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Long-range order for the three-state antiferromagnetic Potts model may appear at zero tempera-
ture as an instability with respect to boundary conditions. It is studied using an approximate
correspondence, reminiscent of duality, which links this model with the ferromagnetic Ising model
at a particular temperature. The basic idea is to represent entropy constraints in the former in terms
of energy increase in the latter. The correspondence can be made exact by modifying the Ising
model. The (non)existence of long-range order is then linked to the location of the critical tempera-
ture of the modified Ising model with respect to the particular value given by the correspondence.

L INTRODUCTION

The existence of the different phases occurring in a
classical lattice system may be understood as an instability
in the equilibrium state under a change of boundary con-
ditions (BC) in large finite volumes, with the instability
persisting even in the thermodynamic limit of infinite
volume. Often much can be deduced from the behavior of
a system at zero temperature. Thus, e.g., in the case of
the Ising model, fixing all spins on the boundary of a
volume to point up (down) leads unambiguously to a
ground state with all spins in the bulk aligned in the same
direction. These BC yield at low temperatures (and for a
two- or higher- dimensional model) two different phases
characterized as a sea of aligned spins with only small is-
lands of the opposite ones. This follows by the Peierls ar-
gument from the fact that to introduce an island of oppo-
site spins one must pay with an energy proportional to the
boundary of the island.!

The situation is much less clear for systems with non-
vanishing residual entropy. Even a description of dif-
ferent phases at T =0 is a nontrivial problem in this case.
As a typical example consider the recently much dis-
cussed, three-state antiferromagnetic (AF) Potts model on
a square lattice. This is a model with spins o, attached to
_ lattice sites i, taking on g =3 values 0,=1,2,3, and with
the Hamiltonian

H=J 3 8., J>0 (1)
w.p)

that favors nonaligned spins on neighboring sites. §, 17 is

the Kronecker symbol and the sum is over pairs of nearest
neighbors (NN).2 It has been suggested® that at low tem-
peratures there are six different phases called broken-
sublattice-symmetry (BSS) states. Divide the square lat-
tice into two sublattices (referring to a chessboard we shall
call them the black and the white sublattice). A BSS state
is, e.g., that with typical configurations differing only
slightly from the ground state with the spin “1” on the

black sublattice and a random distribution of the spins |

“2” and “3” over the white sublattice. Actually, more re-
cent phenomenological* and Monte Carlo® renormal-
ization-group calculations have indicated that on a square
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lattice there is only one phase (no BSS), though the situa-
tion remains rather unclear for cubic®’ or higher-
dimensional lattices. It is known that T =0 is a critical
value for the AF Potts model on a square lattice.® This
follows from its equivalence with a critical ice model.
However, the criticality in principle does not say anything
about the (non)existence of BSS states.

The analysis presented in this paper may be applied also
to some higher-dimensional models, but for simplicity we
shall use as an illustrative example the AF Potts model on
a square lattice (our result in this particular case will
agree with the conclusion that there is only one phase).

II. CORRESPONDENCE TO THE ISING
FERROMAGNET

For models with residual entropy, similarly as for the
Ising model, the behavior at T =0 should be decisive for
existence of order at low temperatures. We shall com-
ment on this statement later, but first we discuss order for
the AF Potts model at T =0. To analyze whether the
BSS states exist we impose the BC shown in Fig. 1 and try
to evaluate a relevant order parameter—e.g., the probabili-
ty P(op=1) that the spin on the black site in the center is
also “1”. All gossible configurations at T =0 are ground
configurations’ and appear with equal probability. Con-
trary to the Ising model, where the BC determine the
ground configuration in the bulk uniquely, here we have
many ground configurations consistent with the BC.
P(og=1) is just the number of ground configurations
consistent with the BC and such that oy=1, divided by
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FIG. 1. Volume A with a “dented” boundary and the BC on
black sublattice sites that enforces the spin 1 on the black sub-
lattice and should lead to a BSS state.
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the number of all ground configurations consistent with
the BC. When “gluing” together a central region with,
for example, 2 on the black sublattice, with a boundary re-
gion where there is 1 on the black sublattice, one pays
with a certain “stiffness” in the intermediate region. To
compute P(0p=1) means a rather subtle evaluation of a
loss of entropy caused by this stiffness.

This situation reminds one of the Ising model at a finite
temperature, in which changing from spin up along the
BC to spin down in a central region forces one to pay with
energy along a contour (a wall) bordering an island of spin
down. We propose to make this analogy a tool for evalua-
tion of P(og=1). Consider thus the black sublattice
viewed as a new lattice with a NN of distance V2 (it is
again a square lattice, though turned by 7/2 and scaled by
v2). If {o;} is a ground configuration in the volume A,
consistent with the BC in Fig. 1, consider its restriction to
the black sublattice A, in A and draw an edge (connecting
two sites of the white sublattice A,,) separating the NN of
A, whenever the spins attached to them differ [see Fig.
2(a)]. We shall call the set of these edges the boundary
and its connected components the contours of a configura-
tion {0;}. Whenever 3 is a boundary, we denote | 3| the
number of its contours, and ||d||, the number of the white
sublattice sites through which 9 passes. Denoting also
| Ay | the number of sites in A, we get for the number
of ground configurations consistent with the BC. ’

-8
ZAFPotts(B=°°)=22|a|2|Aw! el : -2
3.

Indeed, with a given 3, one may choose the configuration
on A, in 2!3! different ways, and then the spin on a white
site is fixed whenever d passes through it, while it can
take on two values if the site does not lie on 3. As ex-
plained in the caption of Fig. 2, we used an obvious re-
striction on configurations on A:

(i) There can be no white laitice site such that we find all
three values 1, 2, and 3 on its black nearest neighbors.

The restriction also implies that each white lattice site is
an end point of an even number (0, 2, or 4) of edges. It
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FIG. 2. Contours for (a) the AF Potts model on A, (b) the F
Ising model on A (+,— denotes spin up, down, respectively).
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3089

means, however, that the boundaries are exactly the same
geometrical objects as boundaries for the Ising model on
the black sublattice [see Fig. 2(b)]. The partition function
of this ferromagnetic (F) Ising model at an inverse tem-
perature 3 is'®

BE, —28113]]..
Zr 1ing(B) =3 & 2Re "
J

where E), is the number of pairs of NN in A, and ||9}], is
the number of edges in 3. Denoting |9d|.=||9].
—119|[,+ | 9| (the cyclomatic number of 3 if viewed as a
graph), we get from (2)

ZAFPotts(B=oo)==2lAwl E;Z!alc_”a“e . 4)
]

On 1the other side, taking a particular temperature
B=7In2 in (3), we have .

Zp ting(B)=2""" 3 271 (5)
< .

The striking similarity of (4) and (5) (taking into account
the fact that both partition functions are expressed in
terms of the same objects d with a direct geometrical
meaning) allows us to compare not only the corresponding
partition functions but also the probabilities of particular
Since for the Is-

exp(28,)=14+V2>2=exp(2B) ,

we have <, the critical (inverse) temperature. The
spontaneous magnetization thus vanishes at 8 and from
two possible complementary situations shown in Fig. 3,
that in Fig. 3(a) takes place. Namely, in a typical configu-
ration any site in a central region is, for A large enough
encircled by a great number of contours. We shall now
conjecture that the same is true also for the AF Potts en-
semble (4). This would, however, mean that the middle
site has “no way of learning” about the BC, and the

' P{oy=1) would approach § with A->co, implying that

there is no BSS state for the AF Potts model on a square
lattice at T =0. '

The above conjecture is actually the only nonrigorous
part of our argument. Unfortunately contour models
[such as, e.g., (3)] are well controlled only when the
weight of long contours decreases quickly (3 large), when

* the alternative in Fig. 3(b) takes place.! Here we have just
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For the boundary 8 drawn, it is |9 | =3, ||3|],=34, ||3]|.=38,_

|8].=7, and |[3]| wy=4. Note that for the contour shown in

the left upper corner, the restriction (i) implies that the spin 1 in
its center is compulsory and that the only different configura-
tion on the black sublattice consistent with it is that with 2
changed to 3 on all four sites,

FIG. 3. Large scale view with the lattice suppressed of a typi-
cal boundary 9 for a contour ensemble in alternative situations:
(a) Disorder—A site in the center is encircled by many contours
and “forgets” the BC; (b) Order—There are only short contours
and a large part of the volume is in the state forced by the BC.
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the opposite situation. In support of the conjecture, note
that

—“62”‘S||an,,—|a;=||a||,—lalcsllal[,- ©)

The upper bound means that the weight of long boun-
daries 3 in (4) is even larger than in (5). However, one
could argue that the ensemble (4) favors within the boun-
daries of a given length those consisting of many different
{(and, in principle, short) contours. We believe that the
lower bound in (6) suggests that in spite of it, long con-
tours occur with a non-negligible probability and the al-
ternative in Fig. 3(a) takes place. To prove it would mean
proving certain “correlation inequalities” for “contour
models.” This problem certainly deserves further study.

II. EXACT CORRESPONDENCES TO MODIFIED
ISING AND POTTS FERROMAGNETS

One may proceed even without the above conjecture.
Namely, starting from (4) we shall introduce modified Is-
ing and Potts models that give at a particular nonvanish-
ing temperature exactly the same probability of particular
geometric situations as expressed in terms of d.

A. Ising model with degenerated spins

Consider the following modification of the Ising model
on the black sublattice.!! The spin at each lattice site i
can take on four values o; €{+1;, +1,, —1;, —1,}, the
Hamiltonian is that of the Ising ferromagnet!®

H=— E O'iO‘j . (7)
i)}
The multiplication o;0; in the above formula is to be in-
terpreted in the following way:
(+1)(+1)=(—1,)—1,)=1,
(+la)(—1b)=(f-1a)(+1b)=—l ,
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(+1 0+ 1)=(~1,(=1)=—c, a#b, a,b=1,2.

The latter multiplication rule is actually a hard-core con-
dition forcing the two nearest-neighbor spins not to take
on values of the same sign but with different subscripts.
The contours of a configuration are constructed in the
same way as for the usual Ising model by simply ignoring
the subscripts.

The partition function of this model is

Zyr 1sing(B) =2, ) —Zﬁllall.zgau , . o
3

the factor 2%l giving the number of possible choices of
subscripts to an Ising-model configuration in accordance
with the hard-core condition. Thus, considering the
model at the temperature B=% In2, we get exactly the
same probability distribution of contours as for the AF
Potts model. Hence the (non)existence of BSS states is
equivalent to (non)existence of a spontaneous magnetiza-
tion in our model and thus depends on the fact of whether
its critical inverse temperature is below (above) B. Al-
though S, > 3 for the usual Ising model, our modification
may effectively lower the critical temperature below B.
While we do not know if this is the case, it is a question
that could be answered, e.g., by probing the model by a
Monte Carlo experiment. The advantage is that the AF
Potts model at T =0 (i.e., the temperature on the boun-
dary of the region B < «) is mapped to a model included
inside a one-parameter family (9).

Note that our model is also equivalent to the Ashkin-
Teller model in a limit of infinite couplings. Indeed, iden-
tify first the degenerated spin o; with a pair of spins
(7, S;) in the following way:

+11—’(S[=+1,Si=+1), +12—>(S,-=+1,S,-=—1) N
‘—11—>(s,=—1,S,=+1), —12—>(Si=——1,Si=—1) .

a,b=1,2
and (8) _ Then one reproduces (7) by
]
4
H=21 1 —5:5:5:8: —S.S. —— .5, .
+(a+ )(%){ 5:5;5;8; —S;S; + [1 o }s,sj-{-l} (10

in the limit ¢— o. One may close the logical circle by
observing that the model described by Eq. (10) at the tem-
perature f3 is equivalent to the ice model and hence to the
AF Potts model at T=0. To see it we first note that con-
sidering equivalently s;S; and S; as independent spins we
have in the limit a— oo an isotropic Ashkin-Teller model
with the edge weights'?

ao=eP, wy=e~P, w,=e~F, w;=0. (11)

This model is equivalent to an alternating eight-vertex
model'® which is critical whenever

0)0=601+602+(03 . ) (12)

In view of (11) the critically condition ef=2¢~* yields

just B=+In2. Taking into account the symmetry of the

model with respect to permutations of (11) we get for the
parameters of the alternating eight-vertex model corre-
sponding to the temperature 3

a =*1——eB=1, b =%2(e“3—e_3)=0 s

V2

) ) (13)
—— (p—B ,—By— ——_,B_
c—ﬁ(e +eP)=1, d—ﬁe =1,

obtaining thus just the ice model.

B. Potts model with a triangular hard core

* Another possibility is to modify the F Potts model on
Ap. Namely, consider the usual Hamiltonian (1) with
J <0 by adding three-site and four-site interaction terms.
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FIG. 4. (a) Decorated square lattice and (b) ground cornfigu-
ration of the AF Potts model restricted to the black sublattice
with its boundary 9; ||3]| =21, N(3)=2. S

For the three-site interaction we take a “hard core” which
will exclude configurations not complying with the re-
striction (i) (vielding thus the same set of boundaries 3).

Moreover, for each quadruple of black NN of a white site

we add the term J to the Hamiltonian if there are four
edges of 0 ending in that white site (and O otherwise).
Denoting |||, the number of “four-edges” vertices in d

we have for the modified (M) F Potts model

. BE, —8|13]|, +B113| (4
ZMFPotts(B)=422lale v
9

Observing that ||3]|.—]|8||,w=[[3]], we obtain for
B=In2 (up to a constant factor) exactly the sum (2).
P(og=1) thus exactly equals a similar probability for the

MF Potts model on A,. The only problem then again is

that our modification could effectively force B, to be less

than S in spite of the relation P =14v3>eP=2 valid
for the usual F Potts model.

IV. HIGHER-DIMENSIONAL LATTICES

AF Potts models on other lattices, including higher-
dimensional ones, may be treated in a similar way. Con-
cerning, e.g., a simple cubic lattice we would get an al-

most equivalent F Ising or modified F Potts model on a.

face-centered cubic lattice (built up from the black sublat-

tice). A future publication will be devoted to an analysis.

of this case.
There is a lattice for which our correspondence is exact

in all dimensions d and may be actually used to establish

both disorder for d =2 and order for d > 3. Namely, con-
sider the AF Potis model on a decorated hypercubic
(DHO) lattice'*— ' [shown in Fig. 4(a) for the case d =2].
Taking the original (HC) lattice for the black sublattice
and the set of decoration sites for the white one, we get
the same set of boundaries for both, the AF Potts model
on a DHC lattice [see Fig. 4(b)] and the F Potts model on

a (HC) lattice. Denoting ||9|| the number of (d —1)-

dimensional elementary faces (each through one white lat-
tice site) from @ and N (9d) the number of configurations
(on the black sublattice) consistent with 3, we obtain for
B=In2
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FIG. 5. Rigid ground state.
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=3 N(d)2~110ll
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The P(op=1) is thus identical for both systems, since the
same geometrical situations contributing to it have the
same weight. As already mentioned, B, > 8 for d =2. On
the other side, numerical estimates indicate that B, < 3 for
d>3[eP~1.74 (d =3), ~1.47 (d =4)—see, e.g, the re-
view of Wul]. Thus for d =2 the order parameter van-

. ishes, while for d >3 it does not vanish and there exist

three different BSS states.

- V. CONCLUSION

The preceding analysis was concerned with zero tem-
perature. It should be relevant also for small T>0,!
since a typical configuration should differ only slightly
from a ground configuration because one pays for any de-
viation from it with an energy proportional to the extent
of the deviation. Nevertheless, one should be aware that
_only the states with the highest entropy, existing at T'=0,
will survive to T>0."® As an example consider the BC
shown in Fig. 5, which deterniines uniquely a ground con-
figuration (we call it a rigid ground state) in the con-
sidered volume A. At any T£0 the system in A under
this BC will favor a change within a strip around the
boundary of A to, for example, a BSS state. The energy
paid for this change will be outweighed by the gain of an
entropy in the bulk.

In conclusion we note that, since our correspondence

* uses certain contours to relate AF Potts model to F Ising

or Potts model, it reminds one of duality. A novel feature
is not only the fact that the zero temperature of the form-
er is linked with a nonzero temperature of the latter, but
also the possibility of comparing directly typical configu-
rations of both models. This should be useful whenever
the correspondence is not exact. Note also that in con-
structing our contours from a configuration on the black
sublattice, we made in some sense a rescaling transforma-
tion which according to Berker and Kadanoff!® renormal-
izes the system away from T =O0. '
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