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1. Introduction

1A. Background and statement of results.
The Widom-Rowlinson model [WR] is a simple and beautiful model of continuum

particles. It is of interest both because of it applicability in the description of
continuum systems, and because it is the only continuum system for which a phase
transition has been rigorously established [R]. The Widom-Rowlinson (WR) model
has two equivalent standard formulations — one as a binary gas and the other as
a single-species model of a dense (liquid) phase in contact with a rarefied (gas)
phase. In the binary gas formulation, the only interaction is a hard-core exclusion
between the two species of particles — call them A and B. There is no intraspecies
interaction: two particles of the same type can interpenetrate freely. The phase
diagram of the model is a function of the fugacities, zA and zB , of the two species.
Clearly, there is a symmetry between A and B particles; hence zA = zB = z is a line
of symmetry of the phase diagram. For both the continuum and lattice versions
of the model, it has been shown via Peierls’ arguments that for z large enough,
the symmetry is spontaneously broken, yielding two phases: one is A-rich and the
other is B-rich [LG], [R]. The transition between these phases is first-order. It is
expected, but not proved that the line zA = zB = z of first-order transitions ends
in a critical point at some positive value z = zc of the common fugacity. The single-
species formulation of the model is obtained by integrating out the coordinates of
one (say the B) species (see below). The effective diameter of the particles of the
remaining species is then twice the original diameter. The phase transition in the
binary formulation maps into a liquid-vapor transition in the single-species version.

The purpose of our work is to show how the geometric ideas can be used to study
the phase transition and the interfaces between the coexisting A and B or liquid
and gas phases of the Widom-Rowlinson model. The key ingredient in our study
is the introduction of a new stochastic representation for the Widom-Rowlinson
measure. We obtain our new representation by first generating percolation configu-
rations of spherical particles, identifying groups of particles with overlapping cores
as being in the same cluster. We then “color” each particle either A or B. Given
the hard-core constraint of the Widom-Rowlinson model, the only configurations
which are allowed (i.e. the only ones which receive non-zero weight in the Widom-
Rowlinson measure) are those for which particles in the same cluster are either all
A or all B. Otherwise, the problem is unconstrained. The result is that all allowed
configurations have weights which depend exponentially on the number of clusters
within them. Anyone who is familiar with the Fortuin-Kasteleyn representation of
the Potts model [FK] should see immediately that our representation does for the
Widom-Rowlinson model what the Fortuin-Kasteleyn representation does for the
Potts model. Indeed, the symmetries of the Widom-Rowlinson model are manifest
in our new representation.

We use our new representation to establish many properties of the Widom-
Rowlinson model. In Section 2, we apply percolation methods and use a continuum
analog of FKG-domination lemmas to present a new proof of the existence of a phase
transition in two and higher dimensions. This proof is completely self-contained
and represents a conceptual simplification of the classic works on the subject [R],
[LL], [GL]. In Section 2, we also describe the symmetry-broken phase in terms of
percolation and give an appropriate order parameter for the transition. A new
proof of the FKG property used for this characterization is given in the Appendix;
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the original proof can be found in [LM], [CGLM]. In Section 3, we use monotonicity
properties of the representation to establish the existence of an interfacial or surface
tension between coexisting phases. This is the first proof of existence of a surface
tension in a continuum model. In Section 4, we prove the existence of a correlation
length for the two-dimensional model in the single-phase regime. In order to do this,
we introduce several correlation functions and bound them in terms of each other.
Existence of a correlation length is then established using one of these functions.

1B. The model.
The Widom-Rowlinson model is a classical statistical mechanics system of inter-

acting particles. To define the model we write the interaction energy, UN (x1, . . . , xN ),
of N particles located at the points x1, x2, . . . , xN ∈ R

d as follows: For any
y ∈ R

d, we define the halo of y to be the ball of radius 2a with the center at
y, h(y) ≡ {x ∈ R

d : |x − y| < 2a}. The halo of a set F is the union of the
halos of its points, h(F ) = ∪y∈F h(y). The energy UN (x1, . . . , xN ) of the configu-
ration (x1, . . . , xN ) is just the difference of the volume V (x1, . . . , xN ) of the halo
h(x1, . . . , xN ) and the sum

∑N
i=1 |h(xi)|,

UN (x1, . . . , xN ) = V (x1, . . . , xN ) − NV0, (1.1)

where V0 is the volume of a ball of radius 2a. Although the interaction (1.1) is
(pairwise) attractive, achieving a potential minimum at zero separation, the system
is, overall, H-stable

0 ≥ UN (x1, . . . , xN ) ≥ −NV0, (1.2)

due to multiparticle effects that saturate the attraction.
The grand-canonical partition function at fugacity z and inverse temperature

β is defined in the usual fashion: Let Λ ⊂ R
d be the interior of some (regular)

finite vessel. We use the notation ωN ≡ (x1, . . . , xN ) and dωN ≡ ddx1 · · · ddxN .
Depending on the particular “boundary condition” η, we write V η(ωN ) (and corre-
spondingly Uη

N (ωN )). Three natural boundary conditions are: free (F ), attractive
(A), and repulsive (R). These are introduced by taking V F (ωN ) = |h(ωN ) ∩ Λ|,
V R(ωN ) = |h(ωN )|, and V A(ωN ) = |h(ωN ) ∩ Λa|, where Λa ⊂ Λ is obtained by
deleting from Λ all points within a distance a of the boundary ∂Λ. It is not hard
to see that attractive boundary conditions actually favor the presence of particles
near the boundary while repulsive boundary conditions tend to repel them. Then
the grand-canonical partition function is

Ξ©1 η
Λ (z, β) =

∑
N

zNZ©1 η
Λ,N (β), (1.3)

where
Z©1 η

Λ,N (β) =
1

N !

∫
Λ

dωNe−βUη
N (ωN ). (1.4)

A priori this model does not seem to have any distinguishing features that would
make the study of the liquid-gas transition particularly tractable.

In an equivalent formulation of the model (also introduced in [WR]), one consid-
ers two species of particles, A and B. Here, there is a hard-core exclusion between
A and B particles but no interaction between pairs of A or pairs of B particles.
Formally, if there are particles located at the positions x1 and x2, we may put

V (x x ) V (x x ) 0 (1 5)
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and

VAB(x1, x2) =
{

0 if |x1 − x2| > 2a,

∞ otherwise.
(1.6)

The grand canonical partition function, at fugacities zA and zB in a volume Λ
is given by

Ξ©2 η
Λ (zA, zB) =

∑
M,N

zM
A zN

B Z©2 η
Λ,M,N , (1.7)

where
Z©2 η

Λ,M,N =
1

M !N !

∫
Λ

dωA
MdωB

Nχη(ωA
M , ωB

N ) (1.8)

with χη(ωA
M , ωB

N ) defined to be zero if the above described hard-core condition is
violated in the configuration (ωA

M , ωB
N ) with the boundary condition η, and unity

otherwise. Relevant here are the “A-only” boundary conditions, where each point of
∂Λ is deemed to be occupied by an A particle, the “B-only”, and the free boundary
conditions.

The equations (1.3) and (1.7) enable one to define the grand-canonical Gibbs
measures µ©1 η

Λ,z,β and µ©2 η
Λ,zA,zB

.
Equivalence of the two-component system (1.5) – (1.8) to the one-component

model (1.1) – (1.4) is readily demonstrated. Simply fix the configuration ωA
M of A

particles and integrate over configurations ωB
N of B particles. It is seen that each

of the B particles moves freely through the region Λ \ h(ωA
M ), yielding a factor of

|Λ\h(ωA
M )| to the Nth power. Summing over N gives, up to irrelevant constants, the

partition function (1.4) with interaction (1.1) at an effective temperature given by
zB = β. Here, as it turns out, the measure µ©2 η

Λ,zA,zB
transforms, after integrating out

the B-particles, into the measure µ©1 η̄
Λ,z=zA,β=zB

, where η = A boundary conditions
transform into the attractive boundary conditions, η̄ = A, B into repulsive, and
free into free boundary conditions. In the next section we will define yet a third
representation for this model.
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2. The phase transition

2A. The gray representation.
We call the proposed new description of the Widom Rowlinson system the gray

or color-blind representation. Let Λ ⊂ R
d and, for the moment, let us ignore the

boundary conditions on Λ. Also, in order to simplify this section, let us consider
only hypercubic1 subsets of R

d. Denote by ωN = (x1, . . . , xN ) any configuration of
N points in Λ and by sN any of the 2N conceivable colorings (i.e. assignments of
the A and B labels) of the N given particles. Weighting A and B particles equally,
we may write the configurational partition function for the N particles as

Z©G η
Λ,N =

1
N !

∫
sN ,ωN

dωNdsNχη
N (ωN , sN ), (2.1)

where

χη
N (ωN , sN ) =

{
1 if the configuration {ωN , sN} is “allowed”
0 if the configuration {ωN , sN} is “forbidden”

(2.2)

with given boundary condition η. For any particle k = 1, . . . , N , centered at any
point xk ∈ Λ, we may define the core region

c(xk) = {x ∈ R
d | |x − xk| < a}. (2.3)

If ωN is a configuration, the set

c(ωN ) = ∪xk∈ωN
c(xk) (2.4)

consists of distinct components or clusters. Two particles in ωN are said to be core
connected if they belong to the same component.

It is evident that if c(xi) and c(xj) overlap for some i and j, then χη
N (ωN , sN )

will vanish unless i and j belong to the same species. This observation obviously
generalizes: each separate cluster of ωN must be composed of a single species. The
number of ways in which this can be arranged is clearly 2C

η(ωN ), where

Cη(ωN ) = # of components of c(ωN ) with the boundary condition η. (2.5)

Of course, the equation (2.5) must be carefully interpreted in the presence of
specific boundary conditions. In the simplest cases, the interpretation is straight-
forward — in particular, for free (or periodic) boundary conditions, CF (ωN ) (or
CP (ωN )) is just the number of clusters. Also of interest in this section are the
“A-only” boundary conditions, where each point of ∂Λ is deemed to be occupied
by an A particle. Here the number of clusters CA(ωN ) counts all clusters connected
to ∂Λa = {x ∈ Λ, dist(x, ∂Λ) ≤ a} as a single cluster. For this system, we will
denote the associated gray measure by µ©G A

Λ,z (·).
Hence we can write (2.1) as

Z©G η
Λ,N =

1
N !

∫
ωN

dωN2C
η(ωN ). (2.6)

1It turns out, however, that all our results hold in more generality, e.g. in the case in which

t k th th d i li it i th f H
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In particular, we may express the relative probability of the “gray” configuration,
ωN , as

Pr©G η
Λ,N (ωN ) ∝ 1

N !
2C

η(ωN )dωN . (2.7)

We may also define a corresponding grand-canonical gray measure at fugacity z:
µ©G η

Λ,z . From the equation (2.7) it is seen that if we consider µ©G η
Λ,z conditioned on the

N -particle state, then the Radon-Nikodým derivative of this conditional measure
relative to the Poisson point process at intensity z (also conditioned on N particles)
is precisely 2C

η(ωN ).
A major advantage of the color-blind formalism is that it allows a comparison

between the WR system and an ideal gas. The comparison we have in mind is
the continuum analog of FKG-type dominations that are widely used in lattice
systems. For continuum problems we proceed as follows. Let ωN = (x1, . . . , xN )
and ωM = (y1, . . . , yM ) denote N and M particle configurations, respectively. We
say that ωM � ωN if for each k we can find a j such that xk = yj . Somewhat less
precisely, ωM � ωN if ωM ⊃ ωN .

An event A is said to be increasing if, for any ω ∈ A, it is the case that η ∈ A for
all η � ω. In other words, the event A is never destroyed by adding particles to a
configuration in which it occurs. If µΛ and νΛ are two (grand-canonical) measures,
we say that

µΛ(−) ≥
FKG

νΛ(−) (2.8)

if µΛ(A) ≥ νΛ(A) whenever A is an increasing event.
The following is a continuum analog of a result that is standard in discrete

systems.

Proposition 2.1. Let µΛ(·) denote a grand-canonical measure for indistinguishable
particles on some Λ ⊂ R

d with N -particle conditional measures

dµΛ,N (ωN ) =
1

N !
WN (ωN )d(ωN )

with WN (ωN ) a.e. continuous, positive and satisfying the usual stability hypothesis
(i.e. WN ≤ ebN for some b < ∞). For y ∈ Λ, regard (ωN , y) as an N + 1 particle
configuration, and define

ζ = inf
N,ωN ,y

WN+1(ωN , y)
WN (ωN )

.

Then
µΛ(·) ≥

FKG
µ

[I]
Λ,ζ(·),

where µ
[I]
Λ,ζ(·) is the Poisson point process (ideal gas) of intensity ζ.

Remark. The above should seem reasonable in light of the physical interpretation
of ζ as the probability density in the worst case scenario for adding a particle to Λ.

Proof. This is a straightforward consequence of the following: Let S1, . . . , Sk denote
a sequence of random variables, with each Si ∈ {0, 1}, and define

ζi = min ProbS(Si = 1 | S1, . . . , Si−1, Si+1, . . . , Sk). (2.9)
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Then ProbS(−) dominates, in the sense of FKG, the Bernoulli ProbR(−) in which
the random variables Ri, i = 1, . . . , k, are assigned ProbR(Ri = 1) = ζi. This
result, which is easily established by induction, has been proved (or assumed) in
many places. A general result along these lines is the subject of the first lemma in
[Ru].

For the case at hand, we construct a discrete approximation to the continuum
process by considering the lattice problem on εZ

d ∩Λ, where εZ
d is the hypercubic

lattice with spacing ε. We assign {0, 1}-valued random variables Sx, x ∈ εZ
d ∩ Λ,

to each of the M(ε) ≈ |Λ|ε−d points in εZ
d ∩ Λ, with joint probabilities given by

Prob(Sx1 = · · · = SxN
= 1, Sx = 0 for x �= x1, . . . , xN ) ∝ εdNWN (x1, . . . , xN ).

(2.10)
We note that the left hand side of the equation (2.10) is identified with the N !
equivalent configurations in which a particle is to be found in the ε-vicinity of
each of the points (x1, . . . , xN ). By hypothesis, ζi(ε) ≥ ζεd, so at each stage of
the construction, the discrete measures dominate Bernoulli (percolation) measure
at density p = εd

1−εd . The desired result now follows by continuity of the ε ↓ 0
limit. �
Corollary. The (gray) WR measures µ©G F

Λ,z (−) and µ©G A
Λ,z (−) dominate, in the

sense of FKG, the Ideal Gas at a reduced fugacity λz, where, λ = 1
2 and 1

25 for
d = 1 and d = 2, respectively, while, for general dimension, λ(d) may be estimated.

Proof. We examine the formula

WN+1(ωN , y)
WN (ωN )

= z2C
η(ωN ,y)−Cη(ωN ). (2.11)

The quantity in the exponent is the number of clusters lost (or gained) in ωN by
the placement of an additional particle at the point y. This is, at most, 1 in d = 1,
5 in d = 2, and, in general dimension, we may estimate λ(d) ≥ 1

2(3d−1)
. �

2B. Proof of the phase transition.
In this and in the next subsection, we will make precise the connection between

percolation (in the gray measure) and symmetry breaking in the A-B problem. As
is usual in these sorts of arguments, our starting point is to consider some enormous
Γ ⊂ R

d with fixed boundary conditions, and then focus attention on some large
Λ ⊂ Γ . We then attempt to make statements about the situation in Λ which are
uniform in Γ . Finally, we allow Λ to achieve thermodynamic proportions. The
definition of “percolation” that turns out to be correct for this system is as follows.

Definition. Let Λ and Γ , Λ ⊂ Γ, be hypercubes centered at the origin and let

NΛ,∂Γ = # of particles in Λ that are core-connected to the boundary ∂Γ .

The fraction of percolating sites is defined as

ρ∞ = lim
Λ↗Rd

1
|Λ| lim

Γ↗Rd
µ©G A

Γ (NΛ,∂Γ ), (2.12)

where the limits Λ ↗ R
d and Γ ↗ R

d are taken e.g. in such a way as to minimize
the left hand side. (The existence of this limit will be established in Subsection
2C.)

The principle result of this section now amounts to little more than an observa-
tion:
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Theorem 2.2. In any dimension d ≥ 2, for z sufficiently large, symmetry breaking
occurs in the WR model.

Proof. Consider the Γ -Λ setup as described above with A boundary conditions on
∂Γ . We claim that it is sufficient to establish percolation in the gray model. (In
fact, later we will show that this is the necessary and sufficient condition.) Indeed,
in any configuration ω, it is clear that those gray particles in Λ which are detached
from the boundary ∂Γ contribute equally to the A and B particle density, while
those in the connected component of ∂Γ are forced to be of the A-type:

µ©2 A
Γ (NA,Λ − NB,Λ) = µ©G A

Γ (NΛ,∂Γ ), (2.13)

where NA,Λ ≡ NA,Λ(ω) is the number of A particles inside of Λ, etc. The stated
claim follows immediately from the equations (2.12) and (2.13). What remains,
then, is to show that, for sufficiently high fugacities, there is percolation in the
gray measures. However, by Proposition 2.1, this has been reduced to showing that
there is percolation in a non-interacting system.

This well known result is easily demonstrated by dividing R
d up into a hypercubic

lattice of cell size l = a√
d

and calling a cell “occupied” if it contains a particle. It is
seen that when neighboring cells are occupied, their occupants are forced to overlap.
It is sufficient, then, to push the occupation probability, 1 − exp{−λz| a√

d
|d}, past

the percolation threshold pc(d) of the d-dimensional hypercubic lattice, which is
non-trivial once d ≥ 2. �
2C. Characterization of the symmetry-broken phase via percolation.

The above derivation makes it clear that percolation of cores is the proper charac-
terization of coexistence along the line of symmetry. In this section, we will sharpen
this notion by first showing that the relevant percolation density has a well-defined
limiting value, and then demonstrating that this density is indeed an appropriate
order parameter for the transition.

Crucial to our analysis are the FKG properties of the various measures discussed
in the Appendix. If ζ and ω are particle configurations, the relevant notion for the 1-
component measure is again that ζ > ω if ζ ⊂ ω. For the two-component problems,
if ω ≡ (ωA, ωB) and ζ ≡ (ζA, ζB) are particle configurations, we say that ζ > ω if
ζA ⊃ ωA and ζB ⊂ ωB . In the Appendix we (re)prove that various conditional finite
volume one-component and two-component measures enjoy the FKG property.

Proposition 2.3. Let ΓL denote the standard sequence of hypercubes of side L

tending to infinity and consider the measures µ©1 A
Γ , µ©1 R

Γ , µ©2 A
Γ , and µ©2 B

Γ . Then the
limiting measures µ©1 A(−), µ©1 R(−), µ©2 A(−), and µ©2 B(−) exist. Furthermore,
all of these measures are translation and rotation invariant. Finally, the percolation
density, defined as in the equation (2.12), exists.

Proof. We will deal exclusively with the case µ©1 A
Γ (−); the others follow from similar

arguments. Existence of the (vague) limit is straightforward. Indeed, if L1 > L2,
the discussion in the remark following Proposition A.2 gives us that

µ©1 A
ΓL1

(−)
≤

FKG
µ©1 A

ΓL2
(−), (2.14)

where, of course, by µ©1 A
ΓL2

(−) we mean its restriction to ΓL2 . Therefore, the exis-
tence of limiting expectations for local cylinder events is immediate: it is sufficient
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to show that if E
Kj

j is the event that there are at least Kj particles in the set Sj ,
j = 1, . . . , n, (with Sj of positive Lebesgue measure) that

lim
Γ→∞

µ©1 A
Γ (∩n

j=1E
Kj

j ) (2.15)

exists. However, this follows by monotonicity.
Translation invariance can be established by the following considerations: Let A

denote an increasing local event and let Ax denote the same event shifted by the
vector x. We claim that µ©1 A(A) = µ©1 A(Ax). Indeed, both quantities may be
expressed as limits: µ©1 A(Ax) = limL→∞ µ©1 Ax

ΓL
(Ax), etc. Let ΓL,x denote the box

ΓL centered at x and let L1 ⊂ L2 ⊂ L3 be chosen in such a way that

ΓL1 ⊂ ΓL2,x ⊂ ΓL3 . (2.16)

Then we have

µ©1 A
ΓL1

(Ax) ≥ µ©1 A
ΓL2 ,x(Ax) ≡ µ©1 A

ΓL2
(A) ≥ µ©1 A

ΓL3
(A) (2.17)

which establishes translation invariance.
Rotation invariance follows from a similar argument with the shifted box ΓL2,x

and event Ax replaced by ones that have been rotated.
Similar considerations apply to the slightly non-local functions

NA
Λ,∂Γ = # of A particles in Λ connected to ∂Γ , (2.18)

i.e., NA
Λ,∞ = limΓ→∞ µ©1 A

Γ (NA
Λ,∂Γ) exists and depends only on the size (and shape)

of Λ. However, if we divide (a regular) Λ into Λ1 ∪ Λ2 with Λ1 ∩ Λ2 = ∅ (or of
zero measure), it is clear that µ©1 A a.s. NA

Λ,∞ = NA
Λ1,∞ + NA

Λ2,∞ from which the
existence of the percolation density is immediate. �

It is now easy to see that the limit ρ∞ defined in the equation (2.13) exists in
a more general context. Furthermore, from the perspective of the two-component
problem, ρ∞ is exactly the excess of the A particle density over the B particle
density in the µ©2 A measure. With a moment’s thought, it is also seen to be the
excess of particle density in the µ©1 A measure over the particle density in µ©1 R,
and therefore may be identified with the density of the condensate. We may thus
state

Corollary. For the one-component model along the symmetry line z = β, and for
the two-component model with zA = zB, percolation is the necessary and sufficient
condition for the symmetry breaking. In particular, if ρ∞ = 0, the limiting infinite-
volume one-component and two-component measures are unique.

Proof. Consider e.g. the one-component case. It is not hard to see that for any
collection of events E

Kj

j , j = 1, . . . , n, one has

lim
Γ→∞

µ©1 A
Γ (∩n

j=1E
Kj

j ) = lim
Γ→∞

µ©1 R
Γ (∩n

j=1E
Kj

j ). (2.19)

Indeed, the difference in these probabilities as measured in µ©1 A
Γ (−) versus µ©1 R

Γ (−)
can be bounded by the probability, in the gray measure, that at least one of the
sets S1, . . . , Sn is connected to ∂Γ. If ρ∞ = 0, this tends to zero and thus the
two limiting measures coincide. Unicity follows because (the restriction of) any
other one-component measure constructed with the same parameters and different
boundary conditions lies, in the sense of FKG, between µ©1 A

Γ (−) and µ©1 R
Γ (−). �
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3. Surface tension

We now turn our attention to the problem of surface tension in the Widom-
Rowlinson model. Any “definition” of surface tension boils down to an assignment
of the free energy (per unit area) necessary to create the interface. Thus we seek a
situation where we can compare the free energies of two systems which are identical,
save for the enforced presence in one of them of an interface separating two co-
existing phases. In cases where the pure phases are related by symmetry (manifest
or otherwise), it is usually straightforward to arrange this situation. To this end,
we follow the continuum analog of the procedures which, by now, are standard in
the study of lattice systems.

To keep things conceptually manageable, we will confine our definitions and
explicit derivations to the two-dimensional case.

Definition 3.1. Let ΛL,M denote the two-dimensional region

ΛL,M = {x ∈ R
2 | |x1| < L, |x2| < M} (3.1a)

with the boundary

∂ΛL,M = {x ∈ R
2 | |x1| = L& |x2| < M or |x2| = M & |x1| < L}. (3.1a)

For the two-component model, we will consider the analog of the Dobrushin bound-
ary conditions by putting an A particle at each point of the upper boundary

∂Λ+
L,M = {x ∈ ∂ΛL,M | x2 > 0}, (3.2a)

while each point of the lower boundary

∂Λ−
L,M = {x ∈ ∂ΛL,M | x2 < 0} (3.2b)

houses a B particle. We use Ξ©2 A/B
ΛM,L

(= Ξ©2 A/B
ΛM,L

(z)) to denote the partition function
at fugacity z for this system.

In the d-dimensional case, we let L = (L1, . . . , Ld−1) and define Ξ©2 A/B
ΛM,L

analo-
gously.

Remark. It is clear that, in the immediate vicinity of the midplane points (i.e. in
the two-dimensional case, the points (±L, 0)), these boundary conditions cannot
be achieved by the physical presence of A and B particles in Λc

L,M . These tiny
violations of WR physics are of no significant consequence — they simply serve to
create the boundary conditions that have the most æsthetic appeal to the authors.
In particular, if we use boundary conditions where A (B) particles inhabit the
boundary only as low (high) as some x2 = s (x2 = −s), s > a, respectively, all of
the forthcoming derivations remain pretty much intact.

We define the surface tension in two dimensions by

σ = − lim
L→∞

1
L

lim
M→∞

log

[
Ξ©2 A/B

ΛL,M

Ξ©2 A
ΛL,M

]
, (3.3)

should such a limit exist and similarly in d > 2
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Theorem 3.1. The limit in the equation (3.3) exists. Furthermore, the limit may
be taken in the reverse or intermediate order, i.e.

σ = − lim
M→∞

lim
L→∞

1
L

log

[
Ξ©2 A/B

ΛL,M

Ξ©2 A
ΛL,M

]

= − lim
L→∞

1
L

log

[
Ξ©2 A/B

ΛL,L

Ξ©2 A
ΛL,L

]
.

Proof. The key observation is that the ratio in the equation (3.3) has a probabilistic
interpretation. Indeed, in any configuration in ΛL,M with any boundary condition
on ∂ΛL,M , there are only four types of particles:

(1) particles that are connected (via a core-connected cluster) to ∂Λ+
L,M and

∂Λ−
L,M ,

(2) particles that are connected to ∂Λ+
L,M but not to ∂Λ−

L,M ,
(3) particles that are not connected to ∂Λ+

L,M but are connected to ∂Λ−
L,M ,

(4) particles that are disconnected from all boundaries.

Clearly, in the two-component Ξ©2 A/B
ΛL,M

ensemble, the type (1) is forbidden.
In order to recover the two-component representation from the color-blind rep-

resentation of these particle configurations, we identify all particles of type (2) as
A, all particles of type (3) as B, and clusters of particles of type (4) as A or B with
probability 1

2 .
Now suppose that, in this gray ensemble, we would choose to identify the particles

of type (3) as A-particles. A moment’s thought shows that this produces the two-
component ensemble with A-boundary conditions on ΛL,M subject to the constraint
that no particle is connected to both ∂Λ+

L,M and ∂Λ−
L,M . Since Ξ©2 A/B

ΛL,M
is precisely

the grand canonical weight of all such configurations, it follows that

Ξ©2 A/B
ΛL,M

Ξ©2 A
ΛL,M

= µ©2 A
ΛL,M

(KL,M ), (3.4)

where KL,M is the event

KL,M = {ω | there is no connection between ∂Λ+
L,M and ∂Λ−

L,M by A-type particles}.
(3.5)

Denoting the expectation on the right hand side of the equation (3.4) as KL,M ,
monotonicity in the boundary conditions implies that if M1 > M2, one has

KL,M1 ≥ KL,M2 . (3.6)

Next, let us place a translate Λ′
L1,M of the volume ΛL1,M with A boundary

conditions on ∂Λ′
L1,M along side the volume ΛL2,M with A boundary conditions

on ∂ΛL2,M in such a way that their M -sided boundaries coincide. This creates an
environment that is manifestly dominating, in the sense of FKG, the usual system
in ΛL1+L2,M with A boundary conditions on ∂ΛL1+L2,M . However, in the former
case events in the left and right pieces are independent This is easily demonstrated
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by showing that the weights for any ω ⊂ Λ′
L1,M ∪ ΛL2,M in the two-component

ensemble factor into the corresponding weights for the left and right halves of the
configuration.

Putting the above two facts together leads to the inequality

KL1+L2,M ≥ KL1,MKL2,M . (3.7)

The desired conclusions now follow from a fairly standard subroutine: the equa-
tion (3.7) implies a subadditive inequality from which it is easy to establish the
existence of

σM = lim
L→∞

− 1
L

log KL,M (3.8)

along with the a priori bound KL,M ≤ e−σM L. The inequality (3.6) implies that

σ̃ = lim
M→∞

σM (3.9)

exists. Existence of σ and the fact that σ̃ = σ follows from the monotonicity in M of
the KL,M and the a priori bounds. Existence of the surface tension in d > 2 follows
an identical set of arguments, the principal distinctions being notational. �
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4. Correlation functions

In this section we introduce various two-point functions for the WR systems.
Of course, in any continuous classical system, the two-point function is generally
accepted as being the average of the (truncated) pair density operator. Here, partly
for convenience and partly for æsthetic appeal, we define the appropriate “density”
at x to be unity if the point x is covered by a disk of radius a associated with the
corresponding particle. Explicitly, for a configuration ω, we define

χA(x;ω) =
{

1 if ω contains an A-particle within a distance a of x,
0 otherwise,

(4.1)

and similarly for χB(x;ω). We use the notation χA(x) = χA(x;ω) in one-component
representation as well. In terms of these quantities, we can define (truncated) two-
and higher-point functions in the usual fashion.

The one-component, two-component, and gray measures represent continuum
stochastic geometric models in their own right. As such, the natural notion of
correlation is in terms of connectivity. Thus one might consider the probability,
e.g. in the gray measure, that two points lie in the same core-connected cluster. In
this section we show that, in the single phase regime, the geometrical and statisti-
cal mechanical notions of two-point correlation are intimately related. Explicitly,
we show that density-density correlations in the one- and two-component models
and density excess-density excess correlations (in the two-component model) are
bounded uniformly above and below (and in certain cases equal to) the probability
of core connections in the gray measure. Relations of this form have been estab-
lished previously in the Fortuin-Kasteleyn representation of the Potts model (see
e.g. [ACCN]) and the random current representation of the Ising model [A].

In order to define the various correlation functions, let us denote by 〈−〉� the
expectation with respect to the infinite-volume measure µ�, ∗ = 1, 2, G.

The statistical mechanical correlation functions we consider are:

i) the density-density correlation functions
〈χA(x);χA(y)〉 ≡ 〈χA(x)χA(y)〉 − 〈χA(x)〉〈χA(y)〉 and
〈χB(x);χB(y)〉,

where 〈−〉 may be either the two-component measure or the appropriate
(A or B) one-component measure, since these obviously give the same
truncated correlations, and

ii) the density excess-density excess correlation function
〈χA(x) − χB(x);χA(y) − χB(y)〉©2 ,

while the geometrical correlation functions are:

iii) the core-connected correlation functions
µ�(Txy),

where ∗ refers to 1, 2, and G, and Txy is the event that x is core-connected
to y, i.e. that c(x) and c(y) are in the same component.
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Theorem 4.1. Throughout the single-phase regime, along the line of symmetry,
the correlation functions described above are bounded above and below by multiples
of one another. Explicitly

1) 1
2µ©G (Txy) = µ©1 (Txy) = µ©2 (Txy),

2) 〈χA(x);χA(y)〉©1 = 〈χA(x);χA(y)〉©2 ,
3) µ©G (Txy) = 〈χA(x) − χB(x);χA(y) − χB(y)〉©2 ,

4) 1
2 〈χA(0)〉©1 µ©G (Txy) ≤ 〈χA(x);χA(y)〉©1 ≤ 1

2µ©G (Txy).

Proof. 1) Since µ©2 is just the marginal of µ©1 , the fact that µ©1 (Txy) = µ©2 (Txy)
is essentially a tautology. Next, in any gray configuration in which the event Txy

occurs, with probability 1
2 — as far as µ©2 is concerned — this connection takes

place via an A-cluster.
2) The relation 〈χA(x);χA(y)〉©1 = 〈χA(x);χA(y)〉©2 is also essentially tautolog-

ical.
3) First observe that, in the single-phase regime, there is no need to truncate

the density excess:

〈χA(x) − χB(x);χA(y) − χB(y)〉©2 = 〈(χA(x) − χB(x))(χA(y) − χB(y))〉©2 . (4.2)

Now, to see that

µ©G (Txy) = 〈(χA(x) − χB(x))(χA(y) − χB(y))〉©2 , (4.3)

consider any gray configuration and observe that there are only three possibilities:
either x or y is not in a cluster, or x and y are in separate clusters, or x and y are
in the same cluster (i.e. Txy occurs). The first case clearly contributes nothing to
〈χA(x) − χB(x);χA(y) − χB(y)〉©2 . In the second case, we may condition on the
“color” of c(y), and note that we then obtain equal and opposite contributions if
c(x) is of “color” A or B, resulting in exact cancellation. Finally if Txy occurs, the
cluster connecting x and y is either of the A-type or the B-type, so that both terms
of the product (χA(x) − χB(x))(χA(y) − χB(y)) are of the same sign.

4) The upper bound is straightforward. Consider the event Txy that x is con-
nected to y in the two-component model — the probability of which is µ©2 (Txy).
Other than those in Txy, the only additional configurations for which χA(x)χA(y)
does not vanish are those for which x and y are in separate A-clusters. However, the
probability of this (in the two-component measure) is exactly 1

4 of the probability
in the gray measure that x and y are in separate clusters. But this latter quantity
is also the probability (again in the two-component measure) of e.g. the event that
x is in an A-cluster and y is in a B-cluster. We thus arrive at

〈χA(x)χA(y)〉©2 = µ©2 (Txy) + 〈χA(x)χB(y)〉©2 . (4.4)

However, by the FKG property of the µ©2 measure,

〈χA(x)χB(y)〉©2 ≤ 〈χA(x)〉©2 〈χB(y)〉©2 , (4.5)

while by symmetry,
〈χ (y)〉©2 〈χ (y)〉©2 (4 6)
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The equations (4.4)–(4.6) establish the desired upper bound.
The lower bound will not come so easily. It turns out, however, that in order to

prove this bound, it is not necessary to assume translation invariance of the system,
provided that the boundary conditions are A−B symmetric. We begin by defining
χG(x) to be the indicator of the event in the gray representation that x belongs to
the core of a particle and χ∅(x) = 1−χG(x). To simplify the forthcoming algebraic
manipulations, it is useful to define the following quantities:

α = µ©G (Txy), (4.7α)

the probability that x and y are in the same component,

β = 〈χG(x)χG(y)〉©G − µ©G (Txy), (4.7β)

the probability that x and y are in separate components,

γ = 〈χG(x)χ∅(y)〉©G , (4.7γ)

the probability that x is in the core region of some particle, but y is not,

δ = 〈χ∅(x)χG(y)〉©G , (4.7δ)

as above, but with x and y interchanged, and

ε = 〈χ∅(x)χ∅(y)〉©G , (4.7ε)

the probability that neither x nor y are in the core region of any particle.
It is not so hard to see that

4[〈χA(x)χA(y)〉©2 −〈χA(x)〉©2 〈χA(y)〉©2 ] = (2α+β)− (α+β +γ)(α+β +δ). (4.8)

After some tedious algebra, the right hand side can be reexpressed:

4[〈χA(x)χA(y)〉©2 − 〈χA(x)〉©2 〈χA(y)〉©2 ] =

= α((α + β +
1
2
(γ + δ)) + [α(

1
2
(γ + δ) + 2ε) + βε − γδ]. (4.9)

We claim that the term in the square brackets above is nonnegative. To see this, we
use the following FKG domination, as proved in Proposition A.4 of the Appendix:

µ©2 (− | χA(x)) ≥
FKG

µ©2 (− | χ∅(x)) (4.10)

where χ∅(x) = 1 − χA(x) − χB(x). As a consequence, we obtain

〈χA(y) | χA(x)〉©2 ≥ 〈χA(y) | χ∅(x)〉©2 , (4.11)

i.e.
〈χA(x)χA(y)〉©2

〈 ( )〉©2 ≥ 〈χA(y)χ∅(x)〉©2
〈 ( )〉©2 , (4.12)
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which translates to
1
2α + 1

4β
1
2 (α + β + γ)

≥
1
2δ

δ + ε
(4.13)

or
1
2
αδ + αε +

1
2
βε ≥ 1

2
γδ. (4.14)

Reversing the roles of x and y gives the analogous relation

1
2
αγ + αε +

1
2
βε ≥ 1

2
γδ. (4.15)

The equations (4.14) and (4.15) together imply the claimed inequality. We thus
have

〈χA(x)χA(y)〉©2 − 〈χA(x)〉©2 〈χA(y)〉©2 ≥ α(α + β +
1
2
(γ + δ)). (4.16)

Identifying
1
2
(α + β + γ) = 〈χA(x)〉©2 , (4.17a)

1
2
(α + β + δ) = 〈χA(y)〉©2 , (4.17b)

we obtain the desired result

1
4
[〈χA(x)〉©2 + 〈χA(y)〉©2 ]µ©G (Txy) ≤ 〈χA(x);χA(y)〉©2 . (4.18)

�
Corollary. Throughout the single-phase regime, along the line of symmetry, the
correlation length ξ defined by

−1
ξ

= lim
|x|→∞

1
|x| log〈χA(0);χA(x)〉©2

exists. Here |x| denotes the Euclidean length. Furthermore, the correlation length ξ
defined above is equal to the (similarly defined) correlation length for any of the other
statistical mechanical or geometrical correlation functions listed in the statement of
Theorem 4.1.

Proof. By Theorem 4.1, it is sufficient to establish, for example, the existence of

lim
|x|→∞

1
|x| log µ©2 (T0x).

Clearly, for any y
T0x ⊃ T0y ∩ Tyx. (4.19)

So, using the FKG inequality (for the two-component measure),

µ©2 (T0x) ≥ µ©2 (T0y)µ©2 (Tyx). (4.20)

Hence, for y ∝ x with |y| ≤ |x|, we can obtain a subadditive inequality, from which
the desired result is immediate. �
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Appendix. FKG Properties for the Widom-Rowlinson Model

In this section, we establish FKG properties for the one- and two-component
versions of the Widom-Rowlinson model. Most


