MATHEMATICS OF PHASE TRANSITIONS

ROMAN KOTECKÝ

Charles University, Praha, Czech Republic and the University of Warwick, UK

Abstract: This is a very brief introduction to the theory of phase transitions. Only few topics are chosen with a view on possible connection with discrete mathematics. Cluster expansion theorem is presented with a full proof. Finite-size asymptotics and locations of zeros of partition functions are discussed among its applications to simplest lattice models. A link with the study of zeros of the chromatic polynomial as well as the Lovász local lemma is mentioned.

A prototype of a phase transitions is liquid-gas evaporation. With increasing pressure p (at a fixed temperature), the density ρ abruptly increases:

Follow Gibbs's precription: start from microscopic energy of the gas of N particles

$$H_N(\vec{p}_1, \dots, \vec{p}_N, \vec{r}_1, \dots, \vec{r}_N) = \sum_{i=1}^N \frac{\vec{p}_i^2}{2m} + \sum_{i,j=1}^N U(\vec{r}_i - \vec{r}_j),$$
(1)

with interaction, for realistic gases, something like the Lenard-Jones potential, $U(r) \sim -\left(\frac{\alpha}{r}\right)^6 + \left(\frac{\alpha}{r}\right)^{12}$, with strong short range repulsion and long range attraction,

These are *lecture notes*: an edited version of lectures' transparencies. As a result, some topics are treated rather tersely and the reader should consult the cited literature for a more detailed information.

Basic thermodynamic quantities are then given in terms of grand-canonical partition function

$$Z(\beta,\lambda,V) = \sum_{N=0}^{\infty} \frac{z^N}{N!} \int_{\mathbb{R}^{3N} \times V^N} e^{-\beta H_N} \frac{\prod d^3 \vec{p_i} \prod d^3 \vec{r_i}}{h^{3N}} =$$
$$= \sum_{N=0}^{\infty} \frac{\lambda^N}{N!} \int_{V^N} e^{-\beta \sum_{i,j} \Phi(\vec{r_i} - \vec{r_j})} \prod d^3 \vec{r_i}.$$
(2)

Namely, for a given inverse temperature $\beta = \frac{1}{kT}$ and fugacity λ , the pressure is

$$p(\beta, \lambda) = \frac{1}{\beta} \lim_{V \to \infty} \frac{1}{|V|} \log Z(\beta, \lambda, V)$$
(3)

and the density

$$\rho(\beta,\lambda) = \lim_{V \to \infty} \frac{1}{|V|} \lambda \frac{\partial}{\partial \lambda} \log Z(\beta,\lambda,V).$$
(4)

However, to really prove the existence of gas-liquid phase transition along these lines remains till today an open problem. One can formulate it as follows:

Prove that for β large there exists $\lambda_t(\beta)$ such that $\rho(\beta, \lambda)$ is discontinuous at λ_t .

Much more is known and understood for *lattice models*, with Ising model as the simplest representative.

1. Ising model

For $x \in \mathbb{Z}^d$ take $\sigma_x \in \{-1, +1\}$ and using σ_{Λ} to denote $\sigma_{\Lambda} = \{\sigma_x; x \in \Lambda\}$ for any finite $\Lambda \subset \mathbb{Z}^d$, we introduce the energy

$$H(\sigma_{\Lambda}) = -\sum_{\langle x,y\rangle \subset \Lambda} \sigma_x \sigma_y - h \sum_{x \in \Lambda} \sigma_x.$$

The ground states (with minimal energy) for h = 0 are the configurations $\sigma_{\Lambda} = \pm 1$, $\sigma_{\Lambda} = \pm 1$. At nonzero temperature one considers the Gibbs state, i.e. the probability distribution:

$$\langle f \rangle_{\Lambda}^{\beta,h} = \frac{1}{Z_{\Lambda}(b,h)} \sum_{\sigma_{\Lambda}} f(\sigma_{\Lambda}) e^{-\beta H(\sigma_{\Lambda})},$$

where

$$Z_{\Lambda}(\beta,h) = \sum_{\sigma_{\Lambda}} e^{-\beta H(\sigma_{\Lambda})}$$

Phase transition are discussed in terms of the *free energy*

$$f(\beta, h) = -\frac{1}{\beta} \frac{1}{|\Lambda|} \lim_{\Lambda \nearrow \mathbb{Z}^d} \log Z_{\Lambda}(\beta, h)$$

and the order parameter

$$m(\beta, h) = \lim_{\Lambda \nearrow \mathbb{Z}^d} \langle \frac{1}{|\Lambda|} \sum_{x \in \Lambda} \sigma_x \rangle_{\Lambda}^{\beta, h}$$

that is should feature a discontinuity at low temperatures and h = 0:

Notice:

m(β, h) = - ^{∂f(β,h)}/_{∂h} whenever f is differentiable,
f is a concave function of h.

Define spontaneous magnetization: $m^*(\beta) = \lim_{h \to 0+} m(\beta, h).$

An alternative formulation of the discontinuity is in terms of nonstability with respect to boundary conditions (up to now we have actually used *free boundary conditions*).

Given a configuration $\bar{\sigma}$, take

$$H_{\Lambda}(\sigma_{\Lambda} \mid \bar{\sigma}) = H(\sigma_{\Lambda}) - \sum_{x \in \Lambda, y \notin \Lambda} \sigma_x \bar{\sigma}_y$$

and, correspondingly,

$$\langle \cdot \rangle^{\beta,h}_{\Lambda,\bar{\sigma}}$$
 and $Z_{\Lambda,\bar{\sigma}}(\beta,h).$

Rather straightforward claims:

• f does not depend on $\bar{\sigma}$:

$$f(\beta, h) = -\frac{1}{\beta} \frac{1}{|\Lambda|} \lim_{\Lambda \nearrow \mathbb{Z}^d} \log Z_{\Lambda, \bar{\sigma}}(\beta, h)$$

• $m_{\bar{\sigma}}(\beta, h) = \lim_{\Lambda \nearrow \mathbb{Z}^d} \langle \frac{1}{|\Lambda|} \sum_{x \in \Lambda} \sigma_x \rangle_{\Lambda, \bar{\sigma}}^{\beta, h}$ may depend on $\bar{\sigma}$. Actually, $m^*(\beta) = m_+(\beta, 0) = \lim_{\Lambda \nearrow \mathbb{Z}^d} \langle \sigma_x \rangle_{\Lambda, +}^{\beta, h}$

Idea of the proof:

- $-\partial_h^- f(\beta, h) \leq m_{\bar{\sigma}}(\beta, h) \leq -\partial_h^+ f(\beta, h),$ $\lim_{h \to 0+} m_{\bar{\sigma}}(\beta, h) = -\partial_h^+ f(\beta, 0)$ does not depend on the boundary condition, monotonicity of $\langle \frac{1}{|\Lambda|} \sum_{x \in \Lambda} \sigma_x \rangle_{\Lambda,+}^{\beta,h}$ on $\Lambda, h,$

$$\lim_{h \to 0+} \lim_{\Lambda} = \inf_{h \ge 0} \inf_{\Lambda} = \inf_{\Lambda} \inf_{h \ge 0} = m_{+}(\beta, 0)$$

For high temperatures, the spontaneous magnetization vanishes,

$$\tanh \beta < \frac{1}{2d-1} \implies m_+(\beta, 0) = 0.$$

Proof: Expand $\prod_{\langle x,y\rangle\in E(\Lambda)} e^{\beta\sigma_x\sigma_y}$ with the help of

$$e^{\beta\sigma_x\sigma_y} = \cosh\beta \left(1 + \sigma_x\sigma_y\tanh\beta\right)$$

$$Z_{\Lambda,+} = \left(\cosh\beta\right)^{|E(\Lambda)|} \sum_{\sigma_{\Lambda}} \sum_{E \subset E(\Lambda)} \prod_{\langle x,y \rangle \in E} \left(\sigma_{x}\sigma_{y} \tanh\beta\right) =$$
$$= 2^{|\Lambda|} \left(\cosh\beta\right)^{|E(\Lambda)|} \sum_{E \subset E(\Lambda)} \left(\tanh\beta\right)^{|E|} = 2^{|\Lambda|} \left(\cosh\beta\right)^{|E(\Lambda)|} \sum_{E \subset E(\Lambda)} \left(\tanh\beta\right)^{|E|} = 2^{|\Lambda|} \left(\cosh\beta\right)^{|E(\Lambda)|} \sum_{E \subset E(\Lambda)} \left(\tanh\beta\right)^{|E|} = 2^{|\Lambda|} \left(\cosh\beta\right)^{|E(\Lambda)|} \sum_{E \subset E(\Lambda)} \left(\cosh\beta\right)^{|E|} = 2^{|\Lambda|} \left(\cosh\beta\right)^{$$

As a result,

$$\langle \sigma_x \rangle_{\Lambda,+} = \frac{\sum_{\alpha, x \to \partial \Lambda} (\tanh \beta)^{|\omega|}}{\sum_{\alpha, x \to \partial \Lambda} (\tanh \beta)^{|\omega|}} \leq \sum_{\alpha, x \to \partial \Lambda} (\tanh \beta)^{|\omega|} \leq \sum_{n=\operatorname{dist}(x, \partial \Lambda)} (2d-1)^n (\tanh \beta)^n \to 0.$$

On the other hand, for low temperatures, there is a non-vanishing spontaneous magnetisation,

$$d \ge 2, \exists \beta_0 : \beta \ge \beta_0 \implies m_+(\beta, 0) > 0.$$

Proof: This is the famous Peierls argument:

Start with contour representation, $\sigma_{\Lambda} \longleftrightarrow \Gamma = \{\gamma_1, \gamma_2, \dots\}$:

It yields $H(\sigma_{\Lambda} \mid +) - \underbrace{H(+ \mid +)}_{E(\Lambda)} = 2 \sum_{\gamma \in \Gamma} |\gamma|$ and thus $Z_{\Lambda,+}(\beta, 0) = e^{\beta E(\Lambda)} \sum_{\Gamma \text{ in } \Lambda} e^{-2\beta \sum_{\gamma \in \Gamma} |\gamma|}$.

Writing $\langle \sigma_x \rangle_{\Lambda,+}^{\beta,0} = P_{\Lambda,+}(\sigma_x = 1) - P_{\Lambda,+}(\sigma_x = -1) = 1 - 2P_{\Lambda,+}(\sigma_x = -1)$, we evaluate

using that $\#\{\gamma \text{ surrounds } x \mid |\gamma| = k\}$ is (for d = 2) bounded by $\frac{k}{2}3^{2(k-1)}$.

Analysing the proof: 2 main ingrediences:

- *Independence of contours* (taking away any one (by flipping all spins inside it), what remains is still a valid configuration).
- Damping $(e^{-2\beta|\gamma|}$ is small for β large).

We met two expansions:

$$\sum_{F} \prod_{g \in F} (\tanh \beta)^{|g|} \quad \text{and} \quad \sum_{\Gamma} \prod_{\gamma \in \Gamma} e^{-2\beta|\gamma|}$$

ROMAN KOTECKÝ

(in the first sum we view the set $E \subset E(\Lambda)$ as a collection F of its connected components—high temperature polymers). Both expressions have the same structure of a sum over collections of pairwise independent contributions. This is a starting point of an abstract theory of cluster expansions. Its mature formulation is best presented as a claim about graphs with weights attributed to their vertices and I cannot resist presenting its full proof as it was substantially simplified in recent years [Dob96, SS05, M-Sol00, U04].

2. Cluster expansions

Consider:

A graph G = (V, E) (without selfloops), and a weight $w : V \to \mathbb{C}$. The term abstract polymers is also used for vertices $v \in V$, with pairs $(v, v') \in E$ being called *incompatible* (no selfoops: only distinct vertices may be incompatible).

For $L \subset V$, we use G[L] to denote the induced subgraph of G spanned by L.

For any finite $L \subset V$, define

$$Z_L(w) = \sum_{I \subset L} \prod_{v \in I} w(v).$$
(5)

with the sum running over all *independent sets* I of vertices in L (no two vertices in I are connected by an edge). In other words: the sum is over all collections I of compatible abstract polymers.

The partition function $Z_L(w)$ is an entire function in $w = \{w(v)\}_{v \in L} \in \mathbb{C}^{|L|}$ and $Z_L(0) = 1$. Hence, it is nonvanishing in some neighbourhood of the origin w = 0 and its logarithm is, on this neighbourhood, an analytic function yielding a convergent Taylor series

$$\log Z_L(w) = \sum_{X \in \mathcal{X}(L)} a_L(X) w^X.$$
(6)

Here, $\mathcal{X}(L)$ is the set of all multi-indices $X : L \to \{0, 1, ...\}$ and $w^X = \prod_v w(v)^{X(v)}$. Inspecting the Taylor formula for $a_L(X)$ in terms of corresponding derivatives of $\log Z_L(w)$ at the origin w = 0, it is easy to show that the coefficients $a_L(X)$ actually do not depend on L: $a_L(X) = a_{\operatorname{supp} X}(X)$, where $\operatorname{supp} X = \{v \in V : X(v) \neq 0\}$. As a result, one is getting the existence of coefficients a(X) for each $X \in \mathcal{X} = \{X : V \to \{0, 1, ...\}, |X| = \sum_{v \in V} |X(v)| < \infty\}$ such that

$$\log Z_L(w) = \sum_{X \in \mathcal{X}(L)} a(X) w^X$$
(7)

for every finite $L \subset V$ (convergence on a small neighbourhood of the origin depending on L).

Notice that $a(X) \in \mathbb{R}$ for all X (consider $Z_L(w)$ with real w) and a(X) = 0 whenever $G(\operatorname{supp} X)$ is not connected (just notice that, from definition, $Z_{\operatorname{supp} X}(w) = Z_{L_1}(w)Z_{L_2}(w)$ once $\operatorname{supp} X = L_1 \cup L_2$ with no edges between L_1 and L_2).

In addition, the coefficients a(X) have alternating signs:

$$(-1)^{|X|+1}a(X) \ge 0. \tag{8}$$

To prove this claim we verify the validity of an equivalent formulation:

Lemma (alternating signs). For every finite $L \subset V$, all coefficients of the expansion of $-\log Z_L(-|w|)$ in powers $|w|^X$ are nonnegative.

Indeed, equivalence with alternating signs property follows by observing that due to (7), one has

$$-\log Z_L(-|w|) = -\sum_{X \in \mathcal{X}(L)} a(X)(-1)^{|X|} |w|^X$$

(and every X has supp $X \subset L$ for some finite L).

Proof. Proof of the Lemma by induction in |L|:

Using a shorthand $Z_L^* = Z_L(-|w|)$, we notice that

$$Z_{\emptyset}^* = 1$$
 with $-\log Z_{\emptyset}^* = 0$ and $Z_{\{v\}}^* = 1 - |w(v)|$ with $-\log Z_{\{v\}}^* = \sum_{n=1}^{\infty} \frac{|w(v)|^n}{n}$.

Using $\mathcal{N}(v)$ to denote the set of vertices $v' \in V$ adjacent in graph G to the vertex v, for w small and $\overline{L} = L \cup \{v\}$, from definition one has $Z_{\overline{L}}^* = Z_L^* - |w(v)| Z_{L \setminus \mathcal{N}(v)}^*$ yielding

$$-\log Z_{\bar{L}}^{*} = -\log Z_{L}^{*} - \log \left(1 - |w(v)| \frac{Z_{L \setminus \mathcal{N}(v)}^{*}}{Z_{L}^{*}}\right)$$

(we consider |w| for which all concerned Taylor expansions for $\log Z_W^*$ with $W \subset \overline{L}$ converge). The first term on the RHS has nonnegative coefficients by induction hypothesis. Taking into account that $-\log(1-z)$ has only nonnegative coefficients and that

$$\frac{Z_{L\setminus\mathcal{N}(v)}^{*}}{Z_{L}^{*}} = \exp\left\{\sum_{X\in\mathcal{X}(L\setminus\mathcal{X}(L\setminus\mathcal{N}(v))} |a(X)| |w|^{X}\right\}$$

has also only nonegative coefficients, all the expression on the RHS have necessarily only nonnegative coefficients. $\hfill \Box$

What is the *diameter of convergence*?

For each finite $L \subset V$, consider the polydiscs $\mathcal{D}_{L,\mathbf{R}} = \{w : |w(v)| \leq R(v) \text{ for } v \in L\}$ with the set of radii $\mathbf{R} = \{R(v); v \in V\}$. The most natural for the inductive proof (leading in the same time to the strongest claim) turns out to be the Dobrushin condition:

There exists a function $r: V \rightarrow [0, 1)$ such that, for each $v \in V$,

$$R(v) \le r(v) \prod_{v' \in \mathcal{N}(v)} (1 - r(v')). \tag{*}$$

Saying that $X \in \mathcal{X}$ is a cluster if the graph $G(\operatorname{supp} X)$ is connected, we can summarise the cluster expansion claim for an abstract polymer model in the following way:

Theorem (Cluster expansion). There exists a function $a : \mathcal{X} \to \mathbb{R}$ that is nonvanishing only on clusters, so that for any sequence of radii \mathbf{R} satisfying the condition (*) with a sequence $\{r(v)\}$, the following holds true:

(i) For every finite $L \subset V$, and any contour weight $w \in \mathcal{D}_{L,\mathbf{R}}$, one has $Z_L(w) \neq 0$ and

$$\log Z_L(w) = \sum_{X \in \mathcal{X}(L)} a(X) w^X;$$

(ii) $\sum_{X \in \mathcal{X}: \text{supp } X \ni v} |a(X)| |w|^X \le -\log(1 - r(v)).$

Proof. Again, by induction in |L| we prove (i) and (ii)_L obtained from (ii) by restricting the sum to $X \in \mathcal{X}(L)$:

Assuming $Z_L \neq 0$ and

$$\sum_{X \in \mathcal{X}(L): \text{supp } X \cap \mathcal{N}(v) \neq \emptyset} |a(X)| |w|^X \le -\sum_{v' \in \mathcal{N}(v)} \log(1 - r(v'))$$

obtained by iterating $(ii)_L$, we use

$$Z_{\bar{L}} = Z_L \left(1 + w(v) \frac{Z_{L \setminus \mathcal{N}(v)}}{Z_L} \right)$$

and the bound

$$\left|1+w(v)\frac{Z_{L\setminus\mathcal{N}(v)}}{Z_L}\right| \ge 1-|w(v)|\exp\left\{\sum_{X\in\mathcal{X}(L)\setminus\mathcal{X}(L\setminus\mathcal{N}(v))}|a(X)||w|^X\right\} \ge 2$$
$$\ge 1-|w(v)|\prod_{v'\in\mathcal{N}(v)}(1-r(v'))^{-1}\ge 1-r(v)>0$$

to conclude that $Z_{\bar{L}} \neq 0$.

To verify $(ii)_{\bar{L}}$, we write

$$\sum_{X \in \mathcal{X}(\bar{L}), \text{supp } X \ni v} |a(X)| |w|^X = -\log Z_{\bar{L}}^* + \log Z_{L}^* = -\log \left(1 - |w(v)| \frac{Z_{L \setminus \mathcal{N}(v)}^*}{Z_{L}^*}\right) \le -\log(1 - r(v)).$$

3. Harvesting

3.1. Ising model at low temperatures. The low temperature expansion is an instance of an abstract polymer model. Contours γ are its vertices with intersecting pairs connected by an edge:

$$Z_{\Lambda,+}(\beta,0) = e^{\beta E(\Lambda)} \sum_{\Gamma \text{ in } \Lambda} \underbrace{e^{-2\beta \sum_{\gamma \in \Gamma} |\gamma|}}_{w(\gamma)} = e^{\beta E(\Lambda)} \sum_{I \subset L(\Lambda)} \prod_{\gamma \in I} w(\gamma).$$

Here $L(\Lambda)$ is the set of all contours in Λ .

Checking that (for β large) the weigts $w \in D_R$:

assume that β is large enough so that

$$\sum_{\mathbf{A}(\gamma')\ni x} e^{-(2\beta-1)|\gamma'|} \le 1$$

(for any fixed $x \in \mathbb{Z}^d$ and $A(\gamma') = \{x \in \mathbb{Z}^d : \operatorname{dist}(x, \gamma') \leq 1\}$). Then choose $r(\gamma) = 1 - \exp\{-e^{-(2\beta-1)|\gamma|}\}$ and verify (instead of (*)) the weaker [KP86] condition

$$|w(\gamma)| \le -(1 - r(\gamma)) \prod_{\gamma' \in \mathcal{N}(\gamma)} (1 - r(\gamma')) \log(1 - r(\gamma))$$

 as

$$e^{-2\beta|\gamma|} \leq e^{-(2\beta-1)|\gamma|} \underbrace{\exp\{-e^{-(2\beta-1)|\gamma|} - \sum_{\substack{\gamma' \in \mathcal{N}(\gamma) \\ \geq e^{-|\gamma|}}} e^{-(2\beta-1)|\gamma'|}\}}_{\geq e^{-|\gamma|}}$$

(It implies (*) since $-(1-t)\log(1-t) \le t$.)

Thus the cluster expansion applies:

$$\log Z_{\Lambda,+}(\beta,0) = \beta |E(\Lambda)| + \sum_{X \in \mathcal{X}(L(\Lambda))} a(X) w^X$$

Dependence on Λ only through the set of used multiindeces, *individual terms are* Λ *-independent*! It implies an explicit expression for the free energy:

$$-\beta f(\beta, 0) = \lim \frac{\log Z_{\Lambda, +}(\beta, 0)}{|\Lambda|} = d\beta + \sum_{X \in \mathcal{X}: A(X) \ni x} \frac{a(X)w^X}{|A(X)|}$$

where $A(X) = \bigcup_{\gamma \in \text{supp} X} A(\gamma)$. Indeed,

$$\log Z_{\Lambda} - (-\beta f)|\Lambda| = \beta |E(\Lambda)| - d\beta + \sum_{x \in \Lambda} \left(\sum_{X \in \mathcal{X}(L(\Lambda)):A(X) \ni x} \frac{a(X)w^{\Lambda}}{|A(X)|} - \sum_{X:A(X) \ni x} \frac{a(X)w^{\Lambda}}{|A(X)|} \right) \le \\ \le \beta O(|\partial\Lambda|) + \sum_{X \notin \mathcal{X}(L(\Lambda)):A(X) \ni x} \frac{|a(X)|w^{X}}{|A(X)|} \le \beta O(|\partial\Lambda|) + \sum_{y \in \partial\Lambda} e^{-\beta |x-y|} \sum_{X:A(X) \ni y} |a(X)|(\sqrt{w})^{X} \le \\ \le \beta O(|\partial\Lambda|) + \sum_{y \in \partial\Lambda} \sum_{x \in \Lambda} e^{-\beta |x-y|} = \beta O(|\partial\Lambda|).$$

Thus, there exists β_0 such that

$$f(\beta, 0)$$
 is analytic on (β_0, ∞)

(being, at this interval, an absolutely convergent series of analytic functions in β). Similarly, at high temperatures: there exists β_1 such that

$$f(\beta, h)$$
 is real analytic in β and h for $(\beta, h) : \beta < \beta_1, \beta h < 1$.

3.2. Applications in discrete mathematics.

3.2.1. Zeros of the chromatic polynomial. Sokal [Sok01], Borgs [Bor06] For a graph G = (V, E) let

$$P_G(q) = \sum_{E' \subset E} q^{C(E')} (-1)^{|E'|}$$

with C(E') denoting the number of components of the graph (V, E').

Theorem. Let G be of a maximal degree D and $K = \min_a \frac{a+e^a}{\log(1+ae^{-a})}$. Then all zeros of $P_G(q)$ lie inside the disc $\{q \in \mathbb{C}; |q| < DK\}$.

Idea of proof:
$$\Phi(G) := \sum_{\substack{E' \subset E \\ E' \text{ connected}}} (-1)^{|E'|}.$$

 E' yields a partition π . Resum over all $E' \to \pi$:

$$P_G(q) = \sum_{\pi \text{ of } V} \prod_{\gamma \in \pi} \left(q \Phi(G(\gamma)) \right) = q^{|V|} \sum_{\pi \text{ of } V} \prod_{\substack{\gamma \in \pi \\ |\gamma| \ge 2}} \underbrace{\left(q^{1-|\gamma|} \Phi(G(\gamma)) \right)}_{w(\gamma)}.$$

3.2.2. Connection with Lovász local lemma. "Bad events" A_v not too strongly dependent (bounded influence outside of a "neighbourhood" of v) \implies there is a positive probability that none of them occurs:

Theorem (Lovász). $G = (V, E), A_v, v \in V$ family of events, $r(v) \in (0, 1)$ such that $\forall Y \subset V \setminus (N(v) \cup \{v\}),$

$$P(A_v \mid \cap_{v' \in Y} \overline{A_{v'}}) \le r(v) \prod_{v' \in N(v)} (1 - r(v')).$$

Then

$$P\left(\bigcap_{v\in V}\overline{A_v}\right) \ge \prod_{v\in V} (1-r(v)) > 0.$$

Scott-Sokal [SS05]: $P(A_v \mid \cap_{v' \in Y} \overline{A_{v'}}) \leq R(v) \implies P(\cap_{v \in V}) \geq Z_G(-R) > 0$ once $R(v) \leq r(v) \prod_{v' \in N(v)} (1 - r(v')).$

4. Models without symmetry

For example: Ising with

$$H \to H + \kappa \sum \sigma_x \sigma_y \sigma_z$$

should yield a phase diagram:

Can $h_t(\beta, h)$ be computed?

Can contour representation be used?

The answer is: Yes—with some tricks (Pirogov-Sinai theory [PS75, PS76, Zah84, Kot06]). Main ideas:

Again,

$$Z_{\Lambda,+}(\beta,h) = e^{\beta |E(\Lambda)|} \sum_{\Gamma \text{in } \Lambda} e^{-\beta e_+ |\Lambda_+(\Gamma)| - \beta e_- |\Lambda_-(\Gamma)|} \prod_{\gamma \in \Gamma} w(\gamma).$$

However, contours cannot be erased without changing the remaining configuration:

- $\Lambda_{\pm}(\Gamma)$ changes,
- $w(\underline{ }^{+}) \neq w(\underline{ }).$

Actually, we have here labeled contours with "hard-core long range interaction".

First trick: restoring independence. The cost of erasing γ including flipping of the interior:

$$w_+(\gamma) = w(\gamma) \frac{Z_{\text{Int}\gamma,-}}{Z_{\text{Int}\gamma,+}}, \qquad w_-(\gamma) = w(\gamma) \frac{Z_{\text{Int}\gamma,+}}{Z_{\text{Int}\gamma,+}}.$$

We get

$$Z_{\Lambda,+} = e^{-\beta e_+|\Lambda|} \sum_{\Gamma \text{ in } \Lambda} \prod_{\gamma \in \Gamma} w_+(\gamma)$$

by induction in $|\Lambda|$:

$$Z_{\Lambda,+} = \sum_{\theta \text{ exterior contours}} e^{-\beta e_+ |\text{Ext}\theta|} \prod_{\gamma \in \theta} \underbrace{w(\gamma) \frac{Z_{\text{Int}\gamma,-}}{Z_{\text{Int}\gamma,+}}}_{w_+(\gamma)} Z_{\text{Int}\gamma,+},$$

with $Z_{\text{Int}\gamma,+} = e^{-\beta e_+ |\text{Int}\gamma|} \sum$ by induction step.

The contour partition function $Z_{L(\Lambda)}(w_+)$ yields the same probability for external contours as original physical system.

If $w_+(\gamma) \leq e^{-\tau |\gamma|}$ with large $\tau \implies$ typical configuration is a sea of pluses with small islands. For any (h, β) with β large, either w_+ or w_- (or both) should be supressed. But which one? Second trick: metastable states. Define

$$\overline{w_{\pm}}(\gamma) := \begin{cases} w_{\pm}(\gamma) \text{ if } w_{\pm}(\gamma) \le e^{-\tau |\gamma|} \\ e^{-\tau |\gamma|} \text{ otherwise} \end{cases}$$

and

$$\overline{Z}_{\Lambda,\pm} := e^{-\beta e_{\pm}|\Lambda|} \underbrace{Z_{L(\Lambda)}(\overline{w_{\pm}})}_{\text{cluster exp.} \to g(\overline{w_{\pm}})}$$

with $-\beta \log \overline{Z}_{\Lambda,\pm} \sim |\Lambda| f_{\pm}$, where $f_{\pm} := e_{\pm} + g(\overline{w_{\pm}})$.

Notice: f_+ and f_- are inductively (through $\overline{w_{\pm}}$) unambiguously defined.

Once we have them, we can introduce h_t :

The final step is to prove (again by a careful induction):

 $h \le h_t \to f_- = \min(f_-, f_+) \implies \overline{w_-} = w_- \quad (\&\overline{w_+}(\gamma) = w_+(\gamma) \text{ for } \gamma : \beta(f_+ - f_-) \operatorname{diam} \gamma \le 1)$ and

 $h \ge h_t \to f_+ = \min(f_-, f_+) \implies \overline{w_+} = w_+ \quad (\&\overline{w_-}(\gamma) = w_-(\gamma) \text{ for } \gamma : \beta(f_- - f_+) \operatorname{diam} \gamma \le 1).$

Standard example: Blume-Capel model.

Spin takes three values, $\sigma_x \in \{-1, 0, 1\}$, with Hamiltonian

$$\sum_{\langle x,y\rangle} (\sigma_x - \sigma_y)^2 - \lambda \sum \sigma_x^2 - h \sum \sigma_x$$

The phase diagram features three competing phases: +, -, and 0:

For the origin $h = \lambda = 0$, the phase 0 is stable $(f_0 > f_+, f_-)$: indeed, one has $e_+ = e_- = e_0 = 0$, and $g(\overline{w_{\pm}}) \sim -e^{-4\beta} > g(\overline{w_0}) \sim -2e^{-4\beta}$ (lowest excitations: one 0 in the sea of + (or -), while, favourably, either one + or one - (*two possibilities*) in the sea of 0).

5. Second harvest

Finite volume asymptotics:

Using Pirogov-Sinai theory, one has a good control over the finite volume behaviour.

For example, say, for the Ising model with an asymmetry, we get an asymptotics of the magnetization $m_N^{\text{per}}(\beta, h)$ in volume N^d with periodic boundary conditions [BK90]:

In particular,

$$h_{\max}(N) = h_t + \frac{3\chi}{2\beta^2 m^3} N^{-2d} + O(N^{-3d}).$$

Zeros of partition function: Blume-Capel in $z = e^{-\beta h}$ for the partition function Z_N^{per} with periodic boundary conditions:

One can obtain results about asymptotic loci of zeros by analyzing

$$Z^{\text{per}} \sim e^{-\beta f_+ N^d} + e^{-\beta f_- N^d} + e^{-\beta f_0 N^d}$$

obtained with help of a complex extension of Pirogov-Sinai and cluster expansions [BBCKK04, BBCK04].

ROMAN KOTECKÝ

References

[Bor06]	C. Borgs, Absence of Zeros for the Chromatic Polynomial on Bounded Degree Graphs, Combinatorics,
	Probability and Computing 15 (2006) 63?74.
[BBCK04]	M. Biskup, C. Borgs, J. T. Chayes, and R. Kotecký, <i>Partition function zeros at first-order phase transitions: Pirogon-Singi theory</i> Jour Stat Phys 116 (2004) 97–155
[BBCKK04]	M. Biskup, C. Borgs, J. T. Chayes, R. Kotecký, and L. Kleinwaks, <i>Partition function zeros at first</i> -
[DIMON]	order phase transitions: A general analysis, Commun. Math. Phys. 251 (2004) 79–131.
[BK90]	C. Borgs, R. Kotecky, A rigorous theory of finite-size scaling at first-order phase transitions, Jour.
	Stat. Phys. 61 (1990), 79–119.
[Dob96]	R. L. Dobrushin, Estimates of semi-invariants for the Ising model at low temperatures, In: R.L.
	Dobrushin, R.A. Minlos, M.A. Shubin, A.M. Vershik (eds.) Topics in statistical and theoretical physics,
	Amer. Math. Soc., Providence, RI, 1996, pp. 59–81.
[Kot06]	R. Kotecký, Pirogov-Sinai theory, In: Encyclopedia of Mathematical Physics, vol. 4, pp. 60–65, eds.
	JP. Françoise, G.L. Naber, and S.T. Tsou, Oxford: Elsevier, 2006
[KP86]	R. Kotecký and D. Preiss, Cluster expansion for abstract polymer models, Comm. Math. Phys. 103
	(1986) 491–498.
[PS75]	S.A Pirogov and Ya.G. Sinai, Phase diagrams of classical lattice systems (Russian), Theor. Math.
	Phys. 25 (1975) no. 3, 358–369.
[PS76]	S.A Pirogov and Ya.G. Sinai, Phase diagrams of classical lattice systems. Continuation (Russian),
	Theor. Math. Phys. 26 (1976), no. 1, 61–76.
[M-Sol00]	S. Miracle-Solé, On the convergence of cluster expansions, Physica A 279 (2000) 244–249.
[Sok01]	A. D. Sokal, Bounds on the complex zeros of (di)chromatic polynomials and Potts-model partition
	functions, Combin. Probab. Comput. 10 (2001) 41–77.
[SS05]	A. D. Scott and A. D. Sokal, The Repulsive Lattice Gas, the independent-Set Polynomial, and the
	Lovász Local Lemma, Jour. Stat. Phys. 118 (2005) 1151–1261.
[U04]	D. Ueltschi, Cluster expansions & correlation functions, Moscow Mathematical Journal 4 (2004) 511-
	522.
[Zah84]	M. Zahradník, An alternate version of Pirogov-Sinai theory, Commun. Math. Phys. 93 (1984) 559-
	581.