
EQUILIBRIUM SHAPES OF CRYSTALS ATTACHED TO WALLS
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Abstract. We discuss equilibrium shapes of crystals attached to walls. Optimal shapes for

different configurations of walls are found and the minimality of the overall surface tension

is proven with the help of simple geometrical argument based on the isoperimetric inequality

and monotonicity. Stability results in a form of Bonnesen inequalities are obtained in the

two-dimensional case.
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Introduction

In this paper we present simple mathematical arguments allowing to discuss the equi-
librium shape of a droplet of a phase C, called below the crystal, inside a phase M , called
the medium, when C and M are two phases in equilibrium. The phase C need not be a
real crystal; when adopting this terminology we stress that we consider general anisotropic
surface tension. In particular, we show that the corresponding variational problems can
be solved by purely geometrical means also in presence of walls. While the many facets
of Statistical Mechanics of equilibrium shapes are reviewed in [RW] and [Z], for existing
results concerning droplets in presence of walls see e.g. [Wi, ZAT, Zi]. The method dis-
cussed in the present paper covers, in spite of its limitations, several cases of interest,
which are treated in the literature. Not all results here are new, however, we present them
in a unified manner using only several basic principles. In this way, we can simplify and
improve results, already existing in the literature. Our conclusions are the strongest for
dimension two — in that case we also have stability results.

All arguments are based just on the isoperimetric inequality and on monotonicity. We
first recall this inequality and then formulate the basic variational problem, which we want
to solve. Our results are then exposed in increasing order of complexity. Some comments
of general nature and on recent related works are deferred to the conclusion at the end of
the paper.

Isoperimetric inequality.

Different statements about optimal shapes of crystals are proven with the help of the
isoperimetric inequality, which we state as follows. Let W ⊂ R

d be a convex body, and let
τW (nnn) be its support function assigning to a unit vector nnn the value

τW (nnn) = sup
xxx∈W

(xxx,nnn). (1)

Notice that if the origin of the coordinates is outside the set W , the support function
attains negative values for some directions nnn. In (1) (xxx,nnn) is the Euclidean scalar product.

Considering a set V ⊂ R
d with a sufficiently smooth boundary1 ∂V = γ, we define the

functional
τW (γ) =

∫
γ

τ(nnn(s)) ds, (2)

1The isoperimetric inequality can be proven for very general V . The purpose of the paper is to present

some consequences of the isoperimetric inequality. Thus the hypothesis which we need are those leading

to the isoperimetric inequality (and such that the functional τ(γ) below be well defined). It is not our

intention to discuss this point here, see e.g. [Fo] for a recent paper on the subject. Having situations

arising in physics in mind, we restrict ourselves to simple cases. For example in dimension two we may

assume that the boundary of V can be approximated by polygonal lines.
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where nnn(s) is the exterior unit normal. The isoperimetric inequality is

τW (γ) ≥ d|W | 1d |V | d−1
d , (I)

where |W |, |V |, denotes the (Lebesgue) volumes of W , V , respectively. The equality in
(I) occurs only when V equals, up to dilation and translation, the set W . The set V need
not be connected. The basic idea of the proof of (I) is simple if presented in a geometrical
language (see [Di] and for a general proof [T]). Namely, one first expresses the functional
τW (γ) in a geometrical manner as

τW (γ) = lim
ε→0

|V + εW | − |V |
ε

. (G)

Here, V + εW denotes the union ∪xxx∈V (x + εW ), and εW = {εxxx : xxx ∈ W}. The inequality
(I) then follows applying the Brunn-Minkowski inequality to |V + εW |. When W is the
unit ball, the equality (I) is the classical isoperimetric inequality, and a proof of (G) for
very general V can be found in [F].

Remarks. 1. As an immediate corollary of the representation (G) we see that the functional
will not change if we replace the set W by its translation W ′ = W + aaa,

τW ′(γ) = τW (γ). (3)

Another way of showing (3) is to observe that the change W into W ′ amounts to the
change τW (nnn) into τW ′(nnn) = τW (nnn) + (aaa|nnn), and that the integral

∫
γ
(aaa|nnn(s)) ds vanishes.

We use such shifts in different situations.
2. A consequence of the above remark is that the functional τW (γ) is always nonnegative.
Indeed, it is always possible to shift the origin into the interior of W , and then τW (nnn) is
positive for all nnn.
3. From (I), or by a direct computation using (G), the minimum of the functional is

min
V :|V |=|W |

τW (∂V ) = d|W |. (4)

In addition to the isoperimetric inequality (I), the stability of the minimum in (I) can
be controlled in the two-dimensional case. Namely, if τW (γ) is close to the minimal value
on the right hand side of (I), the set V is geometricaly close to W in a uniform way.
Introducing,

r(γ) = sup{r : r · W + x ⊂ V for some x ∈ R
2} (5a)

and
R(γ) = inf{R : R · W + x ⊃ V for some x ∈ R

2} (5b)
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to measure the geometrical resemblance of V with W , one has

τW (γ) −
√

τW (γ)2 − 4|W | |V |
2|W | ≤ r(γ) ≤ R(γ) ≤ τW (γ) +

√
τW (γ)2 − 4|W | |V |
2|W | . (S)

Inequalities (S) are the generalized Bonnesen inequalities, which are proven in Theorem
2.5 in [DKS].

Variational problem.

Our aim is to use (I) and (S) to find the ideal shape of the crystal C inside the medium
M in presence of one or several walls. Let us first recall the free situation. The shape of
the crystal is obtained by minimizing the overall surface tension of the crystal [C], [G], [H].
Let nnn be a unit vector in R

d, and consider the situation with phases C and M coexisting
over a hyperplane perpendicular to nnn, {xxx : (xxx|nnn) = a}. We use τ(nnn) to denote the interface
free energy, or surface tension, corresponding to such interface, supposing that it is the
phase C that is occupying the half-space {xxx : (xxx|nnn) ≤ a}. We assume that the surface
tension is strictly positive and that it is lower semicontinuous, but we do not require the
symmetry τ(nnn) = τ(−nnn). We denote by Γ the set of R

d occupied by the phase C, and its
boundary by γ = ∂Γ. The overall interface free energy of the phase C is given by

τ(γ) :=
∫

γ

τ(nnn(s)) ds. (6)

We always suppose that the boundary γ of Γ is sufficiently smooth (see footnote above).
The variational problem is to minimize (6) under the constraint that the total volume |Γ|
occupied by the phase C is fixed. Given a set W , we say that a crystal has shape W , if
after a translation and a dilatation, it equals W .

The solution of the variational problem is given below [W]. Notice that the problem is
scale-invariant, so that if we can solve it for a given volume of the phase C, we get the
solution for other volumes by an appropriate scaling. Let Wτ be defined by the so-called
Wulff’s construction

Wτ = {xxx ∈ R
d : (xxx|nnn) ≤ τ(nnn) for every nnn}. (W)

We show that this set yields the optimal shape for the crystal. We first state some elemen-
tary properties of Wτ (for details see e.g. [DP]). The set Wτ is convex since it is given
by the intersection of hyperplanes. If we extend the surface tension τ(nnn) to all R

d as a
positively homogeneous function of degree one, we get

Wτ = {xxx ∈ R
d : τ∗(xxx) ≤ 0}, (7)
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where τ∗ is the Legendre transform of τ , τ∗(xxx) = supnnn[(xxx|nnn) − τ(nnn)]. Actually τ∗(xxx) = 0
if xxx ∈ Wτ , and τ∗(xxx) = +∞ otherwise. The support function of Wτ is given by

τWτ (nnn) = τ∗∗(nnn). (8)

Another useful description of Wτ is in terms of the polar function of τ ,

τ◦(xxx) := sup
yyy �=0

{
(xxx|yyy)
τ(yyy)

}
. (9)

Namely, in terms of it we have

Wτ = {xxx : τ◦(xxx) ≤ 1}. (10)

Notice that τ ≥ τ∗∗ and that the polar function of τ∗∗ is (τ∗∗)◦ = τ◦ since τ∗∗ and τ define
the same Wulff’s crystal Wτ . These relations and the lower semicontinuity of τ imply the
exitence of a vector of unit length yyy(xxx) for every xxx ∈ ∂Wτ , such that

τ(yyy(xxx))τ◦(xxx) = (yyy(xxx)|xxx) = τ∗∗(yyy(xxx))τ◦(xxx). (11)

Therefore
τ∗∗(yyy(xxx)) = τ(yyy(xxx)) (12)

The function τ◦ being convex, τ◦ is differentiable at xxx almost everywhere. The convexity
of τ∗∗ implies that τ∗∗ = (τ∗∗◦)◦, which means that τ∗∗ is the polar function of τ∗∗◦ =
τ◦. Using the definition (9) of the polar function and the identity (11), we see that the
supremum of the function (yyy(xxx)|zzz)/τ◦(zzz) is attained at xxx. Thus for almost all xxx, the value
yyy(xxx) is proportional to the gradient of τ◦ at xxx. Since the exterior unit normal to ∂Wτ at
xxx, nnnxxx, is also proportional to the gradient of τ◦ at xxx, we have yyy(xxx) = nnnxxx whenever τ◦ is
differentiable, i.e. for almost all xxx,and

τ∗∗(nnnxxx) = τ(nnnxxx). (13)

Equation (13) implies the important result that the value of the functionals τ(γ) and
τWτ

(γ) coincide for γ = ∂Wτ . The isoperimetric inequality implies that the optimal shape
of a crystal C inside the medium M is indeed given by Wτ (if the volume of the crystal is
|Wτ |).

Remarks. 1. It is expected from thermodynamical reasons that the equilibrium surface
tension τ is in fact equal to the support function of the set Wτ defined above. In other
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words the surface tension τ can be extended to a positively homogeneous convex function
of degree one to all R

d. This statement is equivalent to the statement that τ satisfies the
pyramidal inequality [DS] and [MMR]. The convexity property of τ has been proven for
several models of Statistical Mechanics [MMR]. However, in the present paper we do not
assume that τ can be extended to a convex function on R

d.
2. Recently the above results for the shape of a droplet have been proven starting from a
microscopic model and first principles of Statistical Mechanics [DKS], [P].

When walls are present, the variational problem has to be modified. Namely, the surface
tension (or interface free energy) of a surface in contact with the medium surrounding
crystal differs from that one arising in contact with the wall even when the corresponding
orientations of the corresponding pieces of the boundary of the crystal C are the same.
Let nnn be a unit vector in R

d, and let

w(nnn) = {xxx : (xxx|nnn) = a} (14)

be a hyperplane describing a wall w(nnn) perpendicular to nnn that is supposed to be in contact
with the halfspace filled by the phase C. By convention the phase C is supposed to occupy
the half-space {xxx : (xxx|nnn) < a}. The relevant physical quantity here is the difference

σ(nnn) = τcw(nnn) − τmw(nnn), (15)

where τcw(nnn) and τmw(nnn) are the surface free energies of the phase C against the wall and
of the phase M against the wall, respectively. Since σ(nnn) is a difference of free energies,
it may either be positive or negative. When τcw(nnn) − τmw(nnn) ≥ τ(nnn) we have a drying
situation: in equilibrium, it is preferrable that the phase M occupies the place between
the wall and the phase C, and consequently the phase C is not in contact with the wall.
On the other hand when τcw(nnn)− τmw(nnn) ≤ −τ(nnn) we have a (complete) wetting situation:
in equilibrium, the phase C forms a layer between the wall and the medium M . Notice
that wetting or drying are relative concepts. In the first case we have complete wetting
of the wall by the phase M , and in the second case we have complete drying of the wall
with respect to the phase M . In all other cases we speak of partial drying or partial
wetting. If we consider the properties of the phase C, we say that we have partial drying if
τcw(nnn)− τmw(nnn) ≥ 0, and partial wetting if τcw(nnn)− τmw(nnn) ≤ 0. Actually, at equilibrium,
we have [Ca], from thermodynamical reasons, the following inequalities,

|σ(nnn)| = |τcw(nnn) − τmw(nnn)| ≤ τ(nnn). (16)

The physical situations described above have been studied rigourously in the Ising model,
starting from first principles of Statistical Mechanics in [FP1], [FP2], [FP3].
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Whenever the phase C is in contact with a wall with normal nnn, we must replace the
integrant τ(nnn) in the free functional (6) by σ(nnn). Since the walls are fixed, the problem is
not translation invariant any more, and the new functional, which we still denote by τ(γ),
is

τ(γ) =
∫

γ

τ(xxx(s),nnn(s)) ds (17)

with

τ(xxx,nnn) =

{
σ(nnn), if xxx ∈ w(nnn)

τ(nnn), otherwise.
(18)

In simple situations the minimum of this new variational problem can be found using the
following elementary monotonicity principle. Let τ(γ) be our functional (17).

If we can find a convex body W such that

τ(γ) ≥ τW (γ) (M1)

for every γ, where τW is the support function of W , and

τ(∂W ) = τW (∂W ), (M2)

then both statements (I) and (S) remain true even after replacing τW (γ) by τ(γ).

This fact is obvious for (I) and follows from monotonicity of α−
√

α2 − C as function of
α (for |α| ≤

√
C) for (S). Notice, however, that (M2) might be valid only for a particular

location of W and, as a consequence, the equality in (I) occurs only for a particular set
W (and not up to a translation). It is the purpose of the next sections to show examples
where this method can be applied.

Remark. If we consider a droplet of phase M inside the phase C, in presence of the walls,
then the functional to minimize is the following one

τ̂(γ) =
∫

γ

τ̂(xxx(s),nnn(s)) ds (19)

with

τ̂(xxx,nnn) =

{
−σ(nnn), if xxx ∈ w(nnn)

τ(−−−n), otherwise.
(20)

Here, of course, the set occupied by the phase M is Γ with boundary γ = ∂Γ.



C

M
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Particular arrangements of walls

1. Crystal on a wall.

Let us suppose that we have a planar wall w(nnn∗) = {xxx ∈ R
d : (xxx|nnn∗) = a} perpendicular

to the unit vector nnn∗ (see Fig. 1), and let E = {xxx ∈ R
d : (xxx|nnn∗) < a} be the half-space

where we have the phases C and M (the other halfspace is the wall). The overall interface
free energy of a crystal Γ is therefore

τ(γ) =
∫

γw

σ(nnn∗) ds +
∫

γf

τ(nnn(s)) ds. (21)

where the first integral is over the boundary of the crystal along the wall, γw = γ ∩w(nnn∗),
and the second integral is over the remaining part of the boundary of the crystal, γf = γ∩E.
This is a problem with the functional τ(γ) of the form (17) with τ(xxx,nnn) defined by (18).

Fig. 1. A droplet of phase C in the half-space E.

The solution is well-known [Wi], [Zi]. Let us briefly recall it. One first constructs the
Wulff’s set,

Wτ = {xxx ∈ R
d : (xxx|nnn) ≤ τ(nnn) for every nnn}, (22)

which corresponds to the ideal shape of the free crystal. Then we take the intersection of
this set Wτ with the half-space (which should not be mistaken with the half-space E)

{xxx ∈ R
d : (xxx|nnn∗) ≤ σ(nnn∗)}, (23)

and we get a new convex subset W , called the Winterbottom’s shape (see Fig. 2). Except
for the case σ(nnn∗) ≤ −τ(nnn∗), which corresponds to the complete wetting of the wall by
the phase C, and in which the variational problem is degenerate (when σ(nnn∗) < −τ(nnn∗)
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Fig. 2. The Winterbottom’s shape W .

the infimum of the functional is −∞), the set W is a convex body, but not necessarily
containing the origin.

We claim that, in non-degenerate cases, the optimal form of the crystal is the Winter-
bottom’s shape W . This is a simple consequence of the monotonicity principle. Let τW

be the support function of the set W . Since τ(nnn) is always greater or equal to the support
function of the set W , we have the inequality

τ(xxx,nnn) ≥ τW (nnn). (24)

Therefore, the inequality (M1) is satisfied and the equality (M2) follows from (13). The
constraint on the volume is satisfied by an appropriate scaling.

In the two-dimensional case we have a stability result. Let r(γ) and R(γ) be defined by
(5a) and (5b) with W the Winterbottom’s shape. Then the Bonnesen inequalities (S) hold
with the present functional τ(γ) in place of τW (γ). Notice that in the case τcw − τmw < 0
the origin does not belong to W . On the other hand the stability result (S) is proven in
[DKS] only under the assumption that the origin belongs to W . We can always satisfy
this assumption by applying a shift to W by, say, (τcw − τmw)nnnw or any aaa such that
(aaa|nnnw) = τcw − τmw. The new set W ′ contains the origin, but as already remarked in
the introduction this procedure does not change the value of the functional. The shift
in this particular case means that we set the interface free energy on the wall to vanish
and compensate for it by changing correspondingly the surface tension between the crystal
and the medium (cf. [Zi]). This also shows that the minimum of the functional is strictly
positive.
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2. Partial wetting of an interface.

This case is discussed in detail in [Zi]. (The variational problem in [Zi] is slightly
different, the methods are different and the assumptions more restrictive.) We suppose
that the dimension of the space is two, and that we have a system with three phases in
equilibrium, M1, M2, C. We start with a situation in which the two phases M1 and M2

coexist in R
2 and are separated by a stable flat interface perpendicular to nnn∗, i(nnn∗) =

{xxx ∈ R
2 : (xxx|nnn∗) = 0}, passing through the origin. Let E+ = {xxx ∈ R

2 : (xxx|nnn∗) < 0}
and E− = {xxx ∈ R

2 : (xxx|nnn∗) > 0}. The phase M1 is in E−, and the phase M2 is in E+.
The surface tension associated with this interface is τ1,2(nnn∗). We put a droplet of the
phase C into the system. By inserting this droplet we can break the interface between the
points aaa and bbb into two pieces as in the Fig. 3. We denote by τj(nnn)) the surface tension
of an interface, perpendicular to nnn, between the phase C and the phase Mj , j = 1, 2.
The functional τ(γ) is similar, but not identical, to the functional (17). For the sake of
simplicity we suppose that the boundary γ of the droplet is a simple closed curve, and we
denote by γ1, γ2, the parts of the boundary in contact with the phase M1, M2, respectively.
Notice that, because of the presence of the droplet of phase C, the phase M1 may occupy
a part of the half-space E+, as in Fig. 3.

Fig. 3. The interface and a droplet of phase C.

The interface free energy of the droplet consists of three terms,

τ(γ) =
∫

γ1

τ1(nnn(s)) ds +
∫

γ2

τ2(nnn(s)) ds − τ1,2 · L(γ). (25)

The first two terms in (25) correspond to the surface tension between the crystal and the
phase M1, M2, respectively, and the third one to the loss of surface tension τ1,2 between
phases M1 and M2 over the length L(γ) of the portion of the interface which is missing,
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because of the presence of the phase C. We want to minimize this functional among the
following class of simple closed γ, called compatible with the interface:

(1) γj , j = 1, 2, are simple curves which don’t intersect;
(2) the infinite interface is broken between the points aaa(γ) and bbb(γ);
(3) the end-points of γj are aaa and bbb, j = 1, 2;
(4) the volume of the droplet with the boundary γ is given.

Changing, say, the surface tension τ1(nnn) by the shift

τ ′
1(nnn) = τ1(nnn) + τ1,2 · (nnn∗|nnn), (26)

we get ∫
γ1

τ ′
1(nnns) ds =

∫
γ1

τ1(nnns) ds − τ1,2 · L(γ). (27)

We can write (25) as

τ(γ) =
∫

γ1

τ ′
1(nnns) ds +

∫
γ2

τ2(nnns) ds (28)

Let Wj be the Wulff’s set defined by τj , j = 1, 2. The set W ′
1 obtained by a translation

of W1 by τ1,2 ·nnn∗ is equal to the set which we get by performing the Wulff’s construction
with τ ′

1. Let
W := W ′

1 ∩ W2 (29)

If τ1,2 > τ1(−nnn∗)+τ2(nnn∗), the set W is empty, and the problem is degenerate, the infimum
of the functional being −∞. This situation corresponds to a complete wetting of the
interface by the droplet of phase C. Let us therefore suppose that W is a non-empty
convex body. We can solve the variational problem if the closed simple curve γ = ∂W is
compatible with the interface, where γ1 is the part of the boundary of W belonging to W ′

1,
and γ2 is the part of the boundary of W belonging to W2.

Fig. 4. Optimal shape W of the crystal in the interface.
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The optimal shape of a droplet of volume |W | is given by W . If the volume is different,
then we get the solution by an appropriate scaling of the set W . Let τW be the support
function of W . Inequality (M1) holds, since τW (nnn) ≤ min(τ ′

1(nnn), τ2(nnn)). Equality (M2)
follows from (13). Let r(γ) and R(γ) be defined by (5a) and (5b) with W of (29). Then
the Bonnesen inequalities (S) hold after replacing τW (γ) by τ(γ).

Remark. 1. If the intersection is either W = W ′
1, or W = W2, we have the situation of

drying of the interface with respect to the phase C. Putting a droplet of phase C into the
system, the optimal shape is that of a droplet inside phase M1, or M2. This is again a
consequence of the monotonicity principle. Let W = W2, and let τW = τW2 be the support
function of W . Then for any γ as above, of volume |W |, we have∫

γ

τ ≥
∫

∂W

τW =
∫

∂W2

τ2. (30)

2. If the intersection of the boundaries is, say, in two pairs of points, or in a pair of points
P1 and P2, such that the segment [P1, P2] is not perpendicular to nnn∗, then the resulting
shape is not consistent with a single interface perpendicular to nnn∗. The above construction
does not give the solution to the variational problem.
3. The difficulties in the three-dimensional case are of similar nature. However if the
intersection of the sets W ′

1 and W2 happens to lie in a plane perpendicular to nnn∗, then the
shape yielding the crystal with minimal interface free energy is given by the set W .

3. Partial wetting of an interface boundary in presence of a wall.

This variational problem is inspired by a very closely related problem considered by
Ziermann [Zi]. We have a crystal in contact with a wall and an interface (see Fig. 5). We
suppose that we have partial wetting, and therefore it is preferable for the droplet to stick
to the wall.

We restrict ourselves to the two-dimensional case. The interface is perpendicular to nnn∗

as in Section 2, and the wall is perpendicular to n̂nn, w(n̂nn) = {xxx ∈ R
2 : (xxx|n̂nn) = 0}. Without

loss of generality we suppose that the wall is vertical, n̂nn = (0,−1). The subspaces E+ and
E− of section 2 are now defined as E+ = {xxx = (x1, x2) ∈ R

2 : (xxx|nnn∗) < 0, x1 > 0} and
E− = {xxx ∈ R

2 : (xxx|nnn∗) > 0, x1 > 0}. The phase M1 is in E−, and the phase M2 is in
E+. We denote by σj(n̂nn), j = 1, 2, the free energies τcw(n̂nn) − τmjw(n̂nn), where τmjw(n̂nn) is
the surface free energy of the phase Mj against the wall w(n̂nn). Since the media Mj are
different, it is possible that the free energies of the phases Mj against the wall are different,
and therefore σj(n̂nn) may be different for j = 1 or j = 2. For the sake of simplicity we
consider crystals Γ whose boundaries γ are simple closed curves, and Γ∩w(n̂nn) is an interval



M γ


γ
 M

n*

n

C

c

a

b

EQUILIBRIUM SHAPES OF CRYSTALS ATTACHED TO WALLS 13

Fig. 5. A droplet of phase C with the wall and the interface.

[bbb,aaa], with a2 > b2. We denote by γ1, resp. γ2, the part of the boundary in contact with
the phase M1, resp. M2. Because of the presence of the phase C, the phase M1 may occupy
a part of the subspace E+, or the phase M2 a part of the subspace E−. The interface free
energy of the crystal consists of five terms,

τ(γ) =
∫

γ1

τ1(nnn(s)) ds +
∫

γ2

τ2(nnn(s)) ds − τ1,2 · L(γ) + σ1(n̂nn) · a2(γ) − σ2(n̂nn) · b2(γ), (31)

where L(γ) is the length of the portion of the interface which is missing, because of the
presence of the phase C. Notice that the last two terms in (31) may be positive or negative.
They can be written

(σ1(n̂nn) − σ2(n̂nn)) · a2 + σ2(n̂nn) · (a2 − b2) =

(τm2w(n̂nn) − τm1w(n̂nn)) · a2 + σ2(n̂nn) · (a2 − b2).
(32)

If, for example, a2 is negative, then the last term in (32) is the contribution to the free
energy of the crystal against the wall, and the first term is the contribution to the free
energy against the wall due to the phase M1 in the subspace E+, where we had the phase
M2 before introducing the crystal. As in Section 2 we minimize the functional τ(γ) among
the following class of simple closed γ, called compatible :

(1) γj , j = 1, 2, are simple curves which don’t intersect;
(2) the interface is broken between the origin and a point ccc(γ);
(3) γ ∩ w(n̂nn) is an interval [bbb,aaa], a2(γ) > b2(γ);
(4) the end-points of γ1 are ccc and aaa;
(5) the end-points of γ2 are ccc and bbb;
(6) the volume |Γ| is given.
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Fig. 6. The integration paths for proving (35).

We perform two shifts. Let nnn∗⊥, resp. n̂nn
⊥, be two unit vectors perpendicular to nnn∗,

resp. n̂nn. We change the surface tension τ1(nnn) into τ ′
1(nnn) by the shift

τ ′
1(nnn) = τ1(nnn) + τ1,2 ·

(n̂nn⊥|nnn)

(n̂nn⊥|nnn∗)
− σ1(n̂nn) · (nnn∗⊥|nnn)

(nnn∗⊥|n̂nn)
, (33)

and we change


