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We note that for the Ising model on a body-centered-cubic lattice the temperature Tx(J) of the
roughening transition approaches zero when the second-neighbor coupling J vanishes; the interface
(100) between regions of opposite magnetization is, at low temperatures, rigid for J positive and
becomes rough for J negative. A reinterpretation of van Beijeren’s body-centered solid-on-solid
model yields a rigorous description of the asymptotic behavior around the limit point T =0, J =0.
In particular, the roughening transition of the solid-on-solid model corresponds to a roughening
transition of the isotropic Ising model when crossing a line with critical slope at 7' =0, J =O0.

The equilibrium shape of a crystal and the phenomenon
of the roughening transition of its faces has been recently
studied both theoretically and experimentally.! Ising mod-
els may serve for a simplified description  of this
phenomenon by considering the equilibrium shape of a
“droplet” surrounded by the opposite phase or the
roughening transition of an interface between phases of
opposite magnetization.? If a surface is stabilized in a
macroscopic sense by submitting a large volume of a lat-
tice to a boundary condition specified by the configuration
with all spins above the surface fixed to be, say, + 1 while
below they are — 1, the roughening transition of the corre-

sponding interface may be viewed as a substantial change °

in the “microscopic resistivity of the system against propa-
gation of this particular boundary condition inside the
bulk.” Let us describe it more explicitly in terms of the
Gibbs ensemble in the considered volume (or better, its
thermodynamic limit for infinite volume) under the men-
tioned boundary conditions. If typical, i.e., most probable,
microscopic configurations inside the volume are essential-
ly prolongations of the boundary configuration, with only
small deviations from it, we say that the interface is rigid.?
If, on the contrary, typical configurations differ signifi-
cantly from the boundary configuration, the surface can-
not be reconstructed inside the volume and we say that the
interface is rough. The roughéning transition is the transi-
tion between these two types of behavior.

In this note, we shall consider the Ising model on a
body-centered-cubic (bce) lattice. We shall argue that the
roughening transition temperature for the (100) interface
depends on the next- nearest-nelghbor coupling in the way
drawn schematically in Fig. 1.4

A bec lattice consists of two simple cubic lattices in z 3,
to be called the sublattices A4 and B, which are mutually
shifted by the vector (4-++). A lattice site i in, say, sub-
lattice 4 has eight nearest neighbors (NN), all of them be-
longing to the sublattice B, and six next-nearest neighbors

(NNN) belonging again to A. The energy of the corre-.

sponding Ising model is given by
H=—-JyY cic;—J 3, cioj ,
NN NNN

where the first sum runs over all pairs of NN’s while the

second over all pairs of NNN’s, We shall restrict our-
selves to ferromagnetic NN coupling (Jo> 0) bearing in
mind that all the results may be transformed into the cor-
responding ones for Jo <0 by a transformation consisting
in the change of the sign of all configurations (as well as
boundary conditions) on, say, the sublattice 4.

Our aim is to study the roughening transition for a hor-
izontal interface [perpendicular to the vector (100)]. We
consider thus the boundary configuration & defined for a
lattice site i = (i1,i5,i3) tobe &; =+1 whenever i1=0, and
G; = — 1 whenever i; <0.

Let us evaluate the behavior of the model in a neighbor-
hood of the point 7 =0, J =0. To this end we shall inspect
the ground state compatible with the above boundary con-
dition. Considering the system in a volume V, for con-
creteness, say, in a large cube with the center at the point
(000) € 4, and denoting by Hy(oy|&) the energy of a
configuration oy ={0;|i € ¥} in ¥V under the boundary
condition & outside ¥, we look for configurations oy which
minimize this energy. It turns out that a lot of such
ground configurations may be found, their number tending
to infinity in the thermodynamic limit. Thus, already at

T =0 the system is governed by a nontrivial Gibbs ensem-
ble, the ground state, to which every ground configuration
contributes with the same probability. To get some infor-
mation about this ground state we shall notice that it is
equivalent to the exactly solvable body-centered solid-on-
solid (BCSOS) model introduced by van Biejeren’ and
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FIG. 1. The roughening temperature Tr for the facet (100)
as a function of the NNN interaction J. A rigid interface exists
for positive J and T' < Tr(J). The function Tr(J) ends at the
point J =0, T =0.
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that there is a one-to-one correspondence between the
ground configurations and the configurations of the
BCSOS model. N

Let us denote by S the orthogonal projection of the bec
lattice onto the horizontal plane i; =0 [S =S, U S5, where
S4 and S, the projections of sublattices' 4 and B, are
square lattices mutually shifted by the vector (++)1. The
BCSOS model is defined on this lattice S with the configu-
rations given by the height variables k(s) associated with
sites s=(ii;)eS in such a way that h(s)e z
[h(s)e z +41] for seSy (seSg) and |h(s)—h(r)|
=-1- whenever r and s are NN’s in .S (i.e., their distance is
1/v2).

Suppressing for awhile the condition |A(s)—h(r)|
=, let us assign to every collection of heights the config-
uration oy = {o:|i € ¥} of the bee Ising model by o;=+1
if i1=h(isi3), and o; = —1 if i} < h(izi;). Then the en-
ergy Hy(oy | &) in terms of the heights is

Hyloy|8) ~Hy (5 |3) =470 S LB () =k (s) | — 1]
NN

+27 ¥ [h(r)=hn(s)] ,
NNN

where the first sum is taken over NN’s in .S and the second
one over NNN’s in S (i.e., pairs of sites the mutual dis-
tance of which is 1). In both sums the heights A (s) =0 if
s €S, and h(s) =+ if s € Sp, corresponding to the bound-
ary configuration G, are taken outside ¥ and'only those
pairs of sites for which at least one of them lies inside V'
are considered. It is easy to see that for J=0 the configu-
rations of the BCSOS model correspond exactly to the
ground configurations of the bec Ising model.

Since we are interested in describing the asymptotic
behavior around the point T =0, J =0, let us observe that
the ground state actually depends on a direction of ap-
proaching this point in the (7,J) plane. Namely, one may
consider the limit of the Gibbs ensemble along the line
J=akT for T— 0 (—c0 < g <), One easily sees that
again only ground configurations contribute to the limiting
ensemble; but this time, taking into account the above for-
mula for the energy in terms of height variables, with
weights proportional to expl—2aY |2 (s) —h(r)|]. Now
we may use the equivalence of the BCSOS model with the
six-vertex model discovered by van Beijeren’ to conclude
that the limiting ensemble is equivalent to the six-vertex
model with the weights® o, =@, =w;=w,=¢ 2, @5 = wg
=1. Thus we may reinterpret all results about the
BCSOS model™ as statements about the limiting ensem-
ble for different e and hence as statements about the Ising
model on a bcc lattice in a neighborhood of the point
T=0, J=0. In particular, from what is known about the
BCSOS model, we may conclude (Fig. 2) that the inverse
slope of the tangent to the function Tr(J) at this point is
a.=(4)In2=0.35, the value corresponding to the transi-
tion of the six-vertex model into a ferroelectric phase, that
the (100) interface is rigid for ¢> e, and rough for
a < a., and that the transition is of infinite order.!%!1

The expectation that the interface is rigid to the right of
the line Tz (J) and it is rough to the left of it may be fur-
ther supported by inspection of ground states for J > 0 and
J <O0. It turns out that for J > 0 there is only one ground
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FIG. 2. Representation of results. For J and T in the shad-
owed region the rigidity of the interface is proved. The limiting .
behavior when T — 0 along the lines J =akT has been studied.
For inverse slopes a > ¢, (e.g., a;) the limiting system has a rigid
interface, while for a <a. (e.g., as,a3) the interface is rough.
The function Tr(J) has for J— o an asymptote in the direc-
tion K.

configuration consistent with the boundary condition,
namely, the configuration & itself. It may be actually
proved, e.g., by the method of Dobrushin? that this ground
configuration, at low temperatures, is stable with respect
to thermal fluctuations. Using another method due to van
Beijeren,'? we proved!? the rigidity of the interface for all
J and T in the region shadowed in Fig. 2. Namely, the re-
gion where J = ok T, with ap=($)In(~2+1) =0.44 de-
noting the critical value of the coupling constant for the Is-
ing model on a two-dimensional square lattice. If J <0,
the configuration & is not a ground configuration any more
and the existing ground configurations are not stable at
low temperatures. There are excitations of bounded ener-
gy for which the interface is elevated above regions of un-
limited area. This situation reminds one of the case of the
interface for the Ising model on a square lattice where the
roughness for ail positive temperatures was indeed
proved.!4

Let us notice that the limit Jo— 0 for which the model
decouples into two independent Ising models on the simple
cubic lattices 4 and B with a reduced coupling constant K
corresponds to the limiting point of the family of parallel
lines J/Jo=K (kT /Jo)+C (the point at infinity in the
direction J/kT=K). Thus we expect that the function
Tr(J) approaches asymptotically such a line with the
value K=Ky corresponding to the roughening transition
of the Ising model on a simple cubic lattice. Notice that it
is known'? that Kz < ap and that the estimated value!® is
KR =0.40 ="0.9a0.

In conclusion, we are arguing that the behavior of the
Ising model on a bec lattice around the point T =0, J =0
is governed by the ground Gibbs state characterized by the
slope a along which one approaches this point. This con-
sideration is actually true also for other boundary condi-
tions &(k) corresponding to inclined interfaces with nor-
mal k. It turns out that whenever the condition —k <k,
+k3=k is fulfilled, the ground state is equivalent to the
BCSOS model in terms of heights over the plane i; =0 and
with the corresponding boundary condition [similarly for
—ky=<kstki<k, (—kssk;+k,=<ks:) we get a
BCSOS model over the i;=0 (i;=0) planel. Such a
BCSOS model is, in it§ turn, equivalent to a six-vertex
model with the boundary condition corresponding to the
fixed polarizations x =(k,+k3)/k,, y =(ky—k3)/k,.!6
The same ground Gibbs state, when considered under the
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boundary conditions (k) with normals k not covered
above, leads in an analogous way to TISOS models!’
(SOS models on a triangular lattice) over the planes
i1 Exi;xi3=0. These equivalences imply, in particular,
that for every a, the(110) interface is rigid while the (111)
interface is rough. ’

Finally, let us remark that the above equivalences may
be used to study the facet formation on the equilibrium
shape of a crystal, respectively, a droplet in the Ising
model. The assumption that the roughening transition
may be detected as faceted transition suggests a change of
the equilibrium crystal shape as illustrated in Fig. 3. In
fact, one may express the surface tension with respect to
an interface labeled by k in the lowest order at low tem-
perature as a sum of the energy of the corresponding
ground state plus the free energy of the associated SOS
model with fixed boundary conditions. Combining then
the results of Jayaprakash, Saam, and Teitel>!® and
Nienhuis, Hilhorst, and Blote!” concerning BCSOS and
TISOS models one gets a quantitative description of the
faceted transition for a crossing a.. The details of the
above considerations will be given in a forthcoming publi-
cation.
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FIG. 3. Equilibrium crystal shapes for small positive NNN
interaction J. When the temperature increases the six facets
orthogonal to the lattice axis [type (100)] disappear at Tr(J)
leaving only the 12 facets of type (110) for temperatures larger
than Tr(J) but small enough.
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