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Abstract: This is a very brief introduction to the theory of phase transitions. Only few topics are
chosen with a view on possible connection with discrete mathematics. Cluster expansion theorem
is presented with a full proof. Finite-size asymptotics and locations of zeros of partition functions
are discussed among its applications to simplest lattice models. A link with the study of zeros of
the chromatic polynomial as well as the Lovász local lemma is mentioned.

A prototype of a phase transitions is liquid-gas evaporation. With increasing pressure p (at a
fixed temperature), the density ρ abruptly increases:

Follow Gibbs’s precription: start from microscopic energy of the gas of N particles

HN(~p1, . . . , ~pN , ~r1, . . . , ~rN) =
N∑
i=1

~p 2
i

2m
+

N∑
i,j=1

U(~ri − ~rj), (1)

with interaction, for realistic gases, something like the Lenard-Jones potential, U(r) ∼ −(α
r

)6
+(

α
r

)12
, with strong short range repulsion and long range attraction,

These are lecture notes: an edited version of lectures’ transparencies. As a result, some topics are treated rather
tersely and the reader should consult the cited literature for a more detailed information.
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U

r

Basic thermodynamic quantities are then given in terms of
grand-canonical partition function

Z(β, λ, V ) =
∞∑
N=0

zN

N !

∫
R3N×V N

e−βHN
∏
d3~pi

∏
d3~ri

h3N
=

=
∞∑
N=0

λN

N !

∫
V N

e−β
P
i,j Φ(~ri−~rj)

∏
d3~ri.

(2)

Namely, for a given inverse temperature β = 1
kT

and fugacity λ, the pressure is

p(β, λ) =
1

β
lim
V→∞

1

|V | logZ(β, λ, V ) (3)

and the density

ρ(β, λ) = lim
V→∞

1

|V |λ
∂

∂λ
logZ(β, λ, V ). (4)

However, to really prove the existence of gas-liquid phase transition along these lines remains
till today an open problem. One can formulate it as follows:

Prove that for β large there exists λt(β) such that ρ(β, λ) is discontinuous at λt.

Much more is known and understood for lattice models, with Ising model as the simplest repre-
sentative.

1. Ising model

For x ∈ Zd take σx ∈ {−1,+1} and using σΛ to denote σΛ = {σx;x ∈ Λ} for any finite Λ ⊂ Zd,
we introduce the energy

H(σΛ) = −
∑
〈x,y〉⊂Λ

σxσy − h
∑
x∈Λ

σx.

The ground states (with minimal energy) for h = 0 are the configurations σΛ = +1, σΛ = −1.
At nonzero temperature one considers the Gibbs state, i.e. the probability distribution:

〈f〉β,hΛ =
1

ZΛ(b, h)

∑
σΛ

f(σΛ)e−βH(σΛ),
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where

ZΛ(β, h) =
∑
σΛ

e−βH(σΛ).

Phase transition are discussed in terms of the free energy

f(β, h) = − 1

β

1

|Λ| lim
Λ↗Zd

logZΛ(β, h)

and the order parameter

m(β, h) = lim
Λ↗Zd

〈 1

|Λ|
∑
x∈Λ

σx〉β,hΛ

that is should feature a discontinuity at low temperatures and h = 0:

m

h

T

Notice:

• m(β, h) = −∂f(β,h)
∂h

whenever f is differentiable,
• f is a concave function of h.

Define spontaneous magnetization: m∗(β) = limh→0+m(β, h).

An alternative formulation of the discontinuity is in terms of nonstability with respect to bound-
ary conditions (up to now we have actually used free boundary conditions).

Given a configuration σ̄, take

HΛ(σΛ | σ̄) = H(σΛ)−
∑

x∈Λ,y /∈Λ

σxσ̄y

and, correspondingly,

〈·〉β,hΛ,σ̄ and ZΛ,σ̄(β, h).

Rather straightforward claims:

• f does not depend on σ̄:

f(β, h) = − 1

β

1

|Λ| lim
Λ↗Zd

logZΛ,σ̄(β, h)
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• mσ̄(β, h) = limΛ↗Zd〈 1
|Λ|
∑

x∈Λ σx〉β,hΛ,σ̄ may depend on σ̄. Actually,

m∗(β) = m+(β, 0) = limΛ↗Zd〈σx〉β,hΛ,+

Idea of the proof:

• −∂−h f(β, h) ≤ mσ̄(β, h) ≤ −∂+
h f(β, h),

• limh→0+ mσ̄(β, h) = −∂+
h f(β, 0) does not depend on the boundary condition,

• monotonicity of 〈 1
|Λ|
∑

x∈Λ σx〉β,hΛ,+ on Λ, h,

lim
h→0+

lim
Λ

= inf
h≥0

inf
Λ

= inf
Λ

inf
h≥0

= m+(β, 0).

For high temperatures, the spontaneous magnetization vanishes,

tanh β < 1
2d−1

=⇒ m+(β, 0) = 0.

Proof: Expand
∏
〈x,y〉∈E(Λ) e

βσxσy with the help of

eβσxσy = cosh β
(
1 + σxσy tanh β

)
.

ZΛ,+ =
(
cosh β

)|E(Λ)|∑
σΛ

∑
E⊂E(Λ)

∏
〈x,y〉∈E

(
σxσy tanh β

)
=

= 2|Λ|
(
cosh β

)|E(Λ)| ∑
E⊂E(Λ)

(
tanh β

)|E|
= 2|Λ|

(
cosh β

)|E(Λ)|∑
As a result,

〈σx〉Λ,+ =

∑

∑
≤

∑
ω:x→∂Λ

(
tanh β

)|ω| ≤ ∞∑
n=dist(x,∂Λ)

(2d− 1)n
(
tanh β

)n → 0.

�
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On the other hand, for low temperatures, there is a non-vanishing spontaneous magnetisation,

d ≥ 2,∃β0 : β ≥ β0 =⇒ m+(β, 0) > 0.

Proof: This is the famous Peierls argument:

Start with contour representation, σΛ ←→ Γ = {γ1, γ2, . . . }:

It yields H(σΛ | +)−H(+ | +)︸ ︷︷ ︸
E(Λ)

= 2
∑

γ∈Γ |γ| and thus ZΛ,+(β, 0) = eβE(Λ)
∑

Γ in Λ e
−2β

P
γ∈Γ |γ|.

Writing 〈σx〉β,0Λ,+ = PΛ,+(σx = 1)− PΛ,+(σx = −1) = 1− 2PΛ,+(σx = −1), we evaluate

PΛ,+(σx = −1) ≤

∑

∑
≤

∑
γ surr. x

e−2β|γ|

∑

∑
≤

∞∑
k=4

e−2βk k

2
32(k−1)

using that #{γ surrounds x | |γ| = k} is (for d = 2) bounded by k
2
32(k−1). �

Analysing the proof: 2 main ingrediences:

• Independence of contours (taking away any one (by flipping all spins inside it), what
remains is still a valid configuration).
• Damping (e−2β|γ| is small for β large).

We met two expansions:∑
F

∏
g∈F

(
tanh β

)|g|
and

∑
Γ

∏
γ∈Γ

e−2β|γ|
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(in the first sum we view the set E ⊂ E(Λ) as a collection F of its connected components—high
temperature polymers). Both expressions have the same structure of a sum over collections of
pairwise independent contributions. This is a starting point of an abstract theory of cluster expan-
sions. Its mature formulation is best presented as a claim about graphs with weights attributed
to their vertices and I cannot resist presenting its full proof as it was substantially simplified in
recent years [Dob96,SS05,M-Sol00,U04].

2. Cluster expansions

Consider:
A graph G = (V,E) (without selfloops), and a weight w : V → C.
The term abstract polymers is also used for vertices v ∈ V , with pairs (v, v′) ∈ E being called
incompatible (no sefloops: only distinct vertices may be incompatible).
For L ⊂ V , we use G[L] to denote the induced subgraph of G spanned by L.

For any finite L ⊂ V , define

ZL(w) =
∑
I⊂L

∏
v∈I

w(v). (5)

with the sum running over all independent sets I of vertices in L (no two vertices in I are connected
by an edge). In other words: the sum is over all collections I of compatible abstract polymers.

The partition function ZL(w) is an entire function in w = {w(v)}v∈L ∈ C|L| and ZL(0) = 1.
Hence, it is nonvanishing in some neighbourhood of the origin w = 0 and its logarithm is, on this
neighbourhood, an analytic function yielding a convergent Taylor series

logZL(w) =
∑

X∈X (L)

aL(X)wX . (6)

Here, X (L) is the set of all multi-indices X : L → {0, 1, . . . } and wX =
∏

v w(v)X(v). Inspecting
the Taylor formula for aL(X) in terms of corresponding derivatives of logZL(w) at the origin w = 0,
it is easy to show that the coefficients aL(X) actually do not depend on L: aL(X) = asuppX(X),
where suppX = {v ∈ V : X(v) 6= 0}. As a result, one is getting the existence of coefficients a(X)
for each X ∈ X = {X : V → {0, 1, . . . }, |X| = ∑v∈V |X(v)| <∞} such that

logZL(w) =
∑

X∈X (L)

a(X)wX (7)

for every finite L ⊂ V (convergence on a small neighbourhood of the origin depending on L).
Notice that a(X) ∈ R for all X (consider ZL(w) with real w) and a(X) = 0 whenever G(suppX)

is not connected (just notice that, from definition, ZsuppX(w) = ZL1(w)ZL2(w) once suppX =
L1 ∪ L2 with no edges between L1 and L2).

In addition, the coefficients a(X) have alternating signs :

(−1)|X|+1a(X) ≥ 0. (8)

To prove this claim we verify the validity of an equivalent formulation:
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Lemma (alternating signs). For every finite L ⊂ V , all coefficients of the expansion of
− logZL(−|w|) in powers |w|X are nonnegative.

Indeed, equivalence with alternating signs property follows by observing that due to (7), one
has

− logZL(−|w|) = −
∑

X∈X (L)

a(X)(−1)|X||w|X

(and every X has suppX ⊂ L for some finite L).

Proof. Proof of the Lemma by induction in |L|:
Using a shorthand Z∗L = ZL(−|w|), we notice that

Z∗∅ = 1 with − logZ∗∅ = 0 and Z∗{v} = 1− |w(v)| with − logZ∗{v} =
∞∑
n=1

|w(v)|n
n

.

Using N (v) to denote the set of vertices v′ ∈ V adjacent in graph G to the vertex v, for w small
and L̄ = L ∪ {v}, from definition one has Z∗

L̄
= Z∗L − |w(v)|Z∗L\N (v) yielding

− logZ∗L̄ = − logZ∗L − log

(
1− |w(v)|Z

∗
L\N (v)

Z∗L

)
(we consider |w| for which all concerned Taylor expansions for logZ∗W with W ⊂ L̄ converge). The
first term on the RHS has nonnegative coefficients by induction hypothesis. Taking into account
that − log(1− z) has only nonnegative coefficients and that

Z∗L\N (v)

Z∗L
= exp

{ ∑
X∈X (L)\X (L\N (v))

|a(X)||w|X
}

has also only nonegative coefficients, all the expression on the RHS have necessarily only nonneg-
ative coefficients. �

What is the diameter of convergence?
For each finite L ⊂ V , consider the polydiscs DL,R = {w : |w(v)| ≤ R(v) for v ∈ L} with the

set of radii R = {R(v); v ∈ V }. The most natural for the inductive proof (leading in the same
time to the strongest claim) turns out to be the Dobrushin condition:

There exists a function r : V →[0, 1) such that, for each v ∈ V,
R(v) ≤ r(v)

∏
v′∈N (v)

(
1− r(v′)). (∗)

Saying that X ∈ X is a cluster if the graph G(suppX) is connected, we can summarise the
cluster expansion claim for an abstract polymer model in the following way:

Theorem (Cluster expansion). There exists a function a : X → R that is nonvanishing only
on clusters, so that for any sequence of radii R satisfying the condition (∗) with a sequence {r(v)},
the following holds true:
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(i) For every finite L ⊂ V , and any contour weight w ∈ DL,R, one has ZL(w) 6= 0 and

logZL(w) =
∑

X∈X (L)

a(X)wX ;

(ii)
∑

X∈X :suppX3v |a(X)||w|X ≤ − log
(
1− r(v)

)
.

Proof. Again, by induction in |L| we prove (i) and (ii)L obtained from (ii) by restricting the sum
to X ∈ X (L):

Assuming ZL 6= 0 and ∑
X∈X (L):suppX∩N (v)6=∅

|a(X)||w|X ≤ −
∑

v′∈N (v)

log
(
1− r(v′))

obtained by iterating (ii)L, we use

ZL̄ = ZL

(
1 + w(v)

ZL\N (v)

ZL

)
and the bound∣∣∣∣1 + w(v)

ZL\N (v)

ZL

∣∣∣∣ ≥ 1− |w(v)| exp

{ ∑
X∈X (L)\X (L\N (v))

|a(X)||w|X
}
≥

≥ 1− |w(v)|
∏

v′∈N (v)

(1− r(v′))−1 ≥ 1− r(v) > 0

to conclude that ZL̄ 6= 0.
To verify (ii)L̄, we write∑
X∈X (L̄),suppX3v

|a(X)||w|X = − logZ∗L̄ + logZ∗L = − log

(
1− |w(v)|Z

∗
L\N (v)

Z∗L

)
≤ − log(1− r(v)).

�

3. Harvesting

3.1. Ising model at low temperatures. The low temperature expansion is an instance of an
abstract polymer model. Contours γ are its vertices with intersecting pairs connected by an edge:

ZΛ,+(β, 0) = eβE(Λ)
∑

Γ in Λ

e−2β
P
γ∈Γ |γ|︸ ︷︷ ︸

w(γ)

= eβE(Λ)
∑

I⊂L(Λ)

∏
γ∈I

w(γ).

Here L(Λ) is the set of all contours in Λ.
Checking that (for β large) the weigts w ∈ DR:
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assume that β is large enough so that ∑
A(γ′)3x

e−(2β−1)|γ′| ≤ 1

(for any fixed x ∈ Zd and A(γ′) = {x ∈ Zd : dist(x, γ′) ≤ 1}).
Then choose r(γ) = 1− exp{−e−(2β−1)|γ|} and verify (instead of (∗)) the weaker [KP86] condition

|w(γ)| ≤ −(1− r(γ))
∏

γ′∈N (γ)

(1− r(γ′)) log(1− r(γ))

as
e−2β|γ| ≤ e−(2β−1)|γ| exp{−e−(2β−1)|γ| −

∑
γ′∈N (γ)

e−(2β−1)|γ′|}︸ ︷︷ ︸
≥e−|γ|

(It implies (∗) since −(1− t) log(1− t) ≤ t.)
Thus the cluster expansion applies:

logZΛ,+(β, 0) = β|E(Λ)|+∑X∈X (L(Λ)) a(X)wX

Dependence on Λ only through the set of used multiindeces, individual terms are Λ-independent !
It implies an explicit expression for the free energy:

−βf(β, 0) = lim
logZΛ,+(β,0)

|Λ| = dβ +
∑

X∈X :A(X)3x
a(X)wX

|A(X)|

where A(X) = ∪γ∈suppXA(γ).
Indeed,

logZΛ − (−βf)|Λ| = β|E(Λ)| − dβ +
∑
x∈Λ

( ∑
X∈X (L(Λ)):A(X)3x

a(X)wX

|A(X)| −
∑

X:A(X)3x

a(X)wX

|A(X)|
)
≤

≤ βO(|∂Λ|) +
∑

X 6∈X (L(Λ)):A(X)3x

|a(X)|wX
|A(X)| ≤ βO(|∂Λ|) +

∑
y∈∂Λ

e−β|x−y|
∑

X:A(X)3y

|a(X)|(√w)X ≤

≤ βO(|∂Λ|) +
∑
y∈∂Λ

∑
x∈Λ

e−β|x−y| = βO(|∂Λ|).

Thus, there exists β0 such that

f(β, 0) is analytic on (β0,∞)

(being, at this interval, an absolutely convergent series of analytic functions in β).
Similarly, at high temperatures: there exists β1 such that

f(β, h) is real analytic in β and h for (β, h) : β < β1, βh < 1.
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3.2. Applications in discrete mathematics.

3.2.1. Zeros of the chromatic polynomial. Sokal [Sok01], Borgs [Bor06]
For a graph G = (V,E) let

PG(q) =
∑
E′⊂E

qC(E′)(−1)|E
′|

with C(E ′) denoting the number of components of the graph (V,E ′).

Theorem. Let G be of a maximal degree D and K = mina
a+ea

log(1+ae−a)
. Then all zeros of PG(q) lie

inside the disc {q ∈ C; |q| < DK}.
Idea of proof: Φ(G) :=

∑
E′⊂E

E′ connected

(−1)|E
′|.

E ′ yields a partition π. Resum over all E ′ → π:

PG(q) =
∑
π of V

∏
γ∈π

(
qΦ(G(γ))

)
= q|V |

∑
π of V

∏
γ∈π
|γ|≥2

(
q1−|γ|Φ(G(γ))

)︸ ︷︷ ︸
w(γ)

.

3.2.2. Connection with Lovász local lemma. “Bad events” Av not too strongly dependent (bounded
influence outside of a “neighbourhood” of v) =⇒ there is a positive probability that none of
them occurs:

Theorem (Lovász). G = (V,E), Av, v ∈ V family of events, r(v) ∈ (0, 1) such that ∀Y ⊂
V \ (N(v) ∪ {v}),

P
(
Av | ∩v′∈YAv′

) ≤ r(v)
∏

v′∈N(v)

(1− r(v′)).

Then

P
(∩v∈VAv) ≥∏

v∈V

(1− r(v)) > 0.

Scott-Sokal [SS05]: P
(
Av | ∩v′∈YAv′

) ≤ R(v) =⇒ P
(∩v∈V ) ≥ ZG(−R) > 0

once R(v) ≤ r(v)
∏

v′∈N(v)(1− r(v′)).

4. Models without symmetry

For example: Ising with

H → H + κ
∑

σxσyσz
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should yield a phase diagram:

T = 1/βTc

ht(β, κ)

h

Can ht(β, h) be computed?
Can contour representation be used?
The answer is: Yes—with some tricks (Pirogov-Sinai theory [PS75,PS76,Zah84,Kot06]).
Main ideas:
Again,

ZΛ,+(β, h) = eβ|E(Λ)|
∑
Γin Λ

e−βe+|Λ+(Γ)|−βe−|Λ−(Γ)|
∏
γ∈Γ

w(γ).

However, contours cannot be erased without changing the remaining configuration:

• Λ±(Γ) changes,

• w( ) 6= w
( )

.

Actually, we have here labeled contours with “hard-core long range interaction”.

First trick: restoring independence. The cost of erasing γ including flipping of the interior:

w+(γ) = w(γ)
ZIntγ,−

ZIntγ,+

, w−(γ) = w(γ)
ZIntγ,+

ZIntγ,−
.

We get

ZΛ,+ = e−βe+|Λ|
∑

Γ in Λ

∏
γ∈Γ

w+(γ)

by induction in |Λ|:

ZΛ,+ =
∑

θ exterior contours

e−βe+|Extθ|
∏
γ∈θ

w(γ)
ZIntγ,−

ZIntγ,+︸ ︷︷ ︸
w+(γ)

ZIntγ,+,

with ZIntγ,+ = e−βe+|Intγ|∑ by induction step.
The contour partition function ZL(Λ)(w+) yields the same probability for external contours as

original physical system.
If w+(γ)| ≤ e−τ |γ| with large τ =⇒ typical configuration is a sea of pluses with small islands.
For any (h, β) with β large, either w+ or w− (or both) should be supressed. But which one?
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Second trick: metastable states. Define

w±(γ) :=

{
w±(γ) if w±(γ) ≤ e−τ |γ|

e−τ |γ| otherwise

and
ZΛ,± := e−βe±|Λ| ZL(Λ)(w±)︸ ︷︷ ︸

cluster exp.→g(w±)

with −β logZΛ,± ∼ |Λ|f±, where f± := e± + g(w±).
Notice: f+ and f− are inductively (through w±) unambiguously defined.
Once we have them, we can introduce ht:

ht

f− f+

The final step is to prove (again by a careful induction):
h ≤ ht → f− = min(f−, f+) =⇒ w− = w− (&w+(γ) = w+(γ) for γ : β(f+ − f−)diamγ ≤ 1)

and
h ≥ ht → f+ = min(f−, f+) =⇒ w+ = w+ (&w−(γ) = w−(γ) for γ : β(f− − f+)diamγ ≤ 1).

Standard example: Blume-Capel model.
Spin takes three values, σx ∈ {−1, 0, 1}, with Hamiltonian∑

〈x,y〉

(σx − σy)2 − λ
∑

σ2
x − h

∑
σx.

The phase diagram features three competing phases: +, −, and 0:

T > 0T (= 1/β) = 0
h

λ

h

λ

0

+

−

0

+

−
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For the origin h = λ = 0, the phase 0 is stable (f0 > f+, f−):
indeed, one has e+ = e− = e0 = 0, and g(w±) ∼ −e−4β > g(w0) ∼ −2e−4β (lowest excitations:
one 0 in the sea of + (or −), while, favourably, either one + or one − (two possibilities) in the
sea of 0).

5. Second harvest

Finite volume asymptotics:
Using Pirogov-Sinai theory, one has a good control over the finite volume behaviour.
For example, say, for the Ising model with an asymmetry, we get an asymptotics of the magne-

tization mper
N (β, h) in volume Nd with periodic boundary conditions [BK90]:

m−

hthmax(N) h

m

m+

mper
N (β,h)

In particular,

hmax(N) = ht +
3χ

2β2m3
N−2d +O(N−3d).

Zeros of partition function: Blume-Capel in z = e−βh for the partition function Zper
N with

periodic boundary conditions:

One can obtain results about asymptotic loci of zeros by analyzing

Zper ∼ e−βf+Nd

+ e−βf−N
d

+ e−βf0Nd

obtained with help of a complex extension of Pirogov-Sinai and cluster expansions [BBCKK04,
BBCK04].
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