eExt| D
c ¥ “ext

KV(c)

[ eF
g(W) C

“ext ˘W
D

c ¥ “ext

(KV(c) e−F
g(Int c))

=eF
g(W)+O(E) ||“(d−2)W|| C

“ext ˘W
D

c ¥ “ext

(KV(c) Zg(Int c) eO(E) ||c||)

[ eF
g(W)+O(E) ||“(d−2)W||Zg(W)=eO(E) ||“iW||+O(E) ||“

(d−2)W||. L

Lemma A.6. Let gm, hm, m=o, d, be the quantities defined in
(3.10). Let o0 \ o > 0, and jm(b) and vm(b) be arbitrary functions such
that

(i) jm(b) and vm(b) are continuous, and jm=gm+O(q−o0), vm=
hm+O(q−o);

(ii) jm(b) and vm(b) are differentiable on [1,.), and

djm

db
=

dgm
db

+O(q−o0),
dvm

db
=

dhm
db

+O(q−o). (A.6)
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For l ¥ (0, 1), and q sufficiently large, the following claims are valid:

(a) There exists a unique point b̂ such that jo(b̂)=jd(b̂). Moreover,

j(b)=min{jo(b), jd(b)}=˛jo(b) if b \ b̂,

jd(b) if b [ b̂,
(A.7)

b̂=
log q

d
+O(q−o1), (A.8)

and

(vo − vd)(b̂)=−
1
d
1l −

1
2
2 log q+O(q−o2), (A.9)

where o1=min{o0,
1
d} and o2=min{o, 1d ,

l

d}=min{o, l

d}.

(b) Let Fm=vm − vmc+
t

d (jmc − j) with mc=o if m=d and vice
versa. If t [ l2, then

sup
b: j(b)=jm(b)

Fm(b)=Fm(b̂).

(c) Let Gm=vm − vmc −
1
d (jm − j). Then

sup
b > 0

Gm(b)=Gm(b̂).

Proof. Throughout the proof, we assume that q is large.

(a) The function jo − jd is decreasing on [1,.) since

d
db

(jo − jd)=−
d

1 − e−b
+O(q−o0) [ − d+O(q−o0) < 0 (A.10)

by (3.10) and (A.6). In addition,

(jo − jd)(b) \ log q − d log(e − 1)+O(q−o0) > 0

for all b ¥ (0, 1] and limb Q. (jo − jd)(b)=−.. Referring to the assumed
continuity of jo − jd, we get the existence of a unique point b̂ for which
jo − jd \ 0 if b [ b̂ and jo − jd [ 0 if b \ b̂. The equality (A.8) is now
an immediate consequence of (A.10) and the fact that for b̃=1

d log q we
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have (jo − jd)(b̃)=(go − gd)(b)+O(q−o0)=O(q−min{o0, 1/d}). Finally, accord-
ing to (A.8), we have elb̂ − 1=q

l

d(1+O(q−o2)). Combined with (3.10) and
assumption (i) of the lemma we thus get

(vo − vd)(b̂)=(ho − hd)(b̂)+O(q−o)=−
1
d
1l −

1
2
2 log q+O(q−o2). (A.11)

(b) Let t [ l2. We start by showing that a1=ho − t

d go is a decreasing
function of b. Indeed,

da1
db

=
t

1 − e−b
−

l

1 − e−lb

in view of (3.10). Using that pc(x)= e −cx

(1−e −cx)2
is a decreasing function of

c > 0 for any x > 0, we get

d2a1
db2

=−tp1(b)+l2pl(b) > (l2− t) p1(b) \ 0.

Thus,

da1
db

[
da1
db
:
b=.

=t − l [ − l(1 − l) < 0

for all l ¥ (0, 1) as was claimed.
Now, by virtue of the assumption (i) and the fact that hd and gd do not

depend on b, we have

Fd(2) −Fd(b)=a1(b) − a1(2)+O(q−o) \ a1(1) − a1(2)+O(q−o) > 0

for all b ¥ (0, 1] since a1(1) − a1(2) is, according to the monotonicity of a1,
a positive number which, in addition, does not depend on q. Next, with the
help of the assumption (ii) and (A.7), we observe that Fm, m=o, d, is dif-
ferentiable in b on [1,.)0{b̂}. The Lagrange mean-value theorem thus
yields

Fd(b̂) −Fd(b)=(b̂ − b)
dFd
db
:
b1

=(b̂ − b) 1 − da1
db
:
b1

+O(q−o)2

\
l

2
(1 − l) (b̂ − b) > 0
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for any b ¥ [1, b̂) and some b1 ¥ (b, b̂). Similarly,

Fo(b̂) −Fo(b) \ (b̂ − b) 1da1
db
:
b2

+O(q−o)2 \ −
l

2
(1 − l) (b̂ − b) > 0

for any b ¥ (b̂,.) and some b2 ¥ (b̂, b). The last three bounds justify the
claim (b).

(c) Let us prove the statement only for m=o. First, we show that
a2=ho − 1

d go is an increasing function of b. To this end, one observes that
gc(x)= c ecx

ecx−1
is an increasing function of c > 0 for all x > 0, which, in view

of (3.10), implies that da2db=g1(b) − gl(b) > 0. Next, using (A.8) and the fact
that o0 \ o, we have

eab̂ − 1=q
a
d(1+O(d)), d=max{q−1/d, q−o, q−

a
d} (A.12)

for any 0 < a [ 1. Combined with the assumption (i), (A.7), and (3.10), we
get

Go(b̂) −Go(b)=a2(b̂) − a2(b)+O(q−o) \ a2(b̂) − a2 1
b̂

2
2+O(q−o)

=log 1 e
lb̂

2 − 1

elb̂ − 1

e b̂ − 1

e
b̂

2− 1
2+O(q−o)

=
1 − l

2d
log q+O(d) > 0

for all b ¥ (0, b̂

2]. Analogously, using also the assumption (ii),

dGo
db
:
ab̂

=
da2
db
:
ab̂

+O(q−o)=g1(ab̂) − gl(ab̂)+O(q−o)=1 − l+O(d) > 0

for all a ¥ [12 , 1), whereas

dGo
db

=
dho
db

+O(q−o)=−
l

1 − e−lb
+O(q−o) [ − l+O(q−o) < 0

for all b > b̂. As a result, Go(b̂) \ Go(b) for any b \
b̂

2 by the Lagrange
mean-value theorem (see above). L

For any non-empty admissible set “ of w-contours, let us consider the
connected components C1,..., Cn of V0“. Observing that Bb(Ci) … Wo(V, “)
or Bb(Ci) … Wd(V, “) for every 1 [ i [ n, we define Wo(“) as the union of all
of the former components and Wd(“) as the union of the latter ones.
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Lemma A.7. Let “ ]” be an admissible set of w-contours and let
Wo(“), Wd(“) be defined as above. Then, for any m=o, d, we have the
bound

C
c ¥ “

||c|| \ :2 |B(Wm(“))|
L − 1

− |“B(Wm(“))| :. (A.13)

Proof. Let m=o or m=d. Given a component Ci … Wm(“), let “Ci
be the boundary of Ci and “i={c ¥ “ : c … “Ci0“V}. One obviously has

“i 5 “j=” for all 1 [ i < j [ n, “= 0
i: Ci ¥Wm(“)

“i.

In addition, let C̃i={x ¥ Ci : dist(x, “V) > 1
4} and let ||Ci || be the number of

the intersections of the boundary of C̃i with the bonds of Bb. Clearly,

||Ci ||= C
c ¥ “i

||c||+|“B(Ci)|, C
i: Ci …Wm(“)

||Ci ||=C
c ¥ “

||c||+|“B(Wm(“))|.

Finally, let p be the set of all the lines p(b) in Rd each of which passes
through the end-points of some b ¥ “B and let pi={p ¥ p : p 5 C̃i ]”}.
Then |B(Ci)| [ (L − 1) |pi |, where L − 1 is the maximal number of bonds
from B that can lie on a single line p ¥ p. Moreover, any line p ¥ pi con-
tains either at least one bond of B that intersect twice the boundary of C̃i
or at least two bonds of Bb such that the boundary of C̃i intersects each of
them once. In any case, there are at least two intersections of this boundary
with bonds from Bb contained in p ¥ pi, i.e., 2|pi | [ ||Ci ||. Hence,

|B(Ci)| [ (L − 1) |pi | [ (L − 1)
||Ci ||

2
.

Consequently,

C
c ¥ “

||c||+|“B(Wm(“))|= C
i: Ci …Wm(“)

||Ci ||

\
2

L − 1
C

i: Ci ¥Wm(“)
|B(Ci)|=

2 |B(Wm(“))|
L − 1

and the lemma holds as soon as 2 |B(Wm(“))|L−1 − |“B(Wm(“))| \ 0. Observing that
|B|=dLd−1(L − 1) and |“B|=2 dLd−1, we get

2 |B(Wo(“))|
L − 1

− |“B(Wo(“))|+
2 |B(Wd(“))|

L − 1
− |“B(Wd(“))|=

2 |B|
L − 1

− |“B|=0.
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Thus, the absolute value in (A.13) is the same for both m=o and m=d
and non-negative for one of them. L

Lemma A.8. Let “ ]” be an admissible set of w-contours and let
Wo(“), Wd(“) be defined as above. Then

min{||“eWo(“)||, ||“eWd(“)||} [
21/d+1
21/d− 1

C
c ¥ “

||c||. (A.14)

Proof. We will reduce the statement to that of Lemma B.3 of ref. 13.
Given x ¥ Zd, let c(x) be the closed unit cube in Rd that is centered at x.
For W of the form (3.7), let Wa=1x ¥ L 5W c(x), and let |“Wa | be the
(d − 1)-dimensional area of the boundary of Wa in Rd. Note that with this
notation, ||“eV||=|“B|=|“L̄|. Introducing the shorthand Wo=Wo(“) and
Wd=Wd(“), we also note that

||“eWo ||=|“B(Wo)|=|“Wao 5 “L̄|, (A.15)

while

||“eWd ||=|“B(Wd)|=|“Wad 5 “L̄|+|“R(Wd)|, (A.16)

where “R(Wd) is the set of bonds in “B(Wd) that have no endpoint in
Wd 5 L. Similarly, introducing R(Wd) as the set of bonds in B(Wd) with no
endpoint in Wd 5 L, we get

||“iWd ||=||“iWo ||=|“Wad0“L̄|+|“R(Wd)|+2 |R(Wd)|

=|“Wao0“L̄|+|“R(Wd)|+2 |R(Wd)|. (A.17)

Let now m be such that the volume of Wam is at most Ld/2. By Lemma B.3
of ref. 13, we then have

|“Wam 5 “L̄| [
21/d+1
21/d− 1

|“Wam0“L̄|. (A.18)

Combined with (A.15)–(A.17), we get the claim of the lemma. L

Lemma A.9. Let kr: RQ R, r=1, 2, be two C. functions. Then,
for any k ¥N,

dkk1(k2(x))
dxk

=C
k

j=1

d jk1(y)
dy j
:
y=k2(x)

C
{I1,..., Ij}

D
j

i=1

d |Ii|k2(x)
dx |Ii|

,
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where {I1,..., Ij}, j=1,..., k, is a set of non-empty sub-sequences which
partition {1,..., k} and |Ii |, i=1,..., j, is the cardinality of Ii.

Proof. By induction on k ¥N. L

Lemma A.10. Let x1, x2 be two real numbers. For any k=0, 1,...,
there is constant hk > 0 such that

: 1 dk

dxk
tanh x2

x1

−1 dk

dxk
tanh x2

x2

: [ hk min 3 tanh x1
x1

,
tanh x2

x2
4 |x1 − x2 | .

(A.19)

and

: 1 dk

dxk
tanh x2

x1

−1 dk

dxk
tanh x2

x2

: [ hk max 3 1
cosh2 x1

,
1

cosh2 x2
4 |x1 − x2 |.

(A.20)

Proof. Let x1, x2 ¥ R be given. Without loss of generality, we may
suppose that x1 > x2. Then tanh x1 > tanh x2 and tanh x1

x1
< tanh x2

x2
. Thus,

|tanh x1 − tanh x2 |
x1

tanh x1
=11 −

tanh x2
tanh x1
2 |x1 | < :1 −

x2
x1
: |x1 |=|x1 − x2 |,

which verifies the first bound of the lemma for k=0 (with h0=1). To
prove the second bound for k=0, we just observe that

|tanh x1 − tanh x2 |=F
x1

x2
dx

1
cosh2x

[ max 3 1
cosh2x1

,
1

cosh2x2
4 | x1 − x2 |.

Let k \ 1 be fixed now. It is easy to show by induction that there exist
constants Xk1,..., Xkk such that

dk

dxk
tanh x=1 d

dx
tanh x2 C

k

j=0
Xkj tanh j x (A.21)

for any x ¥ R. Using that |tanh x| [ 1 for real x ¥ R, we get

: 1 dk

dxk
tanh x2

x1

−1 dk

dxk
tanh x2

x2

:=:Fx2
x1

dk+1 tanh x
dxk+1

dx :

[ : C
k+1

j=0
Xk+1, j : :F

x2

x1

d tanh x
dx

dx :=hk |tanh x2 − tanh x1 | . L
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