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We study the magnetization mL(h, b) for the Ising model on a large but finite
lattice square under the minus boundary conditions. Using known large-devia-
tion results evaluating the balance between the competing effects of the minus
boundary conditions and the external magnetic field h, we describe the details of
its dependence on h as exemplified by the finite-size rounding of the infinite-
volume magnetization discontinuity and its shift with respect to the infinite-
volume transition point.
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1. INTRODUCTION

The ferromagnetic nearest-neighbour Ising model on Zd, d \ 2, is perhaps
the most familiar spin system undergoing a first-order phase transition. Its
formal Hamiltonian is

H(s)=− C
Ox, yP

sxsy−h C
x

sx, (1.1)

where sx is the spin at the site x ¥ Zd corresponding to the configuration
s ¥ {−1, 1}Z

d
, h ¥ R is the external magnetic field, and Ox, yP stands for a

pair of nearest-neighbour sites x and y of Zd. The phase transition occurs
at h=0 whenever the inverse temperature b is sufficiently large: there exists
a point bc <. such that, for inverse temperature b > bc, the set of infi-
nite-volume Gibbs states of the model at h=0 contains two distinct
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pure phases (called the plus and the minus phase). Physically, the phase
transition is characterized by the discontinuity of the specific magne-
tization m(h, b)=−m(−h, b): whereas the one-sided limit3 m(0+, b) :=

3 This limit exists and is non-negative for all b > 0, see ref. 15, for instance.

limhQ 0+ m(h, b) equals zero for 0 < b < bc, it is positive once b > bc, i.e. the
spontaneous magnetization mg :=m(0+, b) appears at sub-critical tempera-
tures. Equivalently, since the (specific Gibbs) free energy f(h, b) is a
concave function of h for any b \ 0, it has one-sided partial derivatives
“f(h, b)
“h±

for all b \ 0 and h ¥ R, and these do not coincide if and only if h=0
and b > bc. Clearly, − “f(h, b)

“h±
=m(h±, b).

In general, any discontinuities that arise in a system exhibiting a first-
order phase transition are smoothed out once the system is of a finite size.
While the limiting free energy f (as well as its one-sided derivatives) does
not depend on boundary conditions, its smoothed finite-volume version is
heavily depending on particular boundary conditions. In refs. 2, 3, 5 and
ref. 4 specific cases of periodic and free boundary conditions, respectively,
were considered with a rather mild and well-controlled size dependence.
Here we turn to the case of fixed (minus) boundary conditions. This is the
case with a rather strong influence of the boundary conditions, and (as will
be clarified later) one has to take into account the competing effects of
boundary conditions and ‘‘long contours’’.

Let LL be the square in Z2 centred at the origin whose side-length is
L ¥N. In this paper we examine the ferromagnetic nearest-neighbour Ising
model in LL with the minus boundary conditions and an external field
h ¥ R at a sub-critical temperature. Writing sL: LLQ {−1, 1} for a config-
uration in LL, the corresponding Hamiltonian under the fixed minus bound-
ary conditions is given by

HL, h(sL)=− C
Ox, yP:
x, y ¥ LL

sxsy+ C
Ox, yP:

x ¥ LL, y ¥ L
c
L

sx−h |LL| SL(sL). (1.2)

Here

SL(sL) :=
1
|LL|

C
x ¥ LL

sx (1.3)

is the average spin and LcL :=Z20LL. The finite-volume Gibbs measure at
the inverse temperature b associated with the Hamiltonian (1.2) is

mL, h(sL) :=
e−bHL, h(sL)

ZL, h
(1.4)
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with the partition function ZL, h :=;sL ¥ {−1, 1}LL e
−bHL, h(sL); in order to avoid

heavy notation, we abstain here and hereafter from referring explicitly to
the dependence of the various quantities on b, and we stress that we always
take fixed minus boundary conditions. We shall use O ·PL, h to denote the
expected value with respect to mL, h and PL, h to denote the distribution of SL
under mL, h.

Let b > bc. If h ] 0, boundary effects in the bulk of LL disappear as LL
extends to the whole lattice Zd because there is a unique Gibbs measure in
the infinite volume. Nevertheless, the asymptotic behaviour of the Ising
system may become rather delicate once we consider a magnetic field hL
which depends on L and decreases to zero as LQ.. This time, the
boundary conditions could play an important role: while they force the
system to be in the minus phase, a magnetic field hLQ 0+ draws it toward
the plus phase. The situation when the influence of the magnetic field hL (a
bulk effect) is comparable to that of the minus boundary conditions (a
surface effect) is of particular interest; this requires hL to be of the order
1/L. Therefore, it is natural to consider hL=B/L, B ¥ R. Schonmann and
Shlosman (16) proved that there exists a unique point B0=B0(b) > 0 such
that mL, B/L converges weakly to the pure minus phase if B < B0, while the
limit is the pure plus phase if B > B0. In both regimes, they investigated the
exponential convergence of the average spin SL under mL, B/L at the surface
rate. To this end, they established a ‘surface-order’ large-deviation principle
valid at B=0, extending the results obtained by Ioffe. (11, 12) Greenwood and
Sun (10) pointed out (for any dimension d \ 2) how the large-deviation
principles with B=0 and B ] 0 are related, and inspected the surface-rate
exponential convergence of SL under mL, B/L, too.

The basic picture behind these results is as follows. Let LL be large but
finite. If B < B0, the minus boundary conditions prevail, selecting the minus
phase in the box LL, and SL converges exponentially to −mg < 0. If B > B0,
however, the magnetic field has the dominant effect, and the plus phase is
outweighing in the system. This time, the average spin converges exponen-
tially to a point 0 < m(B) < mg, c.f. (2.6), and a single droplet of the plus
phase within LL immersed into the minus phase is created. The most
favourable shape of the droplet is not the usual equilibrium crystal (or
Wulff) shape,4 but rather its squeezed version (see ref. 16): whenever the

4 Roughly speaking, the Wulff shape is the one which minimizes the interfacial surface
tension, assuming that its volume is fixed, see refs. 8, 16 for instance.

droplet really appears, it necessarily touches the boundary of LL along four
equally long segments.

As a matter of fact, the droplet fluctuates around its deterministic
Wulff shape. Accordingly, the macroscopic-scale separation of pure phases
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along the boundary of the equilibrium crystal shape is a subtle probabilistic
problem. Its first rigorous study was done by Dobrushin, Kotecký, and
Shlosman (8, 9) for the 2d Ising model at very low temperatures, using the
cluster expansion analysis. The main part of their results was extended to
all sub-critical temperatures in a non-perturbative approach of Ioffe and
Schonmann. (13) In particular, they gave explicit asymptotics on the proba-
bilities of the deviation of SL from −mg at h=0 under the minus boundary
conditions. For a recent review of main results of the rigorous microscopic
theory of equilibrium crystal shapes, see ref. 1.

2. MAIN RESULT

For any 0 < J <., let us consider the open interval

JL(J) :={h ¥ R : |Lh−B0| < J}. (2.1)

Our aim here is to examine, for any b > bc, the asymptotic behaviour of the
finite-volume specific magnetization

mL(h, b) :=OSLPL, h=
1

b |LL|
“

“h
log ZL, h (2.2)

and susceptibility

qL(h, b) :=OS 2LPL, h−(OSLPL, h)
2=

1
(b |LL|)2

“
2

“h2
log ZL, h (2.3)

on the interval JL(J) with LQ.. The resulting asymptotics presented in
Theorem 2.2 reflects the mentioned balance between the competing
influences of the magnetic field and the minus boundary conditions in our
model. First, however, relying on results from ref. 16 and ref. 10, we expli-
citly show the limiting values with properly scaled external field, h ’ 1/L.

Proposition 2.1. Let b > bc, B ¥ R, and let {hL} be a sequence of
real numbers such that limLQ. LhL=B. Then the limit

j(B) :=
1
b

lim
LQ.

1
L

log
ZL, hL
ZL, 0

(2.4)

exists and does not depend on the sequence hL, it is a convex continuous
function, and there exists a single point B0=B0(b) > 0 at which j is not
differentiable. Moreover,

lim
LQ.
mL(hL, b)=jŒ(B) (2.5)
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for every B ] B0 and jŒ is explicitly given as

jŒ(B)=3 −m
g if B < B0,

m(B)=mg−o/(2B)2 if B > B0,
(2.6)

with o=o(b) ¥ (0, 4mg(B0)2).

The first part of Proposition 2.1 readily follows from the Varadhan
lemma (6, 7) and Theorem 1 from ref. 16, and can be found in ref. 10 for the
special case hL=B/L with B \ 0; the rest of the proposition is then easy to
verify. We present the proof in the next section. It will turn out there that
the point B0 from this proposition coincides with the critical point B0 of ref.
16 mentioned before—allowing thus to use the same symbol to denote it.

Let Ba :=B0(
1
2+

o

16mg(B0)
2). As o < 4mg(B0)2, one has Ba ¥ (B0/2, 3B0/4);

it will be shown later that m(Ba) > −mg, see the remark after Theorem
3.2. Let us extend the function m defined on the interval (B0,.) by (2.6).
Namely, we take

m+(B) :=3
m(B) for B \ Ba,
m(Ba) for B [ Ba.

(2.7)

It is a continuous and non-decreasing function satisfying m(Ba) [ m+
< mg. Introducing the shorthands

m̄(B) :=
m+(B)+(−mg)

2
, Dm(B) :=

m+(B)−(−mg)
2

, (2.8)

and D :=Dm(B0) > 0, we now formulate our main result.

Theorem 2.2. Let b > bc, 0 < J <., and 0 < d < 1/4. There exists
L0=L0(b, J, d) <. such that for all L > L0 the following is true.

(a) The susceptibility qL(h) attains its maximal value over the interval
JL(J) at a unique point hq(L) (which does not depend on J).

(b) The functions R (0)L , R (1)L (h), and R (2)L (h) defined by the equalities

hq(L)=(B0+R
(0)
L )/L, (2.9)

mL(h, b)=m̄(Lh)+Dm(Lh) tanh [bD(h−hq(L)) L2]+R
(1)
L (h), (2.10)
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and

qL(h, b)=(Dm(Lh))2 cosh−2 [bD(h−hq(L)) L2]+R
(2)
L (h), (2.11)

satisfy the following bounds:

|R (0)L | [ 3(B0)
3 L−d/o (2.12)

and

sup
h ¥ JL(J)

|R (k)L (h)| [ CL
−d, k=1, 2, (2.13)

with a fixed finite constant C (not depending on b, J, d, and L).

We divide the proof of Theorem 2.2 into two parts. First, we prove a
weaker version of the above theorem in which it is only claimed that R (0)L as
well as suph ¥ JL(J) R

(i)
L (h), i=1, 2, vanish as LQ.; this part is based on the

large-deviation principle established in ref. 16 and it is the content of
Section 3. In particular, results from ref. 16 yield explicit values for
parameters B0 and o above. In order to obtain then the explicit bounds
(2.12) and (2.13), we employ more accurate estimates from ref. 13, 1, 9 and
Theorem 7.4.3 from ref. 17; this second step is presented in Section 4.

It should be pointed out that the division of the proof into two parts is
not necessary and it could be carried out solely with the help of the above
mentioned estimates. However, it seems to be more transparent to examine
the problem by means of the large-deviation principle at the beginning and
use the more precise information to estimate the error terms only after-
wards. Moreover, once the class of models for which the surface-order
large-deviation principles are established is extended (at present it only
contains the two-dimensional Ising model), the first part of the proof will
be readily applicable, yielding a result similar to Theorem 3.3 below (see
ref. 14).

Finally, let us notice that, using more detailed analysis of the errors in
the surface-order large deviations of the two-dimensional Ising model, (13, 1)

one could expect that the upper bounds (2.12) and (2.13) may be improved
to be of the order L−1/4 log2 L. However, one should not expect that, for
suph ¥ JL(J) |R

(k)
L (h)|, k=1, 2, an improvement of the order over L−1/2 is pos-

sible. This follows from the fact that surface large-deviation rate function
WB(m) introduced below in (3.6) behaves (for B \ B0) like (m−m(B))2

around its minimum at m(B). This results in the bound (4.40) below, and
inspecting it one could argue that, necessarily, L1/2 suph ¥ JL(J) |R

(k)
L (h)|Q.,

k=1, 2.
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3. MAGNETIZATION AND THE LARGE-DEVIATION RATE

FUNCTION

The aim of this section is to analyze the asymptotic behaviour (as
LQ.) of the magnetization mL(h, b) and susceptibility qL(h, b) when
h ¥ JL(J) and b > bc, using the large-deviation principle and the related
results from ref. 16, 10. First, let us fix some notation.

Definition 3.1. Let I: RQ [0,.] be a (lower semi-continuous)
function with compact level sets5, I –., and let {en} be a sequence of

5 That is, the level sets levr(I) :={x ¥ R : I(x) [ r} are compact for all r <.. Such a function
is automatically lower semi-continuous.

positive numbers such that limnQ. en=0. We say that a sequence {Pn} of
probability measures on (R, B(R)), where B(R) is the Borel s-field on R,
satisfies the large-deviation principle with the powers {en} and the rate I,
and write (Pn) enQ e−I, if

sup
G
e−I [ lim

nQ.
(Pn(G))en for all G … R open and (3.1)

lim
nQ.
(Pn(F))en [ sup

F
e−I for all F … R closed. (3.2)

In the next theorem we gather up the results of Theorem 1 from ref. 16
and Theorem 3.3 from ref. 10. To this end, we introduce y=y(b) and
w=w(b) to be the zero-field surface tension in the direction (0, 1) and the
Wulff functional of the minimizing Wulff shape, respectively (see e.g. ref.
16 for precise definitions). They satisfy the relations 0 < 4y/3 < w < 4y for
all b > bc.

Theorem 3.2(16, 10). Let b > bc. Setting

o :=
16y2−w2

2mg > 0 (3.3)

and

B0 :=
4y+w
4mg , (3.4)

we have:
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1. Let mt :=−mg(1− w
2

8y2
) ¥ (−mg, mg) and

W0(m) :=˛w
1m+mg

2mg
21/2 if −mg [ m [ mt,

4y−[o(mg−m)]1/2 if mt [ m [ mg,

. otherwise.

(3.5)

Then (PL, 0)1/LQ e−bW0.

2. Let

WB(m) :=W0(m)−Bm+Wg
0(B), (3.6)

where Wg
0 is the Legendre–Fenchel transform of W0. Let {hL}, hL ¥ R, be a

sequence satisfying limLQ. LhL=B ¥ R.6 Then (PL, hL)
1/LQ e−bWB.

6 In fact, Theorem 3.3 of ref. 10 only deals with hL=B/L, where B > 0. It is clear, however,
that the arguments used there work in our slightly more general case as well.

3. The derivative of the Legendre–Fenchel transform Wg
0 of W0 has a

unique discontinuity at B0. Moreover, for all B ] B0, the equation
WB(m)=0 has a unique solution that equals the derivative dWg

0
dB of Wg

0,
while for B=B0 it has two solutions: dW

g
0

dB+ and dWg
0

dB− .

Proposition 2.1 is a rather direct consequence of Theorem 3.2. In par-
ticular, it turns out that one can identify the function j with Wg

0 (this was
anticipated by denoting B0 the discontinuity point of both of them). Notice
also that the constant Ba :=B0(

1
2+

o

16mg(B0)
2) defined in the previous section

actually coincides with y/mg. Moreover, one has m(Ba)=mt > −mg.

Proof of Proposition 2.1. Let b > bc and B ¥ R. Consider the limit

k(B)=
1
b

lim
LQ.

1
L

log OebBLSLPL, 0. (3.7)

In view of the Varadhan lemma7 (refs. 6 and 7) and Theorem 3.2 (1), the

7 Notice that limMQ. limLQ.
1
L log ;m ¥ Ran SL: bBm \M ebBLm PL, 0(m)=−. because the range

Ran SL of average spin SL is bounded, Ran SL … [−1, 1]. This allows us to apply an
extended version of Varadhan lemma, (6) Theorem 4.3.1.

limit exists and we get

k(B)=
1
b

sup {bBx−bW0(x)}=Wg
0(B). (3.8)
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With the help of (3.5), one may easily find (10) that

k(B)=3 −m
gB if B [ B0,

mgB−[4y−o/(4B)] if B \ B0,
(3.9)

where B0=(4y+w)/(4mg). This point coincides with the critical point B0
of ref. 16, see Theorem 2 stated therein.

We shall now show that the functions j from (2.4) and k defined
above actually coincide. Let thus {hL}, hL ¥ R, be an arbitrary sequence
such that limLQ. LhL=B. Since

ZL, hL
ZL, 0
= C
sL ¥ {−1, 1}

LL

ebhL |LL| SL(sL) mL, 0(sL)=OebhL |LL| SLPL, 0 (3.10)

and the range of the average spin SL is contained, by definition, in the
interval [−1, 1], we may evaluate

e−b |LhL−B| LOebBLSLPL, 0 [ OebhL |LL| SLPL, 0 [ eb |LhL−B| LOebBLSLPL, 0. (3.11)

As a result,

1
b

lim
LQ.

1
L

log
ZL, hL
ZL, 0
=k(B). (3.12)

Thus, one has k(B)=j(B), and in order to verify (2.5), we notice that
mL(hL, b)=OSLPL, hL=

1
bL
d log OebBLSLPL, 0

dB |B=LhL, getting the limit whenever the
derivative of j exists. L

The main result of the section is this simplified version of Theorem
2.2.

Theorem 3.3. Let b > bc and 0 < J <.. There exists L0=L0(b, J)
<. such that for all L > L0 the claims a) and b) of Theorem 2.2 hold with
(2.12) and (2.13) replaced by

lim
LQ.
R (0)L =0 and lim

LQ.
sup
h ¥ JL(J)

|R (k)L (h)|=0, k=1, 2, (3.13)

respectively.
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3.1. Proof of Theorem 3.3

Let b > bc and L ¥N. Given h ¥ R and a set A ¥B(R) (which may
depend on h) such that

ZL, h(A) := C
sL ¥ WL:
SL(sL) ¥ A

e−bHL, h(sL) > 0, (3.14)

we define

O · | APL, h := C
sL ¥ WL:
SL(sL) ¥ A

·
e−bHL, h(sL)

ZL, h(A)
. (3.15)

In order to control the most relevant contributions to the partition function
on JL(J), J > 0, we split—independently of L—the interval JL(J) into a
finite number of disjoint sub-intervals as follows. Let E ¥ (0, E0(J)) with

E0(J) :=2min {m(B0+J)−m(B0), m(B0)−m(Ba), Dm(Ba)/4} (3.16)

and let us consider the sequence {mi=m0+iE}, i ¥ Z, where m0=
m+(B0)−

E
2. As the function m+ is bounded, there clearly exist unique

natural numbers Nj=Nj(b, J, E), j=1, 2, for which m+(B0−J) ¥
[m−N1, m−N1+1) and m+(B0+J) ¥ [mN2, mN2+1). Let us consider now the
sequence B (i) with B (−N1)=B0−J, B (N2+1)=B0+J, and B (i) for
i=−N1+1, ..., N1 taken as the unique solution of the equation
m+(B (i))=mi.8 We split the interval JL(J),

8 Since E < E0(J), it follows that Ba < B (0) < B0 < B (1) < B0+J.

JL(J)= 0
N2

i=−N1

I (E)
L, i , (3.17)

by taking

I (E)
L, i :=˛

(B(i)/L, B (i+1)/L] if i=−N1, ...,−1,

(B(0)/L, B (1)/L) for i=0,

[B(i)/L, B (i+1)/L) if i=1, ..., N2.

(3.18)

Notice that, by definition, B0/L ¥I (E)
L, 0. Moreover, introducing

C−(E) :=(−mg− E,−mg+E), (3.19)
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and

C+(Lh, E) :=(mi− E, mi+1+E) for any h ¥I (E)
L, i, (3.20)

we have

|OSL | C+PL, h−m+(Lh)| [ 2E and |OSL | C−PL, h−(−mg)| [ E

(3.21)

for every h ¥ JL(J).
Taking C(Lh, E) :=C+(Lh, E) 2 C−(E), we shall prove Theorem 3.3

with the help of the following sequence of lemmas.9

9 The fact that C+ and C− are open is not important: the arguments of the proof also work if
these are closed or half-open.

Lemma 3.4. Let b > bc, J > 0, and 0 < E < E0(J). For any L > E−1/2

and h ¥ JL(J), we have

|OSLPL, h−T(f (E)(h); m̄(Lh), Dm(Lh))| [ 2PL, h(Cc)+3E. (3.22)

Here

T(x; a, b) :=a+b tanh x, x, a, b ¥ R, (3.23)

and

f (L, E)(h) :=
1
2

log
ZL, h(C+)
ZL, h(C−)

=
1
2

log
PL, h(C+)
PL, h(C−)

. (3.24)

Proof. Let b > bc, J > 0, E < E0(J), and L > E−1/2 be given. Let
h ¥ JL(J) be arbitrary. Evidently,

OSLPL, h=OSL | CPL, h PL, h(C)+OSL | CcPL, h PL, h(Cc) (3.25)

=OSL | CPL, h+(OSL | CcPL, h−OSL | CPL, h) PL, h(Cc). (3.26)

Thus, using that |SL| [ 1, one has

|OSLPL, h−OSL | CPL, h| [ 2PL, h(Cc). (3.27)
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Observing that C+5 C−=” (since E < Dm(Ba)/2) and that ZL, h(C±) > 0
(since L > E−1/2), we readily get

OSL | CPL, h=
OSL | C+PL, hZL, h(C+)+OSL | C−PL, h ZL, h(C−)

ZL, h(C+)+ZL, h(C−)

=
OSL | C+PL, h+OSL | C−PL, h

2

+
OSL | C+PL, h−OSL | C−PL, h

2
tanh(f (L, E)(h)). (3.28)

Since |tanh x| [ 1 for all x ¥ R, in view of (3.21) it follows that

|OSL | CPL, h−T(f (E)(h); m̄(Lh), Dm(Lh))| [ 3E. (3.29)

Combined with (3.27), we obtain the lemma. L

The next lemma provides bounds on the derivatives of OSLPL, h analo-
gous to that from (3.22). To this end, we start with the following definition.

Definition 3.5. Let k ¥N. Given a set {g1, ..., gk} of k real-valued
functions in R, we introduce

Fk({gj}) :=C
k

j=1
(−1) j−1 (j−1)! C

{I1, ..., Ij}
D
j

a=1
g|Ia|, (3.30)

where the second sum runs over all partitions {I1, ..., Ij}, j=1, ..., k, of the
set {1, ..., k} and |Ia|, a=1..., j, is the cardinality of Ia.

Lemma 3.6. There exist finite constants Ck, Kk, k ¥N, such that if
b > bc, J > 0, 0 < E < E0(J), and L > E−1/2, then

: 1
(b |LL|)k−1

“
k−1

“hk−1
OSLPL, h−Fk({T(f (L, E)(h); t

+
j , t

−
j )}): [ Ck PL, h(Cc)+Kk E

(3.31)

for all h ¥ JL(J). Here

t±j :=
(m+(Lh)) j±(−mg) j

2
, j=1, ..., k. (3.32)
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Proof. In order to prove (3.31), it suffices—by Lemma A.2—to show
that for any k ¥N there exists a finite positive constant Kk such that

|Fk({O(SL) j | CPL, h})−Fk({T(f (L, E)(h); t
+
j , t

−
j )})| [KkE. (3.33)

Indeed, taking into account (3.15) and (3.19) (cf. (3.21)), we have

|O(SL)n | C+PL, h−(m+(Lh))n| [ C
sL ¥ WL:
SL(sL) ¥ C

+

|(SL(sL))n−(m+(Lh))n|
e−bHL, h(sL)

ZL, h(C+)

[ C
sL ¥ WL:
SL(sL) ¥ C

+

|SL(sL)−m+(Lh)| C
n−1

r=0
|SL(sL)| r |m+(Lh)|n−r−1

e−bHL, h(sL)

ZL, h(C+)

[ K̃nE (3.34)

for all n ¥N and K̃n=2n. Similarly, one has |O(SL)n | C−P−(−mg)n| [ K̃nE
for all n ¥N with the same constant K̃n. Combined with the equality

O(SL)n | CPL, h=
O(SL)n | C+PL, h ZL, h(C+)+O(SL)n | C−PL, h ZL, h(C−)

ZL, h(C+)+ZL, h(C−)
,

n ¥N, (3.35)

valid whenever E < Dm(Ba)/2 and L > E−1/2, referring to (3.28) it follows
that

|O(SL)n | CPL, h−T(f (L, E)(h); t
+
n , t

−
n )| [ K̃nE (3.36)

for all n ¥N.
Let now k ¥N. For any j=1, ..., k and any partition {I1, ..., Ij} one

gets

D
j

a=1
O(SL) |Ia| | CPL, h=D

j

a=1
T(f (L, E)(h); t+|Ia|, t

−
|Ia|)

+ C
X … {1, ..., j}:
X ] {1, ..., j}

D
r ¥X
T(f (L, E)(h); t+|Ir|, t

−
|Ir|)

× D
s ¥ {1, ..., j}0X

(O(SL) |Is| | CPL, h−T(f (L, E)(h); t
+
|Is|, t

−
|Is|)).

(3.37)
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By virtue of (3.36), the obvious bound |t±n | [ 1 for any n ¥N, and the fact
that E [ Dm(Ba)/2 [ 1, we arrive at (3.33). L

Next, let us examine the behaviour of the function f (L, E)(h) defined by
(3.24).

Lemma 3.7. Let b > bc, J > 0, and 0 < E < E0(J).

(a) Let L > E−1/2. Then the function f (L, E)(h) is finite on JL(J). In
addition, it is analytic and increasing on I (E)

L, i for each i=−N1, ..., N2.

(b) There exists a constant L1=L1(b, J, E) <., L1 \ E−1/2, such that
for L > L1 the function f (L, E)(h) vanishes inside JL(J) at a unique point
h0(L, E). Moreover, the limit limLQ. Lh0(L, E) exists, it is independent of E,
and10

10 Notice that (3.38) implies (PL, h0(L, E))
1/LQ e−bWB0 by Theorem 3.2 (2), where WB0 is given by

(3.6).

lim
LQ.
Lh0(L, E)=B0. (3.38)

(c) Let11

11 Recall that D=Dm(B0).

w(h) :=b (h−h0(L, E)) |LL| D. (3.39)

There exist finite constants L2=L2(b, J, E), Mk, k ¥N, such that if L > L2,
then

|Fk({T(f (L, E)(h); t
+
j , t

−
j )})−Fk({T(w(h); t

+
j , t

−
j )})|

[Mk (|Dm(Lh0(L, E)+L−1/2)−D|+E)/D

(3.40)

for all h ¥ JL(J) and k ¥N.

Proof. Let b > bc, J > 0, and 0 < E < E0(J).

(a) Let L > E−1/2. First, if h ¥ JL(J), then ZL, h(C±) > 0 (since L > E−1/2),
and f (L, E)(h) is finite by its very definition (3.24). Second, let
i=−N1, ..., N2 and let us consider the interval I (E)

L, i. By its definition, the
set C+ is independent of h on I (E)

L, i, and, hence, the function ZL, h(C+) is
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analytic in h on I (E)
L, i. The same is thus true for the function f (L, E). More-

over, for any h in the interior of I (E)
L, i one has

1
b |LL|

“f (L, E)(h)
“h

=
OSL | C±PL, h−OSL | C−PL, h

2
\
m+(Lh)+mg

2
−
3
2

E >
E0(J)
2

(3.41)

with the help of (3.21) . Thus, the function f (L, E) is increasing on I (E)
L, i.

(b) Let i=−N1, ..., −1. Then (PL, B(i+1)/L)1/LQ e−bWB(i+1) in view of
Theorem 3.2 (2). Observing further that, due to Theorem 3.2 (3), one has
infm ¥ C

−WB(m)=0 whenever B < B0, we get

lim
LQ.

1
L

f (L, E)(B(i+1)/L)=−
b

2
inf

x ¥ [mi− E, mi+1+E]
WB(i+1)(x)=−

b

2
WB(i+1)(xi)

(3.42)

for some xi ¥ [mi− E, mi+1+E]. Taking into account the bounds

mi− E > m+(B0−J)−2E \ −mg+4E0(J)−2E > −mg+2E0(J) (3.43)

as well as the fact that B (i+1) < B0, we can use Theorem 3.2 (3) once more
to get WB(i+1)(x) > 0 and thus

f (L, E)(B(i+1)/L) < −bLWB(i+1)(xi)/4 < 0 (3.44)

once L is sufficiently large (depending on b, J, E, and i). In a similar way,

f (L, E)(B (i)/L) > bLWB(i)(xi)/4 > 0 (3.45)

for any i=1, ..., N2 and some xi ¥ [mg− E, mg+E] once L is sufficiently
large (depending on b, J, E, and i). Referring to the fact that f (L, E) is
increasing on I (E)

L, i for every i=−N1, ..., N2 by the claim (a) of this lemma
and that N1+N2 is finite, one concludes that f (L, E)(h) ] 0 for all
h ¥ JL(J)0I

(E)
L, 0 as soon as L is large enough (depending on b, J, and E).

Let h ¥I (E)
L, 0 now. According to the mean-value theorem,

f (L, E)(h)=f (L, E)(B0/L)+(h−B0/L)
“f (L, E)(h̄)
“h

(3.46)

for some h̄ between h and B0/L. Taking into account that WB0(m+(B0))=0
and thus infm ¥ C

+WB0(m)=0, we get

lim
LQ.

f (L, E)(B0/L)
L

=
1
2

lim
LQ.

1
L

log
PL, B0/L(C

+)
PL, B0/L(C

−)
=0 (3.47)
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according to Theorem 3.2 (3). With the help of (3.46) we thus get

f (L, E)(h) [ f (L, E)(B0/L)−
B0−B (0)

2L
b |LL| E0(J)

2

< L 1f
(L, E)(B0/L)
L

−
b

4
(B0−B (0)) E0(J)2 < 0 (3.48)

for any h ¥I (E)
L, 0 such that h [ (B0+B (0))/(2L) once L is large enough

(depending on b, J, and E). Analogously, one proves that f (L, E)(h) > 0 for
any h ¥I (E)

L, 0 such that h \ (B0+B (1))/(2L) if L is sufficiently large
(depending on b, J, and E). Since f (L, E) is continuous (it is analytic) and
increasing on I (E)

L, 0 for L > E−1/2, this means that, for L large (depending on
b, J, and E), a unique point h0(L, E) at which f (L, E)(h0(L, E))=0 exists, and

(B0+B (0))/2 < Lh0(L, E) < (B0+B (1))/2. (3.49)

Moreover, the relation (3.46) with h=h0(L, E) combined with (3.41) and
(3.47) readily implies (3.38).

(c) Let i=−N1, ..., N2 be such that i ] 0 and let hi ¥I (E)
L, i. Using that

f (L, E) is increasing on I (E)
L, i for L > L1 and recalling the bounds (3.44) and

(3.45) valid for L > L1, we get |f (L, E)(hi)| \ bL ai(b, J, E)/4 for L > L1,
where ai > 0 stands for WB(i+1)(xi) if i [ −1 or WB(i)(xi) if i \ 1. Moreover,

|w(hi)| \ b min{Lh0(L, E)−B (0), B (1)−Lh0(L, E)} LD

> b min{B0−B (0), B (1)−B0}
L
2

D (3.50)

for L > L1 by (3.49). Hence, observing that 1−2e−2 |x| [ tanh |x| [ 1, we
have

|tanh(f (L, E)(hi))− tanh(w(hi))| [ 2e−2 min {|f
(L, E)(hi)|, |w(hi)|} [ 2e−bL a(b, J, E)/2

(3.51)

for L larger than some L̃2=L̃2(b, J, E), L̃2 \ L1, with

a(b, J, E) :=min { min
−N1 [ i [N2
i ] 0

ai(b, J, E), 2 min{B0−B (0), B (1)−B0} D} > 0.
(3.52)

Now, let us consider h ¥I (E)
L, 0 and take L so large that L \ L̃2 and

IL :={hŒ ¥ R: |hŒ−h0(L, E)| L [ L−1/2} …I (E)
L, 0. (3.53)

920 Kotecký and Medved’

File: KAPP/822-joss/104_5-6 342337 - Page : 16/39 - Op: DS - Time: 11:16 - Date: 13:08:2001



If h ¥I (E)
L, 00IL, then |w(h)| \ bDL1/2 and

|f (L, E)(h)|=|h−h0(L, E)|
“f (L, E)(ĥ)
“h

\ bE0L1/2/2 (3.54)

according to the mean-value theorem and (3.41) (here ĥ is some point
between h and h0(L)). Consequently,

|tanh(f (L, E)(h))− tanh(w(h))| [ 2e−2 min {|f
(L, E)(h)|, |w(h)|} [ 2e−bE0L

1/2
. (3.55)

On the other hand, if h ¥ IL, then Lemma A.3, an upper bound similar to
(3.41) (c.f. (3.21)), and the mean-value theorem yield

|tanh(f (L, E)(h))− tanh(w(h))| [
|tanh(w(h))|
|w(h)|

|f (L, E)(h)−w(h)|

[
1
|w(h)|

b |h−h0(L, E)| |LL| :
1

b |LL|
“f (L, E)(ĥ)
“h

−D:

[
1
D
1 |Dm(Lh)−D|+

3
2

E2 [ 1
D
1 |Dm(Lh0(L, E)+L−1/2)−D|+

3
2

E2 .
(3.56)

Combined with (3.51), (3.55) (with the right hand side bounded by E
4D for L

sufficiently large), and the obvious bound

|T(f (L, E)(h); t+j , t
−
j )−T(w(h); t

+
j , t

−
j )| [ |t

−
j | |tanh(f (L, E)(h))− tanh(w(h))|,

(3.57)

where j ¥N, we arrive at (3.40) with k=1 and M1=2 when we recall that
|t±j | [ 1 and realize that F1({g1})=g1. In addition, similarly to (3.37), one
has

D
j

a=1
T(f (L, E)(h); t+|Ia|, t

−
|Ia|)=D

j

a=1
T(w(h); t+|Ia|, t

−
|Ia|)

+ C
X … {1, ..., j}:
X ] {1, ..., j}

D
r ¥X
T(w(h); t+|Ir|, t

−
|Ir|) D

s ¥ {1, ..., j}0X
t−j (tanh(f (L, E)(h))− tanh(w(h)))

(3.58)

for any j=1, ..., k with k=2, 3, ..., and any partition {I1, ..., Ij}. In view
of (3.57), we get (3.40) with a suitableMk for k \ 2. L

Let us now show that the probability PL, h(Cc) appearing on the right-
hand side of (3.22) and (3.31) converges—within the interval JL(J)—
exponentially fast to zero and that the convergence is uniform in h.
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Lemma 3.8. Let b > bc, J > 0, 0 < E < E0(J). There exist finite con-
stants l=l(b, J, E) > 0 and L3=L3(b, J, E) such that

PL, h(Cc) [ e−blL (3.59)

whenever L > L3 and h ¥ JL(J).

Proof. Let b > bc, J > 0, 0 < E < E0(J), L ¥N, and h ¥ JL(J). More-
over, let

C̃(Lh, E) :=(m+(Lh)− E, m+(Lh)+E) 2 (−mg− E, −mg+E); (3.60)

it clearly follows that C̃ … C, i.e. PL, h(Cc) [ PL, h(C̃c).
With the help of Lemma A.6 one has

inf
m ¥ (C̃(B, E))c

WB(m) \ min {WB(−mg+E),WB(m(B)− E),WB(m(B)+E)}

(3.61)

for any B ¥ R. Since WB(m) as well as m(B) is continuous in B, the infimum
over JL(J)=[B0−J, B0+J] is attained,

inf
B ¥ [B0−J, B0+J]

WB(t(B))=WBt(t(Bt)) (3.62)

for some point Bt ¥ [B0−J, B0+J], where t(B) stands for −mg+E,
m(B)− E, or m(B)+E (the value Bt may differ for each of these three func-
tions). Thus, there exist values Bi ¥ [B0−J, B0+J], i=1, 2, 3, depending
on b, J, and E such that

inf
m ¥ (C̃(Lh, E))c

WLh(m)

\ inf
h ¥ JL(J)

inf
m ¥ (C̃(Lh, E))c

WLh(m)= inf
B ¥ [B0−J, B0+J]

inf
m ¥ (C̃(B, E))c

WB(m)

\ min {WB1(−m
g+E),WB2(m(B2)− E),WB3(m(B3)+E)} > 0, (3.63)

where we used Theorem 3.2 (3) in the last step. Denoting the last minimum
by 2l, Lemma A.4 implies

PL, h(C̃c) [ e−blL (3.64)

for all L large (depending on b, J, and E). L

Using the preceding four lemmas, we shall now prove Theorem 3.3.
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Proof of Theorem 3.3. Let b > bc, J > 0, h ¥ JL(J), and 0 < E <
E0(J). We may collect the relations (3.22), (3.31), (3.40), and (3.59) to
conclude that there exists L4=L4(b, J, E) such that for L > L4 the follow-
ing holds: there exist finite positive constants l(b, J, E) and Dk, k ¥N, such
that

: 1
(b |LL|)k−1

“
k−1

“hk−1
OSLPL, h−Fk({T(w(h); t

+
j , t

−
j )}): [ Dk EL(E) (3.65)

for all k ¥N, where

EL(E) :=e−blL+|Dm(Lh0(L, E)+L−1/2)−D|+(1+1/D) E > 0. (3.66)

Next, we shall use (3.65) to show that the susceptibility qL(h, b) attains its
maximum over JL(J) at a unique point hq(L) for any L sufficiently large
(depending on b, J, and E), and thus evaluate its position.

First, notice that

Fk({T(x; t
+
j , t

−
j )})=(Dm(Lh))

k d
k−1 tanh x
dxk−1

(3.67)

for k=2, 3, 4. Now, let us show that if the point hq(L) exists, then, neces-
sarily, one has |hq(L)−h0(L, E)| < a/|LL|, where a > 0 will be specified
later.12 Namely, let us show that, for L sufficiently large (depending on b,

12 We assume that L is large enough (depending on b, J, and a) to ensure that the interval
|h−h0(L)| \ a/|LL| fits into JL(J).

J, E, and a),

qL(h0(L, E), b) > qL(h, b) once h ¥ JL(J) such that |h−h0(L, E)| \ a/|LL|.
(3.68)

This is clear if |h−h0(L, E)| \ L−3/2: then |w(h)| \ bDL1/2, and (3.65) with
k=2 yields

qL(h0(L, E), b)−qL(h, b)

\ (Dm(Lh0(L, E)))2−(Dm(Lh))2 cosh−2(w(h))−2D2EL(E)

\ (2E0(J))2− cosh−2(bDL1/2)−2D2EL(E) > 0 (3.69)
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once E > 0 is small enough (depending on b) and L is large (depending on
b, J, and E). On the other hand, if a/|LL| [ |h−h0(L, E)| [ L−3/2, then we
have |w(h)| \ baD, and

qL(h0(L, E), b)−qL(h, b)

\ (Dm(Lh0(L, E)))2−(Dm(L(h0(L, E)+L−3/2)))2 cosh−2(w(h))

−2D2EL(E)

\ (Dm(Lh0(L, E)))2 51−1
Dm(Lh0(L, E)+L−1/2)

Dm(Lh0(L, E))
22 cosh−2(baD)6

−2D2EL(E)

\ (2E0(J))2 51−1
Dm(Lh0(L, E)+L−1/2)

Dm(Lh0(L, E))
22 cosh−2(baD)6−2D2EL(E).

(3.70)

Taking L so large that

1Dm(Lh0(L, E)+L−1/2)
Dm(Lh0(L, E))

22 < 1+(cosh2(baD)−1)/2 (3.71)

(note that the left-hand side above must always be larger than 1), we obtain

qL(h0(L, E), b)−qL(h, b) \ (2E0)2 (1− cosh−2(baD))/2−2D2EL(E) > 0
(3.72)

whenever E > 0 is small enough (depending on b and a) and L is large
(depending on b, J, E, and a). This and (3.69) verify (3.68).

Next, we shall show that the susceptibility qL(h, b) is concave on the
interval [h0(L, E)−

a
|LL|
, h0(L, E)+

a
|LL|
] and that its derivative is positive at

h0(L, E)−
a
|LL|

and negative at h0(L, E)−
a
|LL|

. Indeed, let us consider h ¥ JL(J)
such that |h−h0(L, E)| [ a/|LL|. In view of (3.65) with k=3, we have

1
b |LL|

“qL(h, b)
“h
:
h=h0(L, E)+a/|LL|

[ (Dm(Lh))3
d2 tanh x
dx2
:
x=baD

+D3EL(E)

[ −(2E0)3 :
d2 tanh x
dx2
:
x=baD

+D3EL(E) < 0

(3.73)
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and

1
b |LL|

“qL(h, b)
“h
:
h=h0(L, E)−a/|LL|

\ (2E0)3 :
d2 tanh x
dx2
:
x=baD

−D3EL(E) > 0

(3.74)

for E small (depending on b and a) and L large (depending on b, J, E, and
a). Here we used that d

2 tanh x
dx2

is odd and negative for x > 0. Observing that
d3 tanh x
dx3
< 0 once |x| < 2A for some A > 0, we choose a= A

bD : then |w(h)| [ A,
and, using (3.65) with k=4, we get

1
(b |LL|)2

“
2

“h2
qL(h) [ −(2E0)4 :

d3 tanh x
dx3
:
x=A
−D4EL(E) < 0 (3.75)

for all |h−h0(L, E)| [ a/|LL|=A/(bD |LL|) whenever E is sufficiently small
(depending on b) and L is sufficiently large (depending on b, J, and E).
Combined with the fact that the susceptibility qL(h, b) is analytic in h, we
thus see that the point hq(L) exists, it is unique, and |hq(L)−h0(L, E)| <
A/(bD |LL|). Thus,

lim
LQ.
L hq(L)=B0 (3.76)

due to (3.38), which verifies the first part of (3.13).
Further, let us prove that

|h0(L, E)−hq(L)| [
2D3

bh(E0/2)4
EL(E)
|LL|

(3.77)

for L large enough (depending on b, J, and E), where h :=− d
3 tanh x
dx3
|x=A > 0.

This is trivial if hq(L) happens to coincide with h0(L, E). So, let us assume
that hq(L) ] h0(L, E). Then the Lagrange mean-value theorem yields

“

“h
qL(h, b)|h=h0(L, E)=(h0(L, E)−hq(L))

“
2

“h2
qL(h, b)|h=h̄ (3.78)

for some h̄ between h0(L, E) and hq(L) and L large (depending on b, J, and
E). By virtue of (3.65) and the bound |w(h̄)| [ |w(hq(L))| < A, for L large
we have

1
(b |LL|)2

“
2

“h2
qL(h, b)|h=h̄ [ (2E0)4

d3 tanh x
dx3
:
x=A
+D4EL(E) [ −(2E0)4 h/2,

(3.79)
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yielding a lower bound on its absolute value. On the other hand, the
absolute value of “

“h qL(h, b) at h0(L, E) can be bounded from above by
D3b |LL|EL(E). Both last bounds are valid for L large enough—depending
on b, J, and E. As a result, the bound (3.77) follows with the help of (3.78).

Using (3.77), it readily follows that

|tanh(w(h))− tanh(w̃(h))| [ |w(h)− w̃(h)| <
2D3D

h(E0/2)4
EL(E) (3.80)

with

w̃(h) :=bD(h−hq(L)) |LL|, (3.81)

for all L large (depending on b, J, E). This in turn implies that for any
k ¥N there is a finite positive constant D̃k such that

|Fk({T(w(h); t
+
j , t

−
j )})−Fk({T(w̃(h); t

+
j , t

−
j )})| [ D̃k EL(E) (3.82)

for all L large (depending on b, J, E), c.f. (3.58). Since the absolute value of
the error term R (k)L (h), k=1, 2, can be bounded by the sum of the left-hand
side of (3.65) and the left-hand side of (3.82), it follows from (3.66) that

0 [ lim
LQ.

sup
h ¥ JL(J)

|R(k)L (h)| [ (Dk+D̃k) lim
LQ.
EL(E) [ (Dk+D̃k)(1+1/D) E

(3.83)

for any E > 0, 0 < E < E0(J). As a result, limLQ. suph ¥ JL(J) |R
(k)
L (h)|=0,

k=1, 2, and the second claim of (3.13) is verified. L

4. EVALUATION OF ERROR TERMS; PROOF OF THEOREM 2.2

In this section, we use the estimates established in ref. 1, 9, 13, 17 to
prove Theorem 2.2. Namely, we shall employ the following statements (we
formulate them in the form in which we shall need them here).

Theorem 4.1.(1, 17) Let b > bc and let d ¥ (0, 1/4) be given. There
exists L5=L5(b, d) <. such that for any L > L5 and for any sequence
{mL} such that mL ¥ Ran SL, mL \ −mg+L−d, and limLQ. mL ¥
[−mg, mg) exists, one has

log PL, 0(mL) [ −b(W0(mL)+sL(mL)) L, (4.1)

926 Kotecký and Medved’

File: KAPP/822-joss/104_5-6 342337 - Page : 22/39 - Op: DS - Time: 11:16 - Date: 13:08:2001



where

sL(mL)=˛
O(L−(1/4+d)/4) if |mL+mg−CL−d̄| [ L−(1/4+d)/2

for some C > 0 and d̄ ¥ (0, d],

O(L−1/2log L) otherwise.

(4.2)

The first case in (4.2) is a consequence of Theorem 7.4.3 from ref. 17,
while the second case is a special case of Theorem 4.3.1 from ref. 1.

The next theorem is a consequence of Theorem 1.5.1 from ref. 9 (c.f.
(1.1.2) in ref. 13) and the bound (1.1.1) of ref. 13.

Theorem 4.2.(9, 13) Let b ] bc. There exist constants L6=L6(b)
<. and c1=c1(b) > 0 such that for L > L6 and any mL [ OSLPL, 0 one has
OSLPL, 0=−mg+O(L−1) and

log PL, 0(mL) [ −c1 [(OSLPL, 0−mL)L]2. (4.3)

In addition, we also need this consequence of Theorem C from ref. 13.

Theorem 4.3.(13) Let b > bc. There exist constants L7=L7(b) <.
and c2=c2(b) > 0 such that

PL, 0(mL)=
c2
L
(1+oL(1)) (4.4)

for all L > L7 and an arbitrary mL=OSLPL, 0+o(L−1) ¥ Ran SL such that
mL > OSLPL, 0.

Finally, we shall make use of the following lemma.

Lemma 4.4. Let b > bc and J > 0. Introducing

g(b, J) :=[mg−m+(B0+J)]/2=o(B0+J)−2/8, (4.5)

there exist constants L8=L8(b, J) <. and c3=c3(b, J) > 0 such that

log PL, h([mg−g, 1]) [ −c3 b L (4.6)

for any h ¥ JL(J) and all L > L8.

Proof. With the help of (3.6) and (3.5), one may easily observe (c.f.
the proof of Lemma A.6) that the first derivative of W0 is strictly decreas-
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ing on (−mg, mt), whereas it is strictly increasing on (mt, mg). This implies
that WLh is strictly increasing on (−mg, mg) once Lh [ y/mg:

dWLh(m)
dm

\
dW0(m)
dm

−by/mg >
dW0(mt)
dm

−by/mg=0 (4.7)

for all m ¥ (−mg, mg). On the other hand, if Lh > y/mg, then WLh is strictly
increasing on (m(Lh), mg). Indeed, for Lh > y/mg, we have m(Lh) > mt.
Hence,

dWLh(m)
dm

=
dW0(m)
dm

−bLh >
dW0(m(Lh))
dm

−bLh=0 (4.8)

for all m ¥ (m(Lh), mg). Since mg−g ¥ (−mg, mg) and mg−g > m(Lh) as
soon as Lh [ B0+J, it follows that

inf
m ¥ [mg−g, 1]

WLh(m)=WLh(mg−g) \ inf
h ¥ JL(J)

WLh(mg−g)

= inf
B ¥ [B0−J, B0+J]

WB(mg−g) (4.9)

for any L ¥N and h ¥ JL(J). As WB is continuous in B by (3.6) and Propo-
sition 2.1, the infimum on the right-hand side of (4.9) is attained, i.e. it
equals WB̃(mg−g) for some B̃ ¥ [B0−J, B0+J]. Using c3(b, J) to denote
WB̃(mg−g)/2, Lemma 1.4 implies the proposition. L

We are now ready to prove Theorem 2.2.

4.1. Proof of Theorem 2.2

The proof goes along the same lines as that of Theorem 3.3. However,
instead of the large-deviation principle for the sequence {PL, 0}, here we
shall take into account a more accurate information on the asymptotic
behaviour of the distribution PL, 0 given above. This will enable us to get
explicit rates at which the error terms R (0)L , R (1)L (h), and R (2)L (h) tend to zero
as LQ.. For this reason, the parameter E > 0 appearing in the definition
of the sets C+ and C−, will now be chosen dependent on L, and we use EL
to denote it. Only later shall we specify this dependence precisely—the
choice will minimize the above error terms.

Let b > bc, J > 0, d ¥ (0, 1/4), and let g(b, J) > 0 be defined by (4.5).
We consider a fixed sequence {EL}, EL > 0, which may depend on d and b
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but not on J such that limLQ.EL=0 and EL \ L−d for all L ¥N. It will
actually turn out that an optimal choice for our purposes is EL=L−d. Using
EL in the place of E, for a given L we divide the interval JL(J) into a finite
number of sub-intervals as at the beginning of Subsection 3.1. Conse-
quently, the points mi, i ¥ Z, will now depend on b and EL, while the finite
numbers N1 and N2 as well as the points B (i), i=−N1, ..., N2, will depend
on b, J, and EL. We again have

JL(J)= 0
N2

i=−N1

I (EL)
L, i . (4.10)

Furthermore, for any h ¥ JL(J) we set C+(Lh, EL) :=(mi− EL, mi+1+EL) if
h ¥I (EL)

L, i , while C−(EL) :=(−mg− EL/4, −mg+EL/4). As before, we shall
write C(Lh, EL) for the union C±(Lh, EL) 2 C−(EL).

In order to verify Theorem 2.2, we first prove three auxiliary lemmas.
The first is just an expression of the distribution PL, h, h ¥ R, in terms of
PL, 0.

Lemma 4.5. Let b > 0, h ¥ R, L ¥N, and let us take any A ¥B(R)
(the set A may depend on b, h, and L). Then

PL, h(A)=
;m ¥ A 5 Ran SL e

bh |LL| m PL, 0(m)
;mŒ ¥ Ran SL e

bh |LL| mŒ PL, 0(mŒ)
. (4.11)

Proof. Let b > 0, h ¥ R, L ¥N, and A ¥B(R). It suffices to realize
that PL, h(A)=;m ¥ A 5 Ran SL PL, h(m) and combine the obvious equality

PL, h(m)=
ebh |LL| m

ZL, h
C

sL ¥ {−1, 1}
LL:

SL(sL)=m

e−bHL, 0(sL)=ebh |LL| m PL, 0(m)
ZL, 0
ZL, h

(4.12)

with the fact that ;mŒ ¥ Ran SL PL, h(mŒ)=1. L

The behaviour of the function f (L, EL)(h) is inspected in the next lemma.

Lemma 4.6. Let b > bc, J > 0, and d ¥ (0, 1/4). There exists a finite
constant L9=L9(b, J, d) such that for L > L9 the function f (L, EL)(h) equals
zero within JL(J) at a unique point13 h0(L). Moreover,

13 We are not denoting the dependence of h0(L) on EL. Since we assume that the sequence {EL}
is fixed, this dependence is actually a dependence on L.

|Lh0(L)−B0| [ 2(B0)3 EL/o. (4.13)
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Proof. Let b > bc, J > 0, d ¥ (0, 1/4), and i=−N1, ..., −1. With the
help of Lemma 4.5 and Theorem 4.1 we may bound

PL, B(i+1)/L(C+(B(i+1), EL))
PL, B(i+1)/L(C−(EL))

=
;m ¥ C

+(B(i+1), EL) 5 Ran SL e
bB(i+1)Lm PL, 0(m)

; m̂ ¥ C
−(EL) 5 Ran SL e

bB(i+1)Lm̂ PL, 0(m̂)

[
8L2EL maxm ¥ C

+(B(i+1), EL) 5 Ran SL {e
bB(i+1)Lm PL, 0(m)}

ebB
(i+1)Lm̂L PL, 0(m̂L)

[
8L2EL
PL, 0(m̂L)

max
m ¥ C

+(B(i+1), EL)
{ebB

(i+1)Lm−b[W0(m)+O(L
−1/2 log L)] L} e−bB

(i+1)Lm̂L

(4.14)

for all L > L5 and arbitrary m̂L ¥ C−(EL) 5 Ran SL. Choosing m̂L >
OSLPL, 0 such that m̂L=OSLPL, 0+o(L−1)=−mg+O(L−1), Theorem 4.3 and
(3.6) yield

PL, B(i+1)/L(C+(B (i+1), EL))
PL, B(i+1)/L(C−(EL))

[
16L3EL
c2

max
m ¥ (mi− EL, mi+1+EL)

e−bL[W0(m)−B
(i+1)m−B(i+1)(−mg)+O(L−1/2 log L)]

[ eO(log L) max
m ¥ [mi− EL, mi+1+EL]

e−bL[WB(i+1)(m)−WB(i+1)(−m
g)+O(L−1/2 log L)] (4.15)

once L is large enough (depending on b and d); we also used the fact that
WB(−mg)=0 if B [ B0 by Theorem 3.2 (3). Since B (i+1) < B0, we have

f (L, EL)(B (i+1)/L) [ −bL[ min
m ¥ [mi− EL, mi+1+EL]

WB(i+1)(m)+O(L−1/2 log L)]/2

=−bL [WB(i+1)(m̃i)+O(L−1/2 log L)]/2 (4.16)

for all L large (depending on b and d) and some m̃i ¥ [mi− EL, mi+1+EL].
When B (i+1) [ y/mg, where y/mg < B0, then there is a constant
z(b, J, i) > 0 such that WB(i+1)(xi) \ z; this follows from Theorem 3.2 (3)
and the bound (3.43). Thus, f (L, EL)(B (i+1)/L) [ −bzL/4 < 0 for any L
large (depending on b, J, d, and i). On the other hand, if B (i+1) > y/mg,
then m̃i=m(B(i+1)), for the function WB(x) has a local minimum at m(B)
once B > y/mg. Taking into account (3.5) and (3.9), one finds

f (L, EL)(B (i+1)/L) [ −
bL
2
[WB(i+1)(m(B(i+1)))+O(L−1/2 log L)]

=−
bL
2
54y− o

4B(i+1)
−2mgB (i+1)+O(L−1/2 log L)6

(4.17)
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for all L large enough. Introducing g(B) :=4y−o/(4B)−2mgB and recall-
ing that w > 4y/3, one has

dg(B)
dB
=−(mg+m(B)) [ −mgw2/(8y2) < −2mg/9 < 0 (4.18)

whenever B \ y/mg. Observing that g(B0)=0, we thus get

f (L, EL)(B (i+1)/L) [ −bL [g(B(0))+O(L−1/2 log L)]/2

=bL[(B(0)−B0)(mg+m(B̃))+O(L−1/2 log L)]/2 (4.19)

for L large and some B̃ ¥ (B (0), B0). From the construction of the interval
I (EL)
L, −1 it is clear that B0−B (0) \ aEL for some a(b) > 0 and L large

(depending on b and d). More acurately, the Taylor expansion of m(B(0))
around B0 and the fact that m(B(0))=m(B0)− EL/2 yield B0−B (0)=
(B0)3EL/o+O((EL)2). Therefore, we finally obtain

f (L, EL)(B(i+1)/L) [ −bL [(B0)3 (mg+m(B̃)) L−d/(2o)

+O(L−1/2 log L)]/2 < 0 (4.20)

for all L large enough (depending on b, J, and d). As a result, we see that
f (L, EL)(h) < 0 for all h ¥I (EL)

L, i , i=−N1, ..., −1, once L is sufficiently large
(depending on b, J, and d) because f (L, EL) is increasing on each I (EL)

L, i

according to Lemma 3.7 (a). Notice that one may use the above arguments
to show that f (L, EL)(h) < 0 for all h ¥I (EL)

L, 0 such that h [ (B0+B(0))/(2L)
whenever L is large (depending on b, J, and d).

Next, let us consider i=1, ..., N2. Taking m̂L ¥ C+(B (i), EL) 5 Ran SL
such that m̂L=m(B(i))+O(L−2), by virtue of Theorem 4.1, Lemma 4.5, and
the relations (3.6) and (3.9), we bound

PL, B(i)/L(C−(EL))
PL, B(i)/L(C+(B (i), EL))

[
ebB

(i)L(−mg+EL/4) PL, 0(C−(EL))

ebB
(i)Lm̂L PL, 0(m̂L)

[ ebL [WB(i)(m(B
(i)))−WB(i)(−m

g)+B(i)EL/4+O(L
−1/2log L)]

=e−bL [WB(i)(−m
g)−B(i)EL/4+O(L

−1/2 log L)]=e−bL [−g(B
(i))−B(i)EL/4+O(L

−1/2 log L)]

(4.21)

for all L > L5. Since

d
dB
(−g(B)−BEL/4)=mg+m(B)− EL/4 \ 2mg/9− EL/4 \ mg/9 > 0

(4.22)
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for all L large (depending on b and d), it follows that

PL, B(i)/L(C−(EL))
PL, B(i)/L(C±(B(i), EL))

[ e−bL [−g(B
(1))−B(1)EL/4+O(L

−1/2 log L)] (4.23)

once L is large enough (depending on b and d). As m(B(1))=m(B0)+EL/2,
we have B (1)−B0=O(EL). Namely, the Taylor expansion of m(B(1)) around
B0 yields B (1)−B0=(B0)3EL/o+O((EL)2). Hence,

−g(B (1))−B (1)EL/4=(B (1)−B0)(mg+m(B0))−B0EL/4+O((EL)2)

=(B0)3 (2mg−o/(2B0)2) EL/o−B0EL/4+O((EL)2)
(4.24)

by the Taylor expansion of g(B(1)) around B0. Recalling that o < 4mg(B0)2,
the inequality (2mg−o/(2B0)2) o > 1/(2B0)2 is true. Thus,

−g(B (1))−B (1)EL/4=B0[(B0)2 (2mg−o/(2B0)2)/o−1/4] EL+O((EL)2)

> B0[(B0)2 (2mg−o/(2B0)2)/o−1/4] EL/2 (4.25)

for all L large (depending on b and d). Combined with (4.23), we obtain
that f (L, EL)(h) > 0 for all h ¥I (EL)

L, i , i=1, ..., N2, once L is sufficiently large
(depending on b, J, and d).

In addition, the above may also be employed to show that
f (L, EL)(h) > 0 for any h ¥I (EL)

L, 0 such that h \ (B (1)−(EL)2)/L, say, and any L
large (depending on b, J, and d). Recalling that, for L large, we have
f (L, EL)(h) < 0 for all h ¥I (EL)

L, 0 such that h [ (B0+B (0))/(2L), the fact that
f (L, EL) is analytic and increasing on I (EL)

L, 0, see Lemma 3.7 (a), implies that
the point h0(L) ¥I (EL)

L, 0 exists, it is unique, and

B0/L−h0(L) < (B0−B (0))/(2L) [ (B0)3 EL/(oL) (4.26)

and

h0(L)−B0/L < (B (1)−B0)/L [ 2(B0)3 EL/(oL) (4.27)

once L is large enough (depending on b, J, and d). L

Finally, in the following lemma, we establish a uniform bound on the
probability PL, h(Cc) for all h ¥ JL(J) analogous to (3.59).
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Lemma 4.7. Let b > bc, J > 0, d ¥ (0, 1/4), and h ¥ JL(J). There
exists L10=L10(b, J, d) <. such that

PL, h(Cc) [ 3e−b(y/m
g)3 L(EL)

2/o (4.28)

as long as L > L12 and h ¥ JL(J).

Proof. Let b > bc, J > 0, d ¥ (0, 1/4), and h ¥ JL(J). Clearly, we have
mg−g > sup C+(Lh, EL) once L is large (depending on b and J), where
g(b, J) is given by (4.5). Then, obviously,

PL, h(Cc) [ PL, h([−1, −mg− EL/4])+PL, h(ALh(EL))+PL, h([a2, 1]) (4.29)

with

ALh(EL) :=[a1, m+(Lh)− EL] 2 [m+(Lh)+EL, a2], (4.30)

where we used the shorthands a1 :=−mg+EL/4 and a2 :=mg−g. Next, we
shall uniformly bound each of the three above probabilities separately.

Let m̃L ¥ Ran SL be such that m̃L > OSLPL, 0 and m̃L=OSLPL, 0+
O(L−2). Restricting the sum in the denominator of (4.11) to a single term
with m=m̃L and using Theorem 4.2, Theorem 4.3, and Lemma 4.5, we get

PL, h([−1,−mg− EL/4])

[
L2 maxm ¥ [−1,−mg− EL/4] 5 Ran SL {e

bh |LL| m−c1[(OSLPL, 0−m) L]
2
}

ebh |LL| m̃L PL, 0(m̃L)

[
2L3

c2
max

m ¥ [−1,−mg− EL/4]
{ebh |LL| m−c1[(OSLPL, 0−m) L]

2
} e−bh |LL| (OSLPL, 0+O(L

−2))

(4.31)

for all L >max {L6, L7}. The function q(m) :=bh |LL| m−
c1[(OSLPL, 0−m) L]2 is increasing on (−.,−mg− EL/4] if L is large
enough (depending on b and J): then

dq(m)
dm
=bh |LL|+2c1 (OSLPL, 0−m) L2\b(B0−J) L+2c1(EL/4+O(L−1)) L2

=[ b(B0−J)+c1 EL L/2+O(1)] L > 0 (4.32)
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because OSLPL, 0=−mg+O(L−1) and EL L > L3/4. As a consequence,

PL, h([−1,−mg− EL/4]) [
2L3

c2
eq(−m

g− El/4)−bh |LL| (OSLPL, 0+O(L
−2))

=eO(log L) ebh |LL| (El/4+O(L
−1))−c1(EL/4+O(L

−1))2 L2

[ eO(log L)+b(B0+J) LEL/2−c1(LEL/6)
2
[ e−c1(LEL/8)

2
[ e−L

3/2
.

(4.33)

for all L large enough (depending on b and J).
Next, Theorem 4.1 and Lemma 4.5 yield

PL, h(ALh(EL)) [ 2L2
maxm ¥ ALh(EL) 5 Ran SL e

bh |LL| m PL, 0(m)
ebh |LL| mL PL, 0(mL)

[ 2L2
maxm ¥ ALh(EL) 5 Ran SL e

−bL[W0(m)−Lhm+sL(m)]

ebh |LL| mL PL, 0(mL)
(4.34)

for any mL ¥ Ran SL and L large (depending on b, J, and d). Introducing
fLh(m) :=W0(m)−Lhm and denoting ag :=−mg+E0(J)/2, we may now
write

PL, h(ALh(EL)) [
2L2

ebh |LL| mL PL, 0(mL)
max { max

m ¥ [a1, a
g]
e−bL[ fLh(m)+O(L

−(1/4+d)/4) ],

max
m ¥ [ag, a2] 5 ALh(EL)

e−bL[fLh(m)+O(L
−1/2 log L)]} (4.35)

if L is large (depending on b, J, and d). Using Lemma A.6, for L large
(depending on b, J, and d) we obtain

PL, h(ALh(EL)) [
2L2

ebh |LL| mL PL, 0(mL)
e−bL[ fLh(a1)+O(L

−(1/4+d)/4) ] (4.36)

if Lh [ y/mg, whereas

PL, h(ALh(EL)) [
2L2

ebh |LL| mL PL, 0(mL)
max { max

m ¥ [a1, a
g]
e−bL[fLh(m)+O(L

−(1/4+d)/4)],

max
m ¥ [ag, a2] 5 ALh(EL)

e−bL[fLh(m)+O(L
−1/2 log L)]}

=
2L2

ebh |LL| mL PL, 0(mL)
max {e−bL[fLh(a1)+O(L

−(1/4+d)/4)],

e−bL[fLh(m(Lh)± EL)+O(L
−1/2 log L)]} (4.37)
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whenever Lh \ y/mg. In the former case, let us take mL > OSLPL, 0 such that
mL=OSLPL, 0+O(L−2)=−mg+O(L−1). Then, in view of Theorem 4.1 and
(3.5),

PL, h(ALh(EL)) [
2L2e−bL[w`EL/(8mg)−Lh(−mg+EL/4)+O(L

−(1/4+d)/4)]

c2 ebh |LL|(−m
g+O(L−1)) (1+oL(1))/L

=e−bL[w`EL/(8mg)−Lh(EL/4+O(L
−1))+O(L−(1/4+d)/4)+O(L−1log L)]

[ e−bwL`EL/(8mg) [1+O(`EL)+O(L
−(1/4−d)/4)] [ e−bwL`EL/(12mg) (4.38)

for all L large (depending on b, J, and d). In the latter case, if the
maximum in (4.37) coincides with the first term, we use the same procedure
as above to get (4.38). However, if the maximum in (4.37) coincides with
the second term, we then take mL=m(Lh)+O(L−2) and, by virtue of
Theorem 4.1 and (3.5) we find

PL, h(ALh(EL)) [ 2L2 e−bL{[W0(m(Lh)± EL)−W0(m(Lh)+O(L
−2))]±LhEL+O(L

−1/2 log L)}

=e−bL {−
o

2Lh [`1+(2Lh)
2 EL/o−`1+O(L−2)]±LhEL+O(L

−1/2 log L)}

[ e−bL[2(Lh)
3 (EL)

2/o+O((EL)
3)+O(L−1/2 log L)]

[ e−2b(Lh)
3 L(EL)

2/o[1+O(EL)+O(L
−1/4 log L)] [ e−b(y/m

g)3 L(EL)
2/o (4.39)

once L is large (depending on b, J, and d). Taking into account Lemma
4.4, we may conclude that

PL, h(Cc) [ 3 max {e−bwL`EL/(12mg), e−b(y/m
g)3 L(EL)

2/o}=3e−b(y/m
g)3 L(EL)

2/o (4.40)

for all sufficiently large L (depending on b, J, and d). L

Now, we are ready to prove Theorem 2.2.

Proof of Theorem 2.2. By virtue of the Lemma 3.4 and Lemma 3.6,
there exist finite constants Ck, Kk, k ¥N, and L11=L11(b, J, d) such that
for all b > bc, J > 0, and d ¥ (0, 1/4) we have

: 1
(b |LL|)k−1

“
k−1

“hk−1
OSLPL, h−Fk({T(f (L, EL)(h); t

+
j , t

−
j )}):

[ Ck PL, h(Cc)+Kk EL (4.41)
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whenever L > L11 and h ¥ JL(J). Here T(x; a, b) and t±j are given by (3.23)
and (3.32), respectively. Moreover, Lemma 4.6 yields

|Dm(Lh0(L)+L−1/2)−D|

=|m(Lh0(L))−m(B0)|/2+O(L−1/2)=EL/4+O(L−1/2) (4.42)

for all L > L9 by the Taylor expansion and the fact that h0(L) ¥I (EL)
L, 0.

Combined with Lemma 3.7 (c), we may conclude that there exists finite
constants Mk, k ¥N, and L12=L12(b, J, d) such that for all b > bc, J > 0,
and d ¥ (0, 1/4) one has

|Fk({T(f (L, EL)(h); t
+
j , t

−
j )})−Fk({T(w(h); t

+
j , t

−
j )})| [ 2MkEL/D (4.43)

once L > L12 and h ¥ JL(J), where w(h) :=bD(h−h0(L)) |LL|. Taking into
account Lemma 4.7, we may therefore conclude that there exist finite con-
stants Dk, k ¥N, and L13=L13(b, J, d) such that

: 1
(b |LL|)k−1

“
k−1

“hk−1
OSLPL, h−Fk({T(w(h); t

+
j , t

−
j )}): [ Dk EL(EL) (4.44)

for all b > bc, J > 0, and d ¥ (0, 1/4) as long as L > L13 and h ¥ JL(J),
where

EL(EL) :=e−b(y/m
g)3 L(EL)

2/o+(1+1/D) EL > 0. (4.45)

Let b > bc, J > 0, d ¥ (0, 1/4), and h ¥ JL(J). At this point, we shall choose
EL to minimize EL(EL). Namely, let us take

EL=L−d. (4.46)

As a consequence,

EL(EL) [ 2(1+1/D) L−d (4.47)

for all L sufficiently large (depending on b, J, and d).
According to Theorem 3.3, there is a unique point hq(L) ¥ JL(J) such

that if L is large (depending on b, J, and d), then the susceptibility qL(h, b)
attains maximum over JL(J) at hq(L). In addition, with the help of (4.44)
and (4.47) and using the same arguments that led to (3.77), one may bound

|h0(L)−hq(L)| [
4D3(1+1/D)

bh(E0/2)4
L−d

|LL|
, (4.48)
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for L large enough (depending on b, J, and d). Hence,

|tanh(w(h))− tanh(w̃(h))| [ |w(h)− w̃(h)| <
4D3(1+D)
h(E0/2)4

L−d, (4.49)

where

w̃(h) :=bD(h−hq(L)) |LL|, (4.50)

for all L large (depending on b, J, d). This in turn implies that for any
k ¥N there is a finite constant D̃k such that, with Fk defined in (3.30), one
has

|Fk({T(w(h); t
+
j , t

−
j )})−Fk({T(w̃(h); t

+
j , t

−
j )})| [ D̃k L

−d (4.51)

for all L large (depending on b, J, and d), c.f. (3.58). Combined with (4.44),
(4.47) and (3.67), Theorem 2.2 follows. L

APPENDIX A. TECHNICAL LEMMAS

Here we collect various technical lemmas, some of them rather stan-
dard.

Lemma A.1. Let kr: RQ R, r=1, 2, be two C. functions. Then, for
any k ¥N,

dkk2(k1(x))
dxk

=C
k

i=1

d ik2(y)
dy i
:
y=k1(x)

C
{I1, ..., Ii}

D
i

j=1

d |Ij|k1(x)
dx |Ij|

,

where the second sum runs over all partitions {I1, ..., Ii}, i=1, ..., k, of the
set {1, ..., k} and |Ij|, j=1..., i, is the cardinality of Ij.

Proof. By induction on k ¥N. L

Lemma A.2. Let h ¥ R, L ¥N, b > 0. Given any k=2, 3..., there
exists a finite positive constant Ck such that, with Fk defined in (3.30),

: 1
(b |LL|)k−1

“
k−1

“hk−1
OSLPL, h−Fk({O(SL) i | APL, h}): [ CkPL, h(Ac) (A.1)

for any set A ¥B(R) for which ZL, h(A) > 0 (the set A may depend on h).

Finite-Size Scaling for 2D Ising with Minus Boundary Conditions 937

File: KAPP/822-joss/104_5-6 342337 - Page : 33/39 - Op: DS - Time: 11:16 - Date: 13:08:2001



Proof. Let h ¥ R, L ¥N, b > 0, and k ¥N. Let A ¥B(R) be given (it
may depend on h) such that ZL, h(A) > 0. Since

“
n

“hn
ZL, h=(b |LL|)n O(SL)nPL, h ZL, h (A.2)

for all n ¥N, Lemma A.1 applied to k1(h)=ZL, h and k2(x)=log x readily
yields

1
(b |LL|)k−1

“
k−1

“hk−1
OSLPL, h=

1
(b |LL|)k

“
k

“hk
log ZL, h=Fk({O(SL) iPL, h}). (A.3)

Observing that

O(SL)nPL, h=O(SL)n | APL, h PL, h(A)+O(SL)n | AcPL, h PL, h(Ac)

=O(SL)n | APL, h+(O(SL)n | AcPL, h−O(SL)n | APL, h) PL, h(Ac)
(A.4)

for any n ¥N, it follows that

D
i

j=1
O(SL) |Ij|PL, h=D

i

j=1
O(SL) |Ij| | APL, h+ C

X … {1, ..., i}:
X ] {1, ..., i}

D
r ¥X

O(SL) |Ir| | APL, h

× D
s ¥ {1, ..., i}0X

(O(SL) |Is| | AcPL, h−O(SL) |Is| | APL, h) PL, h(Ac)

(A.5)

for all partitions {I1, ..., Ii} of {1, ..., k}. Realizing that |OSL | APL, h| [ 1 as
well as |OSL | AcPL, h| [ 1 and that PL, h(Ac) [ 1, the relations (A.3) and (A.5)
imply the lemma. L

Lemma A.3 [Lemma 6.1 from ref. 4]. Let x1, x2 ¥ R be either both
positive or both negative. Then

|tanh x1− tanh x2| [ min 3 tanh x1
x1

,
tanh x2
x2
4 | x1−x2|. (A.6)

Proof. Let x1, x2 ¥ R be given. Without loss of generality, we may
suppose that x1 > x2 > 0. Then tanh x1 > tanh x2 and tanh x1

x1
< tanh x2x2

. Thus,

|tanh x1− tanh x2|
x1

tanh x1
=11− tanh x2

tanh x1
2 |x1| < :1−

x2
x1
: |x1|=|x1−x2|. L
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Lemma A.4. Let b > bc, J > 0, and L ¥N. Let F … R be a closed set
(which may depend on h and L) and let us assume that there exists a con-
stant c > 0 independent of L such that

inf
h ¥ JL(J)

inf
m ¥ F

WLh(m) \ c for all L ¥N. (A.7)

Then there exists L0(b, J, c) such that

sup
h ¥ JL(J)

PL, h(F) [ e−bcL/2 once L > L0. (A.8)

Remark A.5. The claim of Lemma A.4 reminds of a standard result
from the theory of large deviations. Namely, in view of Theorem 3.2 (2),
the condition

inf
m ¥ F

WB(m) \ c > 0 (A.9)

implies, for any sequence {hL} for which limLQ. LhL=B ¥ R, the bound

PL, hL(F) [ e
−bcL/2 (A.10)

for all L large (depending on b, J, and c). However, in our analysis the
bound (A.10) is insufficient. Namely, it is confined to the sequences {hL} of
the above type, whereas Lemma A.4 provides a bound for the whole inter-
val JL(J).

Proof. Let d > 0, h ¥ JL(J), and a closed F … R be given.
First, let us show that there exists a finite positive integer 1 [

N(d) [ 3/d such that

PL, h(F) [N(d) e2bdJL
supm ¥ F {e

b |LL| hm PL, 0(Ud(m))}
supm ¥ R {e

b |LL| hm PL, 0(Ud(m))}
(A.11)

with Ud(m) :=(m−d, m+d). In view of (3.14),

ZL, h \ C
sL ¥ WL : SL(sL) ¥Ud(m)

e−bHL, 0(sL)+b |LL| hSL(sL) \ eb |LL| (hm−dJ/L) ZL, 0(Ud(m))

for any m ¥ R. Hence,

ZL, h \ e−bdJL sup
m ¥ R
{eb |LL| hm ZL, 0(Ud(m))}. (A.12)
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On the other hand, one may find 1 [N(d) [ 3/d and m1, ..., mN(d) ¥
[−1, 1] such that [−1, 1] …1N(d)

i=1 Ud(mi). As a consequence,

ZL, h(F)=ZL, h(F 5 [−1, 1]) [ C
N(d)

i=1
C

sL ¥ WL:
SL(sL) ¥ F 5Ud(mi)

e−bHL, 0(sL)+b |LL| hSL(sL)

[N(d) max
1 [ i [N(d)

eb |LL| (hmi+dJ/L) ZL, 0(F 5Ud(mi)). (A.13)

Thus,

ZL, h(F) [N(d) ebdJL sup
m ¥ F
{eb |LL| hm ZL, 0(Ud(m))}. (A.14)

Combining (A.12) with (A.14) and (3.15), we arrive at (A.11).
Further, let m ¥ R be arbitrary. The function g: d W infUd(m)W0 is

obviously non-increasing. So, considering the closure Ud(m)=[m−d,
m+d], the equality infUd(m)W0=inf Ud(m)W0 holds for all the continuity
points of g. Recalling that (PL, 0)1/LQ e−bW0 with W0 defined by (3.5), we
get that the limit

b inf
Ud(m)

W0=− lim
LQ.

1
L

log PL, 0(Ud(m)) (A.15)

exists for almost all d > 0. Because limdQ 0+ infUd(m)W0=W0(m) due to the
lower semi-continuity of W0, it follows that, given any e > 0, there is L0(e)
finite and d0(e) > 0 such that

−W0(m)− e <
1

bL
log PL, 0(Ud(m)) < −W0(m)+2e (A.16)

for almost all 0 < d < d0(e) and L > L0(e). In view of (A.11) and (3.6), we
may conclude that, for any e > 0 and almost all 0 < d < d0(e), the bound

1
bL

sup
h ¥ JL(J)

log PL, h(F) [ sup
h ¥ JL(J)

sup
m ¥ F
{Lhm−W0(m)−W

g
0(Lh)}

+2Jd+3e+
log(3/d)

bL

=− inf
h ¥ JL(J)

inf
m ¥ F

WLh(m)+ 2Jd+3e+
log(3/d)

bL
(A.17)
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holds true, providing that L > L0(e). Choosing now, for instance, e=c/18,
2Jd ¥ (0, c/6], and L so large that log(3/d)bL [ c/6 as well as L > L0(c/18), the
lemma follows due to (A.7). L

Lemma A.6. Let b > bc and let {aL} and {bL} be two sequences of
positive numbers smaller that Dm(Ba)/2. Defining fB(m) :=W0(m)−Bm,
B ¥ R, and AL(B) :=[−mg+aL, m+(B)−bL] 2 [m+(B)+bL, mg], we have

min
m ¥ AL(B)

fB(m)=fB(−mg+aL) (A.18)

for B [ y/mg, whereas

min
m ¥ AL(B)

fB(m) \ min{fB(−mg+aL), fB(m(B)−bL), fB(m(B)+bL)} (A.19)

for B \ y/mg.

Proof. Let b > bc and let sequences {aL} and {bL} be given. Taking
into account that m+ \ −mg+E0, it follows that [−mg+aL, m+(B)−bL]
]” since

m+(B)−bL−(−mg+aL)=m+(B)−(−mg)−(aL+bL) > 2E0 > 0. (A.20)

Notice, however, that, taking into account (2.6), one has m+(B)+bL > mg

when B > (`o/bL )/2.
We shall use the following properties of the the function fB:

(a) it is strictly concave on [−mg, mt],

(b) it is strictly convex on [mt, mg],

(c) it is increasing on [−mg, mg] for any B [ y/mg, and

(d) it has a local minimum at m(B) for all B > y/mg;

they all directly follow from (3.5). Recall that mt=−mg(1− w
2

8y2
) ¥

(−mg, mg).
Since a continuous and strictly concave function attains its minimum

over an interval at the end-point(s) of the interval, the property (a) implies

min
m ¥ [−mg+aL, mt]

fB(m)=min {fB(−mg+aL), fB(mt)} for all B ¥ R.
(A.21)

Moreover, in view of (c), we have

min
m ¥ AL(B)

fB(m)=fB(−mg+aL) for all B [ y/mg. (A.22)
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With the help of (b) and (d), obviously,

min
m ¥ [mt, m

g]
fB(m)= min

m ¥ [m(B)−bL, m(B)+bL] 5 [mt, m
g]
fB(m) for all B \ y/mg.

(A.23)

Using, further, the fact that Ba=y/mg (see the remark after Theorem 3.2),
in view of (2.7) we have m+(B)=m(B) whenever B \ y/mg and thus

min
m ¥ AL(B) 5 [mt, m

g]
fB(m)= min

m ¥ {m(B)−bL, m(B)+bL} 5 [mt, m
g]
fB(m) for B \ y/mg.

(A.24)

Finally, observing that

min
m ¥ AL(B)

fB(m)=min{ min
m ¥ AL(B) 5 [−m

g+aL, mt]
=fB(m), min

m ¥ AL(B) 5 [mt, m
g]
fB(m)}

\ min{ min
m ¥ [−mg+aL, mt]

fB(m), min
m ¥ AL(B) 5 [mt, m

g]
fB(m)}, (A.25)

the lemma follows from (A.21), (A.24), and (A.22). L
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