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An Equilibrium Lattice Model of Wetting on
Rough Substrates
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We consider a semi-infinite 3-dimensional Ising system with a rough wall to
describe the effect of the roughness r of the substrate on wetting. We show that
the difference of wall free energies 2{(r)={AW (r)&{BW (r) of the two phases
behaves like 2{(r)tr2{(1), where r=1 characterizes a purely flat surface, con-
firming at low enough temperature and small roughness the validity of Wenzel's
law, cos %(r)rr cos %(1), which relates the contact angle % of a sessile droplet
to the roughness of the substrate.

KEY WORDS: Wetting; surface tension; rough surfaces; Wenzel's law; semi-
infinite systems; Ising model; cluster expansions.

1. INTRODUCTION

Let us consider two fluids A and B in coexistence in the presence of a
wall W. As a function of the external conditions, one may observe either
a drop of A or B on top of W or a film of A or B on W. The well known
relationship used to describe these two cases is the Young's equation
(Fig. 1)

{AB cos %={AW&{BW (1.1)
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Fig. 1. Young's contact angle % for a sessile drop.

where % is the macroscopic contact angle and the {'s denote the interfacial
tensions appearing in the problem. This relationship has been discussed
thermodynamically(1�3) and microscopically(4, 5) for a purely flat surface W.

However, in a real experiment, such a purely flat surface never exists!
To characterize the non-flatness of a surface, one may introduce the

roughness r defined as the area A of the wall surface divided by the area
A0 of its projection onto the horizontal plane,

r=
A
A0

(1.2)

Obviously, the value r is equal to 1 once the surface of W is flat. For r>1,
it is known that Young's relation has to be modified to take into account
this increase of surface. The generalization of the Young's relation is the
so-called Wenzel's law

{AB cos %(r)&r({AW (1)&{BW (1)) (1.3)

where 1 refers to the flat surface r=1. This experimental result simply
expresses the fact that

{AW (r)&{BW (r)&r({AW (1)&{BW (1)) (1.4)

for small roughness r-1. This is precisely what we want to study in this
paper within a simple microscopic model: the 3D Ising ferromagnet. The
present paper complements and extends previous results published in ref. 6.

The paper is organized as follows. While the model as well as various
surface tensions are introduced in Section 2, the results are presented in
Section 3. Section 4 is then devoted to detailed proofs.

300 Borgs et al.



2. THE MODEL

To model the influence of the roughness on the equilibrium shape of
a sessile droplet, we use a 3D half infinite Ising Model to describe the drop
and its vapour and an SOS surface to represent the boundary of the wall.
We will describe the wall by a half infinite lattice W/Z3, as represented
in Fig. 2. For the vessel containing the drop and the gas phase, we take the
complement V=Z3"W. To each site x of the vessel V, we associate a
variable _x which may take two values; +1 associated to a particle at x,
and &1 associated to an empty site. We assume that the substrate is com-
pletely filled, i.e., _x# +1 for all x # W. Inside the vessel, the variables _x

are coupled with a nearest neighbour coupling J>0, representing a nearest
neighbour attraction of particles, while the spins at the boundary between
the vessel and the substrate are coupled with coupling constant K, stemming
from the interaction between the molecules of the liquid and those of the
substrate. For any finite set 0/V, these interactions are thus described by
the following Hamiltonian

HW, 0(_ | _� )=&
J
2

:

x, y # 0
(xy)

(_x_y&1)

&
J
2

:

x # 0, y # 0c"W
(xy)

(_x_� y&1)&
K
2

:

x # 0, y # W
(xy)

(_x&1) (2.1)

Here (xy) denotes nearest neighbor pairs, 0c is the complement of 0, and
_� are the chosen boundary conditions (b.c.).

In the perfectly flat case, the set W modeling the substrate will be just
the half space [x=(x1 , x2 , x3) # Z3 | x3�0]. More generally, let us con-
sider a substrate W with surface �W which, for simplicity, is taken to be
an SOS surface. Even though our methods would allow to treat certain
kinds of random impurities, we assume here that �W is non-random and
that it is periodic in both horizontal directions, with periods L1 and L2 ,
respectively. Notice that periodicity implies that the surface always lies
between two planparallel planes whose distance is H0�((r&1)�4) L1L2 .

Let us recall the definition of the wall tensions of the + phase and the
& phase against the wall, {+, W (;, r) and {&, W (;, r), respectively, given in
ref. 7 for the flat case. Namely, let 4(L) be the finite subset of Z3 defined
by

4(L)=[x # Z3 : |x|�L] (2.2)
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Fig. 2. A finite lattice volume on a rough substrate.

where |x|=maxi ( |xi | ) with x=(x1 , x2 , x3). Consider first the Hamiltonian
of the standard Ising model of the finite system in 4(L) with b.c. _� ,

H4(L)(_ | _� )=&
J
2

:

x, y # 4(L)
(xy)

(_x_y&1)&
J
2

:

x # 4(L), y # 4c(L)
(xy)

(_x_� y&1) (2.3)

The partition function at inverse temperature ; corresponding to _� #1
(and similarly for _� # &1) will be denoted by Z+(4(L)) (resp. Z&(4(L))).

In the presence of a wall W, we consider the boundary conditions _� +

defined as _� +
x =+1 for all x in the complement 0c of 0=4(L) & V, as

well as the boundary conditions _� & defined as _� &
x =&1 for all x # 0c"W,

and _� &
x =+1 for all x # W. Notice that the boundary condition in W is

always +1 corresponding to a completely filled substrate.
Let Z+

W (0) and Z&
W (0) be the partition functions of the model (2.1)

in the volume 0 with boundary conditions _� + and _� &, respectively. We
define wall free energies {+, W (;, r), and similarly {&, W (;, r), in terms of
log Z+

W (0) by subtracting the bulk term as well as the boundary terms
associated with the boundary �0"�W, and taking appropriate limits. The
difference

2{(r)={&, W (;, r)&{+, W (;, r) (2.4)
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is thus defined as6

2{(r)= lim
L � �

&1
;(2L+1)2 log

Z&
W (0)

Z+
W (0)

(2.5)

The flat case is recovered by taking r=1. The usual surface tension {+&(;)
between the two pure phases, + and &, of the model on Z3 is defined in
the standard way:(8) namely, taking the partition function Z+&(4(L)) with
boundary condition _� x=+1 if x3>0 and _� x=&1 if x3�0, one defines
the interfacial free energy

{+&(;)= lim
L � �

&1
;(2L+1)2 log

Z+&(4(L))

- Z+(4(L)) Z&(4(L))
(2.6)

Let us remark that, in the absence of an external magnetic field, Z+(4(L))
=Z&(4(L)) by symmetry, so that the square root in the denominator can
actually be replaced by Z+(4(L)).

3. RESULTS

We prove in the following section that roughness enhances wetting by
showing that the wall free energy difference (or adhesion tension) 2{(r) in
the presence of roughness is by a factor r larger than that one obtained for
a purely flat case. Using Young's equation, this implies that the absolute
value of cosine of the contact angle will increase. This means that for con-
tact angles |%|<90%, the introduction of roughness will lower %. However
if 2{(1) is negative, roughness will enhance drying. The same conclusion
can be drawn with the help of the Winterbottom construction.(2, 6)

For sufficiently low temperatures, the main contribution to the adhe-
sion tension 2{ comes from the difference of ground states energies under
boundary conditions _� + and _� &. Consider thus the ground configurations
of HW, 0(_0 | _� +) and HW, 0(_0 | _� &). While it is clear that the minimum
of HW, 0(_0 | _� +) is achieved for _0=_+

0 # +1, the answer is less straight-
forward for HW, 0(_0 | _� &). Actually, it depends on the geometry of W
and the value of K�J. Namely, for a class of substrates that are not too
``sharply rough'' and for K sufficiently small, the ground configuration of
HW, 0(_0 | _� &) is the configuration with all sites occupied by spins &1,
_0=_&

0 # &1. Moreover, if some of the ``holes'' at the boundary of W are
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filled with +1, the resulting energy exceeds that one of the ground state
(all sites occupied by &1) by an amount proportional to the area of the
boundary of this excitation. As we will see below, if J>(4H0+1) K, where
H0 is the thickness of the strip containing the boundary �W, this is true
independently of a particular geometry of W.

In general, we will call a substrate standard whenever the following
two conditions are satisfied. First, the minimum of HW, 0( } | _� &) is
achieved for _&

0 #&1, with no other configuration having the same
energy. Second, there exists a constant \>0 such that for any configura-
tion _0 with _x=&1 for every x # 0 that lies above the highest horizontal
plane that intersects the boundary �W, we have the bound

HW, 0(_0 | _� &)&HW, 0(_&
0 | _� &)�\|�E(_0 | _&

0 )| (3.1)

where |�E(_0 | _&
0 )| is the area of the boundary of the set7 E(_0 | _&

0 ) of
all sites x # 0 where _0 differs from _&

0 , i.e., the number of nearest
neighbor pairs (x, y) such that x # E(_0 | _&

0 ) and y � E(_0 | _&
0 ).

As stated above (and as will be proved in Theorem 3.1 below), the
substrate satisfying the bound K(4H0+1)<J is necessarily standard.
However, even for K close to J any substrate whose holes are ``sufficiently
wide'' can be easily proven to be standard.

In more physical terms, we mean by standard rather smooth sub-
strates where the minimal energy configuration of the ``liquid'' on such
substrate corresponds to the case where the ``liquid'' fills in the holes of
substrate and no partial filling up of ``holes'' is energetically favourable.
For non-standard substrates in the lowest energy configuration, pockets of
``vapour'' may remain in the holes of the substrate.

We first state our result for a standard substrate.

Theorem 3.1. For the previously defined model, assuming that
K<J, the substrate is standard, and ; is large enough, we have

2{(r)=rK+F (3.2)

where F depends on the geometry of the substrate W (and parameters
J, K, ;). The remnant F can be bounded by a term of the order8 e&;c,
where c=c(J, K, W )>0 can be chosen as min(\, K, 1

2(J&K )). Here \ is
the constant from (3.1).
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If (4H0+1) K<J, the substrate is necessarily standard and the con-
stant c(J, K, W ) can be chosen as min(K, (J&(4H0+1) K )�(4H0+2)).

Actually, the term F can be viewed as the free energy of a gas of
excitations on the substrate surface. We have an explicit expression for F

in terms of a cluster expansion, see Eq. (4.18), obtained while proving (3.2),
see Section 4.1 below.

Let us point out here that Wenzel's law thus appears as a simple
corollary of our results. Namely, using (3.2) for a flat substrate (r=1) as
well as a rough substrate (r{1), we get

2{(r)tr 2{(1)+O(e&;c)

Further, let us study particular geometries for our substrate. Our
intention here is not to present an exhaustive discussion of all different
cases; rather, our aim is to show on well defined examples the conclusions
we can draw from (3.2).

To start, we would like to discuss the influence of different geometries
with the same roughness r. Let us restrict ourselves to the simplest case of
a substrate of a given roughness but with two different geometries as
illustrated in Fig. 3: one with ``hills'' on top of a flat substrate and one with
``holes'' inside the substrate. We are modeling in that way adsorbed isolated
molecules on top of otherwise flat substrate (resp. molecules extracted from
substrate). When comparing these two situations (hills versus holes), one
could expect, on a first sight, that the attraction between the molecules of
the liquid and the substrate will be reinforced by the presence of these
holes, leading thus to an enhancement of wetting. Actually, we will show
that the opposite is the case. Namely, wetting will be enhanced more by the
hills than by holes.

To be concrete, let us consider hills or holes consisting of isolated sites
in lattice units as schematically represented in Fig. 3. Namely, let a periodic
set of points S/Z2 where the substrate is not trivially flat be given such

Fig. 3. Two particles geometries: one with hills on top of a flat substrate, Wu , and one with
holes inside the substrate, Wd .
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that x, y # S, x{ y implies dist(x, y)>1 and let N be the number of those
points within the L1_L2 cell of periodicity,

n=
N

L1L2

Let then

Wu=[x # Z3 | either x3<0, (x1 , x2) # Z2 or x3=0, (x1 , x2) # S ] (3.3)

with ``hills above a flat surface'' and

Wd=[x # Z3 | either x3<0, (x1 , x2) # Z2 or x3=0, (x1 , x2) � S ] (3.4)

with ``holes into a flat surface.''
The roughness is in both cases the same and equals

r=
L1L2+4N

L1L2

=1+4n

The ground states for Wd under boundary conditions _� & are easily con-
structed. For K sufficiently small it is just the configuration _&

0 #&1, and
for larger values of K it is the state obtained from the state _&

0 #&1 by
filling the holes of Wd with pluses. For Wu , the situation is more com-
plicated, as described in the following lemma.

To state the lemma, we need some notation. For a point x # S c=Z2"S
we denote by dx the number of nearest neighbors of the point x in S, and
by d(S) the maximum of dx over all x # S c. Note that d(S) is never bigger
than 4, and that d(S)=1 if the points in S are so sparse that x, y # S, x{ y
implies dist(x, y)>2.

In addition to the boundary condition _� &, we will also consider the
slightly modified boundary conditions _� &, f, which are obtained from _� &

by setting _� &, f
x =0 whenever x # 0c"W lies between the highest and lowest

plane that intersects �W. Note that these ``partially free'' boundary condi-
tions correspond to the Hamiltonian HW, 0(_ | _� &, f ) which is obtained
from HW, 0(_ | _� &) by eliminating all terms that correspond to nearest
neighbour pairs (xy) with x # 0, y # 0c"W such that x and y lie between
the highest and lowest plane that intersects �W. These boundary conditions
will be convenient when we discuss non-standard substrates W, since they
don't favor the ``unstable'' state _#&1 over states with _x=+1 for x
between the highest and lowest plane that intersects �W. Note that the
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boundary conditions _� & and _� &, f lead to the same wall free energy {&, W ,
since HW, 0(_ | _� &) and HW, 0(_ | _� &, f ) differ only by a ``perimeter term''
which can be bounded by a constant multiplied by L. The contribution of
this ``perimeter term'' to {&, W vanishes in the limit (2.5).

Lemma 3.2. (i) If K< 1
5J, the substrate Wd is standard. If 1

5J<K
<J, the substrate Wd is not standard, and the ground state with boundary
conditions _� &, f is the configuration

_x={&1
+1

if x3>0
if x3=0 and (x1 , x2) # S

(ii) If K<J�(1+d(S)), the substrate Wu is standard.

(iii) Suppose that S is a periodic sublattice of the form S=(l_Z)2,
with l�4.

If K<(1&n)�(1+3n) J (where n=1�l 2), then the substrate Wu is standard.
If (1&n)�(1+3n) J<K<J, then the substrate Wu is not standard, and the
ground state with boundary conditions _� &, f is the configuration

_x={&1
+1

if x3>0
if x3=0 and (x1 , x2) � S

The substrates Wd and Wu are thus standard, independently of the
particular geometry of the set of holes or hills, whenever K< 1

5J or K<
J�[1+d(S)], respectively. On the other hand, for larger values of K, the
ground states for Wu might depend in a crucial way on the geometry of the
set S of hills. If the hills are distributed uniformly, the threshold value is
K<(1&n)�(1+3n) J. For nonuniform S we can get various ground states
in dependence on the value of K. As an example we might consider S with
two types of large square blocks, distributed in a chessboard pattern, with
a density of hills in one type of block being n1 , while in the other n2 ,
n1<n2 . Then, for K # ((1&n2)�(1+3n2) J, (1&n1)�(1+3n1) J ), the
ground state will have the boundary layer filled with pluses for blocks more
densely filled with hills, while keeping minuses in the remaining blocks.

In the case that K< 1
5 , both substrates Wd as well as Wu are standard

independently of the geometry of the set S and we can use Theorem 3.1
to analyze the leading terms to 2{. Since the ground state energies con-
tributing to the wall free energies are the same, one has to estimate, using
the explicit expression (4.18) below, the lowest term contributing to the
expansion of F. In this way we get:
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Proposition 3.3. Let Wu and Wd be the substrates introduced
above, let K< 1

5 J, and let S be so sparse that d(S)=1. Then, for ; large
enough, one has

2{u(r)>2{d (r) (3.5)

To interpret the fact that putting some molecules on top of a flat
substrate is more favourable for wetting than to extract the corresponding
molecules out of a flat substrate, one has to consider first order corrections
to the ground state analysis. Namely, to evaluate the wetting of a droplet
on a substrate one has to compare the adherence of the plus and minus
phase to the wall as expressed by 2{. Since, as mentioned above, the
leading term (ground state energy contribution) is the same for both
geometries, one has to compare excitations inside (but near the wall) of the
concerned phases. Considering one site spin flip excitations of the ground
state configurations at sites attached to the substrate, one finds that the
lowest energy increase, 2H=J&5K, is obtained when flipping a site inside
the hole of Wd , while the lowest excitation of the ground state of Wu has
the higher energy 2H=4J&2K (here we use the assumption d(S)=1).
The first excitation then determines the behaviour of log Z&

Wd
(0), and being

the dominant excitation, it yields a positive contribution of the order
e&;J+5;K to 2{u&2{d.

Let us finally turn to non-standard geometries. This case is in fact also
quite common. Indeed, when modeling very small contact angles, one has
to consider K of the order of J and this means that the substrate is non-
standard. The above method is still applicable but the results will now
crucially depend on the details of the geometry. Therefore, we will again
discuss only the simplest case of hills and holes as introduced above, but
now with 1

5J<K<(1&n)�(1+3n) J. In this situation, the ground state
with boundary condition _� &, f consists of minuses above the substrate,
with the holes of substrate filled by pluses; i.e., _x=&1 for all x with
x3>0 while _x=+1 for the remaining sites x in Vd (i.e., x such that x3=0
and (x1 , x2) # S). Thus 2ed=(1&n) K+nJ, while for the substrate with
hills we have, as before, 2eu=rK=(1+4n) K.

We therefore get the following

Proposition 3.4. Let Wu , Wd be the substrate introduced above
and let 1

5J<K<(1&n)�(1+3n) J. Then, for ; large enough, one has

2{u(r)=r2{(1)+O(e&c;) (3.6)
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and

2{d (r)=2{(1)+
r&1

4
(J&2{(1))+O(e&c;) (3.7)

where c=c(J, K, n) is a strictly positive constant.

Since 2{(1)=K+O(e&c;), the proposition implies that for 1
5J<K<

(1&n)�(1+3n) J and sufficiently large ;, we have 2{u(r)>2{d (r), con-
firming again that wetting is more enhanced by hills than by holes. Let us
remark, however, that the rate of enhancement decreases in the hole case
with increasing 2{(1).

Notice finally that the method of low temperature cluster expansions
applied here is quite generic and various particular geometries could be
analyzed along the lines presented here, leading to a rich variety of results.

4. PROOFS

4.1. Proof of the Theorem 3.1

The first term in (3.2) is a contribution from the ground state con-
figuration. Namely (for the standard case) we have

min
_0

HW, 0(_0 | _� +)=0

min
_0

HW, 0(_0 | _� &)=KA

Thus the ground state contribution to 2{ is

2e(r)= lim
L � �

2E
(2L+1)2=rK (4.1)

where 2E is the difference between the left hand sides of the two previous
equations and equals KA.

The second term, F, can be described in terms of cluster expansions
(see a similar treatment for a flat case in ref. 9). To this end we begin with
a contour representation of the partition functions Z+

W (0) and Z&
W (0)

(Fig. 4). For Z+
W (0) we have a standard representation introducing for

any configuration _ (such that _x=+1 for all x # 0c) the contours as con-
nected components of the set B+(_) of all plaquettes of the dual lattice that
separate two neighbouring sites x, y # Z3 with _x{_y . One is getting here
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Fig. 4. The contour representation used for computation of Z&
W (0). Areas of pluses are

shaded; the remaining space is occupied by minuses.

just the standard 3-dimensional Ising model contours. For any contour 1
we introduce the weight factor

z+(1 )={e&;(J |10|+K |1W | )

e&;J |10|

if 1 touches the wall
if not

(4.2)

Here we define 10=[P | P # 1"�W ] and 1W=[P | P # 1 & �W ], where
�W denotes the set of all plaquettes on the boundary of W, �W=[P | P
separates two nearest neighbour sites x # W and y # W c]; |10 |, |1W |, is the
cardinality of 10 , 1W , respectively. We say that 1 touches the wall W if
there exists a plaquette P # �W & 1. In terms of the weight factors z+(1 )
one clearly has

Z+
W (0)= :

�/0

`
1 # �

z+(1 ) (4.3)

where the sum runs over all collections �=[11 , 12 ,...] of compatible
(mutually disjoint) contours in 0 (the notation �/0 is a slight abuse of
notation meaning that every 1 # � consists of plaquettes P such that
dist(P, 0)�1�2).
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To get a similar expression for Z&
W (0), we only have to be careful with

the definition of contours touching the wall. A natural definition is to con-
sider the contours as boundaries of regions where the considered configura-
tion differs from the corresponding ground configuration. Namely, for
configurations _ such that _x=_� &

x for all x # 0c (i.e., _x=+1 for x # W
and _x=&1 for x # 0c"W ), we introduce contours as connected compo-
nent of the set B&(_) of all plaquettes separating either nearest neighbour
sites x, y # V for which _x{_y or sites x # V, y # W for which
_x=_y(=+1). Introducing now the weight z&(1 ) as

z&(1 )={e&;(J |10|&K |1W | )

e&;J |10|

if 1 touches the wall
if not

(4.4)

we get

Z&
W (0)=e&;KA :

�/0

`
1 # �

z&(1 ) (4.5)

Notice that the set of contours in both situations exactly coincides (even
though the weights do not) and the sums in (4.3) and (4.5) are over exactly
the same collections of contours. Also, for the bulk contours not touching W,
both weights coincide, z&(1 )=z+(1 ).

From the definitions (4.2) and (4.4) we clearly have

z&(1 )�z+(1 ) (4.6)

and thus

log Z&
W (0)�&;KA+log Z+

W (0) (4.7)

To be able to control, in terms of convergent cluster expansions, the
difference of log Z+

W (0) and log Z&
W (0) contributing to 2{, the weights

z+(1 ) and z&(1 ) must satisfy the dumping condition,

|z\(1 )|�e&* |1 | (4.8)

where * is a fixed sufficiently large constant.
Thus our first task is to find sufficient upper bounds for |z&(1 )| and

|z+(1 )|. For z+(1 ) we immediately have

|z+(1 )|�e&;(J |10|+K |1W | )

�e&;K( |10|+|1W | )=e&;K |1 |
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where we have defined

|1 |=|10 |+|1W |

For z&(1 ) we will reduce the bound (4.8) to the assumption (3.1)
(which is a part of our definition of standardness). Consider the configura-
tion _(1 ) having a single contour 1, B&(_(1 ))=1. To evaluate H(_ (1 )

0 | _� &)
&H(_&

0 | _� &)=J |10 |&K |1W |, we consider the highest horizontal plane
p intersecting the boundary �W and define _~ 0 by taking _~ x=_ (1 )

x when-
ever x is below p and _~ x=&1 for all x above p. Now, taking into account
that

H(_~ 0 | _� &)&H(_&
0 | _� &)�\ |B&(_~ )| (4.9)

according to (3.1), we need a lower bound on H(_(1 )
0 | _� &)&H(_~ 0 | _� &).

Notice that

H(_ (1 )
0 | _� &)&H(_~ 0 | _� &)=J |1>p |&J |1 (1)

p"W |+J |1 (2)
p"W |&K |1p & W |

where 1>p , 1 (1)
p"W , 1 (2)

p"W , and 1p & W are four disjoint pieces of the bound-
ary B&(_� 0) of the configuration _� 0 defined as _� x=_ (1 )

x whenever x is
above p and _� x=&1 for all x below p. (Notice that _ (1 )

x =max(_~ x , _� x) for
all x # 0.) Namely, 1>p consists of all plaquettes from B&(_� 0) lying above
p, 1p & W=B&(_� 0) & �W, 1 (1)

p"W=B&(_� 0) & B&(_~ 0), and the complement
1 (2)

p"W=B&(_� 0)"(1>p _ 1p & W _ 1 (1)
p"W). Observing that 1>p contains at

least |1 (1)
p"W _ 1 (2)

p"W _ 1p & W | horizontal plaquettes, we get

H(_ (1 )
0 | _� &)&H(_~ 0 | _� &)

=J( |1>p |&|1 (1)
p"W |+|1 (2)

p"W | )&K |1p & W |

�(J&K )( |1>p |&|1 (1)
p"W |+|1 (2)

p"W | )

� 1
2 (J&K )( |1>p |&|1 (1)

p"W |+|1 (2)
p"W |+|1p & W | )

Combined with (4.9) and the fact that |1 |=|B&(_~ 0)|+|1>p |&|1 (1)
p"W |+

|1 (2)
p"W |+|1p & W |, we finally get

H(_ (1 )
0 | _� &)&H(_&

0 | _� &)�min(\, 1
2 (J&K )) |1 | (4.10)

and thus verify (4.8) with *=; min(\, 1
2 (J&K )).

If J>(4H0+1) K, we can get (4.8) directly, showing that

|1W |�} |10 | (4.11)
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with a fixed constant }. Indeed, realizing that around every horizontal
plaquette in 1W , there are at most 4H0 vertical plaquettes whose projection
is contained in the boundary of the concerned horizontal plaquette, we
have |1W |&|1W, horiz |�4H0 |1W, horiz |. Noticing further that for each hori-
zontal plaquette in 1W there exists a parallel plaquette in 10 (the contour
1 is a ``closed surface''), one has 1�(4H0+1) |1W |<|1W, horiz |<|10, horiz |
<|10 | and thus (4.11) is valid with }=4H0+1�(r&1) L1L2+1.

Using now (4.11) we get

|10 |�
1

1+}
|1 | (4.12)

and thus

|z&(1 )|�e&;(J |10|&K |1W | )

�e&; |10| (J&}K )

�e&; |1 | (J&}K )�(1+})

This actually proves the standardness (3.1) with \=(J&}K )�(1+}).
To guarantee the convergence of cluster expansion thus suffices to

take, for * sufficiently large,

;�max \ 1
K

,
1+}

J&}K+ * (4.13)

whenever J>(4H0+1) K and

;�max \ 1
K

,
2

J&K
,

1
\+ * (4.14)

for the remaining cases with K<J.
The standard Mayer cluster expansion(10�12) then yields

log \ :
�/0

:
1 # �

z\(1 )+= :
X # /(0)

a(X ) `
1 # supp(X )

z\(1 )X(1 ) (4.15)

where X are multiindices on the set K of all contours, X: K � [0, 1, 2,...].
We denote supp(X )=[1 # K, X(1 ){0] and use / for the set of all such
multiindices with finite support and /(0) for the set of all X # / with
supp(X )/0. The factor a(X ) is a combinatoric factor defined in terms of
the connectivity properties of the graph G(X ) with vertices corresponding
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to 1 # supp(X ) (there are X(1 ) different vertices for each 1 # supp(X )) that
are connected by an edge whenever the corresponding contours are inter-
secting. The factor a(X ) is zero unless G(X ) is a connected graph (X is a
cluster). An important fact here is that the factor a(X ) is known not to
grow too fast with X. This condition can be summarized(10�12) in the bound

} :
X: x # supp(X )

a(X ) `
1 # supp(X )

e&|X(1 ) |1 | }�e&| (4.16)

valid for sufficiently large |. Here the sum is over all multiindices X whose
support contains a contour that passes through a given fixed point x.

As a result of (4.15) we can write

log Z&
W (0)&log Z+

W (0)

=&;KA+ :
X # /(0)

a(X ) _ `
1 # supp(X )

z&(1 )X(1 )& `
1 # supp(X )

z+(1 )X(1 )&
(4.17)

By definitions (4.2) and (4.4) the contributions of the contours in the bulk
are exactly the same for + or & b.c. Thus all terms with X supported by
contours not touching the wall are canceled in the above difference of the
logarithms and only the sum over X containing contours touching the wall
remains. We use /W (0) to denote the set of all such clusters X. Using the
fact that z\(1 ) are invariant under horizontal translation by multiples of
periodicity constants L1 and L2 and satisfy the bound (4.8) (whenever
(4.13) or (4.14)) is valid, one gets an explicit convergent expression for F

from (3.2). Namely,

F= lim
L � �

&
1

;(2L+1)2 :
X # /W (0)

a(X )

__ `
1 # supp(X )

z&(1 )X(1 )& `
1 # supp(X )

z+(1 )X(1 )&
=&

1
;L1L2

:
x # CL1 , L2

:

x # 6(X )
X # /W (0)

a(X )
|6(X )|

__ `
1 # supp(X )

z&(1 )X(1 )& `
1 # supp(X )

z+(1 )X(1 )& (4.18)
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Here CL1, L2
is the twodimensional cell CL1, L2

=[(x1 , x2) # Z2, 0�x1<L1 ,
0�x2<L2], 6(X ) is ``the twodimensional projection of X,'' 6(X )=
[(x1 , x2) # Z2, there exists 1 # supp(X ), P # 1, and x3 such that
(x1 , x2 , x3) # P], and |6(X )| is the cardinality of 6(X ).

4.2. Proof of Lemma 3.2

Under the boundary condition _� &, for both W=Wd , Wu , the energy
of any configuration _0 is larger or equal than min(HW, 0(_ (1)

0 | _� &),
HW, 0(_ (2)

0 | _� &)), where _ (1)
0 =_&

0 and _(2)
0 is the alternative ground state

described in the statement. This can be seen by realizing that if a configura-
tion _0 contains pluses with positive x3 -coordinate, [x # 0 | _x=+1,
x3>0]{03 , those spins can be layer by layer flipped to minuses without
increase of energy. In the same way, under the boundary condition _� &, f,
the energy of any configuration _0 is larger or equal than min(HW, 0(_ (1)

0 |
_� &, f ), HW, 0(_ (2)

0 | _� &, f )).
In the case Wd we thus remain with separate holes filled with either

+1 (energy contribution J ) or &1 (with energy 5K ), yielding thus i).
Standardness for K< 1

5J is immediate, observing that it is sufficient to
prove (3.1) for a single spin flip in a hole. Since the energy of such a spin
flip is J&5K, we get (3.1) with \= 1

6(J&5K ). Notice that for K= 1
5J, the

ground state is degenerated, each hole can be independently filled with
either +1 or &1.

In the case Wu we thus have, effectively, a two-dimensional model in
the layer L=[x # Z3 | x3=0] with ``holes'' at sites from R=[x # Z3 | x3

=0, (x1 , x2) # S], described by the Hamiltonians

HM(_ | _� &)=&
J
2

:

x, y # M
(x, y)

_x_y

+
J
2

:

x # M, y # L"(M _ R)
(x, y)

_x+\J
2

&
K
2 + :

x # M

_x&
K
2

:
x # �MR

dx_x

(4.19)

and

HM(_ | _� &, f )=&
J
2

:

x, y # M
(x, y)

_x_y+\J
2

&
K
2 + :

x # M

_x&
K
2

:
x # �MR

dx_x (4.20)
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Here M=[x # 0 | x3=0, (x1 , x2) � S]/L"R, �MR is the set of nearest
neighbours of the set R in M, �M R=[x # M | dist(x, R)=1], and dx is the
number of points y # R with dist(x, y)=1.

If K<J�[1+d(S)], it suffices to notice that even ignoring the first two
terms in (4.19), that are of course minimized by the state _& (the con-
figuration _&

x =&1 for each x # M ), we get the needed bound. Namely,
denoting by M+ and N+ the numbers of plus sites, _x=+1, in M"�MR
and �M R, respectively, we get

HM(_ | _� &)&HM(_& | _� &)�\J
2

&
K
2 + [2M++2N+]&

K
2

2N+d(S)

�(J&[1+d(S)] K )[M++N+]

�
1

2d
(J&[1+d(S)] K ) |B&(_)|

where d=3 is the dimension of our system.
To prove (iii) we first note that due to our assumption that l�3, we

now have dx=1 for all x # �MR. We now decompose the two dimensional
layer L into periodicity cells of diameter l (containing each one site x from
R, and l 2&1 sites from L"R), and choose this decomposition in such a
way that each such periodicity cell contains all 4 nearest neighbors of the
corresponding point x # R.

For

K<
1&n
1+3n

J (4.21)

let us now consider a periodicity cell that has a nonempty intersection with
the set of pluses of the configuration _M and use m+ and n+ to denote the
numbers of pluses in the intersection of the cell with M"�M R and �MR,
respectively. Also, let b the number of broken bonds (pairs of sites x, y # M
with opposite signs) in the considered cell. Then the contribution of the
considered cell to the difference HM(_ | _� &)&HM(_& | _� &) is

(b+n++m+) J&(2n++m+) K (4.22)

where n+ varies between 0 and 4, and m+ varies between 0 and l 2&5. In
view of (4.21) the above expression is positive (and thus (3.1) is satisfied)
once we prove that

l 2&1
l 2+3

�
b+n++m+

2n++m+

(4.23)
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Equivalently, our aim thus is to show that for each concerned cell we have

(l 2&5) n+�(l 2+3) b+4m+ (4.24)

This bound is clearly satisfied whenever n+=0 or m+=l 2&5 (recall that
n+�4). Thus, let us consider only cells with n+{0 and m+�l 2&6. In
this situation, the cell in question contains both minus and plus sites,
implying that necessarily b�2. As a consequence, the bound (4.24)
becomes trivial if n+�2, l=3 (use that n+�4), or m+� 1

2 (l 2&13) (again,
use that n+�4). We are thus left with l�4, 3�n+�4, and 1�m+<
1
2 (l 2&13). It is not hard to see, however, that this restriction implies that
necessarily b�4, which again makes (4.24) trivial.

Coming to the case

K>
1&n
1+3n

J (4.25)

we use m& and n& to denote the numbers of minuses in the intersection
of the cell with M"�MR and �MR, respectively, and get the contribution to
HM(_ | _� &, f )&HM(_+ | _� &, f ) to be at least

bJ&(n&+m&) J+(2n&+m&) K (4.26)

where again n&�4 and m&�l 2&5. In view of (4.25), the expression
above is positive once we prove that

(l 2&5) n&+(l 2+3) b�4m& (4.27)

This is clearly true if m&=0 or n&=4 (recall that m&�l 2&5). Thus, let
us consider only cells with m&{0 and n&�3. In this situation, the cell
in question contains again both minus and plus sites, implying that
necessarily b�2. As a consequence, the bound (4.27) becomes trivial if
n&�2 (use that m&�l 2&5), l=3 (again, just use that m&�l 2&5), or
m&� 1

2 (l 2+3). We are thus left with l�4, n&�1, and m&> 1
2 (l 2+3),

which again implies b�4 and hence the bound (4.27).

4.3. Proof of Proposition 3.3

The first terms of the expansion of F correspond to the smallest con-
tours consisting of six plaquettes around a site in V. In particular, for the
substrate Wu one has to take the sites in the vicinity of the hills, i.e.,
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the sites x # Vu such that there exists y # Wu , y3=1, ( y1 , y2) # S with
dist(x, y)=1, leading to the contribution

F(1)
u =&2e&4;J sinh(2K ) } 4n (4.28)

The factor 4n comes from the fact that the density of hills is n and there
are 4 sites around each hill where the lowest excitation call be placed.
Similarly, for Wd we take the contours around the sites ``in the holes,''
x # Vd , x3=0, (x1 , x2) # S, yielding

F (1)
d =&2e&;J sinh(5K ) } n (4.29)

All the remaining contributions to Fu and Fd are of higher order in e&;

and thus, taking into account the fact that the corresponding cluster expan-
sions converge, the above terms determine, for ; large enough, the
behaviour of 2{.

4.4. Proof of Proposition 3.4

Since Wu is a standard substrate, we may use Theorem 3.1 to calculate
2{(u)(r), giving immediately (3.6).

For the non-standard substrate Wd , it is convenient to use the
modified boundary conditions _� &, + obtained from _� & by replacing _� &

x =
&1 by _� &, +

x =+1 whenever x3=0. As before (see the discussion of the
boundary conditions _� &, f before Lemma 3.2), the change from _� & to
_� &, + does not lead to a change in the wall free energy difference 2{(u)(r).
Denoting the ground state described in Lemma 3.1 by _(2),

_ (2)
x ={&1

+1
if x3>0
if x3�0

and considering an arbitrary configuration _ with _x=_� &, +
x =_ (2)

x when
x # 0c, we introduce the set B� &(_)=B� &(_0) as the set of all plaquettes in
the dual lattice that separate nearest neighbour sites x, y with _x=_ (2)

x and
_y{_ (2)

y .
We then observe that the ground state _(2) obeys a condition of the

form (3.1). Namely, for all configurations _0 that agree with _(2) on all x
with x3>0, we have

HW, 0(_0 | _� &, +)&HW, 0(_ (2)
0 | _� &, +)�\|B� &(_0)| (4.30)

where |B� &(_0)| is the lumber of plaquettes in the set B� &(_0) and
\= 1

6 (5K&J ). Defining the contours corresponding to a configuration _0
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as the connected components of the set B� &(_0), we then continue as in the
proof of Theorem 3.1. The only difference lies in the analog of (4.10), which
now becomes

H(_ (1 )
0 | _� &, +)&H(_ (2)

0 | _� &, +)�min(\,1
3 (J&K )) |1 | (4.31)

In order to prove this inequality, we again define the configuration _~ 0 by
setting _~ x=_ (1 )

x if x3=0, and _~ x=&1 if x3>0. With 1>p , 1 (1)
p"W , 1 (2)

p"W ,
and 1p & W defined as before, we have

H(_ (1 )
0 | _� &, +)&H(_~ 0 | _� &, +)

=J( |1>p |+|1 (1)
p"W |&|1 (2)

p"W | )&K |1p & W |

�(J&K )( |1>p |+|1 (1)
p"W |&|1 (2)

p"W | )

� 1
3 (J&K ) |1p & W |+ 2

3 (J&K )( |1>p |+|1 (1)
p"W |&|1 (2)

p"W | )

(note the sign change for the terms |1 (1)
p"W | and |1 (2)

p"W | ).
Next, we use the fact that the projection of 1>p onto the plane con-

taining 1 (1)
p"W and 1 (2)

p"W is connected, and contains the set 1 (1)
p"W _ 1 (2)

p"W .
Using the fact the distance of two plaquettes in 1 (1)

p"W _ 1 (2)
p"W is a least l&1

and l�3, it is not hard to show that |1>p |�3( |1 (1)
p"W |+|1 (2)

p"W | ). As a
consequence, we get

|1>p |&|1 (2)
p"W |� 1

2 ( |1>p |+|1 (2)
p"W | )

which in turn implies

H(_ (1 )
0 | _� &, +)&H(_~ 0 | _� &, +)

� 1
3 (J&K ) |1p & W |+ 1

3 (J&K )( |1>p |&|1 (1)
p"W |+|1 (2)

p"W | )

Combined with the fact that

|1 |=|B� &(_~ 0)|+|1>p |&|1 (1)
p"W |+|1 (2)

p"W |+|1p & W | (4.32)

we get (4.31) and hence convergence of the cluster expansion for 2{(d ).
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