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Abstract, The phase diagram of a three-state microemulsion model at low temperatures is
discussed. It is shown how, taking into account low-energy excitations, the ground-state phase
diagram is modified and the degeneracy of a coexistence line bordering the region of lameliar
phase is removed.

1. Introduction

Three-component mixtures of water, oil and amphiphiles exhibit very interesting behaviour
as the temperature and concentration of the surfactant are varied. For a microscopic theory of
these systems several Hamiltonians have been proposed [1-6]. In a first model, proposed by
Widom [1, 2], formulated in terms of Ising variables, the three species of molecules occupy,
with some constraints, the bonds of a lattice. More recently, a three-component lattice model
has been proposed by Schick efr af [3,4] in otder to illuminate some additional aspects
of amphiphilic systems, among which are the microemulsion phase and the interfacial
properties.

Previous studies [3,4] based on a mean-field theory present an essential first step
towards understanding the behaviour of the model. However, some features, such as the
infinit€ degeneracy of the zero temperature state manifold occurring for some values of the
amphiphile strength have not been covered by the mean-field approach.

In this paper we wish to show how one can account for fluctuations beyond the mean-
field and to study rigorously, whenever it is possible, the phase diagram of the model.
Namely, we use the standard low-temperature perturbation [7] in order to understand the
influence of local excitations and to study the phase diagram.

The model considered is a simple three-component lattice system in dimension d > 3.
To each site of a cubic lattice Z? is assigned a spin-1 variable s; so that the values
5; = 1, —1,0 correspond to the presence at site i of a molecule of water, oil, or amphiphile,
respectively. The Hamiltonian is

MH= EJ(S,' -2+ E(Bs,-2 - Hs) + Z Ls;(1 - sjz)sk.
(i) f k)
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The first term is the sum of pair interactions, assumed to be attractive between particles of
the same kind (/ > 0), and the second one contains the usual chemical potentials. With
these two terms the Hamiltonian is a particular case of the Blume-Emery—Guiffiths model
[8], which describes a simple three-component mixture for the case of nearest neighbour
interactions. Even though we assume that two particles of different kinds have the same
pair interactions, the discussion for general pair interactions can be performed by following
the same method which is used in the present work. The external field H is related to
the chemical potential difference between oil and water and B is related to the chemical
potential of the surfactant. The third sum extends over the sets (i, j, k) of three adjacent sites
in a line and L > 0 is the strength of the amphiphilic interaction. This term distinguishes
the molecule associated with spin 0 as an amphiphile and mimics its effect by favouring
the configuration with O placed between + and —, all in a line.

2. Phase diagram with low-energy excitations

The ground states of the model are described as follows. If we assume that L = 0, the
spins must be equal everywhere since J > 0. The system has three ground states, the (0),

(+) and () states, where respectively s; is equal to 0, +1 and —1 for all {, The energies
per site in these states are

R® =0 O =B—-H B '=B+H

and the corresponding phase diagram is easily obtained.
The amphiphile interaction favours the configuration (+0—) on three aligned adjacent
sites (i, j, k). Such configurations appear in ground states if

L—-21>0

and, for this reason, we assume hereafter that this condition is satisfied. Then, at least for
some values of B and H, it is clear that the system would favour having the L-bonds (or
the sets of three adjacent sites) occupied as much as possible by such (+0--) configurations.
This leads to a new family of ground states with a lamellar structure. To describe them more
precisely we introduce some notation. We consider the planes r (i) = ay iy + -+ oyig = z,
where all ¢’s are +1 or —1 and z is an integer. These planes will be called diagonal planes,
they may have 297! possible orientations. We consider the sequence of all diagonal planes
of the lattice with a given fixed orientation. The configurations that assume a constant value
in each plane of such a sequence will be called layered configurations. The lamellar ground
states are the layered configurations obtained by putting all spins equal to 0 on every second
plane of the sequence and alternatively equal to -1 and to —1 on the remaining planes. In
other words, the sequence of spin values on the diagonal planes is the periodic sequence
(040~ ...} of period four. This leads to 4 x.297! = 2¢%! equivalent (i.c. related by
translations and rotations of the lattice) lamellar ground states. Their energy per site is

d 1
tamy — _Z(L —2 —B,
[ 2( J)+23

By comparing this expression with those corresponding to the other ground states we
obtain the ground state phase diagram shown in figure 1.
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Figure 1. The ground state phase diagram.

The lamellar states are the unique ground states, for values of B and H in the triangular
region

B 2H B 2H
E<L—2.’ —3-<L“2J+—E —-'-E-")L 2J+"J‘

QOutside this region we have the (+) state, if H# > 0 and H 2 B; the (=) state, if H < 0
and H < B; and the (0) state, if {H| < B.

‘We next examine the coexistence lines of the phase diagram. On the separation line
between the (0) and (lam) states, only these two states are ground states. The same situation
occurs on the coexistence lines (0)/(+), (0)/(—) and (+)/(—). However, on the coexistence
lines (4)/(lam) and (—)/(lam) infinitely many ground states occur. All of them have a
layered structure and may be described by the sequence of spin values associated with the
sequence of parallel diagonal planes. A particular role will be played by the periodic ground
states associated with the periodic sequences (0+...4+0—...~), in which m 2 1 diagonal
planes, where the spins are +, are separated from n = | diagonal planes, where the spins
are —, by singie planes, where the spins are 0. We use the notation (m, r) for these states
of period p = m + n 4 2. The periodic state (1,1} is the (lam) ground state considered
above. The energy per site of these states is

2n+1)

PALEC I A (L 2J) — _5 B+ H.

This shows that all ground states with (m, n = 1), and (m = 1, n), are present, respectively,
on the coexistence lines (+)/(lam) and (—)/(lam). All these states, for any m and n, are
present at the triple point, where these two lines and the (+)/(—) coexistence line intersect.

Our aim is to show that the model considered, in the region L—~2J > 0, can be rigorously
analysed at low temperatures. The phase diagtam at low temperatures follows from a
competition between energies of ground states taking into account additional contributions
of entropies of low-energy excitations. These ideas are formalized in the Pirogov-Sinaf
theory of low-temperature phase diagrams {7]. Here we will use an extension of this theory
due to Bricmont and Slawny [9].

This extension concerns a mechanism of suppression of high-energy fluctuations. We
first introduce some notions needed for the study of equilibrium states at low temperatures.
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By an excitation we understand a configuration which coincides with a ground state outside
of a finite set of sites, If, in a given system, the energy of an excitation (relative to the
corresponding ground state) tends to infinity with the size of the region where it differs from
the surrounding ground state, this system is said to be reguler{. The Peierls condition,
required in the Pirogov-Sinai theory is satisfied in a given system, if the energy of an
excitation is proportional to the size of the boundary of this region (or larger). Clearly,
all models in which the Peierls condition holds are regular. The method of Bricmont and
Slawny applies to a more general class of regular systems than those satisfying the Peierls
condition. We shall show that this is the case for the model under consideration which is
regular but has an infinite number of ground states and fails to satisfy the Peierls condition.
The two-dimensional version of the model is not even regular, a lack of regularity which
also occurs in the one-dimensional Ising model.

It is useful to consider the excitations as partial or local configurations on the laitice,
consisting of the set of excited sites, i.e. those which contribute to the increase of the energy
with respect to that of the ground state, and an appropriate boundary around this set. The
precise definitions are as follows. We define a partial configuration X by specifying a finite
set of sites, called the domain of X, dom(X), together with a configuration on this set.
We define a subset of dom(X) called the boundary of X, 3(X), in such a way that if the
configuration on 9(X) is kept fixed, the sites in dom(X) \ 3(X) do not interact with the
sites outside of dom(X). A standard way is to define 3(X) as an £-boundary, with £ 2 2,
i.e. as the set of sites in dom(X) at distance less than £ from its complementary set. A
partial configuration X is an excitation if its restriction to 3(X) is a ground configuration
on a(x),

We next present some simple examples assuming only one excited site in the ground
state, We add to this excited site a boundary consisting of its nearest neighbours and also
the next-nearest neighbours on the same line when the excited site interacts (by an L-bond)
with them. We get, for instance the following partial configurations (actually there are, up
to translations and rotations of the lattice, fourteen possibilities for such one-site excitations)

— +
+ - 0 0
-0 0 + + 0 0 - -0 0 0 - + 0 0 0 4+
0 0 0 0
— + - +
X, X, X3 Xs

Although only two dimensions are shown here, our intention is to represent d-dimensional
objects that can easily be understood from the figures, taking into account the layered
structure of ground configurations.

We observe that all these excitations have the property of being removable: an excitation
X is removable if there exists a unique ground configuration on dom(X) denoted G(X),
whose resiriction to 8(X} is equal to the restriction of X. If X is a removable excitation,
then its energy E(X), relative to the ground state, is well defined. It is the energy of the
configuration X minus the energy of G(X). If X is a removable excitation and ¥ a partial
configuration whose domain contains dom(X) and such that its restriction to dom(X) is
equal to X, then there is a unique partial configuration obtained by removing X from ¥,

 Notice, however, that an excitation may consists of a region where the configuration is a ground state, but
different from that surrounding the region from outside.
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equal to G(X) on dom(X) and to ¥ otherwise. The ground configurations G, = G(X;),

k=1,...,4, associated with the excitations considered above, are the following ones
- +
+ - 0 0
- 0 + + + 0 - - - 0 + 0 - + 0 — 0 +
0 0 0 0
- + - +
G G2 Gs G,
and the energies Ey = E(X;), £ = 1,..., 4, of the excitations are
Ey=—-B+H+dL Ey=—-B—-—H+4dL

Ey=-—-B+H+2dL-2dJ Esy=—=B—H+2dL —2dJ.

Since dL — 2dJ > 0, we have E| < E; and E; < E4;. Moreover, when we consider
the system in the vicinity of the (+)/(lam) or the (—)/(lam) coexistence lines of the phase
diagram of the ground states, only the elementary excitations X\, ..., X4, have energy less
or equal than £ = max{Es, E4}. This occurs at least for some range of values of the
coupling constants (namely, if L < (8/3)J ) to which, for concreteness, we shall restrict
our discussion.

If X is a configuration of the system equal to a ground configuration G outside A,
where A is a large box on the lattice, then there is a uniquely defined configuration called
the retouch of X, ret(X), obtained from X by removing all elementary excitations with
energy smaller than a given value Ey (i.e. in the case considered above, Eq = E, all
excitations of types X, ..., X4). Let £(G, Ep) be the set of such configurations X which,
moreover, satisfy the condition ret(X) = G. Namely, it is the set consisting of the ground
configuration G and all its excitations whose energy locally does not exceed Ep. We assign
to every configuration in £(G, Ep) the corresponding Boltzmann weight and suppress the
remaining ones by assigning them zero probability. In this way we obtain a state of the
system (in the box A), which will be called the restricted ensemble associated with the
ground state G (with excitations of energy less than Eg). The partition function Z55,
restricted to the configurations of the set £(G, Ey), yields the free energy per site associated
with this restricted ensemble o5 = —(1/8jADmZ$™ (in this formula 8 = 1/kT
denotes the inverse temperature and |A| is the volume of A). This notion extends to the
infinite system by taking the limit A tending to infinity.

The excitations ¥, contributing to a restricted ensemble, have weights (¥} =
exp{—pBE(Y)). Two excitations are compatible if their domains are disjoint. These facts
imply that

Zg'Eo = exp(—ﬁH(G)) Z fP(YI) P (P(Yk)
v,

femno Vi }

where H(G) is the energy of the ground state G and the sum runs over all sets (¥}, ..., ¥;},
(k=0,1,2,...) of compatible excitations of ¢ with energy less than Eg. Therefore, the
restricted ensemble can equivalently be described as a polymer system, where the polymers
are the different excitations with the activities @(¥). Since the system is regular and
E(Y) < Eq, the number of kinds of these polymers, up to translations, is finite (independent
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Figure 2. The sketch of the phase diagram with contributions of the lowest energy excitations
taken into account.

of A). The activities ¢(Y) are small when the temperature is low. We use the convergent
small activity expansion (in terms of the Ursell functions) to compute the free energy of
the restricted ensemble. Since different ground states may have different excitations, and
also different numbers of common excitations, the free energies of some of the associated
restricted ensembles will be different.

Let us consider the case Eg = E = max{F3, E4} in which all the excitations to be taken
into account are of types X, ..., X4 described above. We use f™E_ or simply fim-",
to denote the corresponding free energy per site when G = (mn, n) is one of the periodic
ground states of the system. In this case, up to terms of order less than exp(—BE), the

low-temperature expansion can be limited to the first term for each excitation considered,
that is

flmnt — plma) _ Alll»noo(llﬁiAD ;@(Y)

where A7 ig the ground state energy per site and the sum runs over the four types of
excitations considered, contained in A and contributing to the restricted ensemble £(G, E)

of the ground state G = (m,n). Taking ini® account the geometric structure of these
grounds states, described above, we find

Fima = g _ (L 2J)—— 2 g et

H——— I(m 2 )¢y

..,; Iz 2);02——I(m—1)¢3——- In = Dy

In this formula, the first four terms correspond to the energy per site of the ground state,
¢ = (1/B)exp{—BE) for £ = 1,...,4, and [ is the indicator of the condition shown in
parentheses (it equals one if the condition is satisfied and is zero otherwise). On the other
hand, for G equal to the (+) and (—) states, we have f*F' = i and £ = A"} (there
are no excitations of these ground states of energies lower than E).

Having the free energies, we may draw the phase diagram for the restricted ensembles.
We say that a point in the (B, H)-plane belongs to the G-state region whenever

t9EB,H) = fOE(B, H) - min fOE(B, H) =

This phase diagram is schematically represented in figure 2.
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The region PQRR'Q'P around the point B = —d(L —2J), H =0, is occupied by the
restricted ensemble (2,2). For H > 0 this region is defined by the inequalities

H—4(dL~2dJ +B) <ipm+ 3o
H+3dL—2dJ +B) < {92~ 301 — o4
dL —2dJ + B < 2¢2 + 20, — 3¢4.

The restricted ensemble (2,1) is present in the triangular region QRS, limited by the curve
OR already described, and the two curves @S and RS, where

— 201 + 44 S H — 5(dL = 2dJ + B) < }o1 + 59s.

Since the two bounds are inconsistent for low temperatures and £4 < E, the region (2,1)
ends at 2 point S, near to the point B =0, H = (d/2)(L — 2J). The curve SW, where

H—(dL —2d7 +B) = {ou

separates, together with the regions above, the (+) and (1,1) restricted ensembies. The lower
part (H < 0) of the diagram follows by the symmetry with respect to the horizontal axis.

In the phase diagram of figure 2, the distance between the nearest curves is of order
exp(—pE). I this order were considered to be negligible, we would only observe the region
corresponding to the (2,2) restricted ensemble whose size is of order exp(— 8 E;). At lower
orders the phase diagram reduces to that for the ground states. On the other hand, the
restricted ensembles (m, n) associated with the other periodic ground states belong to the
coexistence curves PQS and PQ’'S’ in figure 2. More precisely, all restricted ensembles
with m 2 3 and n = 1 coexist on the curve Q§, for m = 3 and » = 2 they coexist on the
curve PQ, and all states with m 2 3 and n > 3 coexist at the point P.

3. Conclusions

The discussion presented above can be transformed into a rigorous statement about a full
phase diagram (of the mode! with no restrictions on excitations) at low temperatures.
Namely, one can show that there exists S, such that for all temperatures § > f, there
exists, in the plane (H, B), an open region 2(#) in the complement of the curves PQS
and PQ’S’ of the phase diagram of the restricted ensembles (figure 2), whose distance from
these curves is of order less than exp(—BE). In R2(8) we have a complete phase diagram
of the pure thermodynamic phases (extremal periodic Gibbs states of the system} which is
a small deformation of the diagram of figure 2.

There are in £2(8), six disjoint open regions, such that their closure jointly covers £2(8),
that correspond to the regions denoted (4-),(—) and (m,n) withm <2 and n £ 2, in
figure 2. In each of these regions there is a pure phase which is a small deformation of the
associated ground state described above. The boundaries of these regions are smooth open
arcs in which two distinct phases coexist. They meet, inside £2(8), at two points (which
correspond to the points R and R’ of figure 2) in which three distinct pure phases coexist,
These coexistence curves are deformations of the corresponding curves in figure 2 of order
exp(—BE).
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Moreover, the analysis developed in the present paper can be pursued by considering
subsequent excitations of higher energies. This allows us to remove the degeneracy from
the line P QS and obtain a rigorous full description of the phase diagram, in a corresponding
region, of the system at low temperatures. This is in fact the main result of our work, which
we are going to report only briefly in the following paragraphs (a more detailed discussion
will be the subject of a separate publication).

First, we prove that, with appropriate definitions of the associated domains and
boundaries, and for any E, all elementary excitations with energy less than £ are removable.
This allows us to consider restricted ensembles in which all these excitations are taken into
account. We may then compute their free energy and, by using the function (B, H)
as explained above, draw the corresponding phase diagram of the restricted ensembles. On
the other hand, we prove that, for any given integer k, there is a value E = E, (which
increases linearly with k), such that if all the elementary excitations with energy less than
E; are considered, then a phase diagram may be drawn that distinguishes all the regions
belonging to the restricted ensembles associated with the ground states (m,n) for all m
and n such that max{m, n} < k. Then, as in the case of the lowest energy excitations that
we have already discussed in some detail, these results lead to 2 rigorous statement on the
equilibrium states of the system at low temperatures. Namely, one can show that there
exists By = Bo(k) (where Sp(k} — oo when k& — 00} such that for all temperatures 8 > £y,
there exists in the plane (H, B) an open region £2(8), in which we have a complete phase
diagram of the pure thermodynamic phases, with separated regions for for all pure phases
{m, n) for which max{m, n} < k. This phase diagram is a small deformation of the diagram
of the associated restricted ensembles.

Figure 3. The sketch of a part of the phase diagram at low temperatures.

A sketch of the phase diagram is shown in figure 3. One finds that the phases are
ordered according to increasing values of (m + n)/p when B increases along lines parallel
to the B axis while, going along lines parallel to the H axis, the values of (m —n)/p
increase when H increases. A first-order phase transition takes place when crossing the
lines of coexistence which correspond to a discontinuity of one of the order parameters (s2)
or {s;}. Notice that, as we mentioned above, when & becomes large, the inverse temperature
Bo. needed to ensure the existence of the state (m, n} as a separate phase, also becomes
larger.

Some similarities between the behaviour of the model considered here and the behaviour
of the axial next-nearest-neighbour Ising (ANNNI) model should be clear (see [10,11]).
However, the phase diagram that we were discussing above, is generated in the plane of
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the surfactant, oil and water chemical potentials, with all interactions fixed. I vields a
double infinite sequence of pure phases indexed by the values of m and ». We notice that a
rigorous analysis of the model proposed by Widom [1,2) has been recently worked out by
Dinaburg and Mazel [12] along lines similar to those developed in our work. They found,
in the region that they were able to study, no ANNNI-like behaviour in that model, contrary
to what was surmised in some earlier works (quoted in [12]). In this case, from infinitely
many ground states, only a small number of pure phases persist at non-zero temperatures.

The surface tension behaves quite differently in systems with a finite and with an infinite
number of ground states. In our case we find that the surface tension goes exponentially
to zero as 8 tends to infinity. This is easy to understand: an interface between two phases
does not cost any energy, but it costs the free energy of low-energy excitations. This is,
actually, the basic mechanism that justifies the method used in this paper. Since the free
energy of these excitations is exponentially smatll at low temperatures, the same is true for
the surface tension.

Finally, the low surface tension between the oil-rich and water-rich phases, at a given
temperature, also reflects the low free energy of the corresponding interface. In fact, since
the excitations that distinguish between the ground states (m,n) and (m — 1,n) have
energy proportional to & = max{m, n}, their free energy decays exponentially when %
becomes large. Therefore, the surface tension between the phases (m, r) and (m — 1, n) is
exponentially small for large k.
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