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Phase Diagram of Horizontally Invariant
Gibbs States for Lattice Models

P. Holický, R. Kotecký and M. Zahradńık

Abstract. We study interfaces between two coexisting stable phases for a general
class of lattice models. In particular, we are dealing with the situation where several
different interface configurations may enter the competition for the ideal interface
between two fixed stable phases. A general method for constructing the phase dia-
gram is presented. Namely, we give a prescription determining which of the phases
and which of the interfaces are stable at a given temperature and for given values of
parameters in the Hamiltonian. The stability here means that typical configurations
of the limiting Gibbs state constructed with the corresponding interface boundary
conditions differ only on a set consisting of finite components (“islands”) from the
corresponding ideal interface.

0 Introduction

Before stating our main result in its full generality in the next section, we shall
explain the main idea for a particular model. Namely, we shall consider interfaces
between two stable phases for the three-dimensional Blume-Capel model. To every
site i ∈ Z3 a spin x(i) is attached attaining the values x(i) ∈ {−1, 0,+1}. The
Hamiltonian in a finite volume Λ ⊂ Z3 with boundary conditions z is given as

HΛ(x|z) = J
∑
〈i,j〉
i,j∈Λ

(x(i)−x(j))2+J
∑
〈i,j〉

i∈Λ,j /∈Λ

(x(i)−z(j))2−λ
∑
i∈Λ

x(i)2−h
∑
i∈Λ

x(i).

First two sums are over pairs of nearest neighbours, J > 0 is fixed. It is easy to see
that the phase diagram in the (λ, h)-plane and at vanishing temperature consists
of three regions of ground states of constant spins, x ≡ +1, x ≡ −1, and x ≡ 0,
separated by half-lines h = 0, λ ≥ 0; h = λ, λ ≤ 0; and h = −λ, λ ≤ 0. With the
help of Pirogov-Sinai theory [PS] one can show that the phase diagram at small
temperatures is a smooth deformation of this zero temperature phase diagram [BS]
as indicated in Fig. 1.

Notice that the region of the phase 0 is expanding as the temperature grows.
This is easy to understand by observing that while the phases + and − have only
one type of lowest energy excitation, namely, flipping a single spin to the value
0, the phase 0 allows two excitations of this order, flipping to +1 or −1, which
gives the phase 0 an advantage at non-vanishing temperatures when excitations
contribute to the free energy. The coexistence of all three phases occurs at the line
(λ = λ0(T ), h = 0), where λ0(0) = 0 and the function λ0(T ) is growing in T .
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T

λt(T )

λλt(0) = 2J

h

Fig. 1. Phase diagram of Blume-Capel model. The line λt(T ) corresponds to co-
existence of two different interface patterns on the boundary between stable plus
and minus phases.

Let us consider now, for h = 0, λ > 0, an interface between plus phase
in the upper half-space and minus phase in the lower half-space. Depending on
the value of λ, different arrangements of spins on the interface yield the minimal
energy. Namely, if λ ≥ 2J , the most convenient way is to switch directly from
plus to minus spins — the configuration y(I), y(I)(i) = 1 whenever i3 ≥ 0 and
y(I)(i) = −1 whenever i3 < 0, is a ground state. Indeed, it is not difficult to
see that the difference of the energy of any configuration x that differs from y(I)

on finite number of sites and that of the configuration y(I) itself, is nonnegative,
HΛ(x|y(I)) ≥ HΛ(y(I)|y(I)). On the other side, if λ ≤ 2J , it is favourable to sepa-
rate pluses and minuses by a layer of spins 0; the ground state is the configuration
y(II), y(II)(i) = 1 whenever i3 > 0, y(II)(i) = 0 for i3 = 0, and y(II)(i) = −1
whenever i3 < 0.

We will see that this behaviour subsists at small temperatures. Namely, there
exists a smooth transition function λt(T ) emanating from the point λt(0) = 2J at
T = 0 such that, if λ ≥ λt(T ), the boundary conditions y(I) yield (at temperature
T and in the thermodynamic limit) the Gibbs state whose typical configurations
differ from y(I) only on small islands — the state corresponding to y(I) is stable.
Similarly, for λ0(T ) + δ < λ ≤ λt(T ) the state corresponding to y(II) is stable. At
the coexistence line λ = λt(T ) both states are stable. Notice that the transition is
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of the first order type — the variable that exhibits a discontinuity while passing
through the transition line is, for example, the density of spin 0 at the interface.

We are actually concerned here with the phenomenon of “prewetting” of the
microscopic ± interface by zero spins. Notice that we excluded a small neigh-
bourhood of the coexistence line λ0(T ). It is expected that for λ very close to λ0
(λ − λ0 ∼ O(e−β) as β → ∞) the layer of zero spins spreads over several lattice
sites, with its thickness growing due to “entropic repulsion” as λ↘ λ0 (it was this
type of wetting that was discussed for λ = λ0 in [BL]).

Our aim in this paper is to study this type of surface phenomena in a general
case. Namely, we are interested in situations where, as in the example above, several
different interface configurations may enter the competition for the ideal interface
between two fixed stable phases. The simpler case with a single ground state
interface in the considered region of parameters (as is the case, for example, for
the standard Ising model) is well understood [HKZ] as a straightforward, though
rather technically involved, generalization of the standard Dobrushin treatment
[D 72]. Simplifying slightly, the main idea is to rewrite the finite volume Gibbs
state with interface boundary conditions in terms of the probability distribution
of the interface contour separating the regions of two coexisting stable phases. To
prove the existence of the interface Gibbs state in the thermodynamic limit, one
shows that typical interface contours differ only locally from the ideal ground state
interface configuration. To this end one splits the interface contour into regions
of ideal interface at different heights — the ceilings — separated by walls. The
crucial observation that there is a one-to-one correspondence between interface
contours and collections of compatible walls, and that the walls are distributed in
an independent way, allows one to use a generalization of the Peierls argument,
with walls playing the role of contours, to prove that the probability of walls is
dumped and to conclude the existence of interface Gibbs state.

The most important fact that was skipped out in the simplified description
above, is that the interface is actually surrounded, from above and below, by two
different — possibly asymmetric — coexisting phases. Their influence is taken into
account by rewriting the corresponding partition functions, with the help of the
Pirogov-Sinai theory, in terms of cluster expansions. After separating a suitable
normalizing factor, we expand the cluster terms intersecting the interface. As a
final result, one has to deal with an interface decorated by clusters.

The problem in the general case is that presence of various competing in-
terfaces leads to existence of different types of ceilings. To treat the probability
distribution of collection of walls one has to cope with the matching conditions
on families of walls. Namely, each wall is “labeled” on any connected component
of its boundary, where it is attached to surrounding ceilings, by the type of the
corresponding ceiling. For the collection of walls stemming from an interface, these
labels on boundaries of different walls attached to the same ceiling must coincide.
But this is the starting point of the standard Pirogov-Sinai analysis of probabilities
of collections of labeled contours. One only has to be slightly more careful when
applying these ideas.
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One point to consider is the nonlinear dependence on the original Hamiltonian
(and its parameters) of the decorating cluster terms originated from the coexisting
phases surrounding the interface. These have to be attached to the considered
walls and one thus has to be prepared to deal with a nontrivial dependence of wall
weights on parameters of the original Hamiltonian.

Second point is that the decorations may actually stick out of the consid-
ered finite volume and as a result one is dealing with infinitely many wall-cluster
aggregates intersecting the given finite volume. One thus has to be careful when
applying standard cluster expansions to treat correctly these situations having also
in mind that the weight factors of terms that are not entirely contained in a given
volume may actually depend on it yielding a fixed limiting weight factor only when
volume expands to infinity.

Last but not least, the weight factors of the wall-cluster aggregates might be
actually negative, due to presence of cluster terms whose sign is not determined.

There are different strategies how to deal with these problems. Here, we have
chosen the most conservative one. Namely, we rewrite the interface partition func-
tion (and the corresponding Gibbs state) in such a way that we can use directly
(essentially) standard Pirogov-Sinai theory with the role of contours played by
“shadows” of wall-cluster aggregates projected to the plane of ideal interface. To
get positive weights allowing in the final account, for example, to estimate the
probability of external shadows in the standard manner, we add a suitable cluster
sum into the exponent contributions to the interface partition function, absorbing
it in the same time into a small change of weight of interfaces. The cluster contri-
butions of this added sum can be easily chosen in such a way that the positivity
of combined cluster terms is assured.

There are at least two alternative approaches. First, one may base all the
discussion on an extension of Pirogov-Sinai theory to complex parameters [BI].
The first steps in this direction (dealing only with one type of interface and gen-
eralizing thus [HKZ]) are done in [BCF 1]. The study in [BCF 1] is motivated by
the investigation of interfaces in quantum lattice models [BCF 2]. Other approach,
proposed recently by two of us [HZ], is to develop a new alternative to Pirogov-
Sinai theory based on the idea of “expanding away”, one by one, all contours and
walls without ever passing through intermediate contour models with their cluster
expansions as it is the case in the standard Pirogov-Sinai theory. This method is
conceptually promising and we expect that it will allow a treatment of a great
variety of models with different types of interface, wetting, and other “stratified”
states (i.e. consisting of several interfaces). The paper [HZ] develops the theory
in a very general situation and it has to be supplied by a detailed study of the
dependence of stability of resulting interfaces on parameters of the original Hamil-
tonian to draw the phase diagram at nonvanishing temperatures. A great deal of
the present paper treats this particular problem in the situation of an interface
with different ceilings and has thus its importance even though it is based on a
rather standard Pirogov-Sinai approach and does not evoke the approach from
[HZ].
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The paper is organized as follows. In Section 1, we set the problem, introduce
the class of models to be treated with assumptions (Peierls conditions) that assure
a dominance by a particular class of ideal interfaces (ceilings). The main result
(Theorem 1) is presented in a general form stressing the smooth dependence of
the resulting full phase diagram on the temperature (including the description
of regions where particular interfaces become stable — cf. Fig. 1). It follows from
Basic Lemma whose proof is postponed, after various preparatory steps in Sections
3 and 4, to Section 4.4.

Section 1 contains, in addition to Theorem 1 with its proof following from Ba-
sic Lemma, also the characterization of the ground state phase diagram including
interface ground states (Proposition 1.1.3) as well as its completeness under the
condition of removing of degeneracy (Corollary 1.1.4) with their proofs in Section
1.3.

Section 2 is devoted to a brief reformulation and a slight extension of the
Pirogov-Sinai theory. First, we summarize the results concerning contour models
in a form needed for our purposes. This part includes contour models with bound-
ary dependence (models whose contour weights depend slightly on the boundary
of the considered volume and are translation invariant only for contours far from
the boundary). The corresponding results are of an independent interest, given the
fact that one often obtains a reformulation in terms of such a contour model. Next,
we introduce labeled contour models and summarize the Pirogov-Sinai theory in
Theorem 2 (characterization of stable phases) proved as a consequence of Propo-
sition 2.2.1 (properties of stable phases) that is proved in Section 2.3. Again, also
the situation of labeled contour models with boundary dependence is considered
(Corollary 2.2.2).

A standard application is the description of periodic Gibbs states in terms
of contour models. This is needed in the further treatment and it is presented in
Section 3 to set the notation.

Finally, in Section 4 we reformulate the Gibbs states with interfaces in terms
of labeled contour models with role of contours played by the shadows of walls
decorated by the clusters of the stable phases above and below the interface. This
is done in a series of steps that yield an expression for the weights of shadows that
are sufficiently dumped to allow once more the application of Theorem 2.

1 Setting and the main result

1.1 Setting; ground state phase diagram

We shall consider classical lattice models on a ν-dimensional lattice Zν(ν ≥ 3) with
a finite set S of spin values attached to each lattice site i ∈ Zν . The configuration
space will be denoted by X(= SZν ), the space of restrictions xΛ = (x(i) : i ∈ Λ)
of configurations x = (x(i) : i ∈ Zν) ∈ X to Λ ⊂ Zν by XΛ(= SΛ). We endow
the lattice Zν with the �∞-metric (ρ(i, j) = maxk=1,...,ν |ik − jk|). Connected (R-
connected) set A ⊂ Zν is then defined as a set whose any two sites i, j ∈ A can be
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joined by a sequence of sites i = i1, i2, . . . , j = ik from A such that ρ(i�, i�+1) ≤ 1
( ρ(i�, i�+1) ≤ R) for all � = 1, 2, . . . , k − 1.

Every translation invariant Hamiltonian H = (UA;A ⊂ Zν , diamA < R) of
range R with interactions UA : XA → R can be identified with H = (U[A]), where
[A] runs over all (finitely many) equivalence classes of subsets of Zν defined by
shifts of an A ⊂ Zν with diamA < R. So the translation invariant Hamiltonians of
range R form a finite-dimensional vector space of Hamiltonians denoted by H(R).
More precisely, it can be identified with the space of all vectors (UA(xA); i(A) =
0, diamA < R, xA ∈ XA), where xA are ordered in a fixed way. Here i(A) ∈ A
is a site chosen in A in a fixed canonical way (say, the first site in A in a fixed
lexicographic order). Throughout we use ‖·‖ to denote the euclidean norm on
H(R), ‖ · ‖∞ the maximum norm on it, and dimH(R) to denote its dimension.

Using HΛ(x|z) to denote the Hamiltonian in Λ with boundary conditions
z ∈ X ,

HΛ(x|z) =
∑

A∩Λ�=∅
UA(xA)

with x = z in Λc, we introduce the partition function

Z(Λ|z;H) =
∑

x=zinΛc

exp{−HΛ(x|z)}.

It will be useful to define also

Z(Y,Λ|z;H) =
∑
xΛ∈Y

x=zinΛc

exp{−HΛ(x|z)}

for any Y ⊂ XΛ.
The Gibbs state in a finite volume Λ ⊂ Zν under a boundary condition x ∈ X

with Hamiltonian H is the probability µ(·,Λ|z;H) on X defined by

µ({x},Λ|z;H) =
Z({xΛ},Λ|z;H)

Z(Λ|z;H)

whenever x = z in Λc.
The set of all Gibbs states in (possibly infinite) V ⊂ Zν under a boundary

condition x ∈ XZν\V with Hamiltonian H introduced by means of the DLR equa-
tions (see [HKZ], Section 2.1, for discussion of the situation with V � Zν) will
be denoted by G(V |x;H). For V = Zν the boundary condition x is necessarily
empty and we get the standard definition of Gibbs states (G(Zν | ∅, H) = G(H)).
The inverse temperature β does not appear here as an independent parameter; it
is incorporated into the constants of the Hamiltonian H . (See also Remark 4 in
Section 1.2.)

It is well known that the set of all Gibbs states G(H) is the closed convex hull
of all possible weak limits limΛn↗Zν µ(·,Λn|z;H) of finite volume Gibbs states.
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A configuration x ∈ X is called a ground configuration of a Hamiltonian
H = (UA) if “the energy of every finite perturbation x̃ of x (x̃ differs from x at a
finite number of lattice sites) is not smaller than the energy of x”:

H(x̃;x) =
∑
A

(UA(x̃A)− UA(xA)) ≥ 0. (1.1)

If the above difference is positive for each finite perturbation x̃ �= x, we refer to x
as to a ground state (isolated ground configuration). We use g(H) (resp. gper(H))
to denote the set of all ground configurations corresponding to H (resp. periodic
ground configurations).

Our aim will be to discuss phase diagrams including a class of Gibbs states
with an (“horizontal”) interface. Before taking into account any excitations, we
shall describe the phase diagram at vanishing temperature—the ground state phase
diagram.

We thus suppose that a set G of configurations is given (to play the role of
possible ground states). We shall restrict ourselves to horizontally periodic config-
urations, i.e. we suppose that every x ∈ G is periodic with respect to translations
in the first (ν − 1) coordinates. We use Gper to denote the subset of all x ∈ G
that are also vertically periodic, i.e. periodic with respect to the ν-th coordinate,
and we put Ghor = G \ Gper. Further we assume that each x ∈ Ghor is identical
to two configurations y1, y2 ∈ Gper above and below certain heights, respectively.
Namely, for each x ∈ Ghor there exist two states y1, y2 ∈ Gper and a pair of con-
stants t1(x), t2(x) such that x(i) = y1(i) once iν ≥ t1(x) and x(i) = y2(i) once
iν ≤ t2(x). We may assume that t1(x) and t2(x) are chosen as the minimal, resp.
maximal, constant with this property. We suppose also that the set G is finite up
to vertical translations, i.e. there exists a finite subset of G such that any con-
figuration x ∈ G is a vertical translation of a configuration from the considered
finite set. In particular, Gper is finite, Gper = {x1, . . . , xr}, and there exist a finite
constant t (maximal thickness of interfaces) such that t ≥ t1(x)− t2(x) for all pairs
t1(x), t2(x) above1.

To control the suppression of excitations with respect to configurations from
G, we rely on an extended Peierls condition. To introduce it, let us first define
“the specific energy at the site i” by

E
(H)
i (x) =

∑
A�i

UA(xA)
|A| (1.2)

for each configuration x ∈ X . Here |A| refers to the number of sites in A. The no-
tation E

(H)
Λ (x) =

∑
i∈ΛE

(H)
i (x) will be also used. For every periodic configuration

x, x ∈ Xper, we also define the specific energy ex(H) of x by

ex(H) = lim
n→∞

1
|V ν

n |
∑
i∈V ν

n

E
(H)
i (x) (1.3)

1This fact implies that the interface introduced below is necessarily connected.
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(with V ν
n denoting a cube consisting of nν lattice sites). For any cube V ν

n whose side
is a multiple of the periodicity of x ∈ Xper, one clearly has E(H)

V ν
n
(x) = |V ν

n |ex(H),

i.e. ex(H) = 1
|V ν
n |

∑
i∈V ν

n
E
(H)
i (x).

It is useful to introduce an averaged specific energy2 at site i for any config-
uration x by the right hand side of the last equation. Namely, let p be a common
multiple of periods of all configurations from Gper as well as horizontal periods of
all configurations from Ghor, for any i ∈ Zν let Vp(i) be the cube

Vp(i) =
{
j ∈ Zν ; j = i+ k, k = (k1, . . . , kν) ∈ {0, 1, . . . , p− 1}ν

}
,

and for any configuration x ∈ X let

E
(H)

i (x) =
1

|Vp(i)|
∑

j∈Vp(i)
E
(H)
j (x).

It is easy to verify that for any Λ, the sum
∑

i∈Λ E
(H)

i (x) differs from E
(H)
Λ (x) by

a local boundary term,

∑
i∈Λ

E
(H)

i (x) = E
(H)
Λ (x) +

∑
j∈Λc

E
(H)
j (x)

|V ∗
p (j) ∩ Λ|
|V ∗

p (j)|
−

∑
j∈Λ

E
(H)
j (x)

|V ∗
p (j) ∩ Λc|
|V ∗

p (j)|
.

Here, V ∗
p (j) = {i ∈ Zν ; j ∈ Vp(i)} =

{
i ∈ Zν ; i = j − k, k ∈ {0, 1, . . . , p − 1}ν

}
.

The explicit form of the boundary term is not very relevant; an important fact is,
however, that whenever x and x̃ differ only on a finite set, then

E
(H)
Λ (x̃)− E

(H)
Λ (x) =

∑
i∈Λ

E
(H)

i (x̃)−
∑
i∈Λ

E
(H)

i (x) (1.4)

once Λ is sufficiently large. More exactly, the equality holds if x(i) �= x̃(i) implies
that d(i,Λc) > R+ p. Clearly, E

(H)

i (x) = ex(H) for any x ∈ Gper.
Let, now, an integer d ≥ R be chosen so that it is surpassing both periodicity

p as well as interface maximal thickness t, d > max{R− 1, p, t}. Consider the set
of all elementary cubes consisting of dν lattice sites. A bad cube of a configuration
x ∈ X is an elementary cube D for which xD differs from yD for every y ∈ Gper.
Notice that the choice of d ensures that the only configurations with no bad cube
are those from Gper. The boundary B(x) of x is the union of all bad cubes of x.
If x ∈ Gper and x̃ is its finite perturbation (differing from x on a finite set of

2The reader who is ready to sacrifice the subtlety of the case of periodic but not necessarily
translation invariant configurations in Gper can skip the present paragraph, suppose that all

x ∈ Gper are translation invariant, and replace everywhere E
(H)
i (x) by E

(H)
i (x). Actually, as

explained after the formulation of Basic Lemma in Section 1.3 below, by introducing “block spins”
one can rewrite the model (possibly lowering the upper bound on allowed temperatures) in such
a way that all configurations in Gper become translation invariant as well as all configurations
in Ghor become horizontally translation invariant.
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lattice sites), then, necessarily, B(x̃) is finite. Any connected component Γ of B(x̃)
is called a contour (of x̃) and we use ∂(x̃) to denote the set of all contours of x̃,
B(x̃) =

⋃
Γ∈∂(x̃) Γ. Notice that the configuration x̃ coincides with one of the states

x ∈ Gper on every component of Z \ B(x̃). The only x ∈ Gper that coincides with
x̃ on d-boxes that intersect both Γ and the only infinite component of Zν \ Γ, is
called the external boundary condition of the contour Γ of x. Finally, we use e0(H)
for minx∈Gper ex(H) and denote gper0 (H) = {x ∈ Gper; ex(H) = e0(H)}.

The standard Peierls condition3 , with ρ > 0 and with respect to Gper, that
is used in the Pirogov-Sinai theory, can be formulated as the bound∑

i∈Γ

(
E
(H)

i (xΓ)− ex(H)
)
≥ ρ|Γ| (P

(per)
)

for any x ∈ Gper, any contour Γ, and any configuration xΓ such that Γ is its only
contour with external boundary condition x. Notice that if all configurations in
Gper are actually translation invariant, Ei can be simply replaced by Ei, yielding
Peierls condition in the form

E
(H)
Γ (xΓ)− ex(H)|Γ| ≥ ρ|Γ|. (P(per))

Let us remark that one can normalize the condition with respect to the mini-
mum e0(H) instead of ex(H) [BK]. This is a useful trick that enables, with some
additional care in relevant estimates, to get a uniform validity of the theory far
away from lines of coexistence. However, we will restrict our considerations to a
small neighbourhood of a fixed Hamiltonian anyway and will thus abstain from
this extension.

Turning now to the configurations containing interfaces, we first introduce
the notion of a wall. Namely, consider a configuration x ∈ Ghor and its excitation
x̃ differing from x on a finite set of lattice sites. Let I(x̃) denote the infinite
connected component of B(x̃) (notice that B(x̃) has only one infinite component
(cf. footnote 1)) and let I(x̃), an interface, be the pair (I(x̃), x̃I(x̃)). Notice that
I(x̃) is splitting Zν \ I(x̃) into two infinite components.

Denoting, for any i ∈ Zν , by C(i) the column {(i1, . . . , iν−1, n);n ∈ Z} and
by Cd(i) its d-neighbourhood, we use C(x̃) to denote the set of those sites i of I(x̃)
for which there exists a configuration y ∈ G such that I(x̃) ∩Cd(i) = I(y)∩Cd(i)
and x̃ = y on it. The set C(i)∩I(y), for such i ∈ C(x̃), is called a y-ceiling column.

Further, a pair w = (W, x̃W ), where W is a connected component of I(x̃) \
C(x̃), is a wall of I(x̃). We denote by W(I(x̃)) the collection of all walls of I(x̃).
Whenever w = (W, x̃W ) is a wall, there exists a configuration yw ∈ G and its
perturbation xw such that w is the only wall of xw,W(I(xw)) = {w}. For any wall

3The word standard here corresponds to the fact that here we are dealing only with “contours
immersed in periodic configurations” in contrast with “walls of an interface” as will be the case
below. On the other hand, we are dealing here with a Peierls condition valid uniformly on a
neighbourhood of Hamiltonians — this type of the Peierls condition is sometimes [EFS] called
“extended Peierls condition”.
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w, we use IW = I(yw)∩(
⋃

i∈W C(i)). Notice that this definition is consistent—the
right hand side above is well defined only from geometry of W . Indeed, any wall
has an “outside rim” from which the set I(yw) can be uniquely read of.

A Hamiltonian H = (UA) is said to fulfill the Peierls condition (P) with
respect to the set G (and with constant ρ > 0) if it satisfies (P

(per)
) as well as

∑
i∈W

(
E
(H)

i (xw)− e0(H)
)
−

∑
i∈IW

(
E
(H)

i (yw)− e0(H)
)
≥ ρ|W | (P

(hor)
)

for any wall w and the corresponding configuration yw ∈ Ghor and its excitation
xw. Again, if all configurations in Gper are translation invariant, the condition
takes simpler form

(
E
(H)
W (xw)− e0(H)|W |

)
−

(
E
(H)
IW

(yw)− e0(H)|IW |
)
≥ ρ|W |. (P(hor))

The symbol (P) denotes that both (P(per)) and (P(hor)) are satisfied.
The following lemma is related to Lemma 2.1 from [S].

Lemma 1.1.1 Let H satisfy the Peierls condition with respect to a non-empty finite
set Gper ⊂ Xper. Then all periodic ground configurations of H are ground states,
their set gper(H) coincides with the set gper0 (H), and gper0 (H) minimizes specific
energy over all Xper, gper0 (H) = {x ∈ Xper; ex(H) = e0(H)}.

Proof. 1. We first show that each element x of Gper with ex(H) = e0(H), is a
ground state of H . This, in particular, implies gper0 (H) ⊂ gper(H).

Let y differ from x on a non-empty finite subset of Zν . Let Λ ⊂ Zν be finite
and such that x(i) �= y(i) implies that dist(i,Λc) > p+R.

By (1.4), (P
(per)

), and the choice of x and Λ, we get

H(y;x) = E
(H)
Λ (y)− E

(H)
Λ (x) =∑

i∈Λ
(
E
(H)

i (y)− E
(H)

i (x)
)
=

∑
i∈Λ

(
E
(H)

i (y)− ex(H)
)
=

=
∑

i∈B(y)

(
E
(H)

i (y)− ex(H)
)
+

∑
i∈Λ\B(y)(E

(H)

i (y)− ex(H)) > ρ|B(y)| > 0.

Notice that for i /∈ B(y) the values E
(H)

i (y) equal to some of ez(H) with z ∈ Gper

and so they are greater or equal to ex(H) = e0(H). Hence the claim of the first
step is verified.

2. Let ey(H) > e0(H) for some periodic configuration y. Then we may con-
sider a configuration ỹ that is equal to y outside of some large cube Λ ⊂ Zν and
coincides with x in Λ, where x ∈ gper(H). It is obvious that H(ỹ; y) < 0 if Λ is
large enough due to the inequality ey(H) > e0(H) = ex(H). So y is not a ground
configuration.

3. Finally, let y be a periodic configuration and y /∈ Gper. Let us consider
configurations yxΛ such that yxΛ equals to y on a sufficiently large cube Λ ⊂ Zν and
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to x ∈ gper0 (H) on Λc. We may notice that by the finite range of the potential

ey(H)− ex(H) = lim
Λ→Zν

H(yxΛ;x)
|Λ| ,

where the limit is e.g. over any sequence of cubes Λ with diameters tending to
infinity.

We get, similarly as in step 1, for sufficiently large neighbourhood V of Λ
that

H(yxΛ;x) = E
(H)
V (yxΛ)− E

(H)
V (x) > ρ|B(yxΛ)|.

There is c > 0 independent of Λ such that |B(yxΛ)| > c|Λ| as y is periodic.
Summing up what we observed, we get that ey(H) > ex(H) implying the

inclusion {x ∈ Xper; ex(H) = e0(H)} ⊂ Gper and finishing thus the proof. �
Our next aim is to study all horizontally periodic ground configurations of H .
In analogy with ex(H) for x ∈ Xper, we consider a configuration x ∈ G∩Xhor

y,z

with y, z ∈ gper0 (H), y �= z, where Xhor
y,z is defined as the set of all horizontally

periodic configurations asymptotically coinciding with y and z (i.e. x ∈ Xhor
y,z if

x(i) = y(i) whenever iν ≥ t1 and x(i) = z(i) whenever iν ≤ t2 for some t1, t2 ∈ Z),
and define

ex(H) = lim
n→∞

1
|V ν−1

n |
∑

i:(i1,...,iν−1)∈V ν−1
n

[
E
(H)
i (x)− E

(H)
i (y)

]
. (1.5)

Notice that only finite number of terms in the sum does not vanish and that the
configurations y and z can be read off from x and we do not introduce them
explicitly into the notation. Notice also that

ex(H) =
∑

i∈C(0)

[
E
(H)

i (x)− e0(H)
]
,

where the sum is again only formally infinite. Notice, that even though we keep
the same notation as in (1.3), no confusion can arise since these two definitions
concern disjoint classes of configurations x; periodic ones in (1.3) and horizontally
periodic ones above.

Similar notion to e0(H), that according to Lemma 1.1.1 equals min{ex(H);
x ∈ Xper}, is

ey,z0 (H) = min{ex(H);x ∈ G ∩Xhor
y,z }.

We also use the notation

gy,z0 (H) = {x ∈ Ghor ∩Xhor
y,z ; ex(H) = ey,z0 (H)}.

Finally, we say that a set G is admissible if it is non-empty and, up to vertical
translations, finite set of horizontally periodic configurations such that for each
x ∈ Ghor it is x ∈ Xhor

y,z for some y, z ∈ Gper, y �= z, and that G ∩ Xhor
y,z �= ∅ for

each y, z ∈ Gper, y �= z.
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Lemma 1.1.2 Let G be admissible and let H satisfy the Peierls condition (P) with
respect to G and some ρ > 0.

Then a horizontally periodic configuration x is a ground state, equivalently a
ground configuration, of H if and only if

either x ∈ gper0 (H)
or x ∈ Xhor

y,z for some y, z ∈ gper0 (H), y �= z, and

ex(H) = ey,z0 (H).

Moreover, such configuration x automatically belongs to G.

Proof. According to Lemma 1.1.1, it suffices to consider only non-periodic config-
urations.

1. We first show that each x ∈ gy,z0 (H) for some y, z ∈ gper(H), y �= z, is a
ground state.

Let x̃ differ from x on a non-empty finite subset of Zν and let Λ ⊂ Zν be a
finite cube such that x̃(i) �= x(i) implies that dist(i,Λc) > R + p. Let xI be the
unique configuration with B(xI) consisting only of the infinite component of B(x̃).

Then
H(x̃;x) = H(x̃;xI) +H(xI ;x).

Using (P
(per)

), we get that H(x̃;xI) ≥ 0, or even that H(x̃;xI) > 0 if xI = x (and
thus x̃ �= xI) when also H(xI ;x) = 0.

If xI �= x, we rewrite H(xI ;x) =
∑

i∈Λ
(
E

(H)

i (xI)−E
(H)

i (x)
)
, by adding and

subtracting the term e0(H)|Λ|, as the sum over disjoint columns C of the terms
of the form ∑

i∈C∩Λ

(
E
(H)

i (xI)− e0(H)
)
−

∑
i∈C∩Λ

(
E
(H)

i (x)− e0(H)
)
.

For any x̄-ceiling column C this term equals to ex̄(H)−ey,z0 (H) that is nonnegative
by the definition of ey,z0 (H). Noticing also that for a column C that intersects a

wall w of xI every contribution E
(H)

i (xI)−e0(H) with i ∈ C ∩W c is nonnegative,
and using the bound eyw(H) ≥ ex(H) = ey,z0 (H), and the transcription of the
definition of ex(H) after (1.5) above, we are left with

H(xI ;x) ≥
∑
w

[∑
i∈W

(
E
(H)

i (xI)− e0(H)
)
−

∑
i∈IW

(
E
(H)

i (yw)− e0(H)
)]

> 0

by the Peierls condition (P
hor

).
2a. Let x be a horizontally periodic ground configuration that is not periodic.

If, in the upper half space, there are only finitely many horizontal layers of width
d with x equal to some element of gper(H) on them, then we easily obtain a
contradiction with (P

per
) by considering cubes Λ that are large enough and take

x on Λ and some x0 ∈ gper(H) on Λc. Notice that the volume of bad cubes in Λ
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is of the order of the volume of Λ. So there must be infinitely many such layers of
a configuration y ∈ gper(H) in the upper half-space and infinitely many layers of
z ∈ gper(H) (possibly equal to y) in the lower half-space .

Further, whenever there are two disjoint layers on which x equals to the same
element y of gper(H), it necessarily equals y also in-between of these two layers.
Indeed, let us suppose that x is not equal to y in-between. Considering paral-
lelepipeds Λ that have the upper mentioned layer just above its top and the lower
mentioned layer just below its bottom and changing x on the d-neighbourhood of
the boundary of Λ to y may increase the energy at most by a contribution of the
order of the size of the side-wise boundary of Λ (excluding its top and bottom),
whereas changing additionally x to y everywhere inside Λ causes a decrease of the
energy by a contribution of the order of the size of the top of Λ (applying (P

per

and the fact that between those two layers there must be a layer containing, due to
horizontal periodicity of x, a periodic horizontal grid of bad cubes). Since the size
of the top, or bottom, of Λ are asymptotically larger than that of the rest of the
boundary of Λ, the energy for Λ large enough decreases and so x is not a ground
configuration. This contradiction shows that x ∈ Xhor

y,z for some y, z ∈ gper(H),
y �= z.

2b. If ex(H) > ey,z0 (H) for y, z ∈ gper(H), y �= z, x ∈ Xhor
y,z , then x is not

a ground configuration because replacing it by some element x̄ of Xhor
y,z for which

ex̄(H) = ey,z0 on sufficiently large cube, with its top in the upper region for both
configurations and its bottom in the lower region for both configurations x and x̄,
we increase the energy.

3. If x /∈ G and x ∈ Xhor
y,z , we get that ex(H) > ey,z0 (H) from (P

hor
) investi-

gating the limit of ex(H) = 1
|V ν−1
n |H(xwVn ;w) for some sequence of cubes Vn tending

to Zν . Here xwVn is equal to w on V c
n for some w ∈ G∩Xhor

y,z with ew(H) = ey,z0 (H)
and to x on Vn. �

Our aim now is to describe “the phase diagram at zero temperature” — the
ground state phase diagram. Consider a Hamiltonian H0 with the set G0 of all
horizontally periodic ground states of H0, G0 = g(H0). To describe the ground
state phase diagram in a (sufficiently small) neighbourhood of H0 in H(R) means
to specify, for every subset G ⊂ G0, the set of all Hamiltonians H for which G is
the set of all horizontally periodic ground configurations, G = g(H). In fact we are
describing the phase diagram for H from some cone containing a neighbourhood
of H0.

Proposition 1.1.3 (ground state phase diagram) Suppose that H0 satisfies the
Peierls condition (P) with a constant ρ0 > 0 and with respect to an admissible
set G0 of horizontally periodic ground states, G0 = g(H0).

Then there exists ε > 0 such that for each H ∈ Kε(H0) = {βH̄ :
∥∥H̄ −H0

∥∥ <
ε‖H0‖, β > 1} the set g(H) of all horizontally periodic ground configurations is
contained in G0, each x ∈ g(H) is a ground state and either

• x ∈ Gper
0 and ex(H) = min{ex̄(H) : x̄ ∈ Gper

0 } (1.6)
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• x ∈ G0 ∩Xhor
y,z for some y, z ∈ gper(H), y �= z, and

ex(H) = min{ex̄(H) : x̄ ∈ G0 ∩Xhor
y,z } (1.7)

Moreover, for each 0 < ε̄ < ε there exists a constant ρε̄ such that limε̄→0+ ρε̄ = ρ0

and each H ∈ Kε̄(H0) satisfies the Peierls condition (P) with the constant ρε̄
‖H‖
‖H0‖ .

Proof. To show the validity of Peierls condition for the HamiltonianH with respect
to G0 and a suitable ρε̄, it suffices to compare it with the condition for H

‖H0‖
‖H‖ close

to H0. Hence the characterization from Lemmas 1.1.1 and 1.1.2 is valid implying
the claims. �
Remark. Notice that only non-empty admissible sets g(H) ⊂ g(H0) will appear.

To enable the realization of all admissible G ⊂ G0 in a neighbourhood of H0

(“full ground state phase diagram”) it is necessary to assume that a condition of
removing of degeneracy is fulfilled. To formulate it and to enable a global study of
the phase diagram at a non-vanishing temperature it is convenient to extend the
functional H → ex(H) defined by (1.5) only for those Hamiltonians H for which
y, z ∈ gper(H). This can be done for example by defining

ex(H) = lim
n→∞

1
|V ν−1

n |
∑

i∈I(x)
(i1,...,iν−1)∈V ν−1

n

[Ei(x)− min
y∈Gper

0

ey(H)] (1.8)

for every horizontally periodic x ∈ Xhor
y,z with y, z ∈ gper(H). Using |G∩Xhor

y,z |∼ver

to denote the number of elements of G∩Xhor
y,z taken up to vertical translations, we

formulate the condition of removing of degeneracy as the following assumption.

(RD) An affine subspace H0 ⊂ H(R) removes degeneracy of G0 = g(H0), an
admissible set of horizontally periodic configurations, if the set of

N0 =
(
|gper0 (H0)| − 1

)
+

∑
y,z∈gper

0 (H0)
y �=z

(|g0(H0) ∩Xhor
y,z |∼ver − 1)

linear functionals

{ex(H)− ex0(H), x ∈ gper0 (H0), x �= x0} ∪
∪{ex(H)− exy,z(H), x ∈ g0(H0) ∩Xhor

y,z , x �= xy,z , y, z ∈ gper0 (H0), y �= z}

with arbitrarily chosen x0 ∈ Gper and xy,z ∈ G0 ∩Xhor
y,z is a set of linearly inde-

pendent functionals on H0.
Notice that choosing H0 = H(R) with R large enough, degeneracy is always

removed. (It is sufficient to choose R larger than the smallest periods of configura-
tions in G0 as well as “thickness” of I(x) for all x ∈ G0 ∩Xhor.) If we considered
G consisting of translation invariant configurations, already single site potentials
(“external fields”) would be enough to remove the degeneracy.

Let us also remark that one might consider a more general “manifold of
parameters” H0 ⊂ H(R).
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Corollary 1.1.4 (completeness of the ground state phase diagram) Supposing the
validity of (RD) (with H0 = H(R)) in addition to the assumptions of Proposition
1.1.3 and denoting Hgr(G) = {H : G = g(H)}, one has Hgr(G) ∩ Kε(H0) �=
∅ for each admissible G ⊂ g0(H0) and Hgr(G1) ∩ Kε(H0)⊂�=Hgr(G2) ∩ Kε(H0)
whenever G1

⊃
�=G2. Actually the set Hgr(G) is the intersection of the corresponding

number of hyperplanes and open half-spaces in H(R) whose boundaries are yielded
by equalities contained in (1.6) and (1.7).

1.2 The main result

Our aim is to show that the phase diagram including all horizontally periodic states
is a small distortion of the ground state phase diagram described in Proposition
1.1.3 and Corollary 1.1.4 above. A Gibbs state µ of a Hamiltonian H ∈ H(R) is
said to be a perturbation of a (ground) configuration x ∈ G0 if for µ-almost all
configurations x̃ there exists a connected subset M ⊂ Zν such that x̃ differs from
x only outside M , x̃M = xM , the R-components of its complement Zν \M are
finite and, if x ∈ G0 ∩ Xhor, also the set M0 = {i ∈ I(x)|M ⊃ I(x) ∩ C(i)} is
connected.

Theorem 1 Let H0 be a translation invariant Hamiltonian, H0 ∈ H(R), fulfill-
ing the Peierls condition (P) with respect to an admissible set of ground states
G0 = g(H0) and a sufficiently large ρ0. Let further an affine subspace H0 ⊂ H(R)
containing H0 remove degeneracy of G0 (condition (RD)). Then there exist con-
stants ε > 0, c > 0, and a one-to-one mapping T from Kε(H0) onto a subset of
H(R) so that

(i) T (H0 ∩Kε(H0)) ⊂ H0;

(ii) for any x ∈ G, with G ⊂ g(H0) admissible, there exists a Gibbs state that is
a perturbation of x whenever H ∈ T (Hgr(G) ∩Kε(H0))(=: H(G));

(iii) ‖T (H)−H‖ ≤ e
−(ρ0−c) ‖H‖

‖H0‖ for each H ∈ Kε(H0);

(iv) ‖(T (H1)−H1)− (T (H2)−H2)‖ ≤ e
−(ρ0−c)min(

‖H1‖
‖H0‖ ,

‖H2‖
‖H0‖ ) ‖H1 −H2‖

for all H1, H2 ∈ Kε(H0).

Remarks. 1. We expect that the phase diagram is complete in the sense that the
only horizontally periodic Gibbs states for H ∈ H(G) are those corresponding
to x ∈ G. Even though we have not a proof of this fact in a general situation,
it should follow from the completeness of the ground state phase diagram by a
method similar to that of [Z].

2. The Gibbs states from (ii) satisfy an exponential decay of correlations. Also,
explicit integral formulas describing them can be written using the integration
with respect to measures on families of external contours and on families of walls
which describe the interface of the states corresponding to x ∈ Ghor. We shall only
describe the probabilities of external contours in Section 3 and of “shadows” in
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Section 4 and we abstain from a discussion how to reconstruct all the probability
using them. It could be done similarly like in [HKZ] Section 6.

3. The affine space H0 may be given in the form H0 = {Hα = H0 +∑N
k=1 αkHk}. It is customary to choose Hamiltonians Hk ∈ H(R) in a suitable

way so that their number N may be taken as the minimal possible (N = N0 from
(RD)). One could replace H0 by an N -dimensional smooth manifold defined by
a mapping H(α), α ∈ RN (with N ≤ N0 ), from a neighbourhood V of a point
α(0) ∈ RN into H(R) with H0 = H(α(0)). The condition of removing of degeneracy
then would be stated as the condition of maximality of the rank of the N0 × N
matrix with the entries

∂

∂αk

[
ex(H(α))− ex0(H(α))

]∣∣∣
α=α(0)

, x ∈ gper(H0), x �= x0, and

∂

∂αk

[
ex(H(α))− exy,z (H(α))

]∣∣∣
α=α(0)

,

x ∈ g(H0) ∩Xhor
y,z , x �= xy,z, y, z ∈ gper(H0), y �= z.

We shall not pursue the case of a general manifold H0 any further.
4. Usually one considers pairs, a Hamiltonian H and a temperature T , and

assigns them the Gibbs states defined by 1
T H (we put Boltzmann constant k = 1).

In Theorem 1 we included the temperature into the Hamiltonian to avoid an
overparametrization (multiplying both, the Hamiltonian and the temperature, by
the same factor, we get exactly the same set of Gibbs states as originally). One
can reformulate Theorem 1 exposing explicitly the temperature. Namely, one may
introduce the temperature-depending mapping

TT (H) = T · T (H
T
).

It describes the phase diagram at the slice of constant temperature T : the Gibbs
states yielded by 1

T TT (H) correspond (by (ii)) to the ground states of H
T (the same

as the ground states of H). Thus, for a fixed temperature T , one actually considers
H0 as a space of parameters and the mapping TT shows how one should deform
the ground state phase diagram to get the phase diagram at the temperature T .
The condition (iii) shows that limT→0 TT = id, the identical mapping, and that
the limit is attained exponentially fast. Notice that iv) yields a Lipschitz condition
for the mapping

(T,H)→ (T, TT (H)).

We derive Theorem 1 from the following lemma on the existence of a function
characterizing the presence of stable states whose proof is the main content of the
present paper and is presented in Sections 3, 4 and 5.

We use here and in what follows ∂+ᾱ to denote the directional one-sided
derivative in the direction ᾱ, i.e. ∂+ᾱ f(α) = limt→0+

f(α+tᾱ)−f(α)
t . Let us recall

that the hamiltonian H = (U[A];A ⊂ Zν , diamA < R) is an element of the finite-
dimensional space H(R).
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Basic Lemma. Let the assumptions of Theorem 1 be fulfilled (with ρ0 sufficiently
large). Then there exist ε > 0 and mappings hx : Kε(H0) → R (H �→ hx(H)) for
each x ∈ G0 such that

(i) a) for H ∈ Kε(H0) and x ∈ Gper
0 such that hx(H) = minx̃∈Gper hx̃(H) (such x

is then called stable), there exists an extremal Gibbs state µ ∈ G(H) that is
a perturbation of x;

b) for H ∈ Kε(H0) and x ∈ G0 ∩ Xhor
y,z , where y, z ∈ Gper

0 , y �= z, are stable
elements of Gper

0 and hx(H) = minx̃∈G0∩Xhor
y,z

hx̃(H) (x is stable), there exists
an extremal Gibbs state µ ∈ G(H) that is a perturbation of x;

(ii) there exists c > 0 (independent of ρ0) such that

a) |hx(H)− ex(H)| ≤ e
−(ρ0−c) ‖H‖

‖H0‖ (1.9)

for each H ∈ Kε(H0) and

b) ‖∂+
H̄
hx(H)− ∂+

H̄
ex(H)‖ ≤ e

−(ρ0−c) ‖H‖
‖H0‖ ‖H̄‖ (1.10)

for any H ∈ Kε(H0), H̄ ∈ H(R).

Remark (passing to horizontally translation invariant setting). Since we suppose
that G0 is finite up to vertical translations, we may and shall suppose that all
elements of Gper

0 are actually translation invariant and all elements of Ghor
0 are

horizontally translation invariant by considering a modified model. Namely, we can
choose some partition of Zd into a grid of cubes with edges of a length that is some
(e.g. the smallest possible) common multiple of the periods of all concerned periods.
The set of “spins” attained at such a cube B consist then of all configurations on B
with values in S. This changes the number of “spins” in dependence on the periods
only. In the proofs that follow in Sections 3, 4 and 5, we use this observation
and suppose that G0 consists of translation invariant and horizontally translation
invariant configurations.
Proof of Theorem 1. Denoting the parameter ε of the cone from Basic Lemma
by ε̃, the assertion (i) implies that it is enough to find a suitable mapping T (H)
solving the equations

hx(T (H))− hx0(T (H)) = ex(H)− ex0(H) for x, x0 ∈ Gper
0 , x �= x0, and

hx(T (H))− hxy,z (T (H)) = ex(H)− exy,z (H) for y, z ∈ Gper
0 , y �= z and (1.11)

x, xy,z ∈ G0 ∩Xhor
y,z , x �= xy,z

for all H ∈ Kε(H0) for some 0 < ε < ε̃. We see from Basic Lemma (i) immediately
that, if x is a horizontally invariant ground configuration of H , then x is stable
with respect to T (H).

The number of different equations in (1.11) is N0 (see (RD) above). To
get a unique solution T (H) satisfying (i) of the theorem we add the following
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equations. Namely, consider a decomposition H(R) = H(0) ⊕ H(1) into two or-
thogonal subspaces such that dimH(0) = N0, H(0) + H0 ⊂ H0, and H(0) + H0

removes degeneracy of G0. Thus every H ∈ H(R) can be decomposed uniquely as
H = H0 + H(0) + H(1), H(0) ∈ H(0), H(1) ∈ H(1). Denoting H(1) = Π(1)(H) we
consider the additional equations

Π(1)(T (H)) = Π(1)(H). (1.12)

The right hand sides of equations (1.11), (1.12) define an invertible linear mapping
L from H(R) onto RN0 ×H(1) while the left-hand sides define a mapping F that
differs only slightly from L on Kε̃(H0) according to Basic Lemma (ii).

More precisely, we put

L(H) =
(
(ex(H)− ex0(H);x ∈ Gper

0 \ {x0}),

(ex(H)− exy,z (H); y �= z, y, z ∈ Gper
0 , x ∈ G0 ∩Xper

y,z \ {xy,z}),Π(1)(H)
)

and

F (H) =
(
(hx(H)− hx0(H);x ∈ Gper

0 \ {x0}),

(hx(H)− hxy,z(H); y �= z, y, z ∈ Gper
0 , x ∈ G0 ∩Xper

y,z \ {xy,z}),Π(1)(H)
)
.

If we express L in suitable orthogonal coordinates, we get by (RD) that the
absolute value of the jacobian of L, |jL(H)|, is strictly positive for all H ∈ H(R).

Our task thus is to find H̃ = T (H) fulfilling (1.11) and (1.12), i.e. fulfilling
the equation F (H̃) = L(H) for all H ∈ Kε(H0) for some ε. Equivalently, we want
to solve the equation

H̃ = H − L−1P (H̃), (1.13)

where P (H̃) = F (H̃)− L(H̃) is a mapping fulfilling the bound

‖P (H̃)‖ ≤ e
−(ρ0−c) ‖H̃‖

‖H0‖ for H̃ ∈ Kε̃(H0)

due to Basic Lemma (ii)a), and

‖P (H̃1)− P (H̃2)‖ ≤ e
−(ρ0−c)min(

‖H̃1‖
‖H0‖ ,

‖H̃2‖
‖H0‖ )‖H̃1 − H̃2‖ for H̃1, H̃2 ∈ Kε̃(H0)

due to Basic Lemma (ii)b).
To find the fixed point H̃ of the mapping Q : H̃ �→ H − L−1P (H̃) in (1.13)

for a fixed H ∈ Kε(H0), we use the Banach contraction principle. We have

‖Q(H̃1)−Q(H̃2)‖ ≤ ‖L−1‖ e−(ρ0−c)(1−ε)‖H̃1 − H̃2‖

for H̃1, H̃2 ∈ Kε(H0).
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Since the constant ‖L−1‖ e(ρ0−c) (1−ε) is smaller than one if ρ0 is sufficiently
large (we may and shall suppose that ε ≤ 1

2 ), it suffices to show that Q maps
U ε̃

2
(H) = {H̃ | ‖H̃ −H‖ ≤ ε̃

2} into itself for H ∈ K ε̃
2
(H0). This allows us to take

ε = ε̃
2 .
Let ‖H̃ −H‖ ≤ ε̃

2 . Then

‖Q(H̃)−Q(H)‖ ≤ ‖L−1‖e−(ρ0−c)(1−ε̃) ε̃

2
≤ ε̃

2
.

Hence, for sufficiently large ρ0 (chosen independently of H ∈ Kε(H0)), we
get that Q is a contraction on Uε(H).

The unique solution T (H) in Uε(H) fulfills the assertions (i) and (ii) of
Theorem 1 according to (i) of Basic Lemma. Using (ii) of Basic Lemma, we get
the asked properties (iii) and (iv) of Theorem 1 easily. �

2 Labeled contour models

We present here a brief reformulation of the essential part of Pirogov-Sinai theory
and its slight extension to a form needed for our application. The task is to grasp
some control over a description of “labeled contour models” that arise in the
study of (“physical”) Gibbs states. The characteristic feature of the Pirogov-Sinai
theory is a reformulation in terms of “contour models”. The following presentation
follows essentially [Z], but it brings some improvements (see especially Theorem
2 and Proposition 2.2.1; compare also the paper [BK] using some ideas from a
preliminary version of the present paper).

2.1 Contour models

We use here the word contour simply for any finite connected (in the sense of
nearest neighbours) non-empty subset of Zν (ν ≥ 2). Given any contour Γ ⊂ Zν ,
we define its exterior, ExtΓ, to be the only infinite connected component of Zν \Γ.
The interior, IntΓ, of Γ is the union of the other (finite) connected components of
Z \ Γ. We denote V (Γ) = Γ ∪ IntΓ. A set ∂ of contours is compatible if any pair
of distinct elements of ∂ has a disconnected union. A contour model is given by
introducing a contour functional4 (“contour weights”) Ψ which maps the set of
contours to [0,∞). Considering a set L of contours, we define the contour model
partition function in L by

Z(L; Ψ) =
∑
∂⊂L

∏
Γ∈∂

Ψ(Γ) , (2.1)

with the sum taken over all compatible families ∂ of contours from L. Notice that
this definition makes sense not only for any finite set L, but supposing that the

4We restrict our attention here to the case of real-valued contour functionals that will arise
in our context.
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sum and products converge, also for some infinite L. In dealing with general sets
L we follow the abstract setting from [KP]. Given a volume Λ ⊂ Zν , we shall be
concerned with two particular cases of sets of contours, namely the set L(Λ) of all
contours in Λ, L(Λ) = {Γ : dist(V (Γ),Λc) > 1}, and the set LΛ of all contours
intersecting Λ, LΛ = {Γ : V (Γ) ∩ Λ �= ∅}. For a finite L we can also introduce the
contour model probability distribution in L by

µ({∂}, L; Ψ) =
∏

Γ∈∂ Ψ(Γ)
Z(L; Ψ) (2.2)

for any compatible ∂ in L. As usual, the empty product is put equal to one. For
an infinite L we can introduce the compact space of families of contours from L
as a closed subspace of {0, 1}L with the product topology, and consider the weak
limit of measures (2.2).

It is useful to introduce a special symbol, e.g. ρ(∂, L; Ψ), for the “correlations”
µ({∂̄ : ∂ ⊂ ∂̄}, L; Ψ).

We may now summarize the main facts concerning contour models with a
contour functional Ψ satisfying the inequality

Ψ(Γ) ≤ exp(−τ |Γ|) for any contour Γ, (2.3)

i.e. with Ψ being a τ -functional.
Most of the assertions of the following proposition as well as their proofs can

be found, for example, in [S, Se, Br]. In view of an application to “volumes” of the
form LΛ we rely on an abstract version of contour models and cluster expansions
as presented in [KP, D 96]. In particular, we define the distance dist(∂, L) from
a set ∂ of compatible contours to a set L of contours as minC

∑
Γ∈C |Γ|, where

the minimum is taken over all clusters C (i.e. sets of contours whose union is
connected) such that C ∩ L �= ∅ and

(⋃
Γ∈∂ Γ

)⋂ (⋃
Γ∈C Γ

)
�= ∅.

Let us introduce also the notion of external contours. Namely, a contour Γ ∈ ∂
is an external contour of ∂ if Γ ⊂ Ext Γ̄ for each Γ̄ ∈ ∂, Γ̄ �= Γ. If ∂ is a family of
contours such that every Γ ∈ ∂ is either external or Γ ⊂ Int Γ̄ for some external
contour Γ̄ of ∂, then we say that external contours exist. We use ϑ(∂) to denote
the set of all external contours.

Proposition 2.1.1 (contour models) There exist constants τcl ≡ τcluster(ν) and
ccl ≡ ccluster(ν) (both depending only on the dimension ν of the lattice) such that,
whenever L is an arbitrary set of contours and Ψ is a τ-functional with τ ≥ τcl,
then the weak limit

µ(·, L; Ψ) = lim
K↗L

µ(·,K; Ψ)

over the system of finite subsets ordered by inclusion exists, and :

a) For µ-almost all families ∂ there exists the set ϑ(∂) of external contours.

b) Whenever ∂ is a compatible family in L, we have

ρ(∂, L; Ψ) ≤ exp(−(τ − 1)
∑
Γ∈∂
|Γ|).
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c) Whenever ∂ is a compatible family of contours in the intersection of sets
L1, L2, we have

|ρ(∂, L1; Ψ)− ρ(∂, L2; Ψ)|

≤ exp(−(τ − 1)
∑
Γ∈∂
|Γ|) exp(−(τ − ccl) dist(∂, L1 L2)).

(Here L1 L2 is the symmetric difference L1 L2 = (L1 \ L2) ∪ (L2 \ L1).)
Hence also, for any finite non-empty set L ⊂ L1 ∩ L2 and any mapping ϕ
of families of contours to real numbers, living5 on L, with |ϕ(∂)| ≤ ‖ϕ‖, one
has

∣∣∣∣
∫

ϕ(∂)µ(d∂, L1; Ψ)−
∫

ϕ(∂)µ(d∂, L2; Ψ)
∣∣∣∣

≤ ‖ϕ‖ exp(−(τ − ccl) dist(L,L1 L2)).

d) Let us suppose further that Ψ is translation invariant. Then the limiting
“pressure”

p(Ψ) = lim
Λ↗Zν

1
|Λ| logZ(L(Λ);Ψ)

(with the limit in the van Hove sense) exists. The partition function
Z(L(Λ);Ψ) satisfies the approximation

logZ(L(Λ);Ψ) = |Λ| p(Ψ) + ε |∂Λ|

with |ε| ≤ exp(−(τ − ccl)), and

|p(Ψ)| ≤ exp(−(τ − ccl)).

e) Let us suppose now that a family of translation invariant τ (α)-functionals
Ψ(α), τ (α) ≥ τcl, is given, depending on a parameter α from an open set
Ω ⊂ Rn and suppose that the one-sided derivative in the direction ᾱ fulfills
for some α ∈ Ω, ᾱ ∈ Rn, the bound

∣∣∂+ᾱΨ(α)(Γ)
∣∣ ≤ exp(−τ (α)|Γ|)||ᾱ||

for every contour Γ. Then the derivative ∂+ᾱ p(Ψ(α)) satisfies the bound
∣∣∂+ᾱ p(Ψ(α))

∣∣ ≤ exp(−(τ (α) − ccl))||ᾱ||.

5We say that ϕ lives on L if ϕ(∂1) = ϕ(∂2) whenever the set of all contours from ∂1 that are
contained in L coincides with the set of all contours from ∂2 contained in L.
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Proof. The assertions a)-c) are standard and their proof may be based on the cluster
expansion as presented in the statement a) of Proposition 2.1.3. The statement
d) follows from a rather straightforward extension of standard proofs of cluster
expansion (Proposition 2.1.3 b)). �

The constant ccl(ν) can be derived from the constant c# = c#(ν) determining
the number of “contours of given length”,

∣∣{Γ | Γ ! 0, |Γ| = k}
∣∣ ≤ ec#(ν)k. (2.4)

Namely, it can be shown (see [KP]) that

ccl(ν) = c#(ν) + a+
log(1 + a)

log a
∼ c#(ν) + 1.58 (2.5)

with a =
√
5−1
2 .

One often meets a situation where the contour functional ΨΛ(Γ) depends on
the volume Λ once the contour Γ crosses the boundary of Λ. Also in this case one
has a full control of the limiting contour model.

Proposition 2.1.2 (contour models with dependence on the boundary) Let V ⊂ Zν

be arbitrary and let a sequence Vn of sets converging to V be given, Vn ↗ V .
Let for any Vn a τ-functional ΨVn be given so that ΨVm(Γ) = ΨVn(Γ) whenever
Γ /∈ LVm�Vn

6 and suppose that τ ≥ τcl with τcl from Proposition 2.1.1. Then the
limit

ΨV = lim
n→∞ΨVn

is uniquely determined and the limiting measure

µ(·, LV ; ΨV ) = lim
n→∞µ(·, LVn ; ΨVn)

exists. It coincides with the measure

µ(·, LV ; ΨV ) = lim
K↗LV

µ(·,K; ΨV )

from the preceding proposition. Further, for any (possibly infinite) V, V1, V2 ⊂ Zν ,
one has:

a) Whenever ∂ is a compatible family in LV , we have

ρ(∂, LV ; ΨV ) ≤ exp(−(τ − 1)
∑
Γ∈∂
|Γ|).

6It means also that ΨΛ(Γ) coincides with ΨZν(Γ) for every contour Γ in Λ.
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b) Whenever ∂ is a compatible family of contours in the intersection of sets
LV1 , LV2 , we have

|ρ(∂, LV1 ; ΨV1)− ρ(∂, LV2 ; ΨV2)|

≤ exp(−(τ − 1)
∑
Γ∈∂
|Γ|) exp(−(τ − ccl) dist(∂, LV1 LV2))

with ccl = ccl(ν) from Proposition 2.1.1. For any finite non-empty set Λ ⊂
V1 ∩ V2 and any mapping ϕ, living on LΛ, of families of contours to real
numbers, with |ϕ(∂)| ≤ ‖ϕ‖, one has∣∣∣∣

∫
ϕ(∂)µ(d∂, LV1 ; ΨV1)−

∫
ϕ(∂)µ(d∂, LV2 ; ΨV2)

∣∣∣∣
≤ ‖ϕ‖ exp(−(τ − ccl) dist(Λ, V1 V2)).

Suppose, further, that Ψ ≡ ΨZν is translation invariant. Then

c) The limiting “free energy” (or “pressure”)

p(Ψ) = lim
Λ↗Zν

1
|Λ| logZ(LΛ; ΨΛ)

(with the limit in the van Hove sense) exists with p(Ψ) the same as in c) of
the preceding proposition7. The partition function Z(LΛ; ΨΛ) satisfies also
the approximation

logZ(LΛ; ΨΛ) = |Λ| p(Ψ) + ε |∂Λ|

with |ε| ≤ exp(−(τ − ccl)).

Proof. Due to the conditions on the functionals ΨVn , the value ΨVn(Γ) stays con-
stant, for every Γ, once n is sufficiently large. Taking into account the possibility
to verify the convergence of measures by proving the convergence of correlations
ρ(∂, LVn ; ΨVn) for finite families ∂ and observing that it may be approximated,
from a cluster expansion, by restricting the contour model on a finite number
of contours, the statements of Proposition 2.1.2 follow from cluster expansions
(Proposition 2.1.3 below) and Proposition 2.1.1 (cf. [HKZ] Proposition B.2). �

Let us also briefly summarize few standard facts about the cluster expansion
in a form suitable for our purposes [KP, D 96]. A proof of b) in Proposition 2.1.3
appears in several papers [BK, DKS].

Propositions 2.1.1 and 2.1.2 follow easily from Proposition 2.1.3 below. The
results do not serve for the proofs of the above propositions only; we use the
explicit form of the expansion in an essential way in Section 4 when studying the
probability of interfaces.

7Notice that it means in particular that the statement 1 c) is valid also with LΛ replaced by
sets L(Λ), where L(Λ) ⊂ L(Λ) ⊂ LΛ.
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Proposition 2.1.3 (cluster expansion) There exist constants τcl ≡ τcl(ν) and ccl ≡
ccl(ν) such that the following statements hold true.

a) Whenever Ψ is a τ-functional with τ ≥ τcl, then there exists a (“cluster”)
functional ΨT that maps all non-empty clusters of contours (i.e. sets C of
contours with connected support C =

⋃
Γ∈C Γ) to R such that

logZ(L; Ψ) =
∑
C⊂L

ΨT (C) (2.6)

for every finite set L of contours. The functional ΨT satisfies, for every
i ∈ Zν , the bound ∑

C:C�i

∣∣ΨT (C)
∣∣ exp((τ − ccl)

∑
Γ∈C

|Γ|
)
≤ 1, (2.7)

with the sum taken over all clusters with support C =
⋃

Γ∈C Γ containing
a fixed site i ∈ Zν . The value ΨT (C) depends only on values of Ψ(Γ) with
Γ ∈ C, and it is translation invariant once the functional Ψ is translation
invariant.

b) Suppose further that τ (α)- functionals Ψ(α), τ (α) ≥ τcl, depend on a parame-
ter α from an open set Ω ⊂ Rn and satisfy for every contour Γ, α ∈ Ω, and
any ᾱ ∈ Rn, the inequality∣∣∂+ᾱΨ(α)(Γ)

∣∣ ≤ exp(−τ (α) |Γ|)||ᾱ||. (2.8)

Then, for every i ∈ Zν and all α ∈ Ω, one has∑
C:C�i

∣∣∂+ᾱΨ(α)T (C)
∣∣ exp((τ (α) − ccl)

∑
Γ∈C

|Γ|
)
≤ ||ᾱ||. (2.9)

Remark. Assuming, instead of (2.8), the existence of the Fréchet derivative and a
bound on its norm, we actually get the existence of the Fréchet derivative also for
Ψ(α)T , with a corresponding bound.

Resuming over all clusters with coinciding support and denoting ΨT (C) =∑
C:
S

Γ∈C Γ=C

ΨT (C), we will get a formulation that is particularly suitable for our

implementations.

Corollary 2.1.4 Let τcl and ccl be the constants from Proposition 2.1.3. If Ψ is a
τ-functional with τ ≥ τcl, then

logZ(L(Λ);Ψ) =
∑

C⊂Λ(0)

ΨT (C) (2.10)
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for every finite Λ ⊂ Zν . The sum above runs over all connected subsets C of the
set Λ(0) = {i ∈ Λ dist(i, V c) > 1}. The functional ΨT (C) satisfies the bound∑

C�i

∣∣ΨT (C)
∣∣ exp((τ − ccl) |C|

)
≤ 1. (2.11)

Let, moreover, Ψ be translation invariant. Then the limits

p(Ψ) = lim
Λ↗Zν

1
|Λ| logZ(L(Λ);Ψ) = lim

Λ↗Zν

1
|Λ| logZ(LΛ; Ψ)

(the limit in the van Hove sense) exist and satisfy the bounds∣∣p(Ψ)∣∣ ≤ exp{−(τ − ccl)} (2.12)

and ∣∣∂+ᾱ p(Ψ)
∣∣ ≤ exp{−(τ − ccl)}||ᾱ||. (2.13)

The function p(Ψ) is explicitly given by

p(Ψ) =
∑
C�0

ΨT (C)
|C| . (2.14)

Remark. Notice, that the assumption of the translation invariance of Ψ in Propo-
sitions 2.1.1 c), 2.1.2 c), and the above corollary is actually not necessary. It is
enough to introduce

pi(Ψ) =
∑

C:C�i

ΨT (C)
|C| =

∑
C�i

ΨT (C)
|C|

and to replace the terms |Λ| p(Ψ) by∑
i∈Λ

pi(Ψ).

For periodic Ψ the limit p(Ψ) is obtained as a mean of pi(Ψ) over the cell of
periodicity.

2.2 Labeled contour models

We consider a finite set Q = {1, . . . , r} of “labels” and call γ = (Γ, λ) a labeled
contour if its support Γ ≡ Γ(γ) ⊂ Zν is a finite non-empty connected set (a
contour), and λ = λ(γ) assigns to each connected component of the boundary ∂Γ
of Γ some q ∈ Q. A labeled contour γ is called a q-contour if the label assigned to its
external boundary (the boundary of Γ∪Int Γ) is q. A family x of labeled contours is
said to be compatible and matching if their supports are compatible and their labels
match (i.e., considering a connected component, say C, of Zν \

⋃
{Γ(γ) : γ ∈ x}, all
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connected components of the boundaries of Γ’s adjacent to C are labeled by the
same label q; we say that C is a q-component). Compatible and matching families
x of labeled contours play a role of configurations for labeled contour models 8.
Whenever x is such that for the family ∂ = {Γ(γ) : γ ∈ x} of its supports, there
exists the set ϑ(∂) of external contours (in the sense of the definition preceding
Proposition 2.1.2), we introduce the set ϑ(x) (ϑq(x)) of external labeled contours of
the family x as the subset of those γ = (Γ, λ) ∈ x whose support Γ is an external
(q−)contour of ∂. We say that x is included in V ⊂ Zν if dist(V (Γ(γ)), V c) > 1
for γ ∈ x. Whenever Λ ⊂ Zν , we consider the set X(Λ) of compatible matching
families x of labeled contours that are included in Λ. We introduce the set Xq

Λ

as the set of all compatible matching families of labeled contours that intersect Λ
and are such that external contours exist and all external contours as well as all
contours not belonging to X(Λ) are q-contours. Let us also denote XΛ =

⋃
q Xq

Λ. If
x ∈ XΛ, the union of m-components of Λ\

⋃
{Γ(γ) : γ ∈ x} together with supports

of all m-contours of x is denoted by Λm(x).
Clearly, the number of labeled contours γ, for which supp γ = Γ, is bounded

by |S||Γ|.
A labeled contour functional Φ (“an exponential of a contour Hamiltonian”)

maps the set of labeled contours into [0,∞). We also assume that a vector ϕ =
(ϕ1, . . . , ϕr) ∈ Rr (of “specific energies of some translation invariant configura-
tions”) is given. We consider a labeled contour model with a boundary condition
q ∈ Q by introducing, for any Λ ⊂ Zν and any X(Λ), X(Λ) ⊂ X(Λ) ⊂ XΛ, the
(labeled contour model) partition functions

Z(X(Λ)|q;Φ,ϕ) =
∑

x∈X(Λ)

exp
{
−

∑
m∈Q

ϕm |Λm(x)|
} ∏
γ∈x

Φ(γ). (2.15)

Similarly we introduce the (labeled contour model) probability distribution

µ({x},X(Λ) | q;Φ,ϕ) = Z−1(X(Λ)|q;Φ,ϕ) exp
{
−

∑
m∈Q

ϕm |Λm(x)|
} ∏
γ∈x

Φ(γ).

(2.16)
Again, the notation for partition functions and probability distributions above is
distinguishing them from those for a lattice spin model (c.f. Section 1.1) only by
using different variables. When stressing the fact that we are dealing with partition
functions and probability distributions of a labeled contour model, we will use the
notation Zcont and µcont.

Remarks. 1. For any Λ ⊂ Zν , the sets X(Λ) (resp. XΛ) may be embedded into
the product space {1, . . . , r}Zν by assigning to every x that configuration from
{1, . . . , r}Zν which attains the value q at all lattice sites in Λq(x). On the sets X(Λ)
(resp. XΛ) we consider the topology inherited from the compact space {1, . . . , r}Zν .

8We use the same notation as for spin configurations of classical lattice models in view of the
existence of a natural identification of a class of lattice configurations with a given compatible
and matching family of labeled contours (see Section 3).
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Let us notice that for an infinite Λ, even if x = limxn with xn such that ϑ(xn)
consists of q-contours and in the same time ∂(xn) converges, in the topology of
families of contours used in Section 2.1, to a compatible family of contours ∂ such
that external contours ϑ(∂) exists, it might be that ϑ(x) = ϑq′ (x) with q′ �= q.

2. Notice that there are small formal differences in our formulation and that
of [S]. First, our definition of contours does not specify configurations on the sup-
port. We also found useful to consider directly the “weights of contours”, thus the
functional Φ above corresponds to exp(−Φ̃) in [S, Z].

In the standard Pirogov-Sinai theory, the functional Φ̃ as well as the r-tuple
ϕ = (ϕ1, . . . , ϕr) are linear in the Hamiltonian H (they are given in terms of
explicit formulae — see e.g. (1.4) and (1.6) from [Z]). However, in the present
application, we shall meet a more general situation.

3. Readers accustomed to standard Pirogov-Sinai formulation may also notice
that the partition function Z(X(Λ)|q;Φ,ϕ) corresponds, roughly speaking, to the
(relative) diluted partition function multiplied by the factor exp(ϕq |Λ|) (since the
standard approach is based on relative Hamiltonian with respect to the energy
corresponding to the external boundary condition).

The crucial part of the Pirogov-Sinai theory is formulated in Theorem 2
below. First, we need a definition and some more notation.

Definition. A phase q is called cs-stable in Λ (with respect to Φ and ϕ) if

Z(X(Λ)|λ;Φ,ϕ)
Z(X(Λ)|q;Φ,ϕ) ≤ exp(cs |∂Λ|),

for every labeling λ (i.e. a label λ(b) ∈ Q for every connected component b of the
boundary ∂Λ, chosen in a compatible way). A phase q is said to be cs-stable (with
respect to Φ and ϕ) if it is cs-stable in Λ for every non-empty finite Λ.

The main aim of the Pirogov-Sinai theory is to provide a characterization of
stable phases showing, in the same time, that any stable phase gives rise to a dis-
tinct Gibbs state that is a perturbation of the corresponding ground configuration.
We split these claims into two statements. First, in Theorem 2, we characterize the
stability (see (S)) in terms of certain functions hq(Φ,ϕ) that are close to external
fields ϕq. Proposition 2.2.1 then describes the properties of the stable phases.

Theorem 2 (characterization of stable phases). Let, for every α from an open set
Ω ⊂ Rn of parameters and any Λ ⊂ Zν , a nonnegative labeled contour functional
Φ
(α)
Λ and a vector ϕ(α) of “specific energies” be given (with labels from a finite set

Q) such that Φ(α)
Λ1

(γ) = Φ
(α)
Λ2

(γ) whenever supp γ ⊂ Λ1 ∩ Λ2. We denote Φ(α) =

Φ
(α)
Zν . We suppose that a continuous function τ (α) is given so that for every labeled
contour γ, and all α ∈ Ω, we have

(1) Φ
(α)
Λ (γ) ≤ exp(−τ (α) |Γ(γ)|).



230 P. Holický, R. Kotecký and M. Zahradńık Ann. Henri Poincaré

Then, there exist a constant τ� = τlabeled(cs, ν, |S|) and functions hq(Φ(α), ϕ(α))
characterizing cs-stability9 whenever τ (α) ≥ τ�. Namely,

the phase q is cs-stable with respect to Φ(α) and ϕ(α)

if and only if hq(Φ(α), ϕ(α)) = min
m

(hm(Φ(α), ϕ(α))).
(S)

The functions hq(Φ(α), ϕ(α)) can be chosen in such a way that, denoting
h(Φ(α), ϕ(α)) = minm(hm(Φ(α), ϕ(α))), one has

Z(Λ|q;Φ(α), ϕ(α)) ≥ exp
[
−hq(Φ(α), ϕ(α)) |Λ| − ε |∂Λ|

]
and

Z(Λ|q;Φ(α), ϕ(α)) ≤ exp
[
−h(Φ(α), ϕ(α)) |Λ|+ ε |∂Λ|

]
with ε = e−(τ (α)−ccl) + e−(τ (α)−ccl−c#−log |S|−1).

Moreover, there exists a constant c� = clabeled(cs, ν, |S|) such that∣∣hq(Φ(α), ϕ(α))− ϕ(α)
q

∣∣ ≤ exp
{
−(τ (α) − c� − ccl)

}
for q = 1, . . . , r and α ∈ Ω.

Supposing, moreover, for any α ∈ Ω and ᾱ ∈ Rn, the bounds on the (one-
sided) directional derivatives of Φ(α)

Λ and ϕ
(α)
q ,

(2)
∣∣∂+ᾱ Φ

(α)
Λ (γ)

∣∣ ≤ exp
{
−τ (α) |Γ(γ)|

}
||ᾱ|| and

(3)
∣∣∂+ᾱ ϕ(α)

q

∣∣ ≤M ||ᾱ|| for some M > 0,

there exists constants τ� = τ�(cs,M, ν, |S|) and c� = c�(cs, ν, |S|) (possibly larger
than those above) such that for τ (α) > τ� we have:∣∣∂+ᾱ [

hq(Φ(α), ϕ(α))− ϕ(α)
q

]∣∣ ≤ exp
{
−(τ (α) − c� − ccl)

}
||ᾱ||

and, denoting h(Φ(α), ϕ(α)) = minm(hm(Φ(α), ϕ(α))), also∣∣∂+ᾱ h(Φ(α), ϕ(α))
∣∣ ≤ (

M + exp
{
−(τ (α) − c� − ccl)

})
||ᾱ||

for α ∈ Ω and ᾱ ∈ Rn.

Remark. Notice, in particular, that if Ω is convex, the functions hq(Φ(α), ϕ(α)) −
ϕ
(α)
q are, as functions of α, Lipschitz with the constant exp

{
−(τ (α) − c� − ccl)

}
.

The theorem follows from an explicit construction of functions hq(Φ(α), ϕ(α))
in terms of contour functionals Ψ and Ψ̄ introduced below. The expression in terms
of those functionals also yields the properties of stable phases.

9Stability implies a good control of the corresponding states. These implications, as well as an
explicit construction of the characterizing functions hq(Φ(α), ϕ(α)), are presented in Proposition
2.2.1 and Corollary 2.2.2.
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Proposition 2.2.1 (properties of stable phases) Under assumption (1) of Theo-
rem 2:
a) Existence of contour functionals Ψ For every finite Λ, α ∈ Ω and q = 1, . . . , r,
there exist uniquely determined nonnegative contour functionals Ψ(α)

q,Λ such that

Z(X(Λ)|q;Φ(α), ϕ(α)) = exp
{
−ϕ(α)

q |Λ|
}
Z(L(Λ); Ψ(α)

q ) (2.17)

for any L(Λ), L(Λ) ⊂ L(Λ) ⊂ LΛ with X(Λ) = {x ∈ XΛ; γ ∈ X implies Γ(γ) ∈
L(Λ)}, and

µ({x : ϑ(x) = ϑ},X(Λ) | q;Φ(α)
Λ , ϕ(α)) = µ({∂ : ϑ(∂) = ϑ}, L(Λ); Ψ(α)

q,Λ) (2.18)

for any collection ϑ of external q-contours. Moreover, Ψ(α)
q,Λ1

(Γ) = Ψ(α)
q,Λ2

(Γ) when-

ever10 V (Γ) ⊂ Λ1 ∩ Λ2. The functional Ψ
(α)
q,Λ satisfies, for any Λ, the bound∣∣Ψ(α)

q,Λ(Γ)
∣∣ ≤ exp

{
−(τ (α) − c�) |Γ|

}
,

whenever Γ is such that q is cs-stable in every component of Int Γ (with respect to
Φ(α) and ϕ(α)) and c� ≥ c#(ν) + cs + log |S|.
b) Existence of contour τ -functionals Ψ̄ Taking Ψ(α)

q = Ψ(α)
q,Zν , nonnegative contour

functionals Ψ̄(α)
q exist, such that, for every contour Γ, we have

• Ψ̄(α)
q (Γ) ≤ Ψ(α)

q (Γ),
• Ψ̄(α)

q (Γ) = Ψ(α)
q (Γ) whenever q is cs-stable in Int Γ,

•
∣∣∣Ψ̄(α)

q (Γ)
∣∣∣ ≤ exp

{
−(τ (α) − c�) |Γ|

}
with c� ≥ c# + cs + log |S|.

Supposing that the functional Φ(α) is translation invariant (in an obvious way
with respect to shifts in Zν), the functional Ψ̄(α)

q can be chosen to be translation
invariant. Further on, there exists τ� = τ�(cs, ν, |S|) such that for τ ≥ τ� we have

c) Description of hq(Φ(α), ϕ(α)) in terms of Ψ̄(α) The functions hq(Φ(α), ϕ(α))(≡
hq(Ψ̄(α), ϕ(α))) defined by

hq(Φ(α), ϕ(α)) = ϕq − p(Ψ̄(α)
q ),

with p(Ψ̄(α)
q ) defined in Corollary 2.1.4, characterize the stability (i.e., satisfy the

equivalence (S)).
Further on, whenever α is such that q is cs-stable with respect to Φ(α), ϕ(α),

one has

hq(Φ(α), ϕ(α)) = − lim
1
|Λ| logZ(X(Λ)|q;Φ

(α), ϕ(α)) = h(Φ(α), ϕ(α)).

10Supposing equality ΦΛ1 (γ) = ΦΛ2 (γ) for supp γ∩(Λ1�Λ2) = ∅, we get Ψ(α)
q,Λ1

(Γ) = Ψ
(α)
q,Λ2

(Γ)

whenever dist(V (Γ),Λ1�Λ2) > 1.
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Supposing, moreover, the smoothness of Φ(α)
Λ and ϕ

(α)
q (the conditions (2)

and (3) of Theorem 2), there exist a constant τ� = τ�(cs,M, ν, |S|) (possibly larger
then τ�(cs, ν, |S|) above) such that for τ (α) > τ� we have :

a′) Smoothness of contour functionals Ψ(α) For any Λ,∣∣∂+ᾱΨ(α)
q,Λ(Γ)

∣∣ ≤ exp
{
−(τ (α) − c�) |Γ|

}
||ᾱ||

with c� ≥ cs+c#+log |S|+1+ln2, whenever Γ (and α) are such that q is cs-stable
in every component of Int Γ (with respect to Φ(α) and ϕ(α)).

b′) Smoothness of contour functionals Ψ̄(α) There exist functionals Ψ̄(α)
q satisfying

b), with c� ≥ 2cs + c# + log |S|+ 1, and∣∣∂+ᾱ Ψ̄(α)
q (Γ)

∣∣ ≤ exp
{
−(τ (α) − c�) |Γ|

}
||ᾱ||

with c� ≥ 4cs + c# + 2 + 2 log(|S|+ 1), for every Γ and every α ∈ Ω.

Observation. Notice that, by b) and c), hq(Φ,ϕ) = minm(hm(Φ,ϕ)) iff Ψ̄
(α)
q = Ψ(α)

q .
Further, the notion of cs-stability of a phase q actually does not depend on cs.
Hence, in the following, we will just say that a phase q is stable. (However, changes
of cs may lead to changes of τ�.)

Remarks.

1. Clearly, there exists a choice of sufficiently large c�(cs, ν, |S|) such that it can
be used simultaneously in the bounds on

∣∣Ψ(α)
q (Γ)

∣∣ and ∣∣Ψ̄(α)
q (Γ)

∣∣ from a)
and b) as well as in the bounds on

∣∣∂+ᾱΨ(α)
q (Γ)

∣∣ and ∣∣∂+ᾱ Ψ̄(α)
q (Γ)

∣∣ from a′)
and b′) .

2. The limit in c) is over finite volumes in the van Hove sense and defines
the quantity corresponding to “pressure” in the physical model based on a
Hamiltonian at a particular temperature.

3. Studying the contour model probabilities µ(·,Λ;Ψ(α)
q ) for stable q and their

limits for simply connected Λ tending to infinite simply connected volumes,
we can describe labeled contour model probabilities in an infinite volume un-
der boundary condition q by conditioning over external contours (cf. Propo-
sition 2.1.2).

4. It suffices to suppose (1) (with sufficiently large τ (α)), to get the existence
of Ψ(α) = (Ψ(α)

q ), Ψ̄(α) = (Ψ̄(α)
q ) fulfilling a), b), and c). However, we were

not able to follow exactly the method described in [Z] or [BI] to prove the
smoothness b′) (and hence also a′)). Therefore, we extend the assertion of
Theorem 1 from [Z] in Lemma 2.3.1 to get a), b), and c) for a wider class
of functionals Ψ̄(α). We shall later find a functional Ψ̄(α) fulfilling b′) among
them (Lemmas 2.3.1 and 2.3.2 and the final part of the proof of Theorem 2).

5. If we take H ∈ H(R) for the parameter α and Kε(H0) for the set Ω, the
function τ (H) can be chosen as τ (H) := ρε

‖H‖
‖H0‖ (see Proposition 1.1.3).
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6. It is enough to suppose the estimates from (1) and (2) for
∑

γ Φ
(α)
Λ (γ), where

the sum is over q-contours γ = (Γ, λ) with Γ fixed.

7. The first point in b) can be weakened to

Ψ̄(α)
q (Γ) ≤ econst|Γ|Ψ(α)

q (Γ),

and the second point can be weakened by introducing a stronger notion of
stability (see [BK]).

We postpone the proof of Proposition 2.2.1 to Section 2.3 below. Theorem 2
then easily follows.

Proof of Theorem 2. The only claims that are not directly included in Proposition
2.2.1 are the bounds on derivatives of hq(Φ(α), ϕ(α)) and h(Φ(α), ϕ(α)). Using b′)
of Proposition 2.2.1, the bound (2.13) on p(Ψ̄(α)

q ), and the assumption (3), we get∣∣∂+ᾱ hq(Φ(α), ϕ(α))
∣∣ ≤ (

M + exp
{
−(τ (α) − c� − ccl)

})
||ᾱ||.

To estimate
∣∣∂+ᾱ h(Φ(α), ϕ(α))

∣∣, we first notice that if, for a fixed α, there exists
q ∈ Q such that h(Φ(α), ϕ(α)) = hq(Φ(α), ϕ(α)) and h(Φ(α), ϕ(α)) < hm(Φ(α), ϕ(α)),
m �= q, the claim immediately follows from the bound above. If h(Φ(α), ϕ(α)) =
hq(Φ(α), ϕ(α)), q ∈ Q̄ ⊂ Q, and h(Φ(α), ϕ(α)) < hq(Φ(α), ϕ(α)), q ∈ Q \ Q̄, we get,
for a fixed direction ᾱ,

∂+ᾱ h(Φ(α), ϕ(α)) = min
q∈Q̄

∂+ᾱ hq(Φ(α), ϕ(α)).

Indeed, if the right hand side is attained for several q’s in Q̄, the directional
derivative on the left hand side equals any one of them, since they are equal
anyway. �

We will use the results of Theorem 2 and Proposition 2.2.1 together with the
results on contour models to describe the limit Gibbs states obtained under spe-
cial boundary conditions as it is customary in the standard Pirogov-Sinai theory.
However, in our application, the partition function of the “physical” model in Λ
is described in terms of a labeled contour model with contours that may reach
out of the volume Λ and with contour functional that (for such contours) depends
on Λ. This is the reason why we formulate the following result on the description
of labeled contour models under a stable boundary condition in a slightly more
general situation than it is customary.

Let thus a translation invariant functional Φ and a vector ϕ be as above, and
suppose that sequences of finite sets Λn ↗ V and functionals ΦΛn are given so
that
• ΦΛm(γ) = ΦΛn(γ) whenever m, n, and γ with support Γ are such that {γ} ∈
XΛn ∩ XΛm and dist(V (Γ),Λm Λn) > 1,
• 0 ≤ ΦΛn(γ) ≤ exp{−τ |Γ(γ)|} for all n and all γ.
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We study partition functions Z(X(Λ)|q;ΦΛ, ϕ) and the probabilities µ(·,X(Λ) |
q;ΦΛ, ϕ) for X(Λ) ⊂ X(Λ) ⊂ XΛ.

Corollary 2.2.2 For τ sufficiently large and a phase q stable with respect to Φ,
ϕ (as in Theorem 2), there exists, for a (possibly infinite) simply connected set
V ⊂ Zν and any Y ⊂ XV , a unique probability measure µ(·,Y | q;ΦV , ϕ) defined
as a limit of µ(·,Y ∩ XΛ | q;ΦΛ, ϕ) with finite Λ converging to V . For almost all
x ∈ XV there are external q-contours — the set ϑ(x) is defined and consists of
q-contours. Moreover, for every bounded continuous function f : XV → R, there
exist (τ − c� − cs)-functionals Ψq,V such that∫

f(x)µ(dx,XV |q;ΦV , ϕ) =
∫∫

f(x)µ(dx,XV |q;ϑ(x) = ϑ(∂))µ(d∂, LV |Ψq,V ).

(2.19)
Here µ(dx,XV |q;ϑ(x) = ϑ(∂)) is naturally defined as the probability

µ(dx,XV |q;ΦV , ϕ) under the condition ϑ(x) = ϑ(∂).
The measures µ(d∂, LV |Ψq,V ) fulfill the assertions of Proposition 2.1.2.
Let E(a)i (V ), i ∈ V , a ∈ R, be the set E(a)i (V ) = {x ∈ XV ; ∃γ ∈ x such that

V (Γ) ! i, |Γ| ≥ a}. There exists a constant C such that µ(E(a)i (V ),XV |q;ΦV , ϕ) ≤
Ce−τa for any i ∈ V and a ∈ R.

Proof. For any finite Λ we define Ψq,Λ by

Ψq,Λ(Γ) =
∑

γ:
{γ}∈Xq

Λ
suppγ=Γ

ΦΛ(γ)
Z(X(IntΛ Γ)|λ(γ);Φ,ϕ)
Z(X(IntΛ Γ)|q;Φ,ϕ)

. (2.20)

By λ(γ) in the numerator we indicate that the partition function is considered
with the boundary condition induced by λ(γ). Here IntΛ(Γ) is the union of those
components of Int Γ whose distance from Zν \Λ is at least 1. In principle, also those
components that are not fully contained in Λ are contributing, in a multiplicative
way, to the numerator as well as denominator above. However, since for any γ in
the sum above the label of the boundary of any such component is q, the concerned
contributions to the numerator and denominator cancel. By induction, one can first
verify that

Z(X(Λ)|q;Φ(α)
V , ϕ(α)) = exp

{
−ϕ(α)

q |Λ|
}
Z(L(Λ); Ψ(α)

q,V ).

The functionals Ψq,Λ clearly satisfy the condition (about the independence on
Λ for contours sufficiently far from the boundary) from Proposition 2.1.2 and the
limiting functional Ψq,V as well as the measure µ(d∂, LV ; Ψq,V ) are well defined.
To prove (2.19) we follow the proof of Proposition 3.4 from [HKZ]. The equality
(2.19) holds for every finite Λ. Supposing that f is a cylindric function living
on Λ, the right hand side of (2.19) can be approximated, up to a set of small
measure, say ε, by a cylindrical continuous function living on a large finite Λ(ε).
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The equality (2.19) for such a continuous bounded function then follows from
Proposition 2.1.2 b).

The bound on probability of E(a)i (V ) is a standard implication of Proposition
2.1.2 a) applied to the contour functional Ψq,V . �

2.3 Proof of Proposition 2.2.1

Since the assertion of Proposition 2.2.1 is an improvement of the results from [S]
and [Z], we present here only the necessary changes or complements to the proofs
from [Z].

In the same way as in Section 2.2, we often omit the superscript (α) if
it cannot cause any misunderstanding. Sometimes we write Z(Λ|q) instead of
Z(X(Λ)|q;Φ(a), ϕ(α)) and Z(Λ;Ψ) instead of Z(L(Λ);Ψ).

1. Proof of a) Recall that the equality (2.18) is fulfilled iff Ψ is defined by
(2.20) (cf. proof of Corollary 2.2.2). The estimate a) follows easily from the defini-
tion of stability of q in Int Γ and the bound exp

{
(c#+ log |S|) |Γ|

}
on the number

of γ’s in (2.20).

2. Implication b) ⇒ c) Our strategy is not to define Ψ̄ explicitly as in [Z],
but to isolate those properties of Ψ̄ that ensure, in particular, the conclusion c) of
Proposition 2.2.1. Then we look for a suitably smooth Ψ̄(α) satisfying the assump-
tions of the following lemma whose assertion (iv) is essentially identical to c). A
particular choice of Ψ̄(α) is given in Lemma 2.3.2. To satisfy the assumptions of the
following Lemma 2.3.1, one has to assume that τ − cs− c#− log |S| ≥ τ̃0(cs, ν, |S|)
with τ̃0(cs, ν, |S|) determined in course of the proof of Lemma 2.3.1. Thus τ� needed
for validity of Proposition 2.2.1 c) can be taken as τ� = τ̃0(cs, ν, |S|) + cs + c# +
log |S|.

If Ψ̃q are translation-invariant (non-negative) τ -functionals for q = 1, . . . , r,
and Ψ̃ = (Ψ̃1, . . . , Ψ̃r), we define the following quantities:

hq(Ψ̃, ϕ) = ϕq − p(Ψ̃q),

h(Ψ̃, ϕ) = min
q

hq(Ψ̃, ϕ),

aq(Ψ̃, ϕ) = hq(Ψ̃, ϕ)− h(Ψ̃, ϕ).

Lemma 2.3.1 There exists τ̃0 ≡ τ̃0(cs, ν, |S|) such that if Ψ̃ = {Ψ̃q} is a contour
functional satisfying
b̃) • Ψ̃q(Γ) ≤ Ψq(Γ),
• Ψ̃q(Γ) = Ψq(Γ) whenever q is cs-stable in Int Γ,

•
∣∣∣Ψ̃q(Γ)

∣∣∣ ≤ exp
{
−τ̃ |Γ|

}
and if τ̃ ≥ τ̃0, then, denoting ε̃0 ≡ ε̃0(τ̃ ) := ε(τ̃ ) + ε(τ̃ − c# − log |S| − 1) with
ε(τ) = e−(τ−ccl), the following holds:
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(i) If q is not cs-stable in Λ, then

aq(Ψ̃, ϕ) |Λ| > (cs − 2ε̃0) |∂Λ| .

(ii) Z(Λ|q;Φ,ϕ) ≥ exp
[
−hq(Ψ̃, ϕ) |Λ| − ε̃0 |∂Λ|

]
.

(iii) Z(Λ|q;Φ,ϕ) ≤ exp
[
−h(Ψ̃, ϕ) |Λ|+ ε̃0 |∂Λ|

]
.

(iv) q is cs-stable iff aq(Ψ̃, ϕ) = 0. Whenever q is cs-stable,

hq(Ψ̃, ϕ) = − lim
1
|Λ| logZ(Λ|q;Φ,ϕ)

= min
λ

lim
[
− 1
|Λ| logZ(Λ|λ;Φ,ϕ)

]
(= h(Φ,ϕ)),

with the minimum taken over all multi-indices λ.

Proof. Assuming (i)–(iii) for all proper subsets of Λ, one can prove (ii) and (iii)
following the inductive proof of Theorem 1.7 in [Z].

To be more precise we give some commentary to it. The proof of (ii) remains
unchanged (it suffices to take ε̃0 ∼ ε(τ̃ ) = e−τ̃+ccl here). In the proof of (iii) we
get the formula [Z, (1.44)]11 and we intend to apply [Z, Main Lemma, (2.13)] to
the functional

Ξ(Γ) = (τ̃ − c# − log |S| − 2ε̃0(τ̃ )− h+ ϕq) |Γ| ≡ τ̄ |Γ|

for a fixed q.
Observe now that the equation

τ∗ = τ̄ − ε(τ∗)

has, for every τ̄ ≥ τcl, a solution τ∗ such that ε(τ∗) → 0 for τ̄ → ∞. For the
auxiliary functional

Ξ∗(Γ) ≡ τ∗|Γ| := Ξ(Γ) − ε(τ∗) |Γ|

of [Z, (2.10)] we need τ∗ ≥ τcl, i.e.,

τ̄ = τ̃ − c# − log |S| − 2ε̃0(τ̃ )− h+ ϕq ≥ τcl + ε(τ∗)

to be able to use the results of Section 2.1.
Therefore we choose τ̃0 large enough to ensure that for some δ > 0 we have

2ε(τ̃0 − c# − log |S| − 2δ) < δ, ϕq ≥ h(τ̃0)− δ,

and
τ̃0 ≥ τcl + c# + log |S|+ 2δ + ε(τ̃0 − c� − 2δ), ε(τ∗) < δ.

11We only will have a factor 2ε̃0 instead of 3ccl in (1.44). This can be traced back to the fact
that, in the induction hypothesis used for (1.38), the role of 2ccl is played by ε̃0.
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Then, for τ̃ > τ̃0, one has

τ̃ − c# − log |S| − 2ε(τ̃)− h+ ϕq ≥ τ̃ − c# − log |S| − 2δ

≥ τcl + ε(τ̃ − c# − log |S| − 2δ) ≥ τcl + ε(τ∗)

because τ∗ ≥ τ̃ − c� − 2δ. With a particular choice of δ, say δ = 1/3, the choice of
τ̃0 depends on ν and |S| only. Hence, we bound the right hand side of [Z, (1.44)]
by

exp{−h |Λ|+ ε(τ̃ ) |∂Λ|}Zq(Λ,Ξ, aq(Ψ̃, ϕ))

with Zq(Λ,Ξ, aq(Ψ̃, ϕ)) the partition function from [Z] Main Lemma, (2.12) (de-
noted by Z(Λ, H) there) defined with the functional Ξ above and the parameter
aq(Ψ̃, ϕ) defined before the present lemma. This yields [Z] (2.13) in the form

Zq(Λ,Ξ, aq(Ψ̃, ϕ)) ≤ eε(τ
∗)|∂Λ|,

or, equivalently,
Z(Λ; Ξ∗) ≤ ep(Ξ

∗)|Λ|+ε(τ∗)|∂Λ|.

The bound (iii) follows using [Z, Main Lemma] and the inequality ε(τ∗) ≤ ε(τ̃ −
c# − log |S| − 1). The only difference between [Z, Theorem 1] and our Lemma
2.3.1 (i) – (iii) concerns now the derivation of (i) and stems from our definition of
cs-stable sets.

Indeed, if q is not cs-stable in Λ, there exists a multi-index λ such that

Z(Λ|λ)
Z(Λ|q) > exp

{
cs |∂Λ|

}
.

From (ii) and (iii) we have

Z(Λ|q) ≥ exp
{
−hq(Ψ̃, ϕ)|Λ|− ε̃0 |∂Λ|

}
, and Z(Λ|q̃) ≤ exp

{
−h(Ψ̃, ϕ)|Λ|+ ε̃0 |∂Λ|

}
and thus (i) follows.

To prove (iv), suppose first that aq(Ψ̃, ϕ) = 0. Then q is stable by (i) once τ̃
is so large that cs − 2ε̃0 ≥ 0.

Let, on the other side, q be cs-stable. Then Ψq(Γ) = Ψ̃q(Γ) for every Γ by
the condition b̃). Thus

Z(Λ;Ψq) = Z(Λ; Ψ̃q) = exp
{
ϕq |Λ|

}
Z(Λ|q;Φ,ϕ)

and

ϕq − p(Ψ̃q) = hq(Ψ̃, ϕ) = − lim
logZ(Λ|q)
|Λ| . (2.21)

Taking now any q0 such that aq0(Ψ̃, ϕ) = 0, we know already that q0 is stable and
thus

exp(−cs |∂Λ|) ≤
Z(Λ|q0)
Z(Λ|q) ≤ exp

{
cs |∂Λ|

}
.

Hence hq0(Ψ̃, ϕ) = hq(Ψ̃, ϕ) and aq(Ψ̃, ϕ) = 0.
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Further, if q is cs-stable, we have

Z(Λ|λ)
Z(Λ|q) ≤ exp

{
cs |∂Λ|

}
for any λ. Thus, taking into account (2.21), we get

lim
[
− logZ(Λ|λ)|Λ|

]
≥ lim

[
− logZ(Λ|q)|Λ|

]
= h(Φ,ϕ).

Hence

h(Φ,ϕ) = min
λ

lim
[
− 1
|Λ| logZ(Λ|λ;Φ,ϕ)

]
. �

3. The choice of Ψ̃ satisfying b̃) of Lemma 2.3.1.

Lemma 2.3.2 Let c̃ ≥ cs. The functionals

Ψ̃q(Γ) =
∑
γ

Φ(γ)min

[
Z(IntΓ|λ(γ))
Z(Int Γ|q) ,

Z(Int Γ|λ(γ)) exp
{
c̃|∂ Int Γ|

}
maxλ̃ Z(Int Γ|λ̃)

]
, (2.22)

with the sum taken over all labeled q-contours with Γ = Γ(γ) and with labeling
λ(γ), and with the maximum in the second term taken over all labelings λ̃, satisfy
the assumptions b̃) of Lemma 2.3.1 above with τ̃ = τ − c̃− c# − log |S|.
Proof. It follows clearly from (2.22) and the definition of stability. �
Remark. 1. In particular, combining Lemma 2.3.2 with Lemma 2.3.1 (for τ̃ =
τ − c̃− c# − log |S| ≥ τ̃0), we can conclude that

• there exists a cs-stable q0 for every α;

• for any cs-stable q one has

− lim
logZ(Λ|q)
|Λ| = min

λ

[
−limlogZ(Λ|λ)

|Λ|

]
;

• Z(Λ|q) ≤ exp
{
−h(Φ,ϕ) |Λ|+ ε̃0 |∂Λ|

}
for every q;

• Z(Λ|q) ≥ exp
{
−h(Φ,ϕ) |Λ| − ε̃0 |∂Λ|

}
for every cs-stable q.

2. Once the existence of a stable q0 is established, we notice that replacing λ̃
by a constant q̃ in (2.22) leads to a Ψ̃q(Γ) satisfying assumptions of Lemma 2.3.1
with τ̃ = τ − 2cs − c# − log |S| (taking c̃ and thus τ̃ sufficiently large, we have
ε̃0 ≤ cs).

3. Taking Ψ̃ for Ψ̄, we proved b) and c) from Proposition 2.2.1. The task now
is, assuming conditions (2) and (3) from Theorem 2, to choose Ψ̄ so that it also
satisfies b′) (cf. the step 5 below).
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4. Estimates of derivatives of partition functions and proof of a′).

Lemma 2.3.3 For sufficiently large τ� ≡ τ�(cs,M, ν, |S|), τ (α) > τ�, and taking
ε̃0 ≡ ε̃0(τ (α)) as in Lemma 1, one has12∣∣∂+ᾱZ(α)(Λ | λ)

∣∣ ≤M |Λ|(1 + ε̃0) exp
{
−h(α)|Λ|+ ε̃0|∂Λ|

}
||ᾱ||, (2.23)

whenever Λ is a union of simply connected finite sets and λ is an arbitrary labeling.
Moreover, ∣∣∣∂+ᾱ (Z(α)(Λ | λ)

Z(α)(Λ | q)

)∣∣∣ ≤ exp
{
|∂Λ|

}
||ᾱ||, (2.24)

if q is cs-stable in Λ with respect to Φ(α), ϕ(α).

Proof. The first inequality can be proven in a rather straightforward way, by in-
duction in |Λ| (cf. also [BK] (Lemma 2.2)).

Namely, considering the derivative of

Z(α)(Λ | q) =
∑
ϑ

e−ϕ(α)
q |Λ\S Int γ| ∏

γ∈ϑ
Φ(α)(γ)Z(α)(Int γ | λ(γ)),

with the sum over collections ϑ of external q-contours in Λ (including the empty
one), we get (taking, without loss of generality, ||ᾱ|| = 1)

∣∣∂+ᾱZ(α)(Λ | q)
∣∣ ≤

≤M |Λ|Z(α)(Λ | q)+
∑
γ

∣∣∂+ᾱ (
Φ(α)(γ)Z(α)(Int γ | λ(γ))

)∣∣e−ϕ(α)
q |γ|Z(α)(Ext γ | q) ≤

≤ exp{−h(α)|Λ|+ ε̃0|∂Λ|}
(
M |Λ|+

∑
γ

(
1 +M | Intγ|(1 + ε̃0)

)
e−τ (α)|γ|+3ε̃0|γ|

)
≤

≤M |Λ|(1 + ε̃0) exp{−h(α)|Λ|+ ε̃0|∂Λ|}.

The first term corresponds to the derivative of ϕ(α)
q using assumption (3) of Theo-

rem 2. In the second term, we summed over contours not affected by the derivative,
yielding Z(α)(Ext γ | q) with Extγ = Λ \ (Int γ ∪ γ). To get the second inequality
we use Lemma 1 (iii) (with the help of Ψ̃ from Lemma 2) to bound Z(α)(Λ | q),
Z(α)(Int γ | λ(γ)), and Z(α)(Ext γ | q), the assumption (2) of Theorem 2 to bound
|∂+ᾱ Φ(α)(γ)|, induction hypothesis (2.23) to bound |∂+ᾱZ(α)(Int γ | λ(γ))|, and the
fact that ϕ(α)

q ≥ h(α) − ε̃0. To get the last inequality, we use the bound∑
γ:γ∪Intγ�i

(
1 +M | Intγ|(1 + ε̃0)

)
e−τ (α)|γ|+3ε̃0|γ| ≤ ε̃0,

where the sum is taken over all γ encircling a fixed site i.
12We explicitly indicate here the dependence on α.
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To get (2.24), we use (2.23) and Lemma 1 (ii) and (iii) (with existence of
needed Ψ̃ assured by Lemma 2) and get∣∣∣∂+ᾱ Z(α)(Λ | λ)

Z(α)(Λ | q)

∣∣∣ ≤M |Λ|(1 + ε̃0) exp
{
2ε̃0|∂Λ|

}
+M |Λ|(1 + ε̃0) exp

{
4ε̃0|∂Λ|

}
≤ exp

{
|∂Λ|

}
for τ (α) sufficiently large (and thus ε̃0 sufficiently small). �
Proof of a′) of Proposition 2.2.1. We differentiate the right hand side of (2.20).
Evaluating the derivative of the product Φ(α)

Λ (γ)Z
(α)(X(IntΛ Γ)|λ(γ);Φ,ϕ)
Z(α)(X(IntΛ Γ)|q;Φ,ϕ) , we use the

assumption (2) of Theorem 2, the cs-stability of q in IntΛ Γ, assumption (1) of
Theorem 2, and the bound (2.24) for the set IntΛ Γ, to get the bound (again,
||ᾱ|| = 1) ∣∣∣∂+ᾱ (

Φ
(α)
Λ (γ)

Z(α)(X(IntΛ Γ)|λ(γ);Φ,ϕ)
Z(α)(X(IntΛ Γ)|q;Φ,ϕ)

)∣∣∣ ≤
≤ e−τ (α)|Γ|ecs|Γ| + e−τ (α)|Γ|e|Γ| ≤ e−(τ (α)−cs−1−ln 2)|Γ|

that yields (a′) with c� = cs + 1 + ln 2 + c# + log |S|. �
5. Definition of Ψ satisfying b), and simultaneously b’), of Proposition 2.2.1
According to 3. and 4., the only problem with Ψ̃q from (2.22) is the use of

the min in its definition which makes Ψ̃ non-smooth. Therefore we introduce a
“smooth version of min” first and then we apply it to define Ψq by a natural
modification of (2.22).

Lemma 2.3.4 For any η > 0, there is a function minη : Rr → R, r ∈ N, such that

(i) minη(u) ≤ min(u) for u = (u1, . . . , ur) ∈ Rr;
(ii) minη(u) = ui whenever ui ≤ min{uj | j �= i} − η;
(iii) minη ∈ C∞(Rr) and it is 1-Lipschitz;
(iv) ∂

∂ui
minη(u) = 0 if ui ≥ min(u) + 2η.

Proof. We may define minη as the convolution of min and a nonnegative function
ϕη ∈ C∞(Rr) that is symmetric (i.e. of the form ψη(‖u‖)), fulfills

∫
Rr

ϕη(u)du = 1

and ϕη(u) = 0 if ‖u‖ ≥ η
2 .

Namely, we put minη = ϕη ∗min.
Then (i) holds because

ϕη ∗min(u) =
∫
Rr

ϕη(u−v)min(v)dv ≤
∫
Rr

ϕη(u−v)vidv =
∫
Rr

ϕη(v)(ui−vi)dv =

= ui

∫
Rr

ϕη(v)dv −
∫
Rr

ϕη(v)vidv = ui.

The last integral is zero because of the symmetry of ϕη.
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To verify (ii), notice that

ϕη ∗min(u) =
∫

‖v‖≤η
2

ϕη(v)min(u − v)dv =
∫

‖v‖≤η
2

ϕη(v)(ui − vi)dv = ui.

The condition (iii) follows immediately from the fact that min is 1-Lipschitz
and

∫
Rr

ϕη(v)dv = 1 with ϕη(v) ≥ 0.

Finally, we verify (iv). Let |ũi − ui| < η and ũj = uj for j �= i. Then
minη(ũ) =

∫
‖v‖< η

2

ϕη(v)min(ũ− v)dv =
∫

‖v‖< η
2

ϕη(v)min(u− v)dv = minη(u). Here

we used that ũi ≥ min(u) + η and ũi − vi ≥ min(u) + η
2 ≥ min(u − v). So (iv)

holds and Lemma 4 is proved. �
Proof of b) and b′) of Proposition 2.2.1. For η > 0 and any contour γ, we introduce
the shorthand

M(γ, η) = minη|∂Λ|
[
log

Z(Λ|λ(γ))
Z(Λ|q) , log

Z(Λ|λ(γ)) exp
{
(cs + η)|∂Λ|

}
Z(Λ|q̃) ; q̃ �= q

]
,

where Λ = Int Γ; q, q̃ ∈ {1, . . . , r}. Put now

Ψ
(α)

q (Γ) =
∑
γ

Φ(α)(γ) exp
{
M(γ, η)

}
, (2.25)

where the sum is over q-contours with support Γ.
First we show that the functional Ψ

(α)

q fulfills the three assumptions of b̃) of
Lemma 1 (with τ̃ = τ − c�, c� = c# + log |S| + cs + ε̃0 + η + 1) and thus b) of
Proposition 2.2.1 (with c� = c# + log |S|+ 2cs + 1) .

Namely, the first point (Ψ
(α)

q ≤ Ψ(α)
q ) follows from (2.20), (2.25) and the

property (i) of minη (cf. Lemma 4).

The second point (Ψ
(α)

q (Γ) = Ψ(α)
q (Γ) if q is cs-stable in Λ) needs moreover

the definition of cs-stability of q in Λ and the property (ii) of minη (cf. Lemma 4).

To show the third point (|Ψ(α)

q (Γ)| ≤ exp
{
−(τ (α) − c�)|Γ|

}
), we use the fact

that, by Lemma 2, there is a cs-stable q0. So |Ψ
(α)

q (Γ)| ≤ exp
{
−(τ (α) − c# −

log |S|− cs− ε̃0− η))|Γ|
}
by the definition of Ψ

(α)

q , the assumption (1) of Theorem
2, Lemma 4 (i), and the definition of cs-stability of q in Λ. Using the choice η = 1,
we get b) with c� = c# + log |S|+ 2cs + 1.

Now, we shall show that Ψ
(α)

q fulfills the estimate (b′).
First, notice that the following auxiliary estimate holds due to Lemma 4 (i),∣∣∣ ∂

∂ti
exp

{
minη(log t1, · · · , log tr)

}∣∣∣
≤

∣∣∣exp{minη(log t1, · · · , log tr)} · ∂

∂ui
minη(u) ·

1
ti

∣∣∣ ≤ 1
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for t1, . . . , tr > 0. We differentiate

∂+ᾱ
∑
γ

Φ(α)(γ) exp
{
M(γ, η)

}
=

∑
γ

∂+ᾱ Φ(α)(γ) exp
{
M(γ, η)

}
+

∑
γ

Φ(α)(γ)∂+ᾱ
(
exp

{
M(γ, η)

})
. (2.26)

We are going to use (2) of Theorem 2 to estimate ∂+ᾱΦ(α)(γ) and (1) of Theorem
2 to estimate Φ(α)(γ). Using the existence of a cs-stable q0 we get further that

exp
{
M(γ, η)

}
≤

≤ exp
{
min

[
log

Z(Λ|λ(γ))
Z(Λ|q) , log

Z(Λ|λ(γ)) exp
{
(cs + η)|∂Λ|

}
Z(Λ|q̃) ; q̃ �= q

]}
≤

≤ exp
{
(2cs + η)|∂Λ|

}
.

To establish the estimate (b′) it remains to estimate the derivative

∣∣∣∂+ᾱ exp
{
M(γ, η)

}∣∣∣ ≤ exp
{
M(γ, η)

}∣∣∣∂+ᾱM(γ, η)
∣∣∣ ≤

≤ exp
{
M(γ, η)

}(∑
j

∂

∂tj
minη|∂Λ|(log t1, . . . , log tr)ti=tqi (α)

· ∂

∂+ᾱ
(tqj (α))

)
,

where we use the notation tq(α) =
Z(Λ|λ(γ))
Z(Λ|q) and tq̃(α) =

Z(Λ|λ(γ)) exp
{
(cs+η)|∂Λ|

}
Z(Λ|q̃)

for q̃ �= q.
We consider the product of the two terms of the last bound. The first one

is bounded by exp
{
(2cs + η)|Γ|

}
as we already noticed. The other one may be

reduced to the sum over j’s such that tqj (α) < min(t) · exp
{
2η|∂Λ|

}
by Lemma

4 (iv). Now we may use our auxiliary estimate of the partial derivatives over
tj ’s. Since we confined ourselves to those special j’s, we may use Lemma 3 to
estimate the partial derivatives of tq(α) and tq̃(α) for those q and q̃ for which
tq(α) ≤ exp

{
cs|Γ|

}
and tq̃(α) ≤ exp

{
(2cs + η)|Γ|

}
.

Inserting the above bounds into (2.26), we finally get∣∣∣∂+ᾱΨ(α)

q (Γ)
∣∣∣ ≤ ec#|Γ|e−τ (α)(

exp
{
(2cs + η)|Γ|

}
+|S| exp

{
(2cs + η)|Γ|

}
exp

{
(2cs + η)|Γ|

})
||ᾱ||.

Hence, taking again η = 1, we get (b′) with c� = c# + 4cs + 2 + 2 log(|S|+ 1) . �
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3 Periodic Gibbs states

In this short section we recall how the standard Pirogov-Sinai theory leads to a
description of Gibbs states of classical lattice models in terms of contour models.
Indeed, after reformulating a model with Hamiltonian H in terms of a labeled
contour model, we can apply results of Section 2.2.

Recall that we suppose that all periodic configurations from Gper
0 =

{x1, . . . , xr} are actually translation invariant. This does not mean a loss of gen-
erality as explained in the remark following Basic Lemma 1.2.

Considering, in the standard way (in the present context, cf. [[HKZ, Lemma
3.1]), the “diluted” partition functions

Zd(Λ|xq;H) =
∑

x=xq in (Λc)R

exp{−E(H)
Λ (x)},

with (Λc)R = {i ∈ Zν ; dist(i,Λc) ≤ R+1}, we introduce ϕ(H) = (ϕ(H)
q ) and Φ(H) in

such a way that we can replace the diluted sums Zd(Λ|xq;H) by the corresponding
labeled contour model partition functions Zcont(X(Λ)|q;Φ(H), ϕ(H)) discussed in
Section 2.2 (cf(̇2.15)); we use here the superscript “cont” to stress that we are
concerned with partition functions (resp., probability distributions) of a labeled
contour model.

Namely, let us introduce the labeled contour model (with labels Q =
{1, . . . , r}, where we denote Gper

0 = {x1, x2, . . . , xr}) with

ϕ(H)
q = exq(H) (3.1)

and
Φ(H)(γ) =

∑
x∼γ

exp
[
−E(H)

Γ (x) + E
(H)
Γ (xq)

]
, (3.2)

whenever γ is a q-contour. The sum is over configurations on Γ that can be ex-
tended to a configuration having γ as its contour (for definitions of E(H)

A (x) and
ex(H) see (1.2) and (1.3)).

Then, one can easily verify that

Zd(Λ|xq;H) = Zcont(X(Λ)|q;Φ(H), ϕ(H)) (3.3)

for every finite Λ. Moreover, the state µ({x},Λ|xq;H) can be linked with the
labeled contour model probability distribution (2.16),∑

x∈XΛ
x∼z

µ({x},Λ|xq;H) = µcont({z},X(Λ) | q;Φ(H), ϕ(H)).

Here the sum is over all spin configurations x ∈ XΛ such that the set of their
labeled contours is just z (it means that one is summing only over configurations
on

⋃
γ∈z suppΓ with boundaries fixed by labeling of contours γ ∈ z).
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Next, we verify that the assumptions of Theorem 2 for the labeled model de-
scribed by Φ(H) and ϕ(H) are satisfied. Recall that the HamiltonianH0 satisfies the
Peierls condition (P(per)) with respect to the setG0 and constant ρ0. We can choose
ε so that each H ∈ Kε(H0) satisfies, according to Proposition 1.1.3, the Peierls
condition (P(per)) with a sufficiently large constant ρε

‖H‖
‖H0‖ , where limε→0 ρε = ρ0,

if ρ0 is large enough. Now, we consider the open set Kε(H0) ⊂ H(R) to play
the role of the set Ω from Theorem 2 (thence the Hamiltonians H stand for the
parameters α of Theorem 2).

The functional Φ(H)(γ) defined by (3.2) satisfies, for any q-contour γ, the
condition (1) of Theorem 2. Indeed, using (P(per)) and the estimate |S||Γ| on the

cardinality of the set {x;x ∼ γ} we get Φ(H)(γ) ≤ e
−(ρε

‖H‖
‖H0‖−log |S|)|Γ|.

To verify the condition (2), we consider the derivative

|∂+
H̄
Φ(H)(γ)| =

∣∣∂+
H̄

∑
x∼γ

exp
(
−

∑
i∈Γ

(E(H)
i (x)− E

(H)
i (xq)

)∣∣. (3.4)

Referring to (1.2), notice that
∣∣ ∂
∂UA0 (zA0)

(
∑
i∈A

UA(xA)
|A| )

∣∣ ≤ ∑
i∈A,[A]=[A0]

1
|A| ≤ 1,

whenever A0 is such that the canonically fixed site i(A0) equals 0 (cf. the discussion
at the beginning of Section 1.1) and a configuration zA0 ∈ SA0 is fixed. Therefore,
taking again into account that the cardinality of {x;x ∼ γ} is at most |S||Γ| and
that e−(E

(H)
Γ (x)−E

(H)
Γ (xq)) ≤ e

−ρε
‖H‖
‖H0‖ |Γ|, we get, for H̄ = (ŪA0(zA0)|i(A0) = 0), the

bound

|∂+
H̄
Φ(H)(γ)| ≤ e|Γ| log |S|e−ρε

‖H‖
‖H0‖ |Γ|

∑
i∈Γ

(|∂+
H̄
E
(H)
i (x)|+ |∂+

H̄
E
(H)
i (xq)|) =

= e
|Γ|(log |S|−ρε

‖H‖
‖H0‖ ) ×

∑
i∈Γ

∑
A0,zA0

(∣∣∣ ∂

∂UA0(zA0)

(∑
i∈A

UA(xA)
|A|

)
UA0(zA0)

∣∣∣+
+

∣∣∣ ∂

∂UA0(zA0)

(∑
i∈A

UA((xq)A)
|A|

)
UA0(zA0)

∣∣∣) ≤
≤ e

|Γ|(−ρε
‖H‖
‖H0‖+log |S|)|Γ|2 dimH(R)‖H̄‖

≤ e
|Γ|(−ρε

‖H‖
‖H0‖+log |S|+1+log 2+log dimH(R))‖H̄‖.

Hence,
|∂+

H̄
Φ(H)(γ)| ≤ e−τ

(H)
Φ |Γ|‖H̄‖, (3.5)

with

τ
(H)
Φ = ρε

‖H‖
‖H0‖

− log |S| − 1− log 2− log dimH(R). (3.6)

Thus Φ(H) satisfies the conditions (1) and (2) from Theorem 2 and Proposition
2.2.1 with the constant τ

(H)
Φ playing the role of τ (α). Further, ϕ(H)

q , in the place
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of ϕ(α)
q , satisfies the condition (3) from Theorem 2 with M = 1. Recalling the

notation ε̃0, ccl, and c� (cf. Lemma 2.3.1, Proposition 2.1.3, and Theorem 2), and
applying Theorem 2, the equality (3.3), and Lemma 2.3.1, we obtain

Proposition 3.1 Under assumptions of Theorem 1:
a) For every H ∈ Kε(H0) as above, defining Φ(H) and ϕ(H) by (3.1) and

(3.2), we obtain a labeled contour model that satisfies (1) – (3) with the respective
constants τ (H) = τ

(H)
Φ and M = 1. Moreover,

Zd(Λ|xq;H) = Zcont(X(Λ)|q;Φ(H), ϕ(H))

for every finite Λ.
b) For every x ∈ Gper

0 , there exists a function hx(·) on Kε(H0) such that
there exists an extremal Gibbs state µ ∈ G(H) that is a perturbation of x whenever
hx(H) = h(H) = minx̃∈Gper

0
hx̃(H). Moreover,

|hx(H)− ϕ(H)
x | ≤ e−τ

(H)
h , (3.7)

|∂+
H̄
(hx(H)− ϕ(H)

x )| ≤ e−τ
(H)
h , (3.8)

and, finally,
|∂+

H̄
h(H)| ≤ (1 + e−τ

(H)
h )‖H̄‖ (3.9)

for every x ∈ Gper
0 and any H ∈ Kε(H0). Here, and in what follows,

τ
(H)
h = τ

(H)
Φ − ccl − c�. (3.10)

Further,
Zd(Λ|x;H) ≥ exp

[
−hx|Λ| − ε̃0|∂Λ|

]
(3.11)

for every x ∈ Gper
0 . If xq is stable, then

Zd(Λ|xq;H) ≤ exp
[
−h|Λ|+ ε̃0|∂Λ|

]
(3.12)

and there exists a (τ (H)
Φ − c�)-functional Ψq such that

Zd(Λ|xq;H) = e−exq (H)|Λ|Z(L(Λ);Ψq) (3.13)

for every finite Λ.

4 Gibbs states with interfaces

The aim of the present section is to start from the situation of Theorem 1 and to
rewrite the partition functions Z(Y,Λ|y;H), y ∈ Ghor

0 , in terms of labeled contour
models that can be treated by the methods of Section 2.2.1. In fact, we are doing
this only for a class of sets Y of configurations with the aim to estimate the
probability of a particular interface. Throughout this section we suppose that the
assumptions of Theorem 1 (i.e. also of Basic Lemma) are satisfied. In particular,
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ρ0 is assumed to be sufficiently large, with the exact bounds specified in the course
of the exposition in the present section.

We shall proceed in several steps that culminate in Proposition 4.4 below
that yields an expression of probabilities of some sets of configurations from X in
terms of corresponding interfaces which, in their turn, are related to certain labeled
contour model. The probability measure that we have in mind is constructed,
following Dobrushin [D 72], by a suitable limit starting from Gibbs states in finite
volumes with boundary conditions y ∈ Ghor

0 .

4.1 Interfaces in finite volumes

To consider Gibbs states in Basic Lemma for non-periodic elements of G0 we fix
a particular H ∈ Kε(H0), two different configurations from Gper

0 , say xp, xq with
p, q ∈ {1, . . . , r}, and a configuration y ∈ G0 ∩Xhor

xp,xq to play the role of boundary
conditions. The Hamiltonian H being fixed, we shall often omit a reference to it
from the notation.

Following [HKZ] we say that a configuration x has a y-interface if its boundary
B(x) has a unique infinite component I(x), I(x)\I(y) has only finite components,
and Zν \ I(x) has exactly two infinite R-components. We say that the sites in one
of them are lying above and those in the other one below the interface. Further,
we use I(x) to denote the pair (I(x), xI(x)) and say that I is a y-interface if there
exists a configuration x that has a y-interface I = I(x).

We begin with a study of the partition function Z(Λ|y;H) in a fixed finite
volume Λ ⊂ Zν . If x is any configuration (i.e. x ∈ SZν , ν ≥ 2) that equals y in Λc,
then x has an interface ([HKZ], Lemma 4.1). We use J (y,Λ) to denote the set of
interfaces of configurations x considered above.

Our aim is to study the probability of interfaces and thus we begin with
rewriting, for a fixed I ∈ J (y,Λ), the partition function Z(I,Λ|y;H) defined as
Z(I,Λ|y;H) = Z({x : I(x) = I},Λ|y;H) in five steps.

Step 1 (sum over interfaces) Notice first that the energy E
(H)
I∩Λ(x) does not depend

on xIc and will be denoted by E
(H)
I∩Λ(I).

The volume ΛR(= {i ∈ Zν : d(i,Λ) ≤ R + 1}) is, by means of an inter-
face I ∈ J (y,Λ) with the support I, split up into several parts: I ∩ ΛR, the
R-components Λm(I),m ∈ {p, q}, of ΛR \ I containing the sites lying above or
below I, respectively, and, finally, the remaining finitely many R-components
of ΛR \ I denoted by Intj I, j = 1, 2, . . . . The configuration x equals to some
xq(j) ∈ Gper

0 = {x1, x2, . . . , xr}, in IR ∩ Intj I if I(x) = I.
We recall that, given the Hamiltonian H , the “physical” partition function

in Λ under the boundary condition z ∈ X is expressed by

Z(Λ|z;H) =
∑

x=z in Λc

exp{−HΛ(x|z)},

where HΛ(x|z) =
∑

A∩Λ�=∅ UA(xA) with x = z in Λc.
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Using now directly concerned definitions, we get

Z(Λ|y;H) =
∑

I∈J (y,Λ)

Z(I,Λ|y;H),

where

Z(I,Λ|y;H) exp
{
−

∑
A⊂Λc

UA(y)
|A ∩ ΛR|
|A|

}
=

= exp{−E(H)
I∩ΛR(I)}

∏
m∈{p,q}

Zd(Λm(I)|xm;H)
∏
j

Zd(Intj I|xq(j);H). (4.1)

The equalities above correspond to Lemma 4.2 from [HKZ] that differs only
by the usage of the relative diluted partition function Θ instead of Zd.

Step 2 (cluster expansion) From now on we suppose that xp and xq are stable
with respect to the considered Hamiltonian H and so we may apply the Pirogov-
Sinai theory as formulated in Section 2. We express the diluted partition functions
with boundary conditions xp, xq in terms of contour functionals Ψ(H)

p and Ψ(H)
q

and thus, referring to (3.13) and (2.10), in terms of cluster functionals Ψ(H)T
p and

Ψ(H)T
q . Namely,

Z(I,Λ|y;H) exp
{
−

∑
A⊂Λc

UA(y)
|A ∩ ΛR|
|A|

}
=

∏
j

Zd(Intj I|xq(j);H)×

× exp
{
−E(H)

I∩ΛR(I) +
∑

m∈{p,q}

( ∑
C⊂Λm(I)

Ψ(H)T
m (C)− exm(H) |Λm(I)|

)}
. (4.2)

Here, the contour functionals Ψ(H)
p and Ψ(H)

q satisfy, according to Proposition
2.2.1, the bounds a) and a′) with the sufficiently large constant τ (H)

Φ − c�. Further,
the cluster functionals Ψ(H)T

p and Ψ(H)T
q satisfy, in view of Proposition 2.1.3 (if

τ
(H)
Φ − c� ≥ τcl), the bounds (2.7) and (2.9) with the constant τ

(H)
h defined in

Proposition 3.1 above.

Step 3 (extraction of bulk terms) We are going to extract a bulk term indepen-
dently of I using the fact that (see (S) in Theorem 2, Proposition 2.2.1 c), (2.14)
of Corollary 2.1.4 and (3.1))

ϕ(H)
p −

∑
C�i

Ψ(H)T
p (C)
|C| = ϕ(H)

q −
∑
C�i

Ψ(H)T
q (C)
|C| .

Denoting this expression by h(H) (notice that, since the phases xp and xq are
stable, one has

h(H) = − lim
Λ↗Zν

1
|Λ| logZ

d(Λ|xq̄;H) = − lim
Λ↗Zν

1
|Λ| logZ(Λ|z;H)
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for any q̄ ∈ {1, . . . , r} and z ∈ X (the first equality, for stable q̄, follows by (3.13),
(3.1), (2.10) and Proposition 2.2.1 c); the other one is standard), we get

Z(I,Λ|y;H) exp
{
h(H) |ΛR|} exp{−

∑
A⊂Λc

UA(y)
|A ∩ ΛR|
|A|

}
=

= exp
{
−

[
EI∩ΛR(I)− h(H) |I ∩ ΛR|

]}
× exp

{∑
j

logZd(Intj I|xq(j);H) + h(H) |Intj I|
}

× exp
{
−

∑
m∈{p,q}

∑
C�Λm(I)

Ψ(H)T
m (C)

|C ∩ Λm(I)|
|C|

}
. (4.3)

Step 4 (extraction of surface terms) The next step is to extract a surface term
that does not depend on I. If C ⊂ Zν and m ∈ {p, q}, we write C ∗m whenever
there exist i, j ∈ C such that |i− j| = 1, i ∈ ∂ΛR ∩ ∂Λm(I(y)), j ∈ (ΛR)c. We put
χΛ
m(C) = 1 if C ∗m and χΛ

m(C) = 0 otherwise. Using this notation, we have

Z(I,Λ|y;H)exp
{
h(H)|ΛR|−

∑
A⊂Λc

UA(y)
|A∩ΛR|
|A| +

∑
m∈{p,q}

∑
C∗m

Ψ(H)T
m (C)

|C∩ΛR|
|C|

}

= exp
{
−

(
EI∩ΛR(I)−h(H) |I ∩ ΛR|

)
+

(∑
j

logZd(Intj I|xq(j);H)+h(H) |Intj I|
)}

× exp
{ ∑
m∈{p,q}

∑
C∩I �=∅

Ψ(H)T
m (C)

(
χΛ
m(C)

|C ∩ ΛR|
|C| − |C ∩ Λm(I)|

|C|

)}
. (4.4)

The above equality corresponds to Lemma 4.3 in [HKZ]. Notice that the
factor on the left-hand side of (4.4) does not depend on I.

Step 5 (positivity of cluster terms)The terms Ψ(H)T
m (C)(χΛ

m(C)
|C∩ΛR|
|C| −

|C∩Λm(I)|
|C| )

are not necessarily positive, a feature that would be useful in further application
of our version of the Pirogov-Sinai theory. However, the terms depending on C
may be turned into explicitly positive by adding a suitable sum in the exponent
and absorbing it into a small change of weight of interfaces in the same time. For a
reasonable choice of the added sum (to secure the positivity of cluster terms and to
allow the proof of Lemma 4.3 below) we shall use the bounds |Ψ(H)

m (Γ)| ≤ e−τ
(H)
h |Γ|

and
∣∣∣Ψ(H)T

m (C)
∣∣∣ ≤ e−τ

(H)
h |C| with τ

(H)
h from Proposition 3.1 (see also Step 2). Hence

Z(I,Λ|y;H) exp
{
h(H) |ΛR| −

∑
A⊂Λc

UA(y)
|A ∩ ΛR|
|A|

}

× exp
{ ∑
m∈{p,q}

∑
C∗m

Ψ(H)T
m (C)

|C ∩ ΛR|
|C| + 2

∑
C∗p
C∗q

e−τ
(H)
h |C|

}
=
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= exp
{
−

[
E
(H)
I∩ΛR(I)−h(H) |I ∩ ΛR|

]
+

(∑
j

logZd(Intj I|xq(j);H)+h(H) |Intj I|
)}

× exp
{ ∑
m∈{p,q}

∑
C∩I �=∅

[
Ψ(H)T
m (C)(χΛ

m(C)
|C ∩ ΛR|
|C| − |C ∩ Λm(I)|

|C| )
]}

× exp
{
2

∑
C∩I �=∅

e−τ
(H)
h |C|(|C ∩ I ∩ ΛR|+ χΛ

p (C) · χΛ
q (C))

}

× exp
{
−2

∑
C∩I �=∅

e−τ
(H)
h |C| |C ∩ I ∩ ΛR|

}
. (4.5)

We added the terms 2
∑
C∗q
C∗p

e−τ
(H)
h |C| and added and subtracted 2

∑
C∩I �=∅

e−τ
(H)
h |C|

|C ∩ I ∩ ΛR|. The idea is that the latter equals κ(τ (H)
h ) |I ∩ ΛR| with

κ(τ (H)
h ) = 2

∑
C:0∈C

e−τ
(H)
h |C| (4.6)

and may be absorbed into a controllable change of energy, while the former does
not depend on I and may be extracted as a “border of surface term”. In the same
time, whenever the term χΛ

m(C)
|C∩ΛR|
|C| − |C∩Λm(I)|

|C| is non-vanishing (in any case,
its absolute value is bounded by 1), the term |C ∩ I ∩ ΛR| + χΛ

p (C) · χΛ
q (C) is at

least 1. Indeed, if χΛ
m(C) = 0 and in the same time C∩Λm(I) �= ∅, then necessarily

C ∩ I ∩ ΛR �= ∅ (we took into account that C ∩ I �= ∅). If, say, χΛ
p (C) = 1 and in

the same time χΛ
q (C) = 0 and C ∩ΛR �= C ∩Λp(I), then C ∩ I ∩ ΛR �= ∅. Finally,

the claim is trivial if χΛ
p (C) = χΛ

q (C) = 1. As a result,

Ψ(H)T
m (C)

(
χΛ
m(C)

|C ∩ ΛR|
|C| − |C ∩ Λm(I)|

|C|

)
+

+ e−τ
(H)
h |C|

(
|C ∩ I ∩ ΛR|+ χΛ

p (C) · χΛ
q (C)

)
≥ 0 (4.7)

since
∣∣Ψ(H)T

m (C)
∣∣ ≤ e−τ

(H)
h |C|.

Using Z̃(I,Λ|y,H) to denote the left-hand side of (4.5), we stress that the
ratio Z̃/Z does not depend on I and thus the probabilities of interfaces defined
by Z̃ or Z do not differ.

To evaluate those probabilities, we recall the notion of walls in order to rewrite
(4.5) in terms of them. A pair w = (W,xW ), where W is a connected component
of I(x) \ C(x), is a wall of I(x). We denote by W(I(x)) the collection of all walls
of I(x). For any w ∈ W(I(x)) we put

E(H)(w) = E
(H)
W (x). (4.8)

Let us recall also that given a wall w, we use xw ∈ X to denote the configuration
for which I(xw) = B(xw) and w is the only wall of I(xw), and yw to denote



250 P. Holický, R. Kotecký and M. Zahradńık Ann. Henri Poincaré

the unique element of G0 which differs from xw in at most finite number of sites.
Recall that the set G0 ∩Xhor

xp,xq consists of configurations that are vertical shifts of
finitely many “representatives” xp,q;1, . . . , xp,q;np,q . Let s(w) be such that xp,q;s(w)

is a vertical shift of yw.
We use π to denote the projection of Zν onto Zν−1 defined by

π(i1, . . . , in−1, in) = (i1, . . . , in−1),

and recall that IW = I(yw) ∩ π−1(W ).
Notice further that each set Intj I is surrounded by the support W of a single

wall w of I and use j ◦W to denote that this is the case.
Let Ip,q;s be the support of the interface of xp,q;s, s = 1, 2, . . . , np,q and

Bp,q;s(I) be the set

{i ∈ BR = π(ΛR) : π−1(i) ∩ I is a vertical shift of the “xp,q;s-ceiling column” }∪⋃
{π(W ); s(w) = s}

for I ∈ J (y,Λ). Let Tp,q;s be the number of sites in π−1(0)∩ Ip,q;s, i.e. the “thick-
ness” of Ip,q;s, and T be the maximum of all Tp,q;s’s over p, q ∈ {1, . . . , r}, s ∈
{1, . . . , np,q}. Let us recall that 2

∑
C∩I �=∅

e−τ
(H)
h |C| |C ∩ I ∩ ΛR| = κ(τ (H)

h )|I ∩ ΛR|.

Further, we use Ẽ(H)(w) to denote the “modified energy of the wall w”,

Ẽ(H)(w) = E(H)(w) − h(H) |W |+ κ(τ (H)
h ) |W | −

−
∑
j◦W

(logZd(Intj I|xq(j);H) + h(H) |Intj I|), (4.9)

and ϕ
(H)
p,q;s to denote the “modified specific energy of an s-ceiling between xp above

and xq below”,

ϕ(H)
p,q;s = E

(H)
π−1(0)∩Ip,q;s(xp,q;s) +

[
κ(τ (H)

h )− h(H)
]
Tp,q;s. (4.10)

We also use Φ(H)
Λ (w; p, q) to denote the “modified weight corresponding to a wall

w of an interface separating xp and xq”, the wall functional

Φ(H)
Λ (w; p, q) = exp

{
−

[
Ẽ(H)(w)− ϕ

(H)
p,q;s(w) |π(W )|

]}
(4.11)

and, finally, we define the cluster functional

Φ(H)
Λ,I (C; p, q) = exp

{ ∑
m∈{p,q}

[
Ψ(H)T
m (C)

(
χΛ
m(C)

|C ∩ ΛR|
|C| − |C ∩ Λm(I)|

|C|

)
+

+ e−τ
(H)
h |C|

(
|C ∩ I ∩ ΛR|+ χΛ

p (C)χ
Λ
q (C)

)]}
− 1. (4.12)
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Using this notation, we rewrite (4.5) as

Z̃(I,Λ|y;H) =
∏

w∈W(I)

Φ(H)
Λ (w; p, q)

np,q∏
s=1

exp{−ϕ(H)
p,q;s |Bp,q;s(I)|}×

×
∏

C:C∩I �=∅,C∩BR �=∅

(
1 + Φ(H)

Λ,I (C; p, q)
)
, (4.13)

and notice that by (4.7) we have

Φ(H)
Λ,I (C; p, q) ≥ 0. (4.14)

4.2 Interfaces in cylinders with finite base

Our next aim is to show that Z̃(V |y;H) =
∑

I∈J (y;V ) Z̃(I , V |y;H) can be defined
for an infinite cylinder V = π−1(B) with a finite base B(= π(V )) ⊂ Zν−1 and to
study Z̃(I, V |y;H).

Step 6 (a wall bound) The main aim of this step is to prove that, for any finite
volume Λ ⊂ Zν and any interface I of a configuration which equals y in Λc,

Z̃(I,Λ|y;H) ≤ ecI|BR|(‖H‖+1) exp
{
−(ρε

‖H‖
‖H0‖

− cI)
∑

w∈W(I)

|W |
}
, (4.15)

for some “interface” constant cI, once ρε is sufficiently large.
To estimate the wall functional Φ(H)

Λ (w; p, q) defined by (4.11), we bound
first (cf. (4.9) and (4.10))

E(H)(w)− h(H) |W |+ κ(τ (H)
h ) |W | − ϕ

(H)
p,q;s(w)|π(W )| =

=
([

E
(H)
W (xw)− e0(H)|W |

]
−

[
E
(H)
IW

(yw)− e0(H)|IW |
])
+

+ (e0(H)− h(H))(|W | − |IW |) + κ(τ (H)
h )(|W | − |IW |). (4.16)

First of all we use Peierls condition (Phor) with the constant ρε
‖H‖
‖H0‖ (see

Proposition 1.1.3) to the first parenthesised part on the right-hand side and we
get

[
E
(H)
W (xw)− e0(H)|W |

]
−

[
E
(H)
IW

(yw)− e0(H)|IW |
]
> ρε

‖H‖
‖H0‖

|W |. (4.17)

By (3.7) we get

∣∣(e0(H)− h(H))(|W | − |IW |)
∣∣ ≤ e−τ

(H)
h |W |(1 + T ). (4.18)
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We estimate the artificial term κ(τ (H)
h ), used to achieve the positivity of

Φ(H)
Λ,I (C; p, q), using its definition (4.6) and the bound (2.4), by

0 ≤ κ(τ (H)
h ) ≤ 2

∞∑
k=1

e−(τ
(H)
h −c#)k ≤ e−(τ

(H)
h −c#−log 3) (4.19)

once τ
(H)
h is sufficiently large. Hence

κ(τ (H)
h )(|W | − |IW |) ≥ −e−(τ

(H)
h −c#−log 3)|W |T. (4.20)

Further, due to (3.12) we have the bound

∑
j◦W

′(
logZd(Intj I|xq(j);H) + h(H)| Intj I|

)
≤

∑
j◦W

ε̃0(τ
(H)
h )|∂ Intj I| ≤

≤ 2νε̃0(τ
(H)
h )|W | ≤ e−(τ

(H)
h −cZ)|W | (4.21)

for a constant cZ. Here we used that

ε̃0(τ
(H)
h ) ≤ 2e−(τ

(H)
h −ccl−c#−log |S|−1) ≤ e−(τ

(H)
h −cε),

for a suitable constant cε, by Lemma 2.3.1. Here
∑′

j◦W means any sum over a
subset of {j; j ◦W}.

Substituting the just derived inequalities (4.17), (4.18), (4.20) into (4.16), we
get

E(H)(w)− h(H) |W |+ κ(τ (H)
h ) |W | − ϕ

(H)
p,q;s(w)|π(W )| ≥

ρε
‖H‖
‖H0‖

|W | − e−τ
(H)
h |W |(1 + T )− e−(τ

(H)
h −c#−log 3)|W |T. (4.22)

Using further (4.21) and having in mind (4.11) with (4.9) and (4.10), we conclude
that

Φ(H)
Λ (w; p, q) ≤

≤ exp
(
−ρε

‖H‖
‖H0‖

|W |+e−τ
(H)
h |W |(1+T )+e−(τ

(H)
h −c#−log 3)|W |T+e−(τ

(H)
h −cZ)|W |

)

≤ exp
(
−(ρε

‖H‖
‖H0‖

− cw)|W |
)
, (4.23)

where cw is a positive constant which can be chosen arbitrarily small if taking
τ
(H)
h , i.e. ρε, sufficiently large in the same time.

Now we estimate the contribution of the specific ceiling energies to the
logarithm of Z̃(I,Λ|y;H). Due to (4.10), (4.19), and the inequality |h(H)| ≤
‖H‖+ e−τ

(H)
h following from (3.7), we get

|ϕ(H)
p,q;s| ≤ t(‖H‖+ e−(τ

(H)
h −c#−log 3) + ‖H‖+ e−τ

(H)
h ) ≤ cϕ(‖H‖+ 1), (4.24)
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for some real constant cϕ. It follows that

∣∣np,q∑
s=1

ϕ(H)
p,q;s|Bp,q;s(I)|

∣∣ ≤ max
s=1,...,np,q

{∣∣ϕ(H)
p,q;s

∣∣}∣∣π(ΛR)
∣∣ ≤ cϕ(

∥∥H∥∥+ 1)
∣∣BR

∣∣. (4.25)

Finally, we get bounds for the nonnegative cluster functionals Φ(H)
Λ,I (C; p, q).

Using (4.14) from Step 5, (4.12), the fact that |Ψ(H)T
m (C)| ≤ e−τ

(H)
h |C|, and

the inequalities 0 ≤ ex − 1 ≤ 2x for x nonnegative and small enough, we get

0 ≤ Φ(H)
Λ,I (C; p, q) ≤ 4(|C|+ 2)e−τ

(H)
h |C| ≤ e−(τ

(H)
h −cC)|C|, (4.26)

where cC is a real constant.
So we can estimate the third product from (4.13) by

∏
C:C∩I �=∅,C∩BR �=∅

(
1+Φ(H)

Λ,I (C; p, q)
)
≤

∏
i∈I∩ΛR

∏
C:dist(C,i)≤|C|

(
1+e−(τ

(H)
h −cC)|C|) ≤

≤ exp
{
cπ(|I ∩ ΛR|)

}
≤ exp

{
cπ(|BR|+

∑
w∈W(I)

|W |)
}

(4.27)

for some constant cπ. Here, we used

∏
C:dist(C,i)≤|C|

(
1 + e−(τ

(H)
h −cC)|C|) ≤ exp

{ ∑
C:dist(C,i)≤|C|

e−(τ
(H)
h −cC)|C|}

≤ exp
{ ∑
C:i∈C

|C|νe−(τ
(H)
h −cC)|C|}. (4.28)

Applying the estimates (4.23), (4.25), and (4.27) to (4.13), we get

Z̃(I,Λ|y;H) ≤

≤ exp{−
∑

w∈W(I)

(ρε
‖H‖
‖H0‖

− cw)|W |} exp{cϕ(‖H‖+ 1)|BR|} exp{cπ|BR|

+
∑

w∈W(I)

cπ|W |} ≤ ecI|BR|(‖H‖+1) exp
{
−(ρε

‖H‖
‖H0‖

− cI)
∑

w∈W(I)

|W |
}

with a suitable constant cI, getting thus (4.15).

Step 7 (partition functions in infinite cylinder sets) Let us use χV to denote, for
V = π−1(B), the analogue of χΛ. Further, we introduce the analogs of the wall and
cluster functionals Φ(H)

Λ (w; p, q) and Φ(H)
Λ,I (C; p, q), defined by (4.11) and (4.12).

We denote the corresponding functionals, obtained by substituting V for Λ, by
Φ(H)
V (w; p, q) and Φ(H)

V,I (C; p, q).
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To avoid overloading the functionals with an additional label, we slightly
abuse the notation observing that the functionals defined above can be easily
distinguished by the number of their indices and arguments from general labeled
contour functional of Section 2.2 as well as from the functionals Φ(H)

B (A; p, q) and
Φ
(H)
B (σ; p, q), introduced in the next section, that yield the labeled aggregate and

shadow models.
In correspondence to Lemma 4.7 in [HKZ], and due to the estimate (4.26),

we may use the fact that∏
C:C∩I �=∅,C∩VR �=∅

(
1 + Φ(H)

V,I (C; p, q)
)
=

∑
{Ck} finite

Ck∩I �=∅,Ck∩VR �=∅

∏
k

Φ(H)
V,I (Ck; p, q)

to obtain the following expression for the limit partition function

Z̃(I, V |y;H) = lim
Λ↗V

Z̃(I,Λ|y;H) =
∑

{Ck} finite
Ck∩I �=∅,Ck∩VR �=∅

∏
w∈W(I)

Φ(H)
V (w; p, q)×

×
np,q∏
s=1

exp{−ϕ(H)
p,q;s |Bp,q;s(I)|}

∏
k

Φ(H)
V,I (Ck; p, q). (4.29)

Thus the probabilities of any interface I ∈ J (y,Λ) defined by

µ
(
{x ∈ X : I(x) = I},Λ|y;H

)
=

Z̃(I,Λ|y;H)∑
Ī∈J (y,Λ) Z̃(Ī,Λ|y;H)

converge to the probability of I ∈ J (y, V ) =
⋃

Λ⊂V J (y,Λ) defined by

µ
(
{x ∈ X : I(x) = I}, V |y;H

)
=

Z̃(I, V |y;H)∑
Ī∈J (y,V ) Z̃(Ī , V |y;H)

. (4.30)

The sum in the denominator above converges since, according to (4.15), it

can be bounded by ecI|BR|(‖H‖+1)
∏

i∈B
(∑

i∈W e
−(ρε

‖H‖
‖H0‖−cI)|W |), where W stands

for connected subsets of Zν (possible supports of walls shifted vertically to inter-
sect B).

Here we have used the important fact that the interfaces from J (y, V ) are
uniquely determined by their walls even if we “forget” their vertical position.
This observation goes back to “(y, V )-admissible families of standard walls ([HKZ]
Lemma 2.2)” and originates in [D 72].

Now we shall recall or derive some estimates on the functionals Φ(H)
V (w; p, q)

and Φ(H)
V,I (C; p, q) and their derivatives as well as a bound on the derivative of

ϕ
(H)
p,q;s needed later.

Lemma 4.3 Let xp, xq ∈ G0 be two stable translation invariant configurations at
H ∈ Kε(H0). Let s ∈ {1, . . . , np,q} be arbitrary.
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Then Φ(H)
V (w; p, q) is translation invariant, Φ(H)

V,I (C; p, q) is translation in-
variant “inside V ”, and the following bounds are fulfilled.

(a) 0 < Φ(H)
V (w; p, q) ≤ e−τ

(H)
I

|W |;
(b) 0 ≤ Φ(H)

V,I (C; p, q) ≤ e−τ
(H)
I

|C|;

(a′) |∂+
H
Φ(H)
V (w; p, q)| ≤ ‖H‖ exp{−τ (H)

I |W |};
(b′) |∂+

H
Φ(H)
V,I (C; p, q)| ≤ ‖H‖ exp{−τ

(H)
I |C|};

(c) |∂+
H
ϕ
(H)
p,q;s| ≤ ‖H‖Ms.

Here Ms(≡ Mshadow) and c′I are suitable constants, and τ
(H)
I = τ

(H)
h −

log
(

ρε
‖H0‖

)
− c′I‖H‖.

Proof. (a) Taking the limit Λ↗ V in (4.23), we get

0 ≤ Φ(H)
V (w; p, q) ≤ exp

(
−(ρε

‖H‖
‖H0‖

− cw)|W |
)
≤ e−(τ

(H)
h −cw)|W |

by (3.6) and (3.10).
(b) Taking the limit Λ↗ V in (4.26) we get

0 ≤ Φ(H)
V,I (C; p, q) ≤ exp

{
−(τ (H)

h − cC)|C|
}
.

(a′) By the definitions (4.9) of Ẽ(H)(w) and (4.11) of Φ(H)
Λ (w; p, q), with Λ

replaced by V , we have

∂+
H
Φ(H)
V (w; p, q) =

= ∂+
H

[
exp

{
−E(H)(w) + (h(H)− κ(τ (H)

h ))|W |+ ϕ
(H)
p,q;s(w)|π(W )|

}
×

∏
j◦W

Zd(Intj I|xq(j);H)
exp{−h(H)| Intj I|}

]
=

= Φ(H)
V (w; p, q)∂+

H

{
−E(H)(w) + (h(H)− κ(τ (H)

h ))|W |+ ϕ
(H)
p,q;s(w)|π(W )|

}
+

+ exp
{
−E(H)(w) + (h(H)− κ(τ (H)

h ))|W |+ ϕ
(H)
p,q;s(w)|π(W )|

}
×

×
∑
j◦W

∏
j′ �=j
j′◦W

Zd(Intj′ I|xq(j);H)
exp{−h(H)| Intj′ I|}

∂+
H

( Zd(Intj I|xq(j);H)
exp{−h(H)| Intj I|}

)
. (4.31)

To get the sought estimate (a′), we begin by estimating the first summand
in (4.31). Due to (a), it suffices to show that

|∂+
H

{
−E(H)(w) + (h(H)− κ(τ (H)

h ))|W |+ ϕ
(H)
p,q;s(w)|π(W )|

}
| ≤ C(1)|W |

∥∥H∥∥
with a suitable constant C(1) that can be chosen independent of τ (H)

h for large τ (H)
h .
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Indeed, this follows from (3.9), and the following bounds:

∣∣∂+
H̄
E(H)(w)

∣∣ ≤ ∣∣∂+
H̄

(∑
i∈W

E
(H)
i (x)

)∣∣ ≤ dimH(R)
∥∥H∥∥∣∣W ∣∣ (4.32)

by linearity of E(H)
i (x) in H (see (4.8) to understand the first inequality);

∂+
H̄
τ
(H)
h = ρε

‖H̄‖
‖H0‖

(4.33)

which follows from (3.10) and (3.6);

|∂+
H̄

κ(τ (H)
h )| ≤ 2

∑
0∈C

e−τ
(H)
h |C||C|ρε

‖H̄‖
‖H0‖

≤ ‖H̄‖e−(τ
(H)
h −log

(
ρε

‖H0‖
)
−cκ) ≤ ‖H̄‖ const, (4.34)

with a suitable constant cκ, follows from (4.6) and (4.33);

|∂+
H̄
ϕ(H)
p,q;s| ≤Ms‖H̄‖ (4.35)

follows from (4.10) using an analogy with (4.32), (3.9), and (4.34).
To estimate the other summand in (4.31), we use (4.22), (4.21) and, moreover,

∣∣∣∂+H̄( Zd(Intj I|xq(j);H)
exp{−h(H)| Intj I|}

)∣∣∣ ≤ ‖H̄‖ exp{cZ‖W‖}. (4.36)

To show the last bound, we use (2.23) of Lemma 2.3.3, (3.12), (3.9), and the
bound | Intj I| ≤ |∂ Intj I|

ν
ν−1 ≤ e|∂ Intj I| to get

∣∣∣∂+H̄
( Zd(Intj I|xq(j);H)
exp{−h(H)| Intj I|}

)∣∣∣ ≤ |(∂+H̄Zd(Intj I|xq(j);H)) exp{−h(H)| Intj I|}|
exp{−2h(H)| Intj I|}

+

+
|Zd(Intj I|xq(j);H)) exp{−h(H)| Intj I|} | Intj I| ∂+H̄h(H)|

exp{−2h(H)| Intj I|}
≤

≤ ‖H̄‖| Intj I| exp
{
ε̃0|∂(Intj I)|

}(
Ms(1 + ε̃0) + (1 + e−τ

(H)
h )

)
≤ ‖H̄‖ecZ|W |,

(4.37)

where cZ is a suitable constant. We used the obvious inequality | Intj I| ≤
|∂(Intj I)|ν .
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(b′) From the definition (4.12) we have

|∂+
H̄
Φ(H)
V,I (C; p, q)| ≤

∣∣∣exp{ ∑
m∈{p,q}

[
Ψ(H)T
m (C)(χV

m(C)
|C ∩ VR|
|C| − |C ∩ Vm(I)|

|C| )+

+ e−τ
(H)
h |C|(|C ∩ I ∩ VR|+ χV

p (C)χ
V
q (C))

]}∣∣∣×
×

( ∑
m∈{p,q}

|∂+
H̄
Ψ(H)T
m (C)|+ (|C|+ 1) exp{−τ (H)

h |C|}|∂+
H̄
τ
(H)
h ||C|

)
≤

≤ ‖H̄‖ exp{−(τ (H)
h − log

( ρε
‖H0‖

)
− c′C)|C|} (4.38)

with some constant c′C.
Here we used the bound (2.9) from Proposition 2.1.3 to estimate |∂+

H̄
Ψ(H)T
m (C)|,

as well as the bound (4.33) above.
(c) The needed estimate was already proved in (4.35) above. �

4.3 Aggregate and labeled shadow models

We shall now project the walls, as well as clusters decorating the interface, to
Zν−1(⊂ Zν), by applying the projection π. In that way, using the equalities (4.29)
and (4.30), we introduce a shadow model, in terms of which we shall grasp the
characteristic features of interfaces. The series of preceding steps will be concluded
by Proposition 4.4 that describes the properties of the labeled shadow model as
well as the relations to the probabilities of interfaces via an intermediary aggregate
model.

Given an interface I = (I, xI) ∈ J (y, V ) (where V = π−1(B) as in Section 4.2
and y ∈ Xhor

xp,xq) and a finite family {Ck} of clusters Ck, Ck∩I �= ∅, Ck∩VR �= ∅ (we
say that “{Ck} decorates I at V ”), and usingW(I) to denote the collection of walls
of I, we first consider connected components, to be called shadows of (I, {Ck}), of
the projection π(

⋃
w∈W(I)W ∪

⋃
k Ck). If (W , C) is a collection of walls of I, W ⊂

W(I), and clusters from {Ck}, C ⊂ {Ck}, such that Σ = π(
⋃

w∈W W ∪
⋃

C∈C C)
is a shadow, we introduce an aggregate A of (I, {Ck}) as the “piece of interface
above the shadow” together with the corresponding clusters. Namely, A = (IA, C),
where IA = (IA, xIA) with IA = π−1(Σ) ∩ I. The shadow Σ is called the support
of A. We identify aggregates that can be moved one into another by a vertical
translation (by shifting both, the corresponding walls and clusters). Notice, that
the relative position of concerned clusters with respect to the set IA is, in a given
aggregate, always fixed.

An aggregate A = (IA, C) with support Σ is naturally labeled since for any
i ∈ ∂Σ, the column π−1(i) is an “s-column” of xI with some s ∈ {1, . . . , np,q}. It
is clear that this s is identical for all i’s from each component of ∂Σ. We denote
this labeling by λ(A).

As a result, the shadow Σ corresponding to an aggregate A may be labeled
by λ(A) as described above. A shadow Σ endowed with such a labeling λ = λ(A)
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will be called a labeled shadow (of (I, {Ck})). We write σ = (Σ, λ), λ(σ) = λ, and
suppσ = Σ.

Notice that the labeled shadows of a pair (I, {Ck}), as above, form compatible
matching families in the sense of Section 2.2, whereas, strictly speaking, labeled
aggregates do not fit into that scheme, neither as a system of contours in Zν nor
in Zν−1. To include them would need a slight generalization of the setting from
Section 2.2.

Labeled shadows are “labeled contours” in the sense of Section 2.2. Consid-
ering now generally a configuration xp,q;s ∈ G0 ∩Xhor

xp,xq with fixed p, q ∈ Q, p �= q,
such that xp, xq are stable, and s ∈ (1, . . . , np,q) (in the role of the triplet y, xp, xq
from the preceding subsection), we introduce the weight of an aggregate A =
(IA, C) compatible with V and y by

Φ(H)
B (A; p, q) =

∏
w∈W(IA)

Φ(H)
V (w; p, q)

∏
C∈C

Φ(H)
V,I (C; p, q). (4.39)

Summing over all aggregates A corresponding to a fixed labeled shadow σ (the
same support and the labeling λ(σ) = λ(A) corresponding to xA as above), we get
the shadow weight

Φ
(H)
B (σ; p, q) =

∑
A:suppA=suppσ

λ(A)=λ(σ)

Φ(H)
B (A; p, q). (4.40)

Finally, we use ϕ(H)
p,q to denote the vector (ϕ(H)

p,q;s)
np,q
s=1 . It is defined as in (4.10)

with stable xp, xq.
Preparing for a direct application of the Pirogov-Sinai theory from Section 2

to the model defined by labeled shadows, notice first that, even though we took
with a volume B ⊂ Zν−1 only interfaces from J (xp,q;s, V ) with the walls inside
of V = π−1(B), the clusters Ck may stick out of V and, correspondingly, the
aggregates may not be contained in V and the shadows may not be contained in B.
Anticipating this feature, we actually considered, in Section 2, the generalization
allowing for volume depending contour weights.

Thus, for any finite B ⊂ Zν−1, we introduce the generalized ensemble
Xaggr
B (p, q) of all compatible and matching families of labeled aggregates with walls

in V = π−1(B) and with clusters intersecting V and the ensemble Xshad
B (p, q) of all

families of shadows that correspond to families from Xaggr
B (p, q). The set Xaggr

B (p, q)
(Xshad

B (p, q)) is actually the union, over s ∈ (1, . . . , np,q), of all sets characterized
by the external labels of all external aggregates (shadows) being fixed to equal s
— i.e. families of aggregates (shadows) consistent with boundary conditions xp,q;s.
The set Xshad

B (p, q) will play the role of the abstract set XΛ from Section 2.2.
Recall that, in accordance with the notation from the first paragraph of

Section 2.2, for any A ∈ Xaggr
B (p, q) (S ∈ Xshad

B (p, q)), we use Bs(A) (Bs(S)) to
denote the set of sites in B that are outside of the supports of all aggregates A ∈ A
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(shadows σ ∈ S) and are labeled by the label s of the corresponding ceiling. Now,
we define

Zaggr
(
Xaggr
B (p, q)|s0;H

)
=

∑
A∈Xaggr

B (p,q)
ext. label s0

Zaggr
(
{A},Xaggr

B (p, q)|s0;H
)
,

where

Zaggr
(
{A},Xaggr

B (p, q)|s0;H
)
=

∏
A∈A

Φ(H)
B (A; p, q) exp

[
−

np,q∑
s=1

ϕ(H)
p,q;s

∣∣Bs(A)
∣∣]
(4.41)

if A ∈ Xaggr
B (p, q) with external label s0; otherwise it is not defined (or, rather, it

is put to equal 0). Similarly,

Zshad
(
Xshad
B (p, q)|s0;H

)
=

∑
S∈Xshad

B (p,q)
ext. label s0

Zshad
(
{S},Xshad

B (p, q)|s0;H
)

with

Zshad
(
{S},Xshad

B (p, q)|s0;H
)
=

∏
σ∈S

Φ
(H)
B (σ; p, q) exp

[
−

np,q∑
s=1

ϕ(H)
p,q;s

∣∣Bs(S)
∣∣],
(4.42)

whenever S ∈ Xshad
B (p, q) with external label s0; otherwise it is put to equal 0.

Notice that Xaggr
B (p, q) (respectively, Xshad

B (p, q)) contains an infinite number
of configurations of aggregates (shadows). Nevertheless, the convergence of (4.41)
and (4.42) is an easy consequence of the bounds (a) and (b) from Lemma 4.3.

The probability of a compatible matching family of labeled aggregates A ∈
Xaggr
B (p, q) with external label s0 is, correspondingly, defined by

µaggr
(
{A},Xaggr

B (p, q)|s0;H
)
=

Zaggr
(
{A},Xaggr

B (p, q)|s0;H
)

Zaggr
(
Xaggr
B (p, q)|s0;H

) . (4.43)

Similarly, for S ∈ Xshad
B (p, q) with external label s0 we introduce

µshad
(
{S},Xshad

B (p, q)|s0;H
)
=

Zshad
(
{S},Xshad

B (p, q)|s0;H
)

Zshad
(
Xshad
B (p, q)|s0;H

) . (4.44)

These measures can be used to evaluate the probability of perturbations of the
interface of xp,q;s0 , once a sufficient decay of functional Φ

(H)
B (σ; p, q) in dependence

on the size of | suppσ| is guaranteed as we shall see in Section 4.4.

Proposition 4.4 (interfaces in terms of aggregates and shadows) Let xp, xq be two
translation invariant ground states of H0 that are stable for some H ∈ Kε(H0) for
ε small enough, ρ0 large enough, and let B ⊂ Zd−1 be finite. Then the following
claims hold.
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(i) For any s ∈ {1, . . . , np,q}:

Zshad
(
Xshad
B (p, q)|s;H

)
= Zaggr

(
Xaggr
B (p, q)|s;H

)
=

∑
I

Z̃(I, π−1(B)|xp,q;s;H).

Further,

µshad
(
{S},Xshad

B (p, q)|s;H
)
=

∑
A

µaggr
(
{A},Xaggr

B (p, q)|s;H
)
,

where the sum runs through A ∈ Xaggr
B (p, q) such that suppA = suppσ for

all A ∈ A and the labels corresponding to
mathcalA and A coincide, λ(A) = λ(S).
Finally, using W(A) to denote the set of all walls corresponding to the col-
lection of aggregates A, we have

µ
(
{x ∈ X :W(I(x)) =W}, π−1(B)|xp,q;s;H

)
=∑

A:W(A)=W
µaggr

(
{A},Xaggr

B (p, q)|s;H
)

for any admissible collection of walls W.
(ii) The functional Φ(H)

B (σ; p, q) and the vector ϕ(H)
p,q = (ϕ(H)

p,q;s)
np,q
s=1 define a labeled

contour model that fulfills all the assumptions of Theorem 2 and Proposition
2.2.1. Namely,

• Φ
(H)
B (σ; p, q) is nonnegative,

• Φ
(H)
B (σ; p, q) = Φ

(H)
B (σ′; p, q) = Φ

(H)
Zν−1(σ; p, q) whenever σ and σ′ are such

that suppσ, supp σ′ ⊂ B and σ′ is a translation of σ (“the functional
Φ
(H)
B (·; p, q) is, inside B, translation invariant and independent of B”). Also,
there exists a constant τ (H)

s differing from τ
(H)
I by a fixed constant depending

only on ν and |S| and a constant Ms, such that the following bounds hold:

(1) Φ
(H)
B (σ; p, q) ≤ exp{−τ (H)

s |suppσ|} for any labeled shadow σ consistent
with boundary conditions xp,q,s in B;

(2) |∂+
H̄
Φ
(H)
B (σ; p, q)‖ ≤ ‖H̄‖ exp{−τ (H)

s | suppσ|};

(3) |∂+
H̄
ϕ
(H)
p,q;s| ≤Ms‖H̄‖.

Proof. (i) It follows from (4.39) – (4.44) with the use of (4.29) and (4.30).
(ii) The functional Φ(H)

B (A; p, q) is nonnegative by its definition (4.39) and
by (4.14).
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The translation invariance inside B follows from the definitions (4.39), (4.11),
(4.12), from the translation invariance of the functionals involved and the invari-
ance inside B of χV

m(C), and by inspecting cardinalities of the sets involved in
(4.12) for sets C fully contained in V .

The corresponding claims for Φ(H)
B (σ; p, q) follow from (4.40).

(1) We use first Lemma 4.3(a) and (b) to get, by (4.39) and (4.40), that

0 ≤ Φ
(H)
B (σ; p, q) ≤

∑
(I,C)

exp{−τ (H)
I

∑
w∈W(I)

|W | − τ
(H)
I

∑
C∈C

|C|},

where the sum is over aggregates that correspond each to a pair of an interface
I ∈ I(xp,q;s, V ) and of a finite family C such that C ∩ VR �= ∅ and C ∩ I �= ∅, for
all C ∈ C, and π(

⋃
C∈C

C ∪
⋃

w∈W(I)

W ) = Σ = suppσ as above (i.e. over (I, C) with

the only aggregate A = (IA, C)).
Since, obviously, ‖A‖ = ‖(W(I), C)‖ ≡

∑
C∈C

|C|+
∑

w∈W(I)

|W | ≥ | suppσ|, we

have

Φ
(H)
B (σ; p, q) ≤ e−(τ

(H)
I

−ζ)| suppσ| ∑
(I,C)

exp{−ζ(
∑

w∈W(I)

|W |+
∑
C∈C

|C|)},

for any ζ > 0, ζ < τ
(H)
I .

We shall show that, for some sufficiently large ζ, in dependence on ν and |S|
only, the last sum is at most ec| suppσ| for suitable c which also depends on |S| and
ν only. We begin with an observation.

Namely, introducing the notion of an extent of an aggregate A as extA =
IA∪

⋃
C∈C

C, we notice that it is a connected set of cardinality at most
∑

w∈W(IA)

|W |+

(1 + T )
∑
C∈C

|C| ≤ (1 + T )‖A‖. In the same time we may suppose, referring to the

identification of aggregates under vertical translations, that each extA contains
an element i of suppσ.

As a consequence, there are at most ecs‖A‖ aggregates A with i ∈ extA and
given ‖A‖. Namely, every such A can be identified with a connected path over extA
of the length at most 2ν(T +1)‖A‖, each point of which is moreover equipped with
a label saying whether this point of the path belongs to a wall, to a cluster, or to
the remaining part

extA \
⋃

w∈W(IA)

W ∪
⋃
C∈C

C

of the interface IA. The label will also say what spin at this point is attained if it
is a point of a wall. The number of needed labels is thus depending on ν and |S|
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only. As a result, we get

Φ(H)
B (σ; p, q) ≤ e−(τ

(H)
I

−ζ)| suppσ| ∑
A=(I,C)

exp{−ζ(
∑

w∈W(I)

|W |+
∑
C∈C

|C|)} ≤

≤ e−(τ
(H)
I

−ζ)| suppσ| ∑
i∈suppσ

∑
A:i∈extA

e−ζ‖A‖ ≤

≤ e−(τ
(H)
I

−ζ)| suppσ| ∑
i∈suppσ

∑
k≥| suppσ|

e−(ζ−cs)k ≤ e−(τ
(H)
I

−ζ−1+log(1−e−cs ))| suppσ|

≤ e−τ (H)
s | suppσ|,

where ζ ≥ 2cs.
(2) By differentiating (4.40) and using (4.39) as well as the estimates (a), (b),

(a′), (b′) of Lemma 4.3, we obtain

|∂+
H̄
Φ(H)
B (σ; p, q)| ≤

∑
A=(I,C)

∑
w∈W(I)

‖H̄‖ exp{−τ (H)
I

∑
w̄∈W(I)

|w̄| − τ
(H)
I

∑
C̄∈C

|C̄|}+

+
∑

A=(I,C)

∑
C∈C

‖H̄‖ exp{−τ (H)
I

∑
w̄∈W(I)

|w̄| − τ
(H)
I

∑
C̄∈C

|C̄|} ≤

≤ ‖H̄‖e−(τ
(H)
I

−ζ−1)| suppσ| ∑
A=(I,C)

exp{(−ζ + 1)‖A‖}.

Here the sum
∑

A=(I,C)
above is taken over all aggregates A with suppA = suppσ

and λ(A) = λ(σ). Now, we use the same argument as in (1) with ζ − 1 instead of
ζ, so that for ζ − 1 ≥ 2cs we get

|∂+
H̄
Φ(H)
B (σ; p, q)| ≤ e−τ (H)

s | suppσ|.

(3) This is the estimate of Lemma 4.3(c) above. �

4.4 Gibbs states with interfaces. Proof of Basic Lemma

To conclude the proof of Basic Lemma, it remains to define, for any y ∈ Ghor
0 , the

functions hy : Kε(H0) → R such that the statements (i) (b) and (ii) of Basic
Lemma hold.

As anticipated in Section 4.1, we fix a particular H ∈ Kε(H0), two different
configurations from Gper

0 , say xp, xq with p, q ∈ {1, . . . , r}, and a configuration
y ∈ G0 ∩ Xhor

xp,xq to be identified with a triplet (p, q, s), s ∈ {1, . . . , np,q}. The
corresponding functionals Φ(H)

B (A; p, q), Φ(H)
B (σ; p, q), and vectors ϕ(H)

p,q describing
the aggregate and shadow models in the preceding Section 4.4 were defined (or
considered) only if xp and xq were stable and distinct. We may however notice that
ϕ
(H)
p,q;s are by (4.10) actually well-defined for general pairs of (distinct) xp and xq
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from Gper
0 . To define Φ(H)

B (A; p, q) and Φ
(H)
B (σ; p, q), we then use formulas (4.39)

and (4.40) referring to (4.11) and (4.12). While Φ(H)
V (w; p, q) again is well-defined

even if xp, xq are arbitrary elements of G
per
0 , we need to define Φ(H)

V,I (C; p, q) so that
the bounds (1), (2), and (3) of Proposition 4.4 (ii) hold true. This can be easily
achieved if we simply replace Ψp and Ψq in (4.12), and further on, by Ψp and Ψq,
respectively, where Ψp and Ψq are the auxiliary functionals from Proposition 2.2.1
(b′), so that we may apply all the cluster expansion technique to them to get (ii)
of Proposition 4.4 for all p, q’s.

This is the starting point for a second use of the Pirogov-Sinai strategy. This
time with different y ∈ G0 ∩Xhor

xp,xq (and fixed p, q) playing the role of reference
states and thus the label in Theorem 2 and Proposition 2.2.1 taking values s with
s ∈ {1, . . . , np,q}. The function hy(H) from Basic Lemma is, for y corresponding
to the triplet (p, q, s), defined to be equal to the function hs(Φ(H)(·; p, q), ϕ(H)

p,q )
whose existence is assured by Theorem 2. The claim (ii) of Basic Lemma is then
an immediate consequence of Theorem 2 (approximating hy(H) (and its derivative)
in terms of ϕ(H)

p,q;s) and the equation (4.10) relating ϕ
(H)
p,q;s to ey(H) (cf. (3.7), (3.9),

and (4.34)). (Of course, if either xp or xq is not stable, we lose the equality (4.13)
and as a result we cannot claim anything like (i) of Proposition 4.4.)

It remains to prove the statement (i) (b) of Basic Lemma. Therefore we
assume that both xp and xq are stable, and that y = xp,q;s is stable for the
shadow model determined by Φ

(H)
B (σ; p, q) and ϕ

(H)
p,q .

We are going to derive the properties of the Gibbs measure µ(·|y,H) obtained
from measures µ(·, Vn = π−1(Bn)|y,H) as a weak limit with Bn growing up to
Zν−1, which were investigated in Step 7 above. Such measures are Gibbs states as
they are weak limits of µ(·,Λn|y,H) for volumes Λn = Bn × [−kn, kn], with kn
growing to infinity sufficiently quickly (cf. [D 72, HKZ (3.2)]). To show that almost
every configuration is a perturbation of y, it suffices to verify that for every ε and
any Λ ⊂ Zν , there exist constants a, b, d > 0 so that, defining

X(Λ, a, b) =
{
x ∈ X ;

[
w ∈ W(I(x)), V (W ) ∩ Λ �= ∅ ⇒ diamW ≤ a

]
and[

γ a contour of x, V (Γ) ∩ Λ �= ∅ ⇒ diamΓ ≤ b
]}

,

with V (W ) denoting the union of W and all finite components of Zν \W , we have

µ
(
X(Λ, a, b), π−1(B)|y;H

)
> 1− ε (4.45)

whenever B ⊂ Zν−1 is such that dist(π(Λ), Bc) ≥ d.
To this end we first show that it is unprobable that shadows intersecting a

given finite volume in Zν−1 are large and similarly for corresponding aggregates in
Zν . Finally we estimate the probability of existence of large contours intersecting
a fixed finite volume in Zν .
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Let thus E(c)M be the set of all shadow configurations containing a large shadow
intersecting or surrounding a fixed finite set M ⊂ Zν−1. Namely, for any such M
and c > 0 we introduce

E(c)M =
{
S ∈ Xshad

B (p, q); there exists σ ∈ S such that

V (Σ) ∩M �= ∅ and diamΣ > c
}
,

with Σ = suppσ and V (Σ) (for any finite set Σ ⊂ Zν−1) denoting the union
of Σ with all finite components of Zν−1 \ Σ. Using the main results of Section
2 (Theorem 2, Proposition 2.2.1, and Corollary 2.2.2) to the shadow model, we
may show, in a standard way, that for a given finite M ⊂ Zν−1 and a positive ε,
constants d′ = d′(M, ε) and c = c(M, ε) may be found such that

µshad
(
E(c)M ,Xshad

B (p, q)|s;H
)
≤ 1

2
ε (4.46)

for all B ⊂ Zν−1 such that dist(M,Bc) ≥ d′.
For a fixed configuration S of shadows of diameter at most c and with V (Σ)∩

M �= ∅ for every σ ∈ S, consider the event consisting of those configurations of
walls and clusters (configurations of aggregates) whose set of shadows intersecting
M is fixed and equals S. The conditional probability of each of these events,
given such a fixed S, is independent of B for B sufficiently large. Since there are
countably many such events, and due to (4.46), we may find a = a(M, ε) such
that, supposing dist(M,Bc) > d′, we get

µaggr(A(M,a),Xaggr
B (p, q)|s;H) > 1− 1

2
ε,

with
A(M,a) = {A ∈ Xaggr

B (p, q); [w ∈ W(A) and

V (W ) ∩ π−1(M) �= ∅]⇒ diamW ≤ a}.

Comparing µaggr and µ (Proposition 4.4 (i)), we get the bound

µ
(
X(M,a), π−1(B)|y;H

)
> 1− 1

2
ε (4.47)

for

X(M,a) =
{
x ∈ X ;

[
w ∈ W(I(x)) and V (W ) ∩ π−1(M) �= ∅

]
⇒ diamW ≤ a

}
.

Given a finite Λ ⊂ Zν with projection π(Λ) = M , xΛ is fully determined if
we know the contours γ with V (Γ) ∩ Λ �= ∅ and walls w with V (W ) ∩ Λ �= ∅. Let
I be a given interface compatible with the boundary condition y on Λc. If γ is a
contour such that V (Γ)∩Λ �= ∅ and, in the same time, V (Γ) ⊂ IntW = V (W )\W
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for some wall, then necessarily V (W )∩Λ �= ∅. Thus it suffices to consider contours
that are either above or below I, Γ ⊂ (

⋃
j Intj I ∪ I)c. Introducing

X(I,Λ, b) = {x ∈ X ; I(x) = I and

[γ is a labeled contour of x,Γ ⊂ (
⋃
j

Intj I ∪ I)c, V (Γ) ∩ Λ �= ∅]⇒ diamΓ ≤ b},

we get

µ
(
X(I,Λ, b), π−1(B)|y, I;H

)
> 1− 1

2
ε, (4.48)

independently of I for B ⊂ Zν−1 with dist(M,Bc) > d for some b = b(M, ε) and
d = d(M, ε) > d′. Here we consider the conditional probability under the condition
that the interface with support I is present. The bounds (4.47) and (4.48) together
yield (4.45).

Remark. Notice that having (4.45) for Λ’s that are singletons, we get that almost
all configurations with respect to the limit Gibbs state are perturbations of y.

In fact, we may prove an explicit expression for the limit probability µ(·|y;H)
by means of the limit conditional probability “µ(·, π−1|I)” and the limit probability
on families of walls “ lim

Bn↗Zν−1
µI(·, π−1(Bn)|y;H)” similarly as (2.1) was proved

in [HKZ, Section 6.2.2]. However, it is a little bit more complicated in our more
general situation. The probabilities µI can be expressed using their projections to
families of external walls. Also we don’t have the exponential estimates as (a) and
(b) of (i) and (ii) in [HKZ, Theorem 2]. However, one may check that the above
estimate (4.45) is sufficient to carry on the proof of the respective identity.
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[HZ] P. Holický and M. Zahradńık, Stratified low-temperature phases of strat-
ified spin models. A general Pirogov-Sinai approach, preprint.
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Center for Theoretical Study
Charles University
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