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Abstract.

We study a variety of dilute annealed lattice spin systems. For site diluted prob-

lems with many internal spin states, we uncover a new phase characterized by the

occupation and vacancy of staggered sublattices. In cases where the uniform sys-

tem has a low temperature phase, the staggered states represent an intermediate

phase. Furthermore, in many of these cases, we show that (at least part of) the

phase boundary separating the low-temperature and staggered phases is a line of

phase coexistence — i.e. the transition is first order. We also study the phenome-

non of aggregation (phase separation) in bond diluted models. Such transitions are

known, trivially, to occur in the large-q Potts models. However, it turns out that

phase separation is typical in bond diluted spin systems with many internal states.

(In particular, a bond aggregation transition is not tied to a discontinuous transition

in the uniform system.) Along the portions of the phase boundary where any of these

phenomena occur, the prospects for a Fisher renormalization effect are deemed to be

highly unlikely or are ruled out altogether.
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1. Introduction

Annealed Dilute Systems.
Annealed dilute spin systems have, traditionally, received far less attention than

their quenched counterparts: From the physical perspective, it is generally agreed
that the experimental realizations of dilute spin systems are better described in
the quenched approximation and, from the theoretical perspective, it is gener-
ally believed that the annealed-dilute problems are not substantially different from
their uniform counterparts. Although we will not be discussing the applicability
of annealed-dilute spin models, let us briefly address the first issue by noting that
there are a host of systems – such as alloys or multi-component fluids – that are
also described by dilute spin models. In many of these cases, it can be argued that
the annealed version is the appropriate choice.

Let us turn attention to the second issue. According to the standard notions
of universality, the nature of a phase transition should depend on only a limited
number of details of the model. Thus, if we consider a typical lattice spin system
described by the (formal) Hamiltonian

H = −
∑
i,j∈L

Ji,j(σi, σj). (1.1)

(where for simplicity we have restricted attention to pair interactions) the “impor-
tant details” are presumed to be the dimension of the lattice L, the range of the
interaction and the general features (e.g. symmetries) of the spin variables σi that
are respected by the functions Ji,j(−,−). The bond and site annealed versions of
the Hamiltonian in the equation (1.1) are given by

Hb = −
∑
i,j∈L

ni,j(Ji,j(σi, σj) + λi,j) (1.2a)

and
Hs = −

∑
i,j∈L

ninjJi,j(σi, σj)− µ
∑
i∈L

ni + Ks, (1.2b)

respectively. In the equation (1.2a), ni,j is 0 or 1 indicating the presence or absence
of a bond and it may be presumed, without loss of generality that for those pairs
which are beyond the range of the interaction (Ji,j(σi, σj) ≡ 0) ni,j is always zero.
In the equation (1.2b), ni is similarly either 0 or 1 and Ks ≡ Ks[(ni)] represents
possible additional terms involving the (ni) alone.1

The partition function for the systems described by the equations (1.2) are de-
fined by summing e−βH over all bond/site configurations and tracing out the spin

1A bond-bond interaction term can also be added to the Hamiltonian in (1.2a) but we regard

this as an unnecessary complication. As such, the above described bond-diluted models are usually

referred to as uncorrelated. However, it is clear that as soon as the spin interactions are taken into

account, (i.e. after the annealed trace is performed) there will, in general, be correlations among

the bond variables. In both the bond and site diluted cases, we will take the minimum value of

Ji,j(σi, σj) to be zero. In the bond-diluted models this convention is implemented without loss of

generality since the difference can be absorbed into the λi,j . However, in the case of site-dilution,

this convention is not without loss of generality and this is the principle reason for the extra term

K i th ti (1 2b)
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degrees of freedom according to a pre-specified spin-space measure (which may in-
clude magnetic field type terms not written into the equations (1.2)). One can
conceive of being able to explicitly perform these operations in exactly this order
and, after the first step has been achieved, ending up with an effective uniform
system Hamiltonian. As such, it is difficult to believe that the “essential features”
of the uniform and dilute system differ in any dramatic way. Therefore it is antici-
pated that the phase structure and phase transitions will be of the same type with
or without the annealed dilution.

Let us pause to illustrate this procedure for the annealed bond-dilute problems.
The partition function (on some suitably finite L) can be written as

ZL =
∫

dLσ
∑
nij

∏
i,j∈L

e−β[nijJi,j(σi,σj)−λi,jnij ] ∝

∝
∫

dLσ
∏

i,j∈L

[pije
−βJi,j(σi,σj) + (1− pi,j)], (1.3)

where pi,j

1−pi,j
= eβλi,j . Thus, in one stroke, we have produced a uniform system

Hamiltonian of the form in the equation (1.1):

H̃ = −
∑
i,j∈L

J̃i,j(σi, σj) (1.4a)

at some inverse temperature β̃ where the new β̃ and J̃i,j are given in terms of the
old by the relations

e−β̃J̃i,j(σi,σj) = pi,je
−βJi,j(σi,σj) + 1− pi,j . (1.4b)

In particular, when the Ji,j can only take on two values – as is the case in the Potts
models – all that has changed is the temperature.

Over the years, these sorts of conclusions have been bolstered by a myriad of
other exact results (e.g. [SM], [EG] and [ST], see [St] and references therein) along
with some additional considerations (see [F]). All leaves us with the quiescent pic-
ture of a general stability to annealed types of disorder and no real need to study
these models as separate entities in their own right.

Fisher Renormalization and Phase Transitions in Annealed Systems.
Against the above mentioned background, in the late 1960’s, Fisher addressed

the problem of continuous transitions in systems with “hidden” constraints [F].
An example of such a system is described by the equations (1.2) in a constrained
ensemble defined by a fixed concentration of bonds or sites. Now according to
the likes of the equations (1.4), the bond concentration is essentially the same as
the energy density. It therefore follows that when a critical phase boundary (in
the extended parameter space) is approached at any finite angle, the concentration
remains approximately constant provided that the specific heat exponent, α, is
negative. However, if α > 0, it becomes necessary to devise a drastic line of
approach in order to stay at fixed concentration. This in turn implies that when a
constrained ensemble crosses a phase boundary the critical exponents will undergo
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the so called Fisher renormalization effect which means that nothing changes if α
is negative but if α > 0,

α −→ α� =
−α

1− α
, (1.5a)

b −→ b� =
b

1− α
b = β, γ, ν, (1.5b)

and
c −→ c� = c c = δ, η. (1.5c)

The arguments in [F] are straightforward, essentially rigorous and, for several Ising
type systems, actually provide a more satisfactory account of the experimental
data than the uniform exponents. Of course the equations (1.5) rely crucially on
the supposition — Hypothesis B in [F] — that the phase structure and the phase
transitions of the pure system have not been corrupted by the addition of the
dilution degrees of freedom.

In this paper, we provide certain evidence to the contrary. In particular we show
that the global results suggested by the exact solutions are exceptional situations
and that typically the extended phase diagram is beset with first order transitions
and intermediate phases. The foremost of our results are:
• the existence, for site-diluted models, of an intermediate phase characterized

by the occupation and vacancy of staggered sublattices and
• the proof of a discontinuous bond aggregation transition for bond diluted

models.
Minimal hypotheses are required to establish the above effects. The basic ingre-

dients are [i] many internal states, [ii] a mild restriction on the degeneracy of the
lowest energy spin-states and, [iii] (when relevant) a condition that ensures that
the low temperature behavior of the uniform system is not excessively frustrated.
However, for ease of exposition, in this work we confine attention to reflection pos-
itive models. This is by no means a requirement. Indeed, in more general annealed
dilute systems, one finds a myriad of additional phase transitions of this sort. [CKS]

The above phenomena are entropy driven and thus, by in large, have escaped
notice. For example, it appears that the staggered phase eluded the renormalization
group analysis of the site diluted Potts model presented in [NBRS]. (See, however,
[RL].) On the other hand, site aggregation in annealed site-diluted models is energy
driven and, as such, has been well understood for some time. Nevertheless, to our
knowledge, this transition has not been studied by rigorous methods. In this paper,
we will also provide
• a proof of a discontinuous site aggregation transition for site-diluted models.
Clearly, on the portion of the phase boundary corresponding to a discontinuous

transition, the Fisher effect is ruled out. Further, when the phase transition is an
entrance to or an exit from an intermediate phase, one is bound to be suspicious.
To underscore this point we prove, in a number of cases, that at least part of the
phase boundary between the staggered phase and the low temperature phase is also
discontinuous.

Of course, nothing in this paper proves that a Fisher renormalization scheme is
impossible. In the first place, whenever the transition (in the extended parameter
space) is continuous, the arguments of Fisher still apply. However, it might happen
that the α, . . . , η on the right hand side of the equations (1.5) do not correspond
to the exponents of the uniform system In the second place it is still eminently



4 L.Chayes, R.Kotecký & S.Shlosman

plausible that at weak dilution, Hypothesis B is still in effect. Thus, if part of the
phase boundary is first order, we can envision a critical line of the uniform type
of transition emanating from the uniform critical point and joining up with the
discontinuous portion of the transition line at a tricritical point. However, without
additional detailed arguments, it is equally plausible that the phase boundary in
the vicinity of the uniform system is a weakly first order line.

Let us now discuss the physical origins of these phenomena.

Aggregation and Staggered Phases: Heuristics of the Transitions.
Once they are spelled out, the underlying reasons for these effects are not par-

ticularly difficult to understand. Let us start with the staggered phases. It will be
sufficient, for present purposes, to consider the nearest neighbor Potts Hamiltonian
on Z

d. Thus in the equation (1.2a), we take σi ∈ {1, 2, . . . , q}, Ji,j = J(δσi,σj − 1)
for |i− j| = 1 and zero otherwise and, to keep things simple, set Ks = 0. Consider
the case where eβJ is large, q is large and eβµ is small. Then the partition function
(or activity) of an isolated particle is qeβµ which we will now regard as appreciably
– but not enormously – large. Now consider the situation when two particles are
neighbors: they must either reside in the same state, which restricts the pair to
a small fraction, 1/q, of the states that they had in isolation or suffer an severe
energetic penalty of e−βJ if they choose to disagree. Thus there is a strong effective
repulsion between neighbors and the system is reminiscent of a hard squares prob-
lem. For hard squares, it is known [D], [FLIS III] that a pair of staggered states
exists at some fairly reasonable value of the activity. Thus, the βJ = −βµ = q =∞
limit of this problem is understood and, in a certain sense, all that remains is to
show that this situation is stable enough to persist at finite temperatures.

In this context, it is worth noting that a restricted version of this problem was
analyzed some time ago in [RL]. There, the system considered was the lattice version
of the Widom-Rowlinson model which may be formally identified with the site-
diluted Potts model at J = +∞. In [RL], the existence of staggered phases was
indeed demonstrated using, more or less, the above line of reasoning. However, the
generality of this phase and its importance in the context of dilute systems was not
discussed.

Let us now turn attention to the problem of site aggregation. We will be
extremely brief because the heuristics are adequately described elsewhere, e.g.
[St]. Consider, for example, the above model with the additional term Ks =
−κ

∑
|i−j|=1 ninj where κ > 0. Let us now envision the constrained ensemble

at zero temperature with a positive fraction of sites and vacancies: It is clear that
energetics will push all the sites together into one big cluster which is an act of
phase separation in its purest form. All things considered, it is not difficult to show
that this general situation persists at finite temperatures.

Finally, we come to the question of bond aggregation. Here, in the context of the
constrained ensemble it has been argued that there will not be phase separation at
zero temperature because “there is no energetic advantage in that”. This, however,
is a little naive since, in a constrained ensemble, there are entropic effects even at
T = 0. As for our discussion, let us go back to the equations (1.4) and consider, e.g.
for an isotropic nearest neighbor model, the limit β → ∞ with p = eβλ/(1 + eβλ)
fixed. It has already been discussed that if the original model is a Potts model then
(even at T = 0) we still have a Potts model at a finite effective temperature. As
noted in [SW] the first order transitions in the large q Potts models then correspond
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to aggregation transitions in the diluted versions.
It seems, therefore, that an aggregation transition is tied to a first order transition

in the uniform system — and this appears to be the current accepted wisdom.
However, this reasoning has no basis and the answer turns out to be far simpler:
Consider, for example, any q-state ferromagnetic model. By this we mean that σi

has q states and Ji,j(σi, σj) = 0 if σi = σj and is positive otherwise. Under the
same limit (β →∞ with the p’s fixed) we arrive at: The q-state Potts Model. C.f.
the equation (1.4b). Thus, under quite general circumstances — q large, and, say,
nearest neighbor interactions, we find that the transition at zero temperature is
first order. Under these conditions, it is again not terribly difficult to show that
this situation persists at finite temperature.

Strategic Overview, Organization and Summary of Results.
The strategy that is throughout this work is the standard approach in theory

of phase transitions: the method of contours. We start by focusing attention on
the smallest possible subsystem that is capable of exhibiting the characteristics
of the phase in question. Most often, this will be an hypercube of side 2. For
example, a staggered phase is exhibited by the corresponding checkered pattern of
the occupation variables on the hypercube or a low density phase is exhibited by a
hypercube that is devoid of sites.

In the case of a single phase, once the phase signature has been defined, any
hypercube that is not of this type is considered a contour (or part of a contour).
The existence of the phase is established by a demonstration that contours are
“rare”.

In the case of a region of coexisting phases (e.g. the staggered phases) there are
different possible modes of correct behavior on the elementary hypercubes. These
should be a priori of equal probability. Again, any hypercube not exhibiting one
of the characteristic behaviors belongs to a contour. Moreover, to prove that the
phases coexist, it must be shown that the simultaneous presence of two or more
types of hypercubes is improbable. This amounts to showing that, under such
circumstances, contours are present and the proof again reduces to showing that
contours are rare.

Finally, in cases without underlying symmetry, we allow the probabilities to de-
pend on a variable parameter such as the temperature or chemical potential. Two
things must be established: (a) throughout the range of parameter, contours must
be suppressed and (b) in the two extreme regions of the range of this parameter,
different phases dominate. From this it follows that there is a point of phase coex-
istence and furthermore (since the contours are extremely rare) the probabilities of
the individual behaviors take a jump.

In this paper, the above program is implemented by the methods of reflection
positivity. These methods allow us to estimate the various local probabilities in
terms of the partition function where the global configuration takes on the appro-
priate characteristic in every hypercube. In addition, these methods allow us to
estimate the probability of a contour as the product of factors — the number of
which scales with the size of the contour. These factors can then be evaluated in
terms of the probability that the entire system consists of a single contour.

The principal price of using the RP methods is that we must limit, severely, the
class of models that we wish to study. In addition, we must be content with a
blurry vision of the phase diagram in particular at the triple point of the site
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diluted ferromagnets where the high temperature, low temperature and staggered
phases meet. In future papers we will study systems with more general interactions,
sometimes using the methods of Pirogov and Sinai. In the general situation, it turns
out that a plethora of additional staggered phases are possible. Furthermore, we
will demonstrate the existence of all the phases and phase transitions discussed here
for systems with continuous spins, such as the XY or Heisenberg models.

For the staggered phases and their generalizations, the ratio of output to effort
is approximately the same for the RP versus PS methods. However, in the case of
the bond aggregation transitions, the RP methods provide a reliable technique that
allows a reasonably general proof at little cost. By contrast, the contour methods
would require a difficult construction along the lines of [MS] to prove these results.

The organization of this paper is as follows:
Section 2 will be completely devoted to the analysis of the two-dimensional site-

diluted Potts model. For this case, we have pushed hard on our methods to obtain
nearly complete results. The phase diagram for this system is illustrated in Figure
2.1 and the principal result of this section, Theorem 2.1. is a proof of the major
part of this picture. Section 2 is pretty much a self-contained piece of work. Most
of the technical results (and a good deal of the notation) used in the rest of the
paper will be developed in this context.

In Section 3, we analyze the problem of staggered ordering in a more general
setting and prove the relevant parts of Theorem 2.1 for an extended class of large
q nearest neighbor models (Theorem 3.1).

In Section 4, we treat the problem of (first order) aggregation transition for
the bond- and site-diluted models. Under suitable hypothesis we show that these
transitions occur: in the bond-diluted case, large q is required. However, in the
site-diluted case, these transitions occur with only minimal hypotheses.
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2. Phase diagram of the 2d site-diluted Potts model

Definitions and Statement of Results.
Our starting point will be to define the q-state Potts Hamiltonians on Z

2. Begin-
ning with a finite volume system, we will consider our models on the 2-dimensional
tori that are given by

TN = {i ∈ Z
2 | 0 ≤ ik ≤ N ; k = 1, 2} (2.1)

together with the formal identifications (N, i2) = (0, i2) and (i1, N) = (i1, 0). Here,
and throughout this paper, we will assume that N is of the form 2k. If i, j ∈ TN , i
and j are deemed to be neighbors if one of their coordinates agree (mod N) and the
other differs (mod N) by 1. When a pair of points, i and j satisfies this criterion,
we use the notation 〈i, j〉.2 With this in mind, the site-diluted Potts Hamiltonian
on the torus TN , is given by

HN (nN , σN ) = −J
∑
〈i,j〉

ninj(δσi,σj
− 1)− µ

∑
i

ni − κ
∑
〈i,j〉

ninj , (2.2)

where the first and third terms run over all neighboring pairs of TN , ni = 0 or 1
indicates the absence or presence of a particle at the site i ∈ TN , the σi’s denote the
usual q-state Potts variables, σi ∈ {1, . . . , q} and δσi,σj

= 1 if σi = σj and is zero
otherwise. The partition function ZN,β = ZN,β(µ, κ, J) is given by the annealed
trace

ZN,β =
∑

ni=0,1
i∈TN

∑
σi∈{1,...,q}
i∈TN ,ni=1

exp{−βHN (nN , σN )}. (2.3)

As usual, the partition function serves as the normalization constant for the finite
volume Gibbs states, 〈−〉J,µ,κ

N,β , that assigns to the configuration (nN , σN ) a weight
proportional to exp{−βHN (nN , σN )}. Therefore, the physical interpretation of the
restricted sum over spin configurations in the equation (2.3) is that the spins σi

are simply not present unless ni = 1. Alternatively, we may stipulate that the
spin variables are always present — and should be summed over — while the ni

represent additional degrees of freedom that mediate the interaction. It is easily
seen that the latter problem is equivalent to the former after a shift in µ by the
amount 1

β log q. In this paper, we keep with the original perspective.

Remark. We will assume throughout our discussion of the Potts models that J > 0
and κ ≥ 0. If J ≤ 0 and κ > 0, the staggered phases probably do not occur for
any value of β or µ. If J > 0 and κ < 0, the interaction between neighboring
particles is a priori repulsive and the existence of the staggered phases comes as
no real surprise. In fact, the Ising (q = 2) version of this case was investigated
in the guise of the Blume-Emery Griffiths model [HB]. (Albeit with non-rigorous
methods.) Not surprisingly, it was concluded that for κ negative and below a
certain value, a staggered phase emerges. The problems with J > 0 and κ < 0
could easily be incorporated into the forthcoming, but this would require a proviso
following each formula. Hence, although this region is both, in principle and in

2Despite the comma, 〈i, j〉 is not an ordered pair. Thus we may identify the neighboring pair

〈i j〉 〈j i〉 ith b d j i i th it i d j
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practice, more straightforward than the region J > 0 and κ > 0, we will postpone
its treatment until we get to the general q-state problems in the next section. In
fact, once we allow κ < 0, we can even prove the existence of staggered phases for
weakly antiferromagnetic (J < 0) interactions. However, these problems are not of
sufficient interest to warrant a separate treatment in their own right.

Figure 2.1

Let us summarize our claims concerning the phase diagram of the diluted q-
state Potts model defined by the equations (2.2) and (2.3). For some fixed values
of κ ∈ (0, J) and q � 1, the phase diagram that will emerge from our analysis
is schematically shown in Figure 2.1. (We have, of course, allowed ourselves some
artistic leeway.) In a region around the point (µ =∞, β =∞), q different ordered
phases coexist, while on the other hand, if −µ is large and/or β is small, there is
a unique “disordered” phase. Close to the axes µ =∞ and β =∞, the disordered
phases and the low temperature phases meet directly. Further away from the axes,
the staggered phases are sandwiched between the extremes. These new phases are
characterized by the preferential occupation of the even or odd sublattices and zero
spontaneous magnetization. Much of the boundary between this region and the
region of q ordered phases is also the line of first order transitions at which q + 2
phases coexist. On the other hand, the boundary between this region and the high
temperature phase is conceivably a line of continuous transitions. In our analysis,
we will investigate the behavior in four (partially overlapping) regions where we
have tight control of the phases and the phase transitions The phase boundaries
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in these regions always involve a transition into the ordered state; unfortunately,
we have no control of the phase diagram along the curve where the disordered and
staggered phases meet — in particular, at its two ending triple points.

In the forthcoming, a given state, “∗”, corresponding to parameters κ, β, and µ,
will be denoted by 〈 〉(∗)κ,β,µ (sometimes omitting various parameters). As is the case
of the standard Potts model, the ordered phase can be characterized by a significant
probability 〈δσi,m〉(m) that a given spin attains a fixed value m. Furthermore, the
average, 〈χ(m)

b 〉(m), of the indicator for the event that a given bond b has both its
endpoints occupied and in the spin state m attains an appreciable value in this
phase. To describe the staggered phases we consider elementary squares

c = c(j) = {i ∈ TN | jk ≤ ik ≤ jk + 1, k = 1, 2}. (2.4)

Let IA(c) denote the event that all the even sites of c are occupied and all the odd
sites of c are vacant:

IA(c) = {nN , σN | ni = 1; i ∈ c, i1 + i2 even , ni = 0; i ∈ c, i1 + i2 odd }. (2.5)

To define IB(c), we exchange of the roles of the even and odd sites in the equation
(2.5). The phases, to be denoted 〈 〉(A) and 〈 〉(B), will be characterized by a large
probability of the events IA and IB , respectively. We use χA(c) and χB(c) to denote
the indicator functions of the events IA(c) and IB(c). Finally, the characterization
of the unique “high temperature-low density” disordered phase depends on the
region: in one region it is characterized by a high probability 〈χ(dis)

b 〉(d) that a
bond is occupied by different spins, ni = nj = 1, σi �= σj , while in another it is
characterized by a low density, 〈δni,1〉(d).

Our claims about the phase diagram can now be formulated as the following
statements concerning the existence of distinct infinite volume Gibbs states3 corre-
sponding to the given values of parameters κ, µ, and β.

Theorem 2.1.
Consider the site diluted q-state Potts models with J and κ fixed and satisfying

0 < κ < J and suppose that q is (sufficiently) large and fixed. Then there are
regions RI = Ro

I ∪ Rd
I , RII = Ro

II ∪ Rd
II , and RIII = Ro

III ∪ RS
III (the regions

RI , RII , and RIII overlap) such that Ro
I ∩ Rd

I = γI , RII = Ro
II ∩ Rd

II = γII , and
Ro

III ∩ RS
III = γIII are continuous curves. Moreover, there is a “small” number ε

such that:
i) The region Ro

I is defined by the existence of q different states 〈 〉(m)
κ,β,µ, m =

1, . . . , q, for which
〈δσi,m〉

(m)
κ,β,µ ≥ 1− ε,

while the region Rd
I is defined by the existence of a disordered state 〈 〉(d)

κ,β,µ for
which

〈χ(dis)
b 〉(d)

κ,β,µ ≥ 1− ε.

3For the various values of the parameters, we only prove that at least the states that are

characterized in Theorem 2.1 exist. In principle, this does not exclude the existence of some

additional phases. However, with a bit more work this could be achieved using Pirogov Sinai

th i ti l f l t d i [Z]
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ii) The region Ro
II is characterized by the existence of ordered states as described in

item (i) above. The region Rd
II is defined by the existence of a disordered state

for which
〈δni,1〉

(d)
κ,β,µ ≤ ε.

iii) In the region Ro
III there are ordered states as described above. In RS

III there are
two states 〈 〉(A)

κ,β,µ and 〈 〉(B)
κ,β,µ for which

〈χA(c)〉(A)
κ,β,µ ≥ 1− ε

and
〈χB(c)〉(B)

κ,β,µ ≥ 1− ε,

respectively.
In (i)–(iii) above, both characteristic behaviors of the regions RI–RIII are found

at all points of the curves γI– γIII . In short, these are curves of phase coexistence;
explicitly, on γI and γII there coexist q + 1 phases and on γIII there coexist q + 2
phases. Further, the curves γI– γIII can be represented as (graphs of) continuous
functions.

iv) Finally, there is a region RIV in which there is a unique Gibbs state satisfying
the conditions of complete analyticity.

For convenience, the above regions and curves are illustrated in Fig. 2.2.

Figure 2 2
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Reflection Positivity and Other Tools.
Our analysis in this work relays heavily on the fact that all the systems we

consider are reflection positive (RP). In the discussion on reflection positivity that
is to follow, we will be as terse as possible. Indeed, we will supply just enough
information to define our notation. For more details, the reader is urged to consult
the original references [FSS], [FL], [FILS I], or the review article [S].

In order to permit the unimpeded use of these results in later sections, we must
work in a slightly more general context: in particular TN will now denote the d-
dimensional torus of linear scale N and the spin variables will belong to an arbitrary
(but in this paper discrete) space.

We will also allow for the possibility of dynamical variables on the bonds: Bonds
are defined according to the obvious generalization of the previous discussion; a pair
of sites with d − 1 of their coordinates in agreement and one of their coordinates
differing by exactly one unit constitutes a bond. We will denote the set of bonds
of TN by BN .

Let P denote a generic “hyperplane of sites” for the torus TN . By way of example,
we may consider

P0 = {i ∈ TN | i1 = 0 or i1 =
N

2
}. (2.6)

In this work we will consider only planes P which contain sites and are orthogonal
to one of the coordinate axis. Let P+ and P− denote the corresponding “right”
and “left” halves of the torus, e.g.

P+
0 = {i ∈ TN | 0 ≤ i1 ≤

N

2
}. (2.7)

If i ∈ TN , let ϑP (i) ∈ TN denote the image site of i reflected by the hyperplane P
and, in general, if {i(1), . . . i(k)} ⊂ TN , let ϑP ({i(1), . . . i(k)}) = {ϑP (i(1)), . . . ϑP (i(k))}.
Let Σ denote the spin space for the spin variables at the sites i ∈ TN and let Ξ
denote the space of variables for the bonds 〈i, j〉 ∈ BN . (For the site-diluted Potts
model, we may take Σ = {0, 1, . . . , q}, 0 corresponding to ni = 0, and the values
1–q corresponding to ni = 1 and the appropriate value of σi. Here we would have
Ξ = {1} but for the bond-diluted models, we will have Ξ = {1, 0}.)

Let (SN ) be the notation for a spin configuration on TN and let Si denote the
value of the spin at the site i. Then we will use ϑP Si to denote the value of the spin
at the site ϑP (i). Similar notation applies to the bond variables: (BN ) will be nota-
tion for a bond configuration, B〈i,j〉 will serve as notation for the individual values
and we define ϑP B〈i,j〉 = B〈ϑP (i),ϑP (j)〉. Finally, if f(SN ;BN ) is a function that de-
pends only on the configuration in P+ : f = f(Si(1) , . . . , Si(n) ;B〈i,j〉(1) , . . . , B〈i,j〉(m))
with i(1) . . . i(n) and 〈i, j〉(1), . . . 〈i, j〉(n) in P+ we will say that f ∈ FP+

N . Further,
if f ∈ FP+

N , we may define ϑP f (which, by analogy with the preceding notation
would belong to FP−

N ) by saying that for each (SN ;BN ),

ϑP f(Si(1) , . . . , Si(m) ;B〈i,j〉(1) , . . . , B〈i,j〉(n)) =

= f(ϑP Si(1) , . . . , ϑP Si(m) ;ϑP B〈i,j〉(1) , . . . , ϑP B〈i,j〉(n)). (2.8)

We may also, in a natural fashion, use ϑP to map FP−

N → FP+

N and, in this sense,
we have ϑ2

P = 1. We shall omit any further explicit references to ϑP as a map
from FP−

N to FP+

N since this would only serve to double the length of the various
definitions and statements of propositions



12 L.Chayes, R.Kotecký & S.Shlosman

Definition. A state 〈−〉 on the set of configurations ΣTN × ΞBN is said to be
reflection positive, or reflection symmetric, with respect to the reflections ϑP if, for
every f ∈ FP+

N ,
〈fϑP f〉 ≥ 0, (2.9)

while for any f, h ∈ FP+

N ,
〈fϑP h〉 = 〈hϑP f〉. (2.10)

Proposition 2.2. Let HN (SN ;BN ) denote a (Hamiltonian) function of the con-
figurations on the torus TN and let 〈−〉N,β denote the (Gibbs) state that assigns
the weight proportional to e−βHN to the configuration (SN ;BN ). Suppose that HN

admits an expression of the form

HN = GN + ϑP GN

with GN ∈ FP+

N . Then the state 〈−〉N,β is reflection positive with respect to ϑP .

Proof. This demonstrated in any of the references [FL], [FILS I] or [FSS]. See, e.g.
[S] Theorem 2.1. �

Let us consider the elementary hypercubes

c = c(j) = {i ∈ TN | jk ≤ ik ≤ jk + 1, k = 1, . . . , d}. (2.11)

and let b denote a configuration (pattern) or a collection of configurations on the
bonds and sites of the hypercube c. We use Ib(c) as notation for the set of config-
urations (SN ;BN ) for which the restriction to c displays this pattern and finally,
χb(c) as the indicator for the event Ib(c).

We may reflect the pattern b, repeatedly, through the various hyperplanes P until
the pattern covers the entire torus. Then, if Λ is a collection of bonds and sites, we
may consider the event Ib(Λ) that (SN , BN ) restricted to Λ displays this periodic
extension of the pattern b. The indicator for the event Ib(Λ) will be denoted by
χb(Λ).

Our principal usage of reflection symmetry will be the so called chessboard esti-
mate for contours:

Lemma 2.3. Let {c�} be a collection of distinct (but possibly overlapping) hyper-
cubes and consider a particular behavioral pattern b� associated with each cube c�.
Then

〈
∏

�

χb	
(c�)〉J,µ,κ

N,β ≤
∏

�

(
〈χb	

(TN )〉J,µ,κ
N,β

) 1
|Nd| .

Proof. The proof follows exactly the methods of [FL]; see Theorem 2.2 and the
equations (1.42) and (1.44) in [FL]. �

The following result from [KS] is useful in conjunction with reflection positivity
to establish the existence of discontinuous transitions:

Lemma 2.4. Let a and b denote two distinctive patterns on a cube c ∈ TN . Let
H be a Hamiltonian that depends on a control parameter, denoted by α, that lies
in the range [αa, αb] and let 〈−〉N,α denote the Gibbs state on TN induced by the
Hamiltonian H at parameter value α Finally let A ∈ ( 1 1] and B ∈ [0 1] be such
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that B ≤
[

1
2 +

√
1
2 − A

2

]2

and let εa, εb ∈ (0, 1
2 ). Suppose that for all α ∈ [αa, αb],

and for all c, c̃ ∈ TN , one has

(0) χa(c)χb(c) = 0,

(i) 〈χa(c) + χb(c)〉N,α ≥ A,

(ii) 〈χa(c)χb(c̃)〉N,α ≤ B,
and, meanwhile,

(iiia) 〈χa(c)〉N,αa
> 1− εa

and
(iiib) 〈χb(c)〉N,αb

> 1− εb.
Further, suppose that the above holds for all N in some sequence TN ↗ Z

d. Then
there is a value αt ∈ (αa, αb) and two distinct (infinite volume) Gibbs states 〈−〉aαt

and 〈−〉bαt
(characterized, e.g. by the fact that 〈χa(c)〉aαt

≥ 1 − δ and 〈χb(c)〉bαt
≥

1− δ, where δ is a particular function of A and B such that δ → 0 as A → 1 and
B → 0).

Proof. See, e.g. [KS] or [S]. We remark that the hypotheses (0)–(iii) as stated, in [S]
pertain to actual infinite volume states. Here, since we are assuming that they hold
for the states 〈−〉N,α as TN ↗ Z

d, we may rest assured that the desired properties
hold in the various limiting states. Inspecting the proof of Theorem 4 from [KS],
one can ascertain that for A = 1− η and B = η, the function δ(A, B) ∼

√
η
2 . �

Proof of Theorem 2.1.
In our analysis of the two dimensional Potts model there are few basic patterns

which, in various regions of parameter space, will dominate the spin/particle con-
figurations. We will define these following events by specifying the configurations
restricted to an arbitrary Λ ⊂ TN :
The empty event — all sites in Λ are vacant,

I∅(Λ) = {nN , σN | ni = 0 for all i ∈ Λ}. (2.12.∅)

The disordered event — all sites in Λ are occupied but all pairs of neighboring spins
disagree,

Id(Λ) = {nN , σN | ni = 1 for all i ∈ Λ, σi �= σj for all i, j ∈ Λ, |i− j| = 1}.
(2.12.d)

The staggered events — the event “A” with all the even sites of Λ occupied and all
the odd sites of Λ vacant (cf. the equation 2.5),

IA(Λ) = {nN , σN | ni = 1; i ∈ Λ, i1+i2 even, ni = 0; i ∈ Λ, i1+i2 odd }. (2.12.A)

and similarly for B with the words even and odd exchanged.
And finally, the ordered event — all sites in Λ occupied with all spins aligned,

Io(Λ) = {nN , σN | ni = 1; i ∈ Λ, σi is constant throughout Λ}. (2.12.o)

As usual, we let χ∅(Λ), χd(Λ), χA(Λ), χB(Λ), and χo(Λ) denote the indicators of
the corresponding events.

In the forthcoming discussion, a given state will be characterized by the dom-
inance of one of the above patterns For the contour analysis e g of a region
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Figure 2.3

of phase coexistence, the patterns of the relevant states are taken for generalized
“ground states” and the remaining ones are considered to be part of contours. More
precisely, let us choose a set Q ⊂ {∅, d, o, A, B} of labels for the states under con-
sideration. For a given configuration (nN , σN ), we say that the square c̃ is good
if (nc̃, σc̃) ∈ Iq(c̃) for some q ∈ Q. The remaining squares are called bad and any
component, Γ, of their union is a contour of the configuration (nN , σN ).

Of course even for a system as simple as the two-dimensional site-diluted Potts
model, there are many possible modes of bad behavior. It turns out that more
efficient estimates are obtained by taking finer characterizations of bad behavior
and, in this case, we have taken things about as far as they can go. With the idea
in mind to use the chessboard estimates of Lemma 2.3, let us define the restricted
partition functions Zb for a behavioral patterns b via 〈χb(TN )〉J,µ,κ

N,β ≡ Zb

Z . (For
simplicity, we usually omit explicit reference to the various parameters.) It is clear
that we need bounds on several partition functions Zb. We urge that, rather than
pouring over the formal definitions listed below, the reader immediately consults
Figure 2.3.

Lemma 2.5. Consider, for two dimensions, the patterns ∅, A, B, d, and o as
described previously. Then we have

Z
1

|TN |
∅ = 1,

Z
1

|TN |
A = Z

1
|TN |
B = e

1
2 βµq

1
2 ,

eβµe2βκe−2βJ
√

q(q − 4) ≤ Z
1

|TN |
d ≤ eβµe2βκe−2βJq,

Z
1

|TN |
o = eβµe2βκ

(
q

1
|TN |

)
.

Furthermore, we have

Z
1

|TN |
e

1
4 βµq

1
4
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where b1 is any of the four patterns on c where a particular corner is the sole site
occupied;

Z
1

|TN |

b
(o)
2

� e
1
2 βµe

1
2 βκ,

where b
(o)
2 is any of the four patterns on c where a neighboring pair of sites is

occupied and in alignment while the other two sites are vacant;

Z
1

|TN |

b
(d)
2

� e
1
2 βµe

1
2 βκe−

1
2 βJq

1
2 ,

where b
(d)
2 is any of the four patterns on c where a neighboring pair of sites is

occupied by spin-states in disagreement and the other two sites are vacant;

Z
1

|TN |

b
(o)
3

� e
3
4 βµeβκ,

where b
(o)
3 is any of the four patterns on c where only one (particular) corner is

vacant and the three occupied sites have their spins aligned;

Z
1

|TN |

b
(d)
3

� e
3
4 βµeβκe−βJq

3
4 ,

where b
(d)
3 is any of the four patterns on c where only one (particular) corner is

vacant and each spin disagrees with its neighbor;

Z
1

|TN |

b
(m)
3

� e
3
4 βµeβκe−

1
2 βJq

1
4 ,

where b
(m)
3 is any of the eight patterns on c where only one (particular) corner is

vacant and the central site of the occupied trio is in alignment with one (particular)
neighbor and is in disagreement with the other;

Z
1

|TN |
f1

� eβµe2βκe−
3
2 βJq

1
2 ,

where f1 is any one of the four patterns on c where all sites are occupied, a partic-
ular neighboring pair is in alignment, and the other three neighboring pairs are in
disagreement;

Z
1

|TN |

f
‖
2

� eβµe2βκe−βJ ,

where f
‖
2 is either of the two patterns on c where all sites are occupied and each

site agrees with one of its neighbors and disagrees with the other;

Z
1

|TN |
f⊥
2

� eβµe2βκe−βJq
1
4 ,

where f⊥
2 is any one of the four patterns on c where all sites are occupied and three

sites are in agreement with each other and disagree with the fourth
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In the above, � indicates that the ratio of the left and right hand sides is bounded
by unity in the limit TN ↗ Z

2 and we use |TN | ≡ N2 as notation for the number
of sites in TN .

Proof. The equalities for Z∅, ZA and ZB , Zo, as well as the upper bound on Zd

are obvious. The lower bound for Zd follows from the observation that for any
configuration on the even sublattice, each spin on the odd sublattice enjoys at least
(q − 4) states that are guaranteed to be different from all of its neighbors.

We will not spell out of all the details for all of the other estimates; each case
can be readily checked. For example, examining the site configuration that leads to
Z

b
(m)
3

, it is seen that three quarters of the sites and one half of the neighboring pairs

are present. This gives us a “prefactor” of e
3
4 βµN2

eβκN2
. Half of these occupied

neighboring pairs are in disagreement yielding the factor e−
1
2 βJ . What remains

amounts to N2

4 independent sites and N
2 independent (frozen) chains of length N

whose joint contribution is no more than q
1
4 N4+ N

2 . The bound on Z
1

|TN |

b
(m)
3

follows

immediately. The other estimates are obtained in similar fashion. �
Proof of Theorem 2.1. First we observe that the Hamiltonian in the equation (2.2)
is of the form described in Proposition 2.2 so we may use the chessboard estimates of
the subsequent lemma. We will break our proof into separate proofs for the regions
RI −RIV and we will start with RII since this case offers the fewest obstacles.

The region RII is the cold temperature region and thus we anticipate that the
dominant configurations on the square will be either ∅ or o. To estimate the prob-
ability of other configurations, we will therefore use only Z∅ and Zo as our denom-
inator in the (single square) chessboard estimate. Evidently, we are anticipating
that 1 and/or eβµe2βκ are large compared with “anything else” and we note that
their relative size is determined by µ: the control parameter. Let us demonstrate
explicitly in the case of b

(d)
3 , the basic calculations for dispensing with the various

patterns. Using the chessboard estimate, the relevant calculation from Lemma 2.3,
and Z ≥ Z∅ + Zo, we arrive at

〈χ
b
(d)
3

(c)〉J,µ,κ
N,β � e

3
4 βµeβκe−βJq

3
4

[1 + (eβµe2βκ)N2 ]
1

N2
=

= e−βJq
3
4 e−

1
2 βκ

[ e
3
4 βµe

3
2 βκ

[1 + (eβµe2βκ)N2 ]
1

N2

]
. (2.13)

Observe that the term in the square brackets is bounded above by unity independent
of the value of eβµe2βκ. Thus we arrive at 〈χ

b
(d)
3

(c)〉J,µ,κ
N,β � q

3
4 e−βJe−

1
2 βκ.

Let us recall that J > κ and define the region RII by the condition

RII : q
1
4 e−

1
2 βκ ≤ aII (2.14)

where aII is a small number that we will specify shortly. Evidently, throughout
RII , we have 〈χ

b
(d)
3

(c)〉J,µ,κ
N,β � a3

II . Similar estimates can be performed for all
the quantities with the results that the probabilities for observing examples of the
patterns b1, b

(o)
2 , b

(o)
3 and f⊥

2 on the unit square are all (asymptotically) bounded
above by aII , the probabilities for observing examples of the patterns A, B, b

(d)
2 or

f
‖ by a2 the probabilities for f and b

(m) by a3 and that of d by a4
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Thus, for aII sufficiently small — which here simply means β large — we have
verified (i) of Lemma 2.4. (We note that the multiplicity of each pattern must be
taken into account in order to perform an honest calculation of aII .) Clearly (0) is
satisfied and, along any line of constant β in RII , (iiia) and (iiib) are satisfied for
±µ sufficiently large. The remaining issue is therefore (ii), and here we get into the
contour estimates.

Suppose that Io(c) and I∅(c̃) both occur with c̃ �= c. Let us consider, e.g. the
connected component of “ordered sites” that contains c. The boundary of this
region may be defined, on the dual lattice, by drawing a bond between all pairs
of neighboring sites that have one member in the region and the other member
out. It is clear that these bonds form closed loops and, furthermore, a moments
thought reveals that the endpoints of these bonds always reside in the middle of
bad squares. Thus (for aII small) we can use the chessboard estimate to show that
the probability of a contour goes to zero exponentially fast in its length. When
we have both Io(c) and I∅(c̃) in the same configuration, there must be either a
contour “surrounding” one or the other region or there must be a long contour
(i.e. of length exceeding N) which wraps around the torus and separates the two
squares. In any case, we may now use the standard (Ising type) Peierls estimate to
establish condition (ii) in Lemma 2.4.

Thus, for any β satisfying the condition in the equation (2.14) — with aII suffi-
ciently small — the conclusions of Lemma 2.4 hold with µ serving as the parameter
α. For such a fixed β, let µt be any value of the parameter from Lemma 2.4 at
which phase coexistence occurs and let 〈−〉dβ,µt

and 〈−〉oβ,µt
denote the associated

coexisting states. Below we show that, in fact, the point µt is uniquely determined.
Observe that in the states 〈−〉dβ,µt

and 〈−〉oβ,µt
we have

〈χ∅(c)〉dβ,µt
> 1− δ (2.15)

and
〈χo(c)〉oβ,µt

> 1− δ, (2.16)

for all c and with a “small” δ = δ(aII , q). It therefore follows that, for any i, one
has

〈ni〉dβ,µt
< δ (2.17)

and
〈ni〉oβ,µt

> 1− δ. (2.18)

Since the density is a thermodynamic observable (i.e., it may be obtained via a
derivative of the free energy), it follows from the standard convexity arguments
that, in any limiting Gibbs state corresponding to (β, µ) with µ > µt, the density
exceeds 1−δ (and hence χd has a small average value). Similarly, in any Gibbs state
corresponding to µ < µt, the density is less than δ (and χo has small average). Thus,
we may unambiguously define the old µt as µII(β), the unique point of coexistence
of high and low density states along the associated isotherm. Construction of the q
individual magnetized states states for µ ≥ µII(β) follows from standard procedure,
e.g. as in Theorem 2 of [KS].

We now show that µII(β) enjoys certain monotonicity property, namely, that
βµII(β) is monotone in β. Let β1 > β2 and let µ < µII(β); we will show that
β µ < β µ (β ) To this end let 〈 〉∗ denote any limit of the torus states
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〈−〉J,µ′,κ
N,β′ . Using the same convexity-type arguments, it is clear that if we decrease

β while keeping βµ fixed, the average of ninj(δσi,σj
−1)+ κ

J ninj will only decrease.
Explicitly, for all neighboring pairs 〈i, j〉, we have

〈ninj(δσi,σj − 1) +
κ

J
ninj〉∗β2,

β1
β2

µ
≤ 〈ninj(δσi,σj − 1) +

κ

J
ninj〉∗β1,µ. (2.19)

Neglecting the non positive term on the right hand side and using ni ≥ ninj , we
may replace the upper bound with δ J

κ since µ < µII(β1). Thus the left hand side
is “small” and we claim (for δ sufficiently small) that this implies that the density
〈ni〉∗

β2,
β1
β2

µ
is also small. The claim follows from the fact that for any (β, µ) ∈ RII ,

the quantities 〈ninj(δσi,σj−1)〉∗β,µ and 〈ni(1−nj)〉∗β,µ are uniformly small — indeed,
the fact that ninj(δσi,σj −1) = 1 or ni(1−nj) = 1 forces the indicator of some bad
square to be one. Hence, we may write

〈ni〉∗β1,µ < cδ (2.20)

with c a constant of order of unity. From this it follows (for sufficiently small δ one
has cδ < 1− δ) that

β1µ ≤ β2µII(β2), (2.21)

which is the desired statement.
Finally, we will show that µII(β) is continuous, and hence that there is a con-

tinuous phase boundary. Suppose that µ > µII(β). It follows that for any β′ > β,
in any Gibbs state 〈−〉∗β′,µ the particle density exceeds 1− δ. However, this means
(see, e.g. [G], Theorem 4.23) that we may construct a limiting Gibbs state 〈−〉∗β,µ,
for which the density is also at least as large as 1 − δ. This in turn implies that
µ ≥ µII(β) and hence that µII(β) is lower semicontinuous. Upper semicontinuity
of µII(β) follows from an essentially identical argument.

Next, we turn attention to RI where the dominant patterns are expected to be
d and o. The control parameter is, as expected, qe−2βJ . (I.e. if this is small, o
dominates and if it is large, d dominates.) It turns out that the small quantity that
defines RI is q

1
4 e−

1
4 βµe−

1
2 βκ; we define

RI : q
1
4 e−

1
4 βµe−

1
2 βκ ≤ aI (2.22)

with aI sufficiently small as later requirements will dictate. Unlike the previous case,
here we will also require q itself to be large (actually q

1
4 , c.f. below) in particular

so that the control parameter can swing from large to small. In RI , the principal
culprits are the b

(d)
3 pattern, the probability of whose appearance on c is bounded

by aI , and f1 and f⊥
2 , each of which gets a factor of q−

1
4 . All the other patterns lead

to bounds involving higher powers of aI and/or q−
1
4 . For possible future reference,

we will tabulate the results. We obtain ∅ : a4
I ; A and B : a2

I ; b1 : a3
Iq

− 1
2 ;

b
(o)
2 : a2

Iq
− 1

2 ; b
(d)
2 : a2

Iq
− 1

4 ; b
(o)
3 and b

(m)
3 : aIq

− 1
4 and finally f

‖
2 : q−

1
2 . To ensure

that all of RI is covered, we will perform our variant of Proposition 2.4 along curves
where βµ + 2βκ is constant; we will denote this quantity ω. Evidently, along each
curve of constant ω (sufficiently large), we can find a βt and a pair of coexisting
states, 〈−〉dβt,µ

and 〈−〉oβt,µ
with, e.g., 〈χo〉dβt,µ

≤ δ and 〈χo〉oβt,µ
≥ 1 − δ. The

argument will run in pretty much the same fashion as for R except in this case
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the “thermodynamic” variables are somewhat artificial. Writing the Hamiltonian
in terms of the parameters ω and β, it is evident that, along curves of constant
ω, the quantity X corresponding to 1

N2

∑
〈i,j〉[ninj(δσi, σj − 1) + κ

j ni(1 − nj)] is
conjugate to the parameter β. We will now argue that this quantity takes a jump
at β = βt. Indeed, in both states, the average of ni(1− nj) is small and thus, as is
fairly easily seen,

〈X〉oβt,µ ≥ −c1δ, (2.23)

while
〈X〉dβt,µ ≤ −(1− c2δ) (2.24)

with c1 and c2 (positive) constants of order unity. Thus, in all Gibbs states with the
same ω and β > β′ (β < β′), the mean values of X are not smaller than −c1δ (not
greater than −(1−c2δ)). Since, throughout RI , the mean of ni(1−nj) is uniformly
small, for those states that emerge as limits of 〈−〉κ,µ,J

N,β , only one large jump of the
mean of X is possible. This defines, unambiguously, βI(ω). By the above reasoning,
it is easy to see that whenever β < βI(ω), no state with parameters β, ω can have
an appreciable average value of χo and for β > βI(ω) no state have an appreciable
value of χd.

Let us now formally express our phase plane coordinates in terms of ω and
η = βµ, and write our function as ηI(ω). (Explicitly: ηI(ω) = ω − 2βI(ω)κ.)
Following identically the (more physically appealing) arguments of RII , it is clear
that ηI(ω) is monotone increasing and, finally, continuous.

Let us now dispense with the region RIII . Our definition of the region is given
by

RIII : q
1
2 e−βJ ≤ gIII and q−

1
4 e−

1
4 βµ ≤ aIII (2.25)

with aIII and gIII sufficiently small numbers.
The dominant patterns are anticipated to be o or A/B and hence the control

parameter is P ≡ q−
1
2 e

1
2 βµe2βκ. In RIII , we obtain the following bounds on the

probability of observing the stated patterns: ∅ : a2
III ; d : g2

III ; b1 : aIII ;

b
(o)
2 : q−

1
4 a

1
2
III ; b

(d)
2 : a

1
2
IIIg

1
2
III ; b

(o)
3 : q−

1
4 ; b

(d)
3 : gIII ; b

(m)
3 : gIIIq

− 1
2 ;

f1 : g
3
2
IIIq

− 1
4 ; f

‖
2 : g

1
2
IIIq

− 1
4 , and f⊥

2 : g
1
2
IIIq

− 1
4 .

Clearly, P can take on large values in RIII since since it is infinite on the βµ =∞
boundary of the region. This (re)proves the existence of ordered phases in RIII .
To establish the existence of staggered phases, it must be shown that P can take
on small values in RIII . Indeed, placing ourselves in the farthest corner of RIII :
q

1
2 eβ0J = gIII and q−

1
4 e−

1
4 β0µ0 = aIII , we find

P(β0, µ0) = (
1

aIII
)2(

1
gIII

)
2κ
J q−(1− κ

J ). (2.26)

Using, in this last step, the condition that κ < J , we see that for very large q,
there is a staggered phase in RIII . Actually, for the purposes of our subsequent
discussion, it is assumed that q is large enough to ensure that staggered phases
exist in a neighborhood of (β0, µ0).

Let us begin our analysis of the phase boundary by discussing the behavior along
the curve q−

1
4 e−

1
4 βµ = aIII . By applying Proposition 2.4, there is a point βt, µt

on this curve at which there coexist Gibbs states 〈−〉oβt,µt
and 〈−〉Sβt,µt

, S = A, B

characterized e g by the fact that 〈χ (c)〉o ≥ 1 δ and 〈χ (c)〉S ≥ 1 δ
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We now claim that µt, βt divides this curve into a staggered portion and fer-
romagnetic portion: in particular, if (β, µ) ∈ RIII , βµ = βtµt, and β > βt, and
〈−〉∗β,µ is any Gibbs state that emerges from the torus states, 〈χo〉∗β,µ > 1 − cδ
with a similar statement holding for β < βt. On the basis of proviso following the
equation (2.26), it is clear that βt > β0.

Let us now investigate the behavior along isotherms that lie in RIII . To facilitate
our analysis, we may again consider the particle density. It is clear that if β ≥ βt,
then for all µ (with (β, µ) ∈ RIII), the particle density in any Gibbs state is close to
unity. This rules out the possibility of a state with an appreciable average value of
either of the staggered order parameters and, further demonstrates the existence of
states in which the average of χo(c) is close to unity. On the other hand, if β < βt,
we first reemphasize that at µ = µ0

β0
β (i.e. along the bottom boundary of RIII) the

average of 〈χA(c) + χB(c)〉∗β,µ is close to one in any state 〈−〉∗β,µ which is a limit of
torus states 〈−〉κ,µ,J

N,β . Thus, using Proposition 2.4, we can find a µt such that at
(β, µt), staggered states and ordered states (with order parameters close to unity)
coexist.

For µ > µt, the reasoning is identical to the analysis of the isotherms with β ≥ βt.
Furthermore, it is not difficult to see that if µ < µt, there cannot exist any Gibbs
states in which the average of χ0 is close to unity. This permits us to unambiguously
define a function µIII(β) (β0 ≤ β < βt). Nevertheless, it still remains to be shown
that for (µ, β) with µ < µIII(β) there exists staggered states with order parameter
close to unity. To this end, observe that in the staggered states at (β, µIII(β)), the
particle density is not appreciably larger than 1

2 . It follows that in any limiting
state of 〈−〉J,µ,κ

N,β with µ < µIII(β), the average of χo(c) is also not much larger
than 1

2 : indeed, if 〈i, j〉 is in c,

χo(c) ≤ ninj ≤
1
2
(ni + nj) (2.27)

and the average of 1
2 (ni+nj) (in any limiting torus state) cannot exceed the density

in, e.g. the state 〈−〉Sβ,µIII(β). Since, in RIII , the sum χo + χA + χB has average

close to unity and 〈χA(c)〉J,µ,κ
N,β = 〈χB(c)〉J,µ,κ

N,β , it follows that

lim inf
N→∞

〈χA(c)〉J,µ,κ
N,β ≥ g (2.28)

with g ≈ 1
4 for every square c on the torus. Next, for any sequence c̃N located at

distance at least N/2 from the origin, we will consider the conditional measures
〈− | χA(c̃N ) = 1〉κ,µ,J

N,β . If c is a fixed square, we may write

〈χA(c) | χA(c̃N ) = 1〉J,µ,κ
N,β = 1− 〈

∑
b �=A

χb(c) | χA(c̃N ) = 1〉J,µ,κ
N,β ≥ 1− 1

g
δ (2.29)

uniformly in N , for N sufficiently large. Restricting the measures on the left hand
side to any sequence VN centered at origin and of the diameter less than N

2 , the
existence of the desired staggered states is established.

Finally, mimicking the argument used along the line βµ = β0µ0, it is immedi-
ately clear that µIII(β) is monotone decreasing in β; continuity of this function is
established by following the reasoning used for µ (β) in R
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Let us now derive conditions that ensure complete analyticity. We will consider
a one site system with a boundary condition B as provided by the state of its four
neighbors. We will denote this state by ρB(−) and abbreviate its argument by
0, 1, . . . q. If B′ is a boundary condition that differs from B at just one boundary
site, it is sufficient, by [DS], to demonstrate that

max
B

∑
k

max
B′
|ρB(k)− ρB′(k)| ≤ 1

4
. (2.30)

It is straightforward to show that the above is always small provided that qeβµe4βκ

or q|1−e±βJ | is small. We will illustrate this in the case where an occupied boundary
spin changes from the state 1 to the state 2. Let us define the normalization, in the
obvious fashion, so that the weight of the empty state is always one. Comparing the
weights, (wB(0), wB(1), . . . wB(q)), before and (wB′(0), wB′(1), . . . wB′(q)), after
the change, we see that wB(0) = wB(0), wB′(1) = wB(1)e−βJ , wB′(2) = wB(2)e+βJ

and wB′(k) = wB(k) for all k > 2. Thus, there is little effect if either βJ is small or
the w(k)’s themselves are small for k > 0. Since, for k > 0, the w(k)’s are bounded
above by eβµe4βκ, this is easily implied in the region

RIV : qeβµe4βκ ≤ aIV or q(1− e−βJ) ≤ gIV (2.31)

with gIV and aIV sufficiently small numbers. The other required changes in other
states are similarly seen to be sufficiently small in the region RIV .

All the features in the statement of this theorem (but not all the features of
interest) have now been covered and we are finally finished. �
Remark. The endpoints of the order-disorder boundaries are well understood. In
particular, at β = ∞, there is (trivially) a transition at µ = −2κ. With some
additional effort [M, Z] at µ = ∞, it can be shown that for large q, there is a
βt(q) satisfying qe−2βtJ = 1 + O( 1

q ) which is the unique point for order/disorder
coexistence (and no other phases present). On the basis of these facts, we can
prove:

Corollary. In both the temperature and chemical potential variables, the staggered
phases are reentrant.

Proof. For the case of the temperature parameter, all we have to do is show that
the “small P” regime of RIII intersects the line µ = −2κ. Let us place ourselves
at the right boundary of RIII : q

1
2 e−βJ = gIII and show that the intersection of

this boundary with the above mentioned line takes place in RIII . To do this, all
that we need do is demonstrate that here, q

1
4 e

1
4 βµ is large; having done this, we

will then have automatically demonstrated P is small (since µ = −2κ). Now at

this point in the phase plane, it is easily seen that q
1
4 e

1
4 βµ = g

1
2

κ
J

III q
1
4 (1− κ

J ). In light
of the equation (2.26), this is indeed small.

For the case of the fugacity parameter, the definition of RIII precludes the above
sort of result. However in our estimates we had to allow for the possibility that P
was large or small. All of the patterns that require qe−2βJ small – the disordered
patterns – have additional (hidden) factors of P which we can now bring into play.
Let us therefore make the alternative assumptions that q 1

2e−βJ ≤ g with g � 1 and
P itself sufficiently small We will still assume that q−

1
4 e−

1
4 βµ ≤ a so there are
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only three calculations that need to be redone, the results of which are b
(d)
3 : gP 1

2 ;

b
(d)
2 : a

1
2
IIIgP

1
4 ; and, obviously, the disordered pattern d which enjoys the bound

of g2P. Now, all we need to do is show that the region where P is small (or, to
be more precise, P 1

2 is small) and the region q−
1
4 e−

1
4 βµ ≤ aIII intersects the line

q 1
2e−βJ = g ≈ 1. However, if we go to the ”corner” we find that the calculation

for P is the same as the one leading to the equation (2.26) with gIII replaced by
g. This is indeed small enough. �
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3. Staggered phases in an extended class of site diluted models

In this section we will prove the existence of staggered phases for a general
class of nearest neighbor site diluted models on Z

d. Our results will be sufficiently
general to preclude the global results for the whole of the phase diagram that were
featured in the preceding section. Indeed, here we will treat systems in which a low
temperature phase may be absent altogether.

Here we assume that the formal Hamiltonian for the uniform system takes the
form

Hu = −
∑
〈i,j〉

J(σi, σj) (3.1)

with σi ∈ {1, . . . , q} and J(σi, σj) = J(σj , σi) ≥ 0.
The annealed site-diluted Hamiltonian on the torus TN takes the form

HN (nN , σN ) = −
∑
〈i,j〉

ninjJ(σi, σj)− µ
∑

i

ni − κ
∑
〈i,j〉

ninj , (3.2)

where µ, κ, and the ni (∈ {0, 1}) play the same roles as their counterparts in Section
2. In these models, we will not require that the a priori weights, (w(1), . . . , w(q)),
that determine the single spin distribution, are all equal. (However, to maintain
continuity with what has preceded, we shall assume that the weights sum to q.)

Thus, the partition function on TN is given by

ZN,β =
∑

ni=0,1
i∈TN

∑
σi∈{1,...,q}
i∈TN ;ni=1

exp{−βHN (nN , σN )}
∏

i∈TN ;ni=1

wi(σi). (3.3)

As was the case in the two-dimensional Potts models, the problems of merit
typically have κ ≥ 0. Nevertheless, we can incorporate the cases κ < 0 with little
enough effort. The principal “small parameter” in the problem is the quantity

s(β) = max
{σi}

wi(σi)
∑
σj

wj(σj)e−βJ(σi,σj). (3.4)

To prove staggered order for κ > 0 (but not terribly large) our basic requirements
are that q is large, and that s is small relative to q. A glance at the equation (3.4)
shows that the condition s q is the statement that for an interacting pair of spins,
not all the spin space is taken up by the lowest energy states. For κ < 0, there is
always staggered order at sufficiently low temperature (cf. example 2 below).

Our result can now be formulated precisely:

Theorem 3.1. Let HN denote the Hamiltonian in the equation (3.2) and suppose
there is an inverse temperature β∗ and an ε ≤ 1 such that at β = β∗ the following
two conditions hold:

(i) s(β∗) ≤ qε,
while

(ii) q(1−ε)e−Dβ∗κ > P
with P a fixed sufficiently large number and

D =
{

1 if κ < 0,

d if ≥ 0



24 L.Chayes, R.Kotecký & S.Shlosman

Then there is a region R, which includes a neighborhood of the point (β, µ) =(
β∗,−

[
Dκ+ ε log q

β∗

])
, such that for all (β, µ) in R, the set of infinite volume extremal

Gibbs states corresponding to the Hamiltonian HN with these parameters contains
(at least) two extremal elements 〈−〉Aβ,µ and 〈−〉Bβ,µ. These states are characterized
by distinctive staggered orderings: in particular, in the A/B state, the even/odd
sublattice has an occupation density in excess of the odd/even sublattice.

Examples.

(1) Generalized q-state ferromagnet.
Let Eq ⊂ R

ν for some ν ≤ q be a discrete set containing q points which, without
loss of generality, satisfies |σ| < 1 for all σ ∈ Eq. The a generalized q-state
ferromagnet may be constructed by writing J(σi,σj) = J (σi ·σj − 1) with J ≥ 0.
Further, letting h ∈ R

ν to denote the “external field”, we may write

w(σ) ∝ eh·σ. (3.5)

Then, if q is sufficiently large, it is possible to find a κ0 > 0 and h0 > 0 such that for
all κ and h with κ < κ0 and ||h|| < h0, the conditions of Theorem 3.2 are satisfied.

(2) Any q-state spin system with κ < 0.
Consider any Hamiltonian of the form of the equation (3.2) with κ < 0. The

condition is satisfied for ε = 1 and β sufficiently large.

Remark. Observe that for the Potts models, s =
(
1 + (q − 1)e−βJ

)
. Thus (i) and

(ii) cannot both be satisfied unless J ≥ dκ. Needless to say, in the two-dimensional
analysis all that was required was J > κ (and q correspondingly large). Thus,
clearly, we are working with a condition that is stronger than optimal. To obtain
better conditions on s (e.g. replacing s by sd in (ii)) would require the detailed
classification of all modes of “bad behavior” on a hypercube as in Lemma 2.5. This
is an arduous task for the general case in d ≥ 3. However, in any particular case,
the details can be worked out with enough effort.

To prove Theorem 3.1, we again examine all possible behaviors on a (hyper)cube
c. Our principal goal will be to establish that, in a certain range of parameters, the
(staggered) patterns A and B are dominant.

The following estimates will form the core of our analysis.

Lemma 3.2. Let nc denote the occupation pattern restricted to the cube c and
χnc(nN , σN ) be the indicator for the event that nc is the occupation pattern on c.
Let E denote the number of bonds (“edges”) in the configuration nc:

E = #{ pairs 〈i, j〉 ∈ c | ni = nj},

let L denote the number of (locked) sites that participate in the formation of bonds

L = #{ sites i ∈ c | ni = 1, there exists j ∈ c, |i− j| = 1, nj = 1},

and U the number of unencumbered sites

U = #{ sites i ∈ c | ni = 1, nj = 0 for all j ∈ c with |i− j| = 1}.

Then

〈χnc
〉κ,µ
N β �

( 1
Z

) 1
Nd [

qUeUβµeLβµe2EβκsL
] 1

2d ,
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where 〈−〉κ,µ
N,β denotes the torus Gibbs state for the Hamiltonian in the equation

(3.2) and the symbol � has the same meaning as in the statement of Lemma 2.5.

Proof. It is noted that the HN are of the form described in Proposition 2.2 so we
may freely use the arsenal of RP techniques. According to the chessboard estimates
of Lemma 2.3, it is clear that we must estimate the constrained partition functions
Znc
≡ ZN,β〈χnc

〉κ,µ
N,β .

First observe that each free site in the periodic continuation of nc gives rise
to a factor of qeβµ and there are exactly (U/2d)Nd such sites. This accounts for

the factor of
(
qUeUβµ

) 1
2d . Similarly, there are a total of (L/2d)Nd locked sites

which gives us the factor of
(
eLβµ

) 1
2d . Next, it is seen that each of the E bonds

in nc produces 2× 1
2d bonds in the repeated pattern — the factor of two from the

reflections orthogonal to the original bond — for a grand total of e2Eβκ.
As for what remains, we denote by Gnc(N) the graph that is obtained from the

periodic extension of nc over TN . (The bonds of Gnc(N) are, of course, all of the
nearest neighbor pairs in Gnc(N).) Let Hnc

N denote the “uniform” Hamiltonian

Hnc

N = −
∑

〈i,j〉∈Gnc (N)

J(σi, σj). (3.6)

We will now estimate the trace of e−βHnc
N . We claim that

Tr e−βHnc
N ≤ (q/s)Nd−1[

(s)
L

2d
]Nd

(3.7)

from which the stated bound follows immediately.
To derive the inequality in the equation (3.7), recall the stipulation J(σi, σj) ≥ 0;

for an upper bound, this allows us to delete any interactions and perform a less
restrictive trace. We will use this fact to prove the following (slightly) general
result:

Let G denote any connected graph with |G| sites and let HG denote a Hamiltonian
that is of the form of the equation (3.6) with Gnc(N) replaced by G. We claim that

Tr e−βHG ≤ qs|G|−1. (3.8)

The proof follows by induction. The equation (3.8) is obviously true if |G| = 2.
Suppose that it has been established for any connected graph of size |G| = k−1. In
adding the kth site, let us delete all but one of the bonds that attach the new site
to the old graph. Freezing the spin configuration on the old graph and performing
the partial trace over the new spin, we obtain a multiplicative factor — that is
clearly no larger than s — times the weight of the frozen state according to the
old Hamiltonian. Bounding the multiplicative factor above by s, the stated claim
is established.

The equation (3.7) now follows from the observation that Gnc(N) can have no
more than Nd−1 components and applying the preceding claim to each component.
The desired result is now established. �

Proof of Theorem 3.1. Clearly, the main task will be to demonstrate that some-
where in the (β µ) plane 〈χ 〉κ,µ is small for all n except the staggered patterns
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A and B. We claim that at the value (β∗, µ∗) with β∗ the inverse temperature from
hypothesis (i) and µ∗ = −

[
Dκ + ε log q

β∗

]
, the inequality

〈χnc
〉κ,µ
N,β ≤ P− 1

2d (3.9)

holds unless nc = A or B. Indeed, estimating Z
1

Nd

N,β ≥ q
1
2 e

1
2 βµ, we write

〈χnc
〉κ,µ
N,β ≤

queuβµelβµsl

q
1
2 e

1
2 βµ

e
2Eβκ

2d (3.10)

where u = U/2d and l = L/2d are the fractions of unencumbered and locked sites.
Next we observe that

1
2
L ≤ E ≤ d

2
L. (3.11)

The lower bound is trivial. As for the upper bound, notice that each site in c is
contained in d bonds of c. From each locked site, let us place an outward pointing
arrow along all the d bonds of c that are attached to the site. The E “bonds” of nc

are just those (lattice) bonds that are double covered. There cannot be more than
d
2 such doubles and this is the upper bound in the equation (3.11).

Thus, in the equation (3.10), we may replace E with d
2L if κ ≥ 0 or 1

2L if κ < 0.
In short

〈χnc〉κ,µ
N,β ≤

slqueuβµelβµelDβκ

q
1
2 e

1
2 βµ

. (3.12)

Here D was defined in the statement of the theorem.
Setting β = β∗, we may replace s by qε. For µ = µ∗ defined by the condition

qεeβ∗µ∗
eDβ∗κ = 1. (3.13)

This yields
〈χnc
〉 ≤ q−( 1

2−u)e−( 1
2−u)β∗µ∗ ≤

(
qeβ∗µ∗)− 1

2d , (3.14)

where the last inequality is the worst case scenario. Namely, u differs from 1
2 by an

absence of a single particle. Finally, we use the equation (3.13) and the condition
(ii) to establish that 〈χnc

(TN )〉 is indeed small.
Thus, if P is sufficiently large, the cubes bearing A or B dominate and contours

separating A and B regions are suppressed. The existence of two distinct staggered
phases A and B is established by the same argument as in the proof of Theorem
2.1 (cf. equations (2.28) and (2.29)). �
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4. Bond aggregation and site aggregation

In this final section, we treat the bond and site aggregation transitions that were
advertised in the introduction. Both of these transitions are reminiscent of the
transition in RII that was analyzed in Theorem 2.1 — indeed in the case of site
aggregation, what we will prove is exactly the generalization of Theorem 2.1 part
(ii). In both the bond and site problems, we will require very little: in each case,
we will make some mild assumptions concerning the low energy behavior of the
uniform system. These assumptions are satisfied in all the familiar spin models e.g.
the q-state ferromagnets in the first example following the statement of Theorem
3.1. For the bond-dilute models we will require large q (i.e. the phenomenon is
entropy driven) but, of course, for the site diluted case this is not necessary.

Throughout this section, the uniform Hamiltonian will take the form of the
equation (3.1) with weights (w(1), . . . , w(q)) that sum to q. The site-diluted models
will therefore be exactly of the form in the equation (3.2) and the bond-diluted
models will be of the form in the equation (1.2a) with spin couplings as described
in the equation (3.1) and

λi,j =
{

λ if i and j are neighbors,
0 otherwise.

(4.1)

For the bond-dilute case, let us formulate our conditions about the Hamiltonian
Hu from the equation (3.1). Recall the definition of s(β) (c.f. the equation (3.4))
and let ζ(β) denote the partition function per site:

ζ(β) = lim
N→∞

(
ZN,β

) 1
Nd . (4.2)

We will suppose that there is a β ≤ ∞ and positive numbers ε and ε′ with ε + ε′ <
1

d2d−1 such that
s(β) ≤ qε (4.3a)

and
ζ(β) ≥ q−ε′ . (4.3)

If the above holds at β =∞, then it also holds for β sufficiently large.
We now state

Theorem 4.1. Consider the bond-diluted Hamiltonian as described above and sup-
pose that β is such that the conditions (4.3) hold. Then there is a value of bond
“chemical potential” λ = λ(β) such that two distinct phases 〈−〉∅β,λ and 〈−〉Fβ,λ co-
exist. The state 〈−〉∅β,λ is characterized by a low density of bonds while in 〈−〉Fβ,λ,
bonds are occupied with high probability.

Proof. We will show that if q is large enough, then at inverse temperature β, along
the entire isotherm, the only behaviors that are observed with any appreciable
probability on cubes c ∈ TN are “full” and “empty”.

We start by noting that the considered bond-diluted Hamiltonian on a d-dimensional
torus TN is RP.

Let mc ≡ {ni,j | i, j ∈ c} be a bond pattern on a cube c. The principal cases,
mc = F (full) and mc = ∅ (empty) give rise to constrained partition functions ZF

and Z∅ that satisfy

Z
1

Nd q (4 4)
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and

Z
1

Nd

F � ζ(β)edβλ ≥ q−ε′e2dβλ. (4.5)

Let B denote the number of bonds in the pattern mc, U denote the number of sites
in c that do not belong to any bond of mc and, finally, let L = 2d − U. By the
chessboard estimate and the argument in Lemma 3.2 leading to the bound (3.8), it
is not hard to see that

〈χmc
〉λN,β ≤

(
qUe2BβλsL

) 1
2d

[
qNd + (q−ε′edβλ)Nd

] 1
Nd

, (4.6)

where χmc is the indicator for the event mc and 〈−〉λN,β is the Gibbs state on TN

for the considered bond-diluted Hamiltonian. We write R ≡ q−ε′edβλ/q so that,
as λ → ±∞, the empty/full configurations dominate. Writing the terms in the
numerator and denominator in terms of q and R, we obtain

〈χmc〉λN,β ≤
(
qε′ 2B

d qεLq( 2B
d +U)

) 1
2d

q

(
R 2B

d

) 1
2d

(
1 +RNd

) 1
Nd

. (4.7)

Since B < d2d−1, the factor involving R is uniformly bounded by one. We may
also, with certain inefficiency, replace the coefficients of ε and ε′ by unity. We now
claim that for U �= 0 or 2d, one has 2B

d + U < 2d. This would easily follow from
the (strict) inequality that B < d

2L unless L = 0 or 2d. However, supposing that
B = d

2L and L > 0, then it must be the case that each site attached to any bond
is in fact attached to all d possible bonds in c emanating from it. But this would,
necessarily, cover all of c.

Thus, for the cases of relevance, we may claim

2B

d
+ U ≤ 2d − 2

d
(4.8)

and hence
〈χmc〉λN,β ≤ q(ε+ε′− 1

d2d−1 ). (4.9)

Thus, for ε and ε′ as stated and q sufficiently large, using the routine contour
argument, we may plug directly into Lemma 2.4 and the result is established. �

In the site diluted case, we will need no assumption concerning the value of s(β)
— the obvious bound s(β) < q2 is sufficient. However, we will require that the low
temperature behavior of the uniform system is not too badly frustrated. Namely,
we will suppose that there is a constant ∆ < κ

d2d−1 and a β∗ <∞ such that

ζ(β) ≥ e−β∆ (4.10)

for all β > β∗. We reemphasize that in all of the usual problems, the condition
(4 10) is satisfied with ∆ 0
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Theorem 4.2. Consider the site-diluted Hamiltonians with κ > 0 and suppose that
the condition (4.10) holds. Then there is a value µ∗(β) at which two phases, “full”
and “empty”, coexist.

Proof. It is sufficient, by the previous arguments to establish that 〈χnc
〉J,µ,κ
N,β  1,

unless nc is full or empty, uniformly in µ. For κ > 0 this will be shown for all β
sufficiently large. By the standard estimates, we may bound

〈χnc
〉J,µ,κ
N,β ≤

(
qUeUβµe2EβκsL

) 1
2d

[
1 +

(
eβµedβκe−∆β

)Nd] 1
Nd

. (4.11)

After some manipulations on the right hand side,

〈χnc〉J,µ,κ
N,β ≤ e(l+u)∆βqusle−[d(L+U)−2E]βκ 1

2d
e(l+u)[βµ+dβκ]

[
1 +

(
eβµedβκe−∆β

)Nd] 1
Nd

. (4.12)

We will immediately write l + u ≤ 1, which allows us to get rid of the fraction
and to replace the first term by e∆β . Next, we claim that for nc not full or empty,
d(L + U) − E ≥ 2

d . Indeed, this is basically the same argument that was used in
Theorem 4.1. Namely, if E = L = 0, we must have U ≥ 1. Otherwise, for L < 2d

we have 2E < dL, i.e. 2E ≤ dL− 1. Putting these facts together, we arrive at

〈χnc〉J,µ,κ
N,β ≤ qusle−β[ κ

d2d−1 −∆] → 0 as β →∞. (4.13)

If the equation (4.13) is taken in conjunction with the previous arguments, then for
all β sufficiently large, phase coexistence at some µ∗(β) is established. �

The authors would like to thank Roland Dobrushin for the tip that the ∞ > µ � 1 region of

the site diluted Potts models were accessible by these techniques.
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