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The method of cluster expansions in statistical physics provides a systematic way
of computing power series for thermodynamic potentials (logarithms of partition
functions) as well as correlations. It originated from the works of Mayer and others
devoted to expansions for dilute gas.

1. Mayer expansion

Consider a system of interacting particles with Hamiltonian

HN (~p1, . . . , ~pN , ~r1, . . . , ~rN ) =
N∑

i=1

~p 2
i

2m
+

N∑
i,j=1

Φ(~ri − ~rj), (1)

where Φ is a stable and regular pair potential. Namely, we assume that there exists
B ≥ 0 such that

N∑
i,j=1

Φ(~ri − ~rj) ≥ −BN (2)

for all N = 2, 3, . . . and all (~r1, . . . , ~rN ) ∈ R3N , and that

C(β) =
∫ ∣∣e−βΦ(~r) − 1

∣∣d3~r < ∞ (3)

for some β > 0 (and hence all β > 0). Basic thermodynamic quantities are given
in terms of the grand-canonical partition function

Z(β, λ, V ) =
∞∑

N=0

zN

N !

∫
R3N×V N

e−βHN

∏
d3~pi

∏
d3~ri

h3N
=

=
∞∑

N=0

λN

N !

∫
V N

e−β
P

i,j Φ(~ri−~rj)
∏

d3~ri.

(4)

In the second expression we absorbed the factor resulting from the integration over

impulses into (configurational) activity λ =
(

2πm
βh2

) 3
2
z. In particular, the pressure

p and the density ρ are defined by the thermodynamic limits (with V →∞ in the
sense of Van Hove)

p(β, λ) =
1
β

lim
V→∞

1
|V |

log Z(β, λ, V ) (5)

and

ρ(β, λ) = lim
V→∞

1
|V |

λ
∂

∂λ
log Z(β, λ, V ). (6)
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Mayer series are the expansions of p and ρ in powers of λ,

βp(β, λ) =
∞∑

n=1

bnλn (7)

and

ρ(β, λ) =
∞∑

n=1

nbnλn. (8)

Mayer’s idea for a systematic computation of coefficients bn was based on a refor-
mulation of partition function Z(β, λ, V ) in terms of cluster integrals. Introducing
the function

f(~r) = e−βΦ(~r) − 1 (9)
and using G[N ] to denote the set of all graphs on N vertices {1, . . . , N}, we get

Z(β, λ, V ) =
∞∑

N=0

λN

N !

∫
V N

N∏
i,j=1

(
1 + f(~ri − ~rj)

) ∏
d3~ri =

=
∞∑

N=0

λN

N !

∑
g∈G[N ]

w(g),

(10)

where

w(g) =
∫

V N

∏
{i,j}∈g

f(~ri − ~rj)
∏

d3~ri. (11)

Observing that the weight w is multiplicative in connected components (clusters)
g1, . . . , gk of the graph g,

w(g) =
k∏

`=1

w(g`), (12)

we can rewrite

Z(β, λ, V ) =
∞∑

N=0

λN

N !

∑
{g`}

∏
`

w(g`) (13)

with the sum running over all disjoint collections {g`} of connected graphs with
vertices in {1, . . . , N}. A straightforward exponential expansion can be used to
show that, at least in the sense of formal power series,

log Z(β, λ, V ) =
∞∑

n=1

λn

n!

∑
g∈C[n]

w(g), (14)

where C[n] is the set of all connected graphs on n vertices. Using b
(V )
n to denote

the coefficients
b(V )
n =

1
|V |

1
n!

∑
g∈C[n]

w(g) (15)

and observing that the limits limV→∞
1
|V |w(g) of cluster integrals exist, we get

bn = limV→∞ b
(V )
n . The convergence of Mayer series can be be controlled directly

by combinatorial estimates on the coefficients b
(V )
n . As a result, the diameter of

convergence of the series (7) and (8) can be proven to be at least
(
C(β)e2βB+1

)−1.
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A less direct proof is based on an employment of linear integral Kirkwood-Salsburg
equations in a suitable Banach space of correlation functions.

Similar combinatorial methods are available also for evaluation of coefficients of
the virial expansion of pressure in powers of gas density,

βp(β, ρ) =
∞∑

n=1

βnρn (16)

obtained by inverting (8) (notice that b1 = 1) and inserting it into (7). One is
getting βn = limV→∞ β

(V )
n with

β(V )
n =

1
|V |

1
n!

∑
g∈B[n]

w(g), (17)

where B[n] ⊂ C[n] is the set of all 2-connected graphs on {1, . . . , n}; namely, those
graphs that cannot be split into disjoint subgraphs by erasing one vertex (and all
adjacent edges). The diameter of convergence of the virial expansion turns out to
be no less than

(
C(β)e(e2βB + 1)

)−1.

2. Abstract polymer models

An application of the ideas of Mayer expansions to lattice models is based on a
reformulation of the partition function in terms of a polymer model, a formulation
akin to (13) above. Namely, the partition function is rewritten as a sum over
collections of pairwise compatible geometric objects—polymers. Most often the
compatibility means simply their disjointness.

While the reformulation of “physical partition function” in terms of a polymer
model (including the definition of compatibility) depends on particularities of a
given lattice model and on the considered region of parameters—high-temperature,
low-temperature, large external fields, etc—the essence and results of cluster ex-
pansion may be conveniently formulated in terms of an abstract polymer model.

Let G = (V,E) be any (possibly infinite) countable graph and suppose that a
map w : V → C is given. Vertices v ∈ V are called abstract polymers, with two
abstract polymers connected by an edge in the graph G called incompatible. We
shall refer to w(v) as to the weight of the abstract polymer v. For any finite W ⊂ V ,
we consider the induced subgraph G[W ] of G spanned by W and define

ZW (w) =
∑
I⊂W

∏
v∈I

w(v). (18)

Here the sum runs over all collections I of compatible abstract polymers—or, in
other words, the sum is over all independent sets I of vertices in W (no two vertices
in I are connected by an edge).

The partition function ZW (w) is an entire function in w = {w(v)}v∈W ∈ C|W |

and ZW (0) = 1. Hence, it is nonvanishing in some neighbourhood of the origin
w = 0 and its logarithm is, on this neighbourhood, an analytic function yielding a
convergent Taylor series

log ZW (w) =
∑

X∈X (W )

aW (X)wX . (19)



4 CLUSTER EXPANSION

Here, X (W ) is the set of all multi-indices X : W → {0, 1, . . . } and wX =
∏

v w(v)X(v).
Inspecting the formula for aW (X) in terms of corresponding derivatives of log ZW (w),
it is easy to show that the Taylor coefficients aW (X) actually do not depend on
W : aW (X) = asupp X(X), where suppX = {v ∈ V : X(v) 6= 0}. As a result, one is
getting the existence of coefficients a(X) such that

log ZW (w) =
∑

X∈X (W )

a(X)wX (20)

for every finite W ⊂ V .
The coefficients a(X) can be obtained explicitly. One can pass from (18) to (20)

in a similar way as passing from (10) to (13). The starting point is to replace the
restriction to compatible collections of abstract polymers in the sum (18) by the
factor

∏
v,v′∈W

(
1 + F (v, v′)

)
with

F (v, v′) =

{
0 if v and v′ are compatible
−1 otherwise (v and v′ connected by an edge from G),

(21)

and to expand the product afterwards. The resulting formula is

a(X) = (X!)−1
∑

H⊂G(X)

(−1)|E(H)|. (22)

Here, G(X) is the graph with |X| =
∑
|X(v)| vertices induced from G[suppX] by

replacing each its vertex v by the complete graph on |X(v)| vertices and X! is the
multi-factorial X! =

∏
v∈supp X X(v)!. The sum is over all connected subgraphs

H ⊂ G(X) spanned by the set of vertices of G(X) and |E(H)| is the number of
edges of the graph H.

A useful property of the coefficients a(X) is their alternating sign,

(−1)|X|+1a(X) ≥ 0. (23)

More important than an explicit form of the coefficients a(X) are the convergence
criteria for the series (20). One way to proceed is to find direct combinatorial
bounds on the coefficients as expressed by (22). While doing so, one has to take
into account the cancellations arising in view of the presence of terms of opposite
signs in (22). Indeed, disregarding them would lead to a failure since, as it is easy
to verify, the number of connected graphs on |X| vertices is bounded from below
by 2

(|X|−1)(|X|−2)
2 . An alternative approach is to prove the convergence of (20) on

polydiscs DW,R = {w : |w(v)| ≤ R(v) for v ∈ W} by induction in |W |, once a
proper condition on the set of radii R = {R(v); v ∈ V } is formulated. The most
natural for the inductive proof (leading in the same time to the strongest claim)
turns out to be the Dobrushin condition:

There exists a function r : V →[0, 1) such that, for each v ∈ V,

R(v) ≤ r(v)
∏

v′∈N (v)

(
1− r(v′)

)
. (24)

Here N (v) is the set of vertices v′ ∈ V adjacent in graph G to the vertex v.
Using X to denote the set of all multi-indices X : V → {0, 1, . . . } with finite

|X| =
∑
|X(v)| and saying that X ∈ X is a cluster if the graph G(supp X) is
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connected, we can summarise the cluster expansion claim for an abstract polymer
model in the following way:

Theorem (Cluster expansion). There exists a function a : X → R that is
nonvanishing only on clusters, so that for any sequence of diameters R satisfying
the condition (24) with a sequence {r(v)}, the following holds true:

(i) For every finite W ⊂ V , and any contour weight w ∈ DW,R, one has
ZW (w) 6= 0 and

log ZW (w) =
∑

X∈X (W )

a(X)wX ;

(ii)
∑

X∈X :supp X3v |a(X)||w|X ≤ − log
(
1− r(v)

)
.

Notice that, we have got not only an absolute convergence of the Taylor series of
log ZW in the closed polydisc DW,R, but also the bound (ii) (uniform in W ) on the
sum over all terms containing a fixed vertex v. Such a bound turns out to be very
useful in applications of cluster expansions. It yields, eventually, bounds on various
error terms, avoiding a need of an explicit evaluation of the number of clusters of
“given size”.

The restriction to compatible collections of polymers can be actually relaxed.
Namely, replacing (25) by

ZW (w) =
∑

W ′⊂W

∏
v∈W ′

w(v)
∏

v,v′∈W ′

U(v, v′), (25)

with U(v, v′) ∈ [0, 1] (soft repulsive interaction), and the condition (24) by

R(v) ≤ r(v)
∏
v′ 6=v

1− r(v′)
1− U(v, v′)r(v′)

, (26)

one can prove that the partition function ZW (w) does not vanish on the polydisc
DW,R implying thus that the power series of log ZW (w) converges absolutely on
DW,R.

Polymers that arise in typical applications are geometric objects endowed with
a “support” in the considered lattice, say Zd, d ≥ 1, and their weights satisfy the
condition of translation invariance. Cluster expansions then yield an explicit power
series for the pressure (resp. free energy) in the thermodynamic limit as well as its
finite volume approximation.

To formulate it for an abstract polymer model, we assume that for each x ∈ Zd,
an isomorphism τx : G → G is given and that with each abstract polymer v ∈ V
a finite set Λ(v) ⊂ Zd is associated so that Λ((τx(v)) = Λ(v) + x for every v ∈ V
and every x ∈ Zd. For any finite W ⊂ V and any multi-index X, let Λ(W ) =
∪v∈W Λ(v) and Λ(X) = Λ(supp(X)). On the other hand, for any finite Λ ⊂ Zd,
let W (Λ) = {v ∈ V : Λ(v) ⊂ Λ}. Assuming also that the weight w : V → C is
translation invariant—i.e. w(v) = w(τx(v)) for every v ∈ V and every x ∈ Zd—
we get an explicit expression for the “pressure” of abstract polymer model in the
thermodynamic limit

p = lim
Λ→∞

1
|Λ|

log ZW (Λ)(w) =
∑

X:Λ(X)30

a(X)wX

|Λ(X)|
. (27)
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In addition, the finite volume approximation can be explicitly evaluated, yielding

log ZW (Λ)(w) = p|Λ|+
∑

X:Λ(X)∩Λc 6=∅

a(X)wX |Λ(X) ∩ Λ|
|Λ(X)|

. (28)

Using the claim (ii), the second term can be bounded by const |∂Λ|.

3. Cluster expansions for lattice models

There is a variety of applications of cluster expansions to lattice models. As
noticed above, the first step is always to rewrite the model in terms of a polymer
representation.

3.1. High-temperature expansions. Let us illustrate this point in the simplest
case of the Ising model. Its partition function in volume Λ ⊂ Zd, with free boundary
conditions and vanishing external field, is

ZΛ(β) =
∑
σΛ

exp
{ ∑

x,y∈Λ
|x−y|=1

σxσy

}
. (29)

Using the identity
eβσxσy = cosh β + σxσy sinhβ, (30)

it can be rewritten in the form

ZΛ(β) = 2|Λ|(coshβ)|B(Λ)|
∑
B

(tanhβ)|B|. (31)

Here, the sum runs over all subsets B of the set B(Λ) of all bonds in Λ (pairs of
nearest neighbour sites from Λ) such that each site is contained in an even number
of bonds from B. Using Λ(B) to denote the set of sites contained in bonds from B,
we say that B1, B2 ⊂ B(Λ) are disjoint if Λ(B1)∩Λ(B2) = ∅. Splitting now B into a
collection B = {B1, . . . , Bk} of its connected components called (high-temperature)
polymers and using B(Λ) to denote the set of all polymers in Λ, we are getting

ZΛ(β) = 2|Λ|(coshβ)|B(Λ)|
∑

B⊂B(Λ)

∏
B∈B

(tanh β)|B| (32)

with the sum running over all collections B of mutually disjoint polymers. This
expression is exactly of the form (18), once we define compatibility of polymers by
their disjointness. Introducing the weights

w(B) =
(
tanh β

)|B|
, (33)

and taking the set B(Λ) of all polymers in Λ for W , we get the polymer represen-
tation ZΛ(β) = 2|Λ|(coshβ)|B(Λ)|ZB(Λ)(w).

To apply the cluster expansion theorem, we have to find a function r such that
the right hand side in (24) is positive and yields thus the radius of a polydisc of
convergence. Taking r(B) = ε|B| with a suitable ε, we get∏

B′∈N(B)

(1− r(B′)) ≥ e−2|B| (34)
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allowing to choose R(B) = r(B)e−2|B| =
(
εe−2

)|B|. Indeed, to verify (34) we just
notice that the number of polymers of size n containing a fixed site is bounded by
κn with a suitable constant κ. Thus∑

B′:Λ(B′)3x

ε|B
′| ≤

∞∑
n=1

κnεn ≤ 1
2

(35)

once ε is sufficiently small, and thus∑
B′∈N(B)

ε|B
′| ≤ 1

2
|Λ(B)| ≤ |B| (36)

yielding (34) (1 − t > e−2t for 0 < t < 1
2 ). To have w ∈ DW,R (for any W ) is, for

R(B) =
(
εe−2

)|B|, sufficient to take β ≤ β0 with tanhβ0 = εe−2.
As a consequence, for β ≤ β0 we can use the cluster expansion theorem to

obtain a convergent power series in powers of tanhβ. In particular, using Λ(X) =
∪B∈supp XΛ(B), we get the pressure by the explicit formula

βp(β) = log 2 + d log(cosh β) +
∑

X:Λ(X)3x

a(X)
|Λ(X)|

wX (37)

for any fixed x ∈ Zd (by translation invariance of the contributing terms, the choice
of x is irrelevant). The function βp(β) is analytic on the region β ≤ β0 since it is
obtained as a uniformly absolutely convergent series of analytic terms (tanhβ)|X|.

This type of high-temperature cluster expansion can be extended to a large
class of models with Boltzmann factor in the form exp{−β

∑
A UA(φ)}, where

φ = (φx;x ∈ Zd) is the configuration with a priori on site probability distribution
ν(dφx) and UA, for any finite A ⊂ Zd, are the multi-site interactions (depending
only on (φx;x ∈ A)). Using the Mayer trick we can rewrite

exp{−β
∑
A⊂Λ

UA(φ)} =
∏
A

(
1 + fA(φ)

)
(38)

with fA(φ) = exp{−βUA(φ)}−1. Expanding the product we will get a polymer rep-
resentation with polymers A consisting of connected collections A = (A1, . . . , Ak)
with weights

w(A) =
∫ ∏

A∈A
fA(φ)

∏
x∈∪A∈AA

ν(dφx). (39)

Under appropriate bounds on the interactions UA and for β small enough, using
Λ(A) to denote the set ∪A∈AA, we get∑

A:Λ(A)3x

|w(A)| ≤ 1. (40)

This assumption allows, as before in the case of the high-temperature Ising model,
to apply the cluster expansion theorem yielding an explicit series expansion for the
pressure.



8 CLUSTER EXPANSION

3.2. Correlations. Cluster expansions can be applied for evaluation of decay of
correlations. Let us consider, for the class of models discussed above, the expecta-
tion

〈Ψ 〉Λ =
1

ZΛ

∫
Ψ(φ) e−βHΛ(φ)

∏
x∈Λ

ν(dφx) (41)

with HΛ(φ) =
∑

A⊂Λ UA(φ) and a function Ψ depending only on variables φx on
sites x from a finite set S ⊂ Λ ⊂ Zd.

A convenient way of evaluating the expectation starts with introduction of the
modified partition function

ZΛ,Ψ(α) = ZΛ + αZΛ,Ψ = ZΛ

(
1 + α〈Ψ 〉Λ

)
. (42)

Clearly,

〈Ψ 〉Λ =
d log ZΛ,Ψ(α)

dα

∣∣∣
α=0

. (43)

Thus, one may get an expression for the expectation 〈Ψ 〉Λ, by forming a polymer
representation of ZΛ,Ψ(α) and isolating terms linear in α in the corresponding
cluster expansion. For the first step, in the just cited hight-temperature case with
general multi-site interactions, we first enlarge the original set A(Λ) of all polymers
in Λ (consisting of connected collections A = (A1, . . . , Ak)) to WS(Λ) = A(Λ) ∪
AS(Λ), where AS(Λ) is the set of all collections (A1, . . . ,Ak) of polymers such that
each of them intersects the set S (polymers A1, . . . ,Ak are “glued” by S into a
single entity). Compatibility is defined as before by disjointness; in addition, any
two collections from AS(Λ) are declared to be incompatible as well as any polymer
A from A(Λ) intersecting S is considered to be incompatible with any collection
from AS(Λ). Defining now wα(A) = w(A) for A ∈ A(Λ) and

wα(A) = α

∫
Ψ(φ) e−βHΛ(φ)

∏
x∈∪A∈A1∪···∪Ak

A∪S

ν(dφx) (44)

for A = (A1, . . . ,Ak) ∈ AS(Λ), we get ZΛ,Ψ(α) exactly in the form (18),

ZΛ,Ψ(α) =
∑

I⊂WS(Λ)

∏
A∈I

wα(A). (45)

As a result, we have

logZΛ,Ψ(α) =
∑

X∈X (WS(Λ))

a(X)wX
α , (46)

allowing easily to isolate terms linear in α: namely, the terms with multi-indices
X with suppX ∩ AS(Λ) consisting of a single collection, say A0, that occurs with
multiplicity one, X(A0) = 1. Explicitly, using

XS,A0(Λ) =
{
X ∈ X (WS(Λ)) : supp X ∩ AS(Λ) = {A0}, X(A0) = 1

}
, (47)

we get
〈Ψ 〉Λ =

∑
A0∈AS(Λ)

∑
X∈XS,A0 (Λ)

a(X)wX . (48)

It is easy to show that, for sufficiently small β, the series on the right hand side is
absolutely convergent even if we extend AS(Λ) to AS = ∪ΛAS(Λ) and XS,A0(Λ) to
XS,A0 = ∪ΛXS,A0(Λ). As a result, we have an explicit expression for the limiting
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expectation 〈Ψ 〉 in terms of an absolutely convergent power series. This can be
immediately applied to show that |〈Ψ 〉 − 〈Ψ 〉Λ| decay exponentially in distance
between S and the complement of Λ. Indeed, it suffices to find a suitable bound
on

∑
X |a(X)||w|X with the sum running over all clusters X reaching from the

set S to Λc. To this end one does not need to evaluate explicitly the number of
clusters of given “diameter” diam(X) =

∑
AX(A) diam(Λ(A)) = m with m ≥

dist(S, Λc). The needed estimate is actually already contained in the condition
(ii) from the cluster expansion theorem. It just suffices to choose a suitable K
and assume that β is small enough to assure validity of (40) in a stronger form,∑
A:Λ(A)3x |w(A)|K |Λ(A)| ≤ 1, yielding eventually∑
X:diam(X)≥ dist(S,Λc)

|a(X)||w|X ≤

≤ K−dist(S,Λc)|S|
∑

X:∪A∈supp XΛ(A)3x

|a(X)||w|XK
P

X(A)|Λ(A)| ≤ |S|K−dist(S,Λc).

(49)

Exponential decay of correlations 〈Ψ1; Ψ2 〉Λ = 〈Ψ1Ψ2 〉Λ − 〈Ψ1 〉Λ〈Ψ2 〉Λ (and
the limiting 〈Ψ1; Ψ2 〉) in distance between the supports of Ψ1 and Ψ2 can be
established in a similar way by isolating terms proportional to α1α2 in the cluster
expansion of log ZΛ,Ψ1,Ψ2(α1, α2) with

ZΛ,Ψ1,Ψ2(α1, α2) = ZΛ

(
1 + α1〈Ψ1 〉Λ + α2〈Ψ2 〉Λ + α1α2〈Ψ1 Ψ2 〉Λ

)
. (50)

Resulting claim can be readily generalised to a claim about the decay of the corre-
lation 〈Ψ1; . . . ; Ψk 〉 in terms of the shortest tree connecting supports S1, . . . , Sk of
the functions Ψ1, . . . ,Ψk.

3.3. Low temperature expansions. Finally, in some models with symmetries,
we can apply cluster expansion also at low temperatures. Let us illustrate it again
in the case of Ising model. This time, we take the partition function Z+

Λ (β) with
plus boundary conditions. First, let us define for each nearest neighbour bond
〈x, y〉 its dual as the (d − 1)-dimensional closed unit hypercube orthogonal to the
segment from x to y and bisecting it at its centre. For a given configuration σΛ,
we consider the boundary of the regions of constant spins consisting of the union
∂(σΛ) of all hypercubes that are dual to nearest neighbour bonds 〈x, y〉 for which
σx 6= σy. The contours corresponding to σΛ are now defined as the connected
components of ∂(σΛ). Notice that, under the fixed boundary condition, there is
a one to one correspondence between configurations σΛ and sets Γ of mutually
compatible (disconnected) contours in Λ.

Observing that the number of faces in ∂(σΛ) is just the sum of the areas |γ| of
the contours γ ∈ Γ, we get the polymer representation

Z+
Λ (β) = eβ|E(Λ)|

∑
Γ

exp
(
−β

∑
γ∈Γ

|γ|
)

(51)

with the sum is over all collections of disjoint contours in Λ. Here E(Λ) is the set
of all bonds 〈x, y〉 with at least one endpoint x, y in Λ.

The condition (24) with r(γ) = εγ yields a similar bound on the weights w(γ) =
e−β|γ| as in the high-temperature expansion. To verify it, for β sufficiently large,
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boils down to the evaluation of number of contours of size n that contain a fixed
site.

As a result, we can employ the cluster expansion theorem to get

log Z+
Λ (β) = β|E(Λ)|+

∑
X:X∈X (C(Λ))

a(X)wX , (52)

with an explicit formula for the limit

βp(β) = βd +
∑

X:A(X)30

a(X)
|A(X)|

wX . (53)

Here, A(X) is the set of sites attached to contours from suppX,

A(X) = ∪γ∈supp XA(γ) (54)

with
A(γ) = {x ∈ Zd | such that dist(x, γ) ≤ 1/2}. (55)

As a consequence of the fact that (53) is, for large β, an absolutely convergent
sum of analytic terms a(X)wX = a(X)e−β

P
γ X(γ)|γ| (considered as functions of

β), the function βp(β) is, for large β, analytic in β.
The fact that one can explicitly express the difference log Z+

Λ (β) − |Λ|βp(β)
(cf. (28)) found numerous applications in situations where one needs an accurate
evaluation of the influence of the boundary of the region Λ on the partition function.
One such example is a study of microscopic behaviour of interfaces. The main idea
is to use the explicit expression in the form

Z+
Λ (β) = exp

{
βp(β)|Λ|

}
exp

{ ∑
X:A(X)∩Λc 6=∅

a(X)wX |A(X) ∩ Λ|
|A(X)|

}
=

= exp
{
βp(β)|Λ|

} ∏
X:A(X)∩Λc 6=∅

(1 + fX). (56)

Noticing that fX = exp
{
a(X)wX |A(X)∩Λ|

|A(X)|
}
−1 does not vanish only if A(X)∩Λ 6= ∅,

we can expand the product to obtain “decorations” of the boundary ∂Λ by clusters
fX . In the case of interface these clusters can be incorporated into the weight of
interface, while on a fixed boundary they yield a “wall free energy”.

The possibility of the (low-temperature) polymer representation of the partition
function in terms of contours is based on the + ↔ − symmetry of the Ising model.
In absence of such a symmetry, cluster expansions can still be used, but in the
framework of Pirogov-Sinai theory.

Bibliographical notes

Cluster expansions originated from the works of Ursell, Yvon, Mayer and others
and were first studied in terms of formal power series. The combinatorial and enu-
meration problems considered in this framework were summarised in [UF62]. For
related topics in modern language see [BLL98]. The convergence results for Mayer
and virial expansions for dilute gas were first proven in works of Penrose, Lebowitz,
Groenveld, and Ruelle; see [Rue69] for a detailed survey. General polymer models
on lattice were discussed by Gruber and Kunz [GK71]. See also [Sim93] for discus-
sion of high-temperature and low-temperature cluster expansions of lattice models.
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Abstract polymer models were introduced by [KP86]. An elegant proof of a general
claim presented by Dobrushin [Dob96] was further extended and summarised by
Scott and Sokal [SS05]. We follow their reformulation of the Dobrushin condition.
Cluster expansions with a view on applications in quantum field theory are reviewed
in [Bry86].

See also: Equilibrium statistical mechanics, Pirogov-Sinai theory, Phase transi-
tions in continuum systems, Wulff droplets
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