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Abstract: This is a very brief introduction to the theory of phase transitions. Only few topics are
chosen with a view on possible connection with discrete mathematics. Cluster expansion theorem
is presented with a full proof. Finite-size asymptotics and locations of zeros of partition functions
are discussed among its applications to simplest lattice models. A link with the study of zeros of
the chromatic polynomial as well as the Lovasz local lemma is mentioned.

A prototype of a phase transitions is liquid-gas evaporation. With increasing pressure p (at a
fixed temperature), the density p abruptly increases:

P

1/p

Follow Gibbs’s precription: start from microscopic energy of the gas of N particles

N o N
HN<p1,...,pN,T1,...,TN):sz—i-ZU(Ti—Tj), (1)
i=1 1,7=1

with interaction, for realistic gases, something like the Lenard-Jones potential, U(r) ~ —(%)6 +

(%)12, with strong short range repulsion and long range attraction,

These are lecture notes: an edited version of lectures’ transparencies. As a result, some topics are treated rather
tersely and the reader should consult the cited literature for a more detailed information.
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Basic thermodynamic quantities are then given in terms of
grand-canonical partition function

N

Z(B,\V) =
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Namely, for a given inverse temperature § = = and fugacity A, the pressure is

p(B,\) == hm mlogZ(ﬁ,)\ V) (3)

and the density

9,
pB.X) = fim A log Z(A. V). )

However, to really prove the existence of gas-liquid phase transition along these lines remains
till today an open problem. One can formulate it as follows:

Prove that for 3 large there exists \(3) such that p(3, \) is discontinuous at \;

Much more is known and understood for lattice models, with Ising model as the simplest repre-
sentative.

1. ISING MODEL
For z € Z% take 0, € {—1,+1} and using o, to denote o = {0,;x € A} for any finite A C Z¢

we introduce the energy
Z 0,0y —h Z Oy

(z,y)CA e
The ground states (with minimal energy) for h = 0 are the configurations oy = +1, oy =
At nonzero temperature one considers the Gibbs state, i.e. the probability distribution

1
(" = Zao ) > Flo)e?Mon),

=1L



MATHEMATICS OF PHASE TRANSITIONS 3

where
_ Z e BH(oA)
oA

Phase transition are discussed in terms of the free energy

11
f(ﬁah) :_EW hm logZA<ﬁa )

and the order parameter
m(B,h) = lim ( Or)y Bl
(5 A/ 74 |A| Z

that is should feature a discontinuity at low temperatures and h = 0:

m

\

Notice:

e m(f,h) = —W whenever f is differentiable,
e f is a concave function of h.

Define spontaneous magnetization: m*(3) = limy_o. m(3, h).

An alternative formulation of the discontinuity is in terms of nonstability with respect to bound-
ary conditions (up to now we have actually used free boundary conditions).
Given a configuration 7, take

Hy(op |6)=H(on) — Y 0.0,
zEN,YEA

and, correspondingly,

Rather straightforward claims:

e f does not depend on &:

f(B.h) = lim log Zn+(65, 1)

BIA]
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e ms(5,h) = limA/Zd<‘T1| Y ozen o—w)ﬁﬁ; may depend on &. Actually,

m’* (ﬁ) = m4 (ﬁ? 0) = hmA/‘Zd <O-m>i77}jr

Idea of the proof:

o —0, f(8,h) <mq(B,h) < =0 f(B,h),
e limy, o, ms(3,h) = —9; f(3,0) does not depend on the boundary condition,
e monotonicity of <|T1| Y zen crﬁ’i’i on A, h,

hlir(r)lJr h[{n = }ng 1r[{f = inf Illgg =m4(5,0).

For high temperatures, the spontaneous magnetization vanishes,

tanh § < 57~ = my(3,0) =0.

Proof: Expand [] (z.9) EE(A) eP729 with the help of
o=y = coshﬁ(l + 0,0, tanh ﬁ).

Zpt = (coshﬁ)lE(A)‘ Z Z H (0,0, tanh ) =

on ECE(A) (z,y)EFE

ufofal
— 9lAl (cosh ﬂ)lE(A)\ Z (tanh 5)\EI — 9lAl (cosh ﬁ)\E(A)I Z
1 1

A
(Oadrn = < 3 (tannp)* < i (2d — 1)" (tanh 8)" — 0.

ﬁ Iﬂ w:iz—OA n=dist(z,0A)
Z L
o

As a result,
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On the other hand, for low temperatures, there is a non-vanishing spontaneous magnetisation,

d>2,38: 8> By = m.(3,0) > 0.

Proof: This is the famous Peierls argument:

Start with contour representation, oy «— I' = {71, %,... }:

[+]1]+ + + + + + |+
L+ + + + + +|+
4+ 4+ A+

o+ o+

It yields H(oa | +) — H(+ | +) =23 r 7| and thus Z, 1(8,0) = PEW S e B er bl
———
E(A)
Writing (0,)%% = Pa4(0s = 1) — Pay (0, = —1) = 1 — 2Py (0, = —1), we evaluate

-y -y
> O 2

PA7+(ax = —1) < < Z 26171 < Z 6—2ﬁkE32(k—1)
L] L y surr. x L] L k=4 2
15gr 1oar
using that #{v surrounds z | |7| = k} is (for d = 2) bounded by %32~ H

Analysing the proof: 2 main ingrediences:

e Independence of contours (taking away any one (by flipping all spins inside it), what
remains is still a valid configuration).
e Damping (e~2°M is small for 3 large).

We met two expansions:

Z H (tanh ﬁ) ] and Z H e~ 281

F geF I' ~el
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(in the first sum we view the set 2 C E(A) as a collection F of its connected components—high
temperature polymers). Both expressions have the same structure of a sum over collections of
pairwise independent contributions. This is a starting point of an abstract theory of cluster expan-
sions. Its mature formulation is best presented as a claim about graphs with weights attributed
to their vertices and I cannot resist presenting its full proof as it was substantially simplified in

recent years [Dob96, SS05, M-Sol00, U04].

2. CLUSTER EXPANSIONS

Consider:
A graph G = (V, E) (without selfloops), and a weight w:V — C.
The term abstract polymers is also used for vertices v € V', with pairs (v,v") € E being called
incompatible (no sefloops: only distinct vertices may be incompatible).
For L C V', we use G[L] to denote the induced subgraph of G spanned by L.

For any finite L C V, define
Zp(w) = ZHU)(U) (5)
ICL vel

with the sum running over all independent sets I of vertices in L (no two vertices in I are connected
by an edge). In other words: the sum is over all collections I of compatible abstract polymers.

The partition function Z;(w) is an entire function in w = {w(v)}wer € CH and Z(0) = 1.
Hence, it is nonvanishing in some neighbourhood of the origin w = 0 and its logarithm is, on this
neighbourhood, an analytic function yielding a convergent Taylor series

log Z(w) = Y a(X)w®. (6)

XeX(L)
Here, X (L) is the set of all multi-indices X : L — {0,1,...} and w* = [], w(v)*®). Inspecting
the Taylor formula for az,(X) in terms of corresponding derivatives of log Z, (w) at the origin w = 0,
it is easy to show that the coefficients az(X) actually do not depend on L: ar(X) = asupp x(X),

where supp X = {v € V : X(v) # 0}. As a result, one is getting the existence of coefficients a(X)
foreach X € X = {X :V = {0,1,...},|X| = >, |X(v)| < oo} such that

log Zp(w) = Y a(X)w™ (7)
XeX(L)

for every finite L C V (convergence on a small neighbourhood of the origin depending on L).
Notice that a(X) € R for all X (consider Z(w) with real w) and a(X) = 0 whenever G(supp X)
is not connected (just notice that, from definition, Zg,pp x(w) = Zp, (w)Z,(w) once supp X =
Ly U Ly with no edges between Ly and Ls).
In addition, the coefficients a(X) have alternating signs:

(1) Ha(X) > 0. (8)

To prove this claim we verify the validity of an equivalent formulation:
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Lemma (alternating signs). For every finite L C V', all coefficients of the expansion of
—log Zp.(—|w]) in powers |w|* are nonnegative.

Indeed, equivalence with alternating signs property follows by observing that due to (7), one
has
—log Zp(—[w)) = = D a(X)(=1)¥w|*

XeX(L)
(and every X has supp X C L for some finite L).

Proof. Proof of the Lemma by induction in |L|:
Using a shorthand Z} = Z(—|w|), we notice that

)"

n

Zy =1with —logZ;y =0 and Z{, =1—|w(v)| with —log Z{,, = Z

n=1

Using NV (v) to denote the set of vertices v" € V adjacent in graph G to the vertex v, for w small
and L = L U {v}, from definition one has Z7 = Z7 — [w(v)|Z], 5, vielding

Z*
log 2 = —og Z; —log( 1~ [u(w)| 222 )
4
(we consider |w| for which all concerned Taylor expansions for log Zj;, with W C L converge). The

first term on the RHS has nonnegative coefficients by induction hypothesis. Taking into account
that —log(1 — z) has only nonnegative coefficients and that

it D DR Teo T
L XeX(L)\X(L\N (v))

has also only nonegative coefficients, all the expression on the RHS have necessarily only nonneg-
ative coefficients. O

What is the diameter of convergence?

For each finite L C V, consider the polydiscs D g = {w : |w(v)| < R(v) for v € L} with the
set of radii R = {R(v);v € V}. The most natural for the inductive proof (leading in the same
time to the strongest claim) turns out to be the Dobrushin condition:

There exists a function r : V' —[0,1) such that, for each v € V,
R(v) < r(v) H (1—r")). (%)
v'eN (v)
Saying that X € X is a cluster if the graph G(supp X) is connected, we can summarise the

cluster expansion claim for an abstract polymer model in the following way:

Theorem (Cluster expansion). There exists a function a : X — R that is nonvanishing only
on clusters, so that for any sequence of radii R satisfying the condition (x) with a sequence {r(v)},
the following holds true:
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(i) For every finite L C V', and any contour weight w € Dy, g, one has Zy(w) # 0 and

log Z(w) = Y a(X)w;

XeX(L)

(i1) 2 xersupp xo0 [A(X) ¥ < —log(1 —r(v)).

Proof. Again, by induction in |L| we prove (i) and (ii); obtained from (ii) by restricting the sum
to X € X(L):
Assuming Z;, # 0 and

> a(X)[[w¥ <= > log(1—r(v"))
X€eX(L):supp XNN (v)#£0 v'eN(v)

obtained by iterating (ii),, we use

ZINN (v
ZI_, = ZL(1 + UJ('U)—L%N( ))
L

and the bound

e BRI S DI oS [T =

1+ w(v)
‘ XeX(L)\X(L\N(v))

>1—|w@)| J] @=r@) "' =1-r@) >0

v EN(v)

to conclude that Z7 # 0.
To verify (ii);, we write

Z*
S a0l = ~log i +1og 2; = —tog 1~ [u(w)| 42 ) < ~log(1 - r(0).
7 L

XeX(L),supp Xdv

g

3. HARVESTING

3.1. Ising model at low temperatures. The low temperature expansion is an instance of an
abstract polymer model. Contours «y are its vertices with intersecting pairs connected by an edge:

Za+(8,0) = PPN Z e 282 er Nl — oBE) Z Hw(V)'
Iin A w(7y) ICL(A) vel

Here L(A) is the set of all contours in A.
Checking that (for § large) the weigts w € Dg:
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assume that 3 is large enough so that
Z e~ - < 1
A(Y)3x
(for any fixed x € Z% and A(y') = {x € Z¢ : dist(z, ') < 1}).
Then choose r(y) =1 — exp{—e*(w*l)h'} and verify (instead of (x)) the weaker [KP86] condition

wy) <=1 =r(y) [] @—r())log(l—r())

YEN ()

e~20h1 < =80 oxpf =Dl _ Z e~ (28D 3
YEN()

-~

>e~ [v]

as

N

(It implies (*) since —(1 —t)log(1 —1¢) < t.)
Thus the cluster expansion applies:

log Zx +(8,0) = BIE(A)] + X e ))G(X)UJX

Dependence on A only through the set of used multiindeces, individual terms are A-independent!
It implies an explicit expression for the free energy:

. logZ 0) a(X)wX
—3(5,0) = lim B — 44 57 s R

where A(X) = Uyecsuppx A(7)-

Indeed,
log Zy — (~A)|A] = BEW)] — g + 3 ( > % - > %) <
zeEN XeX(L(A X)3x X:AX
<po(orh+ % < BO(OA) + 3" e S () |(vin)¥ <
XEX(L(A)):A(X yEOA X:A(X)3y
< go(foa + 37 3 el = GO(oA]).
yEOA z€A

Thus, there exists 3y such that

f(5,0) is analytic on (5o, 00)

(being, at this interval, an absolutely convergent series of analytic functions in 3).
Similarly, at high temperatures: there exists (3 such that

f(B,h) is real analytic in 5 and h for (5, h) : 5 < (1, Bh < 1.
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3.2. Applications in discrete mathematics.

3.2.1. Zeros of the chromatic polynomial. Sokal [Sok01], Borgs [Bor06]
For a graph G = (V, E) let
Pa(q) = Y ¢“P) (1)1
E'CE
with C'(E’) denoting the number of components of the graph (V, E’).

Theorem. Let G be of a mazimal degree D and K = min, %. Then all zeros of Pg(q) lie
inside the disc {q € C;|q| < DK}.

Idea of proof: ®(G) = Z (—1)IE,

E'CE
E’ connected
E' yields a partition 7. Resum over all £/ — 7:

= > [lwece) =d"' 3 [] (@ "ecn)).

mof V~er mofV ’YGTF
y[>2 w()

3.2.2. Connection with Lovadsz local lemma. “Bad events” A, not too strongly dependent (bounded
influence outside of a “neighbourhood” of v) = there is a positive probability that none of
them occurs:
Theorem (Lovasz). G = (V, E), A,,v € V family of events, r(v) € (0,1) such that VY C
VA (N(v) U{v}),

P(A, | NyeyAy) <r(v) J[ @=r@").

v'e€N(v)
Then
P(MwevAy) = [J(1 = r(v) > 0.

veV

Scott-Sokal [SS05]: P (A, | NyeyAy) < R(v) = P(Nev) = Za(—R) >0
once R(v) < 7(v) [L ey (L =)

4. MODELS WITHOUT SYMMETRY

For example: Ising with
H — H—i—ﬁ;Zazayaz
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should yield a phase diagram:

ht (ﬁ7 K)

T. T=1/8

Can h(f3, h) be computed?

Can contour representation be used?

The answer is: Yes—with some tricks (Pirogov-Sinai theory [PS75,PS76,Zah84, Kot06]).
Main ideas:

Again,

Zn 1 (B, h) = MEWI S =ecbeO=heA- 0 TT ().

Tin A ~er
However, contours cannot be erased without changing the remaining configuration:

e AL (") changes,

o« w([.5) #w([5).

Actually, we have here labeled contours with “hard-core long range interaction”.

First trick: restoring independence. The cost of erasing v including flipping of the interior:

ZIn ,— ZIn ,
nty, nty,—
We get
Zpy = e~ PerlAl Z Her(V)
T in A el
by induction in |A|:
—Be4|Ex Zlnty,—
Ini= > e[ F 0 Z
0 exterior contours ~€ED Inty,+
w(7)

with Zppe, o = e P+ 3™ by induction step.
The contour partition function Zp(a)(wy) yields the same probability for external contours as
original physical system.
If wy (7)] < e”™Ml with large 7 = typical configuration is a sea of pluses with small islands.
For any (h, 5) with § large, either w, or w_ (or both) should be supressed. But which one?
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Second trick: metastable states. Define

o Jwe(y) ifwa(y) <eh
wx(7) = {6_77 otherwise

and

7A,:|: = e—ﬁei‘M ZL(A) (’w_:t)

———
cluster exp.—g(wx)
with —8log Zy + ~ |A|fy, where fy := ey + g(Wg).
Notice: f} and f_ are inductively (through wx) unambiguously defined.
Once we have them, we can introduce h;:

hy

The final step is to prove (again by a careful induction):

Z <he— fo=min(f, f) = - =w- (&wi(y) = wy(y) for v: B(fy — f-)diamy < 1)
al

h>hy — fr =min(f_, f}) = Wy =wy (&w=(7) =w-(y) for v: B(f- — fy)diamy < 1).

Standard example: Blume-Capel model.
Spin takes three values, o, € {—1,0,1}, with Hamiltonian

Z(oz —0,)? —/\Zai —hZax.

(z,y)
The phase diagram features three competing phases: +, —, and 0:

h h
T(=1/8) =0 T>0
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For the origin h = A = 0, the phase 0 is stable (fo > fi, f-):
indeed, one has e, = e_ = ¢y = 0, and g(wg) ~ —e ¥ > g(wg) ~ —2e=* (lowest excitations:
one 0 in the sea of + (or —), while, favourably, either one + or one — (two possibilities) in the
sea of 0).

5. SECOND HARVEST

Finite volume asymptotics:

Using Pirogov-Sinai theory, one has a good control over the finite volume behaviour.

For example, say, for the Ising model with an asymmetry, we get an asymptotics of the magne-
tization mY" (3, h) in volume N? with periodic boundary conditions [BK90]:

m my" (B,h)
my
hahax (N)¢ h, h
- m_—

In particular,

3x
20632m3

Pmax(N) = hy + N7 O(N73).

Zeros of partition function: Blume-Capel in z = e " for the partition function Z¥" with
periodic boundary conditions:

One can obtain results about asymptotic loci of zeros by analyzing
et o o=BINT | =BI-NT | —BfoN

obtained with help of a complex extension of Pirogov-Sinai and cluster expansions [BBCKKO04,

BBCKO4].
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