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1. Introduction

There is a vast inventory of lattice models providing examples of first-order phase
transitions and coexistence of phases. It became clear already from the first proof of
existence of such a transition for the Ising model by the Peierls argument [P, G, D1]
that a convenient tool for a study of the coexistence of phases is a representation
in terms of probabilities of configurations of geometric objects — contours. This
approach has been systematically developed in Pirogov–Sinai theory [PS, S]. At
present it is the main technique for the study of phase transitions for models with
no symmetry between coexisting phases. Here, I will discuss its use for the derivation
of the asymptotic behaviour, as the size of the system grows, in the region of the
first-order phase transitions [BK1, BK2, BKM, BI1–3].

Even though the original papers by Pirogov and Sinai were published almost
twenty years ago, the theory is not widely known outside a rather restricted group
of mathematical physicists. Thus, my first aim in this lecture is to present a simple-
minded introduction to the Pirogov–Sinai theory taking into account some latest
developments. I will not attempt to develop the theory in its full generality. Instead,
only the main principles will be explained and the theory will be ilustrated on the
simplest examples of models that still capture the general features.

As a starting point, let us recall a couple of banal facts about the standard
ferromagnetic Ising model. The probability of a configuration σΛ ≡ {σi}i∈Λ, σi ∈
{−1, +1}, on a finite lattice Λ ⊂ Zd, d ≥ 2, and under the boundary conditions
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+ + + + + + + + + + + + + + +

+ + − − − + + + − − − − + + +

+ − − − + + − − − + + + + + +

+ − − − − + + − − − − + + + +

+ − + − − + + + − + + − + + +

+ − + + − − + + + + − + + − +

+ − − − − + + + − + + + + − +

+ − − + + + + + + + − − + + +

+ + + + − − + + + + − + + − +

+ + − + + + − + + + + + − + +

+ + + + − − − − + − + + + + +

+ + + − − − + − − − + + + − +

+ + + + − − + + − + + + − − +

+ + + − + − − − − + + − + + +

+ + + + + + + + + + + + + + +

Fig. 1

σΛc = {σi}i∈Zd\Λ, is given by

µΛ(σΛ |σΛc) =
e−βHΛ(σΛ |σΛc )

ZΛ(σΛc)
, (1)

where the energy is1

HΛ(σΛ |σΛc) = −
∑

〈i,j〉
i,j∈Λ

(σiσj − 1) −
∑

〈i,j〉
i∈Λ,j∈Λc

(σiσj − 1) − h
∑

i∈Λ

σi (2)

with the sum over pairs of nearest neighbours, and the normalizing partition function
is

ZΛ(σΛc) =
∑

σΛ

e−βHΛ(σΛ |σΛc ). (3)

At high temperatures, β small, the random variables σi are ‘almost independent’
and as a result, for Λ ↗ Zd, there is a unique weak limit µ of (1) independent of
boundary conditions (or sequence of boundary conditions {σΛc}Λ).

On the other hand, at low temperatures, β large, the variables σi are strongly
dependent — a first-order phase transition occurs that reveals itself in the fact
that, for h = 0, the particular boundary conditions corresponding to the ground
configurations σΛc = +1, σi = +1 for all i ∈ Λc, and σΛc = −1, lead for vanishing
external field, h = 0, to different limiting measures µ+ and µ−.

The proof of this fact by the famous Peierls argument is based on a reformulation
of the model (with h = 0) in terms of probabilities of particular spatial patterns

1A constant has been added to the Hamiltonian, so that the energy of ground configurations
in the case without external field, h = 0, vanishes.
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in the configurations. Namely, one considers configurations ∂ = {Γ} of contours Γ
introduced for a spin configuration σ as components of the boundaries between areas
of pluses and minuses (see Fig. 1)2. For a fixed boundary condition (say +1) the
correspondence between spin configurations and collections ∂ of mutually disjoint
contours is one to one and the probability of a contour configuration ∂ under the
measure µΛ(· |+1) (with h = 0) is

µΛ(∂ |+1) =
1

Z(Λ)

∏

Γ∈∂

e−2β|Γ|. (4)

Here
Z(Λ) =

∑

∂∈Λ

∏

Γ∈∂

e−2β|Γ| (5)

with the sum over collections of mutually disjoint contours in Λ. It differs from
ZΛ(+1) (≡ ZΛ(−1)) by the factor that equals the contribution of the configuration
+1 to ZΛ(+1).

The typical configurations σ of the measure µ+ obtained as the limit of µΛ( · | +1)
can be characterized by proving that, in the limiting probability obtained from (4),
the typical contour configurations ∂ are such that for every Γ ∈ ∂ there exists the
most external contour surrounding it. (No infinite ‘cascades’ of contours exist.)
This fact is proven, with the help of the Borel–Cantelli lemma, by evaluating the
probability of every contour surrounding a fixed site in such a way that the sum
of these probabilities can be shown to converge. As a result, one characterizes the
typical configurations σ of the measure µ+ as consisting of a connected sea of pluses
containing finite islands of minuses. Or, in other words, in a typical configuration
of µ+ the pluses percolate (and minuses do not). This situation can be described as
a stability of plus phase. By the same reasoning we can show that also the minus
phase is stable and characterize the measure µ− as supported by configurations with
percolating minuses. The measures µ+ and µ− thus differ – we say that two different
phases coexist for h = 0 and β large or that phase transition of the first order occurs
for h = 0.

The trick that allows one to describe the typical configurations, in spite of the fact
that the variables σi are actually strongly dependent, is based on replacing them by
‘contour variables’ and viewing their probability distribution (4) as a perturbation
of a contour-free (empty) configuration that corresponds to the ground spin state +1
in the case of µ+. The crucial fact for the Ising model is its plus-minus symmetry. It
follows not only that the phase transition should be expected to occur for vanishing
external field, h = 0, but also that the contours distributed by (4) are essentially
independent. We use this term to refer to the fact that the weight factor in (4) is
multiplicative; once the contours in ∂ are pairwise compatible – every two contours
Γ and Γ from ∂ are disjoint – they contribute independently.

A configuration with a particular contour skipped is again a possible configuration
(under fixed boundary conditions +1 there exists a uniquely defined corresponding

2We are illustrating the two-dimensional case here, with contours characterized as connected
sets consisting of edges of the dual lattice (Z2)∗ ≡ Z

2 + ( 1
2
, 1
2
) such that every vertex of (Z2)∗ is

contained in even number (0, 2, or 4) of its edges.



156 ROMAN KOTECKÝ

spin configuration in Λ) and the weights of remaining contours do not change. The
second main ingredient is the fact that the long contours are sufficiently damped
— the weight factor of a given contour Γ (in our case e−2β|Γ|) decreases quickly
with its length |Γ|; namely, it can be bounded by e−τ |Γ| with a sufficiently large
τ (to achieve this in our case one simply takes β large enough). This is a direct
consequence of the fact that the difference of the energy of a configuration and the
ground state configuration (say +1) is proportional to the length of its contours
(Peierls condition).

It is the fulfilment of these two conditions, essential independence and damping,
that allows us to use any form of standard cluster expansion for a study of properties
of the contour probability distribution. In the next section we summarize the prop-
erties of such contour models in a form to be used later. Unfortunately, even a small
perturbation to the Ising Hamiltonian (2) may break the essential independence of
contours. Instead, one is getting a model with ‘labeled contours’ with ‘long-range
matching conditions’. In Section 3 we explain this notion by representing a simple
perturbation of the Ising model in terms of such a labeled contour model. The per-
turbed Ising model, in spite of its simplicity, actually contains all the ingredients of
the general case and we will simplify the presentation of the main ideas by formulat-
ing and proving the results just in this case. Our first step is to recover the essential
independence – to find contour models, one for each phase, that yield information
about the original model with the corresponding boundary conditions. Before show-
ing, in Section 5, how to achieve this, we discuss in Section 4 the Potts model – our
aim there is to illustrate how a model of quite different type also naturaly leads to a
labeled contour model. The main step of Pirogov–Sinai theory in the present setting
is to show that a transition point ht(β) exists such that (for large β) both contour
models constructed in Section 5 are damped and thus both phases are stable for
h = ht. For some models (such as the unperturbed Ising ferromagnet) the value ht

can be guessed from the symmetry. In Section 6 we discuss the case of Ising antifer-
romagnet that can be considered to be ‘half way’ to the general case. Even though
the transition point can be guessed from the symmetry, the real proof of stability of
both concerned phases is a good illustration of inductive procedure used also in less
symetric cases. The perturbed Ising model, as a representative of the general case,
is discussed in Section 7. In a finite volume, say a cube Λ = L × L × · · · × L, the
transition reveals itself as a rapid change, as the function of h, of the magnetization
defined as the mean value

〈
∑

i∈Λ σi

〉per

Λ
under the periodic boundary conditions.

The final Section 8 is devoted to an application of the results of Section 7 to the
discussion of universal behaviour of the magnetization in the neighbourhood of the
transition point and the asymptotic dependence of the finite volume transition point
ht(L) defined, say, as the inflexion point of the finite volume magnetization curve.
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2. Contour Models

Let us suppose that a weight factor z assigning a real non-negative number z(Γ)
to every contour Γ is given3. A collection ∂ of contours of contours in Λ is called
compatible if they are mutually disjoint. The contour model, satisfying the condi-
tion of essential independence, with the weight factor z is defined by specifying the
probability of any compatible collection ∂ of contours in Λ by

µΛ(∂; z) =
1

Z(Λ; z)

∏

Γ∈∂

z(Γ) (6)

with the partition function (we reserve script Z for partition functions of contour
models)

Z(Λ; z) =
∑

∂∈Λ

∏

Γ∈∂

z(Γ). (7)

The contribution of the empty configuration ∂ = ∅ is taken to be 1 by definition.
We are not going to discuss the details of the cluster expansion here; let us only

formulate its main assertion [GK, Se, KP2, DKS] that can be for our case translated
into the following statement.

Proposition 1. For a contour model with a damped weight factor z, satisfying, for
sufficiently large τ and for every contour Γ, the (damping) bound

z(Γ) ≤ e−τ |Γ|, (8)

there exists a mapping Φ assigning real numbers to finite connected (in the connection
by paths whose edges are pairs of nearest neighbour sites) subsets of Zd, such that

logZ(Λ; z) =
∑

C⊂Λ

Φ(C) (9)

for every finite Λ. Moreover, the contributions Φ(C) are damped,

|Φ(C)| ≤ e−τd(C)/2, (10)

where d(C) is the minimal summary length (area) of a set of contours such that the
union of their interiors equals C. Actually, there is an explicit formula for Φ(C),

Φ(C) =
∑

A:A⊂C

(−1)|C\A| logZ(A; z). (11)

3Here we have in mind the contours as introduced above, but sometimes (e.g., when studying
interfaces [HKZ1, HKZ2]) it is useful to consider slightly more complicated structures — standard
contours ‘decorated’ by some additional sets etc. The present formulation of the contour model
can be easily reformulated in a more abstract way [KP2] covering these situations. In particular,
the condition of compatibility may differ from simple disjointness. However, an important feature
that has to be valid is that compatibility is defined pairwise — a collection ∂ is compatible if all
pairs of contours from ∂ are compatible.

Also, the weight z(Γ) may be in general complex. To assume that it is real non-negative suffices
in our case and it simplifies the formulation.
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If the contour model is translation invariant4, there exists the ‘free energy’ g(z) =
−β−1 lim

{

Λ−1 logZ(Λ; z)
}

, given by

g(z) =
∑

C:i∈C

Φ(C)

|C|
. (12)

Here the sum is over all finite sets containing a given fixed site and |C| denotes the
number of points in C. The free energy is bounded by

g(z) ≤ e−τ/2. (13)

3. Perturbed Ising Model

In the case of the Ising ferromagnet with vanishing external field we were fortunate
to get immediately the representation (4) in terms of a contour model. This is not
at all obvious. Actually, even a small perturbation to the Hamiltonian (2) may
introduce a ‘long-distance dependence’ among contours. To see what I mean by
that, consider a simple plus-minus symmetry breaking term, say,

−κ
∑

(i,j,k)

σiσjσk, (14)

added to the Hamiltonian (2). Here the sum is over all triangles consisting of a
site j and two its nearest neighbours i and k such that the edges (ij) and (jk) are
orthogonal. We consider all triplets with at least one of the sites i, j, k in Λ; σ for
those sites that are outside Λ is to be interpreted as the corresponding boundary
condition σ (say +1). Rewriting the model in terms of contours we obtain

µΛ(∂ |+1) =
1

ZΛ(+1)

∏

γ∈∂

ρ(γ)e−βe+|V +
Λ

(∂)|−βe−|V −

Λ
(∂)| . (15)

Here V +
Λ (∂) (resp. V −

Λ (∂) is the number of sites in Λ occupied, for the configuration
corresponding to ∂, by pluses (resp. minuses), cf. Fig. 1, and e+ = −h− κ2d(d − 1)
(resp. e− = h + κ2d(d − 1)) is the average energy per site of the configuration +1
(resp. −1). Notice that the weights ρ(γ) actually depend not only on the geometrical
form of the contour, but also on whether γ is surrounded from outside by pluses or
minuses. For example for the contour surounding a single plus spin immersed in
minuses we obtain ρ(γ) = e−β(8+8κd), while for the contour surrounding a single
minus spin immersed in pluses we obtain ρ(γ) = e−β(8−8κd). As a result we have
to label the contours by the signature of the spins surrounding it from outside (in
(15) we anticipated it and introduced labeled contours γ = (Γ, ε) consisting of a
geometrical shape Γ labeled by ε = ±1 of the outer spins). In (15) we obtained

4I.e., z(Γ) = z(Γ + i) for any contour Γ and any shift i. A correspondingly modified statement
is true for contour model satisfying some condition of periodicity.
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again the representation in terms of contours with the weights ρ damped (for κ and
h small), however, the condition of essential independence has been lost. The order of
labeled contours matters — if a plus-contour is surrounded by another plus-contour,
there must be a minus-contour immersed between them (in the configuration shown
in Fig. 1 there are minus-contours that, in view of plus boundary conditions, have
to be surrounded by plus contours). Unlike in unperturbed case, this matching
condition introduces certain ‘long-range hard core’ — a minus-contour γ surrounded
by a disjoint plus-contour γ ‘knows’ about its presence. Erasing γ would turn γ into
plus-contour and thereby change its weight ρ(γ).

4. Potts Model

The representation of a lattice model in terms of a probability distribution of match-
ing collections of labeled contours, see (15), is not restricted to our simple perturbed
Ising model. There exists a large class of models that naturally yield such a represen-
tation which is actually the starting point of Pirogov–Sinai theory. Before discussing
how to recover essential independence and to transform this representation into a
contour model, let us consider an example of slightly different type – the Potts model
– that leads to a similar representation as (15).

The Potts model is discussed in detail in other lectures in this volume [Gr, N]
and thus I will abstain from introducing it here and start directly from its random
cluster formulation to get its contour representation. Contours were used already
in the original proof of existence of first-order phase transitions [KS] for this model.
However, their probability was controlled there with the help of chessboard esti-
mates. A treatment by the Pirogov–Sinai theory has been presented, among others,
in [KLMR, BKL] and [M]. A simplification based on the Fortuin–Kasteleyn rep-
resentation was suggested in [LMMRS] and here I will use the reformulation from
[BKM].

Let us begin from the Fortuin–Kasteleyn random cluster representation [FK] with
the weight of a set ω of bonds (a subset of the set BΛ of all bonds intersecting Λ)
given by

p|ω|(1 − p)|\ω|qc(ω,b). (16)

Here |ω| is the number of bonds in ω, \ω ≡ BΛ \ ω denotes the complementary set
of bonds and c(ω, b) is the number of components5 of the set ω under the boundary
conditions b (for example, b = f , the free boundary conditions when all sites outside
Λ are considered to be disjoint; or b = w, the wired boundary conditions with all
sites outside Λ connected). Up to a factor depending on Λ, the partition function is

ZΛ(b) =
∑

ω

(eβ − 1)|ω|qc(ω,b), (17)

where the temperature factor 1 − e−β = p has been reintroduced. For every set of
bonds ω we can introduce contours in the following way: consider first the closed
set ω consisting of the union of all bonds from ω with all unit squares whose all four

5Each site not touched by ω is counted as one additional component.
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Fig. 2. Contours for a configuration of occupied bonds ω in the random cluster representation of
the Potts model under the wired boundary conditions. Thick lines correspond to the bonds from
ω. Plain thin lines denote the ordered contours (ω from outside), while dashed thin lines denote
the disordered contours (ω from inside).

sides belong to ω, all unit cubes whose all twelve edges belong to ω etc. Taking now
the 1

4 -neighbourhood U1/4(ω) of ω we define the contours as connected components
of the boundary of U1/4(ω). This procedure is illustrated in Fig. 2. The contours are
boundaries between regions occupied by ω (ordered regions) and empty (disordered)
regions whose each site contributes by the factor q to the partition function (17) (it
represents the component attributed to a site unattached to ω). Denoting by V 0

Λ

the set of bonds in the former and V d
Λ in the latter, we get

ZΛ(b) =
∑

∂

(eβ − 1)|V
0
Λ (∂)|q|V

d

Λ (∂)|/d
∏

γ∈∂

ρ(γ). (18)

Here the weights of contours ρ(γ) depend on the surrounding regions — if γ is
surrounded by the order (i.e., ω) from outside (plain thin lines in Fig. 2), we have

ρ(γ) = q−|γ|/(2d), (19)

while for γ surrounded by the disorder from outside (dashed lines in Fig. 2) we have

ρ(γ) = q−|γ|/(2d)+1. (20)

Again, in (18) we have a similar representation as in (15). Taking q large enough
allows to get sufficiently small weights ρ above. Notice also that the role of the
ground state energies e± is played by the free energies (per bond) log(eβ − 1) and
d−1 log q of the ordered and entirely disordered states, respectively.
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5. Recovering Essential Independence

In any case, as already mentioned, it is the representation of the form (15) (or (18))
that is a starting point for the Pirogov–Sinai representation. An important fact is
that we cannot directly apply standard cluster expansions — we first have to get rid
off the above described long-range dependence of labeled contours. However, this
is rather easy to achieve [PS, Z, KP1]. Namely, one introduces two contour weight
factors z+(Γ) and z−(Γ) (by using the notation Γ for the contour here we want to
stress that, unlike for ρ(γ), the dependence will be only on the shape of the contour
(the label being delegated to the subscript of z))

z+(Γ) = ρ((Γ, +))e−β(e−−e+)|∂IΓ|
ZInt Γ(−1)

ZInt Γ(+1)
(21)

and

z−(Γ) = ρ((Γ,−))e−β(e+−e−)|∂IΓ|
ZInt Γ(+1)

ZInt Γ(−1)
. (22)

Here ∂IΓ denotes the set of all sites attached from inside to the contour Γ (those
sites from Zd inside Γ whose distance from Γ in the maximum metric equals 1

2 ) and

Int Γ is the set of all sites from Zd inside Γ that are not contained in ∂IΓ.
With the help of these weights, we get the original partition functions in terms

of a contour model.

Lemma 1. For every finite Λ one has

ZΛ(+1) = e−βe+|Λ|
∑

∂⊂Λ

∏

Γ∈∂

z+(Γ) (23)

and
ZΛ(−1) = e−βe−|Λ|

∑

∂⊂Λ

∏

Γ∈∂

z−(Γ). (24)

Proof. Indeed, resumming in the expression (cf. (15))

ZΛ(+1) =
∑

∂⊂Λ

∏

γ∈∂

ρ(γ)e−βe+|V +
Λ

(∂)|−βe−|V −

Λ
(∂)| (25)

over all ∂ with a fixed collection ϑ of all most external (plus-)contours, we get

ZΛ(+1) =
∑

ϑ⊂Λ

e−βe+|ExtΛ(ϑ)|
∏

(Γ,+)∈ϑ

ρ((Γ, +))e−βe−|∂IΓ|ZIntΓ(−1). (26)

Here, we use ExtΛ(ϑ) to denote the set of all lattice sites in Λ that are outside every
contour Γ of ϑ. Notice that the partition function ZInt Γ(−1) has the fixed minus
boundary condition on ∂IΓ and every contour contributing to it is disjoint from Γ.
Multiplying each term on the right-hand side of (26) by exp(−βe+|∂IΓ|+ βe+|∂IΓ|)
ZInt Γ(+1)/ZIntΓ(+1), using the definition (21), and proceeding in proving (23) and
(24) by induction in the number of sites in Λ, we use (23) for ZInt Γ(+1) on the
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right-hand side valid by induction hypothesis (Int Γ ( Λ) and obtain thus (23) for
the full volume Λ. �

As a result, in (23) and (24) we succeeded in rewriting the partition functions
ZΛ(+1) and ZΛ(−1) in terms of partition functions Z(Λ; z+) and Z(Λ; z−) of contour
models z+ and z−. These are contour models according to our definition from Section
2 with the condition of essential independence fulfilled.

Two questions may now arise. First, in the formulas (23) and (24) we rewrote
only the partition functions. Moreover, we did so in terms of rather artificial contour
model (formally speaking, we suppose that inside a plus contour there are again
only plus contours). Thus, even if we have the corresponding contour models under
control, will it suffice to say something, for example, about typical configurations
of the measures µ+ and µ−? The answer is positive. Namely, it is clear that the
contour models z+ and z− introduced above, not only lead to the same (up to a
factor) partition functions as the original model, but also yield exactly the same
probabilities that a given set ϑ of external contours is present,

µΛ(ϑ | ± 1) =
1

Z(Λ; z±)

∏

Γ∈ϑ

z±(Γ)Z(Int Γ; z±). (27)

Once we know that the corresponding contour model, say z+, is damped (satisfies
the bound (8)), we can control the limit Λ ↗ Zd and with the help of the equality
(27), show that there are no infinite cascades of contours in the limiting measure µ+

and the plus phase is stable.
However, and this is the second question, it is not clear that, even though the

original weights ρ were damped, the newly defined weights z+ and z− are also
damped. The answer depends on the values of the parameters β and h. It turns out
that for a fixed (sufficiently large) β there exists a value ht ≡ ht(β) such that for
h = ht both z+ and z− are damped and thus both plus and minus phases are stable,
while for h > ht only z+ is damped and for h < ht only z− is damped.

The description of this transition point ht(β) actually yields the phase diagram
in the case of the perturbed Ising model6.

Our next task thus will be to find the transition point with the above formulated
properties. Sometimes, in presence of a symmetry, the value of the transition point
can be guessed. For example, for the unperturbed Ising model we expected ht = 0.
Indeed, for h = 0 we got e+ = e− = 0, Z+

Λ = Z−
Λ , and thus directly

z+(Γ) = z−(Γ) = e−2β|Γ|.

Before turning to the general situation, when ht is a priori unknown, let us consider
another case for which the value of the transition point can be guessed.

6The ‘tuning parameter’ (driving field) here was the external field h. For the Potts model, one
can closely follow our treatment of the perturbed Ising model. The role of ‘tuning parameter’ is
played by the (inverse) temperature β and, to get damped weight ρ(γ), we have to suppose that q

is large enough.
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Fig. 3

6. Ising Antiferromagnet

The model I have in mind here is the Ising antiferromagnet with the Hamiltonian

HΛ(σΛ |σΛc) =
∑

〈i,j〉
i,j∈Λ

(σiσj + 1) +
∑

〈i,j〉
i∈Λ,j∈Λc

(σiσj + 1) − h
∑

i∈Λ

σi. (28)

It is known [D2] that for sufficiently small temperatures and small external field h,
there exist two antiferromagnetic phases corresponding to two ground configurations.
Namely, the configuration with pluses on even lattice sites (i = (i1, i2, . . . , id) such
that ‖i‖ = |i1| + |i2| + · · · + |id| is even) and minuses on odd sites, let us call it the
even ground configuration (and use the subscript ‘e’ to refer to it), and the same
configuration shifted by a unit vector the odd ground configuration (the subscript
‘o’).

Let us prove that, indeed, both phases are stable once, for β large enough, the
external field h is sufficiently small. In spite of its simplicity, there are two reasons
for including this model here. The proof that contour weights for both coexisting
phases are really damped is not immediate and it actually involves an important
ingredient of the general case. Moreover, a similar reasoning might be useful also in
other, more complex, situations — actually, recently we had an occasion to use it for
a description of phase transitions in diluted spin systems [CKS] and in a discussion
of renormalization group transformations for large external field [EFK].

Let us take, say, the odd ground configuration as the boundary condition. To
introduce contours, we again consider the boundaries between regions with even and
odd ground configurations. However, this time we take as belonging to the same
contour all components whose distance, in maximum metric, is one. Thus, for the
configuration on Fig. 3 we have just one contour7. Again, under fixed boundary

7The configuration in Fig. 3 is deliberately chosen so that the set of all boundary lines is
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conditions we have a one-to-one correspondence between spin configurations and
collections of contours. Notice that even though we consider, in general, a non-
vanishing h, the energies of the ground configuration are (contrary to the case of
Ising ferromagnet) equal, eo = ee = 0.

Thus we have a particularly simple form of labeled contour model with

ZΛ(e) =
∑

∂⊂Λ

∏

γ∈∂

ρ(γ). (29)

Even though this formula is reminiscent of that for the ferromagnet with vanishing
field (cf. (5)), here the weights of labeled contours γ depend on the label (which
ground configuration surrounds it from outside). To compute the weight ρ(γ), one
has to compute the energy of the configuration σ for which γ is the single contour.
Consider, for the configuration σ, all pairs i, j of nearest neighbour sites such that
j = i + (1, 0, . . . , 0) (j1 = i1 + 1, jk = ik, k = 2, . . . , d) and σi = 1, σj = −1.
The remaining unpaired sites are necessarily attached to the contour. Denoting
S(γ) =

∑

σi, with the sum over all these unpaired sites, we clearly have

ρ(γ) = e−2β|γ|−βhS(γ). (30)

The reason for gluing together different components8 of the boundary between
ground configurations was that otherwise these unpaired sites might be shared by
different contours. Had we chosen the standard definition of contour, the weight
ρ(γ) would depend on whether the contour γ is isolated or there are other contours
around whose distance from γ is 1 and they share some unpaired sites. Notice, for
future use, that the complement of a contour, say an even contour γ = (Γ, e), may
have several components (cf. Fig. 3). We take for the interior of Γ, Int Γ, only those
sites that are in the configuration σ (the configuration whose single contour is γ)
occupied by the odd ground configuration and whose distance, again in maximum
metric, from Γ is larger than 3

2 . Notice also that the weight of a labeled contour γ
equals the weight of the contour shifted by a unit vector but labeled by the other
ground configuration,

ρ((Γ, e)) = ρ((Γ + (1, 0, . . . , 0), o). (31)

We can again use the strategy of the preceding section and introduce the weights

ze(Γ) = ρ((Γ, e))
ZInt Γ(o)

ZInt Γ(e)
(32)

and

zo(Γ) = ρ((Γ, o))
ZInt Γ(e)

ZInt Γ(o)
, (33)

identical to that in Fig. 1. While in Fig. 1 we have 11 contours, in Fig. 3 all of them are glued
together to a single contour.

8The idea of gluing together different connected components is in the general Pirogov–Sinai
approach automatically carried out by considering ‘thick contours’ that would consist, for the
present case, of components of the union of all those 2×2×· · ·×2 cubes for which the configuration
σ restricted to it differs from both ground configurations.
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for which
ZΛ(e) = Z(Λ; ze), ZΛ(o) = Z(Λ; zo). (34)

Showing now that both ze and zo are damped, we will prove that both phases are
stable9.

Proposition 2. Let h < 2 and β be sufficiently large (depending on h). Then both
ze and zo are damped and both phases are stable.

Proof. We will prove the bound (8) for ze and zo simultaneously by induction on
diamΓ. Let us suppose that both ze and zo satisfy (8) for all Γ such that diamΓ < n.
Considering now Γ with diamΓ = n, we apply (34) for ZInt Γ(e) and ZInt Γ(o). By
the induction hypothesis we can use the cluster expansion (9) for Z(Int Γ; ze) and
Z(Int Γ; zo) yielding

Z(Int Γ; ze)

Z(Int Γ; zo)
= exp

{

∑

C⊂Int Γ

(Φe(C) − Φo(C))

}

. (35)

Observing first that Φe(C) = Φo(C +(1, 0, . . . , 0)) as the direct consequence (by the
explicit expression (11)) of the equality ZA(e) = ZA+(1,0,...,0)(o) implied by (31), the
terms in the exponent on the right hand side of (35) with C not too near to the
boundary of Int Γ will be cancelled. To bound the remaining terms we notice that
since to Φe(C) and Φo(C) in (35) only contours Γ with diamΓ < n contribute, the
bound (10) is satisfied10 by the induction hypothesis. As a consequence we obtain

exp{−ε|Γ|} ≤
Z(Int Γ; ze)

Z(IntΓ; zo)
≤ exp{ε|Γ|} (36)

with ε of the order e−τ/2. Taking into acount that, clearly, |S(γ)| ≤ |γ|, we get the
bound (8) once h < 2. �

7. Transition Point

Finally, we consider the perturbed Ising model as a representative of the general
case for which the value of the transition point ht is not known.

9This is true for a range of values of the field h — the field h does not break the symmetry

between the phases. For a ‘tuning parameter’ that is able to discriminate between these two phases
one has to introduce an additional field, for example a staggered field in the form of the term
g
�

(−1)‖i‖σi added to the Hamiltonian. Here we are actually taking the transition value gt = 0.
10Formally, we may consider z

(n)
e(o)

defined by

z
(n)
e(o)

(Γ) =

�
ze(o)(Γ) if diamΓ < n

0 otherwise,

notice that Z �A; z
(n)
e(o)� = Z(A; ze(o)) for every A such that diam A < n by the induction hypoth-

esis, and that in view of (11) only those A contribute to Φe(C) and Φo(C) in (35).
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The task is to decide, for given values of parameters h, κ, and β, which of the
phases is stable, or in other words, which of the contour weights z+ or z− is damped.
Following the reformulation of Pirogov–Sinai theory by Zahradńık [Z] (or, rather,
the version by Borgs and Imbrie [BI1]) we introduce metastable states by suppresing
all contours whose weights are not damped. Putting thus

z±(Γ) =

{

z±(Γ) if |z±(Γ)| ≤ e−τ(Γ),

0 otherwise,
(37)

we define
ZΛ(±1) = e−βe±|Λ|Z(Λ; z±). (38)

Notice that both weights z+ and z− are automatically damped, and it follows that

the cluster expansion can be employed to control the limit g(z±) = −β−1 lim
{

|Λ|−1

logZ(Λ; z±)
}

(see (12)). Comparing the explicit expressions (9) and (12), we get

logZ(Λ; z±) = −β|Λ|g(z±) + ε|∂Λ| with ε (as well as βg) of the order e−τ/2 and
thus

ZΛ(±1) = exp{−βf±|Λ| + ε|∂Λ|} (39)

with
f± = e± + g(z±). (40)

The metastable free energies defined by the equality (40) play an important role in
determining which phase is stable — it turns out that the stable phase is character-
ized by having the minimal metastable free energy. Namely, defining

a± = β
(

f± − min(f+, f−)
)

, (41)

we claim that z+ is damped once a+ = 0 (and similarly for the minus phase). To
prove this assertion we prove by induction on n the following.

Lemma 2 [Z, BI1]. Let κ and h be such that 2|κ|(d2 − 1) + |h| < 1 and let a+ = 0.
Then, for sufficiently large β, for every n:

(i) if diamΛ ≤ n and a− diamΛ ≤ 1, then z−(Γ) ≤ e−τ |Γ| for every Γ in Λ,
(ii) z+(Γ) ≤ e−τ |Γ| for every Γ with diamΓ ≤ n.

Remarks. (1) Notice that, by definition, min(a+, a−) = 0. Thus, by this lemma,
always at least one of the phases is stable (the plus phase above). Moreover, by (ii)
one actually has z+ ≡ z+ and ZΛ(+1) = ZΛ(+1). Thus

f+ = −β−1 lim
{

|Λ|−1
log ZΛ(+1)

}

≡ f ;

the metastable free energy of the stable phase equals the standard free energy of the
original model (which, actually, does not depend on the boundary conditions).
(2) The transition point ht is characterized by the equation a+ = a− = 0. The para-
meter max(a+, a−) can be viewed as a measure of distance from the transition point.
For sufficiently large volumes is the unstable phase suppressed — the system with
unstable (minus) boundary conditions prefers to flip to the plus phase over a long
contour encircling large part of the volume Λ. Even though the energy cost of such
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a large contour is of the order |∂Λ|, there is a volume gain a−|Λ|. The statement (i)
of Lemma 2 then says that for ‘small volumes’ (a− diamΛ ≤ 1) the system prefers
to stay in the minus phase. The closer to the transition point (i.e., the smaller is
the parameter a−) the larger volumes are able to support the unstable phase. Very
close to the transition point, both phases seem to be stable from the point of view
of small volumes (we are saying that the unstable phase (minus) is metastable in
small volumes) and, only coming to large volumes, the system is able to distinguish
which phase is really stable.

Proof. (i) By the induction hypothesis we can replace ZInt Γ(±1) by ZInt Γ(±1).
Applying then the equality (39) in the definition (22), we get

ZInt Γ(+1)

ZInt Γ(−1)
=

ZInt Γ(+1)

ZInt Γ(−1)
≤ exp{−β(f+ − f−)| Int Γ| + 2ε|Γ|}

= exp{a−| Int Γ| + 2ε|Γ|} ≤ exp{(1 + 2ε)|Γ|} (42)

with ε of the order e−τ/2. In the last inequality we used the inequality | Int Γ| ≤
|Γ| diamΓ and the assumption a− diamΛ ≤ 1. Taking into account that

ρ(γ) ≤ exp{−2β(1 − 2|κ|(d − 1))|γ|}, (43)

we get (8) for z+(Γ) once 2|κ|(d2 − 1) + |h| < 1 and β is large enough.
(ii) Let us call small those contours that satisfy the condition a− diamΓ ≤ 1. The
remaining contours will be called large. Resumming in (25) over all collections ∂
of contours with a fixed set ϑ of large external contours and using the induction
hypothesis, we get

ZInt Γ(−1)

ZInt Γ(+1)
=

∑

ϑ large
ϑ⊂Int Γ

Zsmall
ExtInt Γ(ϑ)(−1)

∏

γ∈ϑ ρ(γ)e−βe+|∂Iγ|ZInt γ(+1)

ZIntΓ(+1)

≤ e2ε|Γ|
∑

ϑlarge
ϑ⊂Int Γ

exp
{

−|ExtIntΓ(ϑ) |β(f small
− − f+)

}

∏

γ∈ϑ

ρ(γ)e3ε|γ|.
(44)

(One ε|γ| in the last term comes from the bound on β|e+−f+||∂Iγ|.) In this equation,
Zsmall

ExtΛ(ϑ)(−1) is the partition function with sum taken only over small contours and

f small
− is the corresponding metastable free energy. Consider an auxiliary contour

model with the weight

z̃(Γ) =

{

{

ρ((Γ, +)) + ρ((Γ,−))
}

e|Γ| if Γ is large

0 otherwise.

Taking into account the bound (43), we can show that

Z(Λ; z̃) = exp{−βf̃ |Λ| + ε|∂Λ|} (45)
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(cf. (39)) with ε and βf̃ of the order exp{−τ/(2a−)} (only large contours for which

|Γ| ≥ diamΓ ≥ (a−)−1 contribute). On the other side,

β|f− − f small
− | ≤

∑

C3i
diam C≥(a−)−1

Φ−(C)

|C|
≤ exp

{

−
τ

2a−

}

(46)

and thus
β(f small

− − f+) ≥ a− − exp{−τ/(2a−)}.

Since 2 exp{−τ/(2a−)} ≤ 2(2a−)/τ ≤ a−, we have

−βf̃ = β|f̃ | ≤ exp

{

−
τ

2a−

}

≤ a− − exp

{

−
τ

2a−

}

≤ β
(

f small
− − f+

)

. (47)

Multiplying now the right-hand side of (44) by eβf̃|IntΓ|−βf̃ |IntΓ| and using (47) we
get the bound

e2ε|Γ|eβf̃|IntΓ|
∑

ϑlarge
ϑ⊂Λ

∏

γ∈ϑ

ρ(γ)e4ε|γ|e−βf̃| Int γ|. (48)

Applying twice the approximation (45) we get

e2ε|Γ|eβf̃|IntΓ|
∑

ϑlarge
ϑ⊂Int Γ

∏

γ∈ϑ

ρ(γ)Z(Int γ; z̃) · e5ε|γ|

≤ e2ε|Γ|ef̃ | Int Γ|Z(Int Γ; z̃) ≤ eβf̃|IntΓ|−βf̃|IntΓ|+3ε|Γ|. (49)

Thus, referring again to the bound (43) and the definition (21), we conclude that
z+(Γ) satisfies the bound (8). �

The free energies f± are, in view of the equality (40), close to the ground config-
uration energies e±; the difference βg(z±) is of the order e−τ/2 (cf. (13)). Moreover,
while the ground state energies e± are linear in h, the functions βg(z±) can be shown
to be Lipschitz with the Lipschitz constant of the order e−τ . The free energies f±
are, in view of the equality (40), close to the ground configuration energies e±; the
difference βg(z±) is of the order e−τ/2 (cf. (13)). Moreover, while the ground state
energies e± are linear in h, the functions βg(z±) can be shown to be Lipschitz with
the Lipschitz constant of the order e−τ . Indeed, using the definition (7), the (one
sided) derivative d

dhg(z±) can be expressed as the sum, over all contours Γ pass-
ing through a given site, of the product of the probability of the appearance of Γ
(bounded by e−τ |Γ|) and the term d

dh log z±(Γ) (whenever z±(Γ) 6= 0). The latter
can be bounded by 3|Γ|+2| IntΓ| as follows directly from the definition (21, 22). To
get the bound

∣

∣

∣

∣

d

dh
log

ZInt Γ(±1)

ZInt Γ(∓1)

∣

∣

∣

∣

≤ 2| IntΓ|,

one takes into account the explicit expressions (3) and (2) (see [Z] for details).
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Since the energies e± are linear in h, e± = ∓h ∓ κ2d(d − 1), we infer that the
free energies f± are ‘almost linear’ in h. As a result, there exists a unique solution
ht of the equation f+ = f− and the value ht differs from the value determined by
equality of the ground configuration energies, e+ = e−, by at most e−τ (remember
that e−τ can be taken to be of the order, say e−β)11. This fact can be stated in a
more general form:

The phase diagram for large β is a deformation, of the order e−β,
of the phase diagram at vanishing temperature (β = ∞).

This statement remains true also when there are r different ground configurations
and one needs (r − 1) external fields to discriminate between them. The general
statement of Pirogov–Sinai theory actually claims the above assertion for this case.

Having insufficient space here to discuss various existing extensions of the original
Pirogov–Sinai theory, we only mention two of them. One is the work of Bricmont
and Slawny [BS, Sl] whose approach allowed to study some systems with degenerated
ground states. For example, it turned useful for a discussion of ANNNI model [DS]
or lattice models of micro-emulsions [DM, KLMM].

An alternative approach to Pirogov–Sinai theory is based on an idea of renor-
malization group transformations applied to labeled contour models (cf. (15)–(18))
[GKK]. Combining these ideas with the Imry–Ma argument, Bricmont and Kupi-
ainen were able to prove the existence of phase transition for the three-dimensional
random field Ising model [BKu].

8. Finite Volume Asymptotics

Sticking to our ilustrative perturbed Ising model, the issue is to find the asymptotic
behaviour of the magnetization mper

L (β, h) = 〈
∑

i∈Λ σi〉
per
L in a finite cube, |Λ| = Ld,

under periodic boundary conditions. The cubic geometry and periodic boundary
conditions are considered here as a simplest case and in view of the fact that it is
this situation that is most often studied by computer simulations. We will comment
on other cases later.

In the limit L → ∞, the magnetization mper
∞ (β, h) displays, as a function of h, a

discontinuity at h = ht(β). For finite L, the jump is smoothed into a steep increase
in a neighbourhood of ht. It is this rounding and its asymptotic behaviour that is
our concern here. The magnetization mper

L (β, h) is, in terms of the corresponding
partition function Zper

L (β, h), given by

mper
L (β, h) = −

1

βLd

d

dh
log Zper

L (β, h). (50)

We start from a representation of the partition function Zper
L (β, h) in terms of a

labeled contour model analogous to (15) and prove the validity of the following
crucial approximation involving a smooth variant of metastable free energies.

11For the Potts model, the transition point βt can be claimed, for q large, to be close (in the

order q−1/d) to the value yielded by the equation (eβ
− 1) = q1/d.
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Lemma 3 [BK1]. For every A ∈ (0, 1) there exist constants b and c and functions

f+(β, h) and f−(β, h) that are four times differentiable in h such that12

min(f+, f−) = f = −
1

β
lim

{

1

Ld
log Zper

L (β, h)

}

, (51)

f± − f ≥ ±c(h − ht), (52)

and

∣

∣Zper
L (β, h) − exp{−βf+Ld} − exp{−βf−Ld}

∣

∣ ≤ exp{−βfLd − bβL} (53)

whenever 2|κ|(d2 − 1) + |h| < A and β is large enough.

Remarks. (1) There is an amusing immediate consequence of this Lemma [BI1, BK1].
Namely, the limit

lim
L→∞

Zper
L (β, h)

exp{−βfLd}
= N(β, h) (54)

exists and yields an integer that equals the number of phases. This implies that
N(β, h) = 1 for h 6= ht and N(β, h) = 2 for h = ht. A similar claim is valid also
in the general Pirogov–Sinai situation. In particular, for the Potts model the limit
N(β) equals

N(β) =











q for β > βt,

q + 1 for β = βt,

1 for β < βt.

(2) The fact that we are proving differentiability of f± up to the fourth order is
a purely technical matter. We needed the error term of this order in the Taylor
expansion of f± to evaluate the location of the maximum of susceptibility (see
Proposition 4 below). Even though we needed larger β for higher orders, one can
suppose that an optimization of the present methods would lead to bounds for all
orders.

Main ideas of proof of Lemma 3. Suppressing all contours wrapped around the
torus13, at the cost of an error of the order exp{−βfLd− bβL}, we can approximate
Zper

L (β, h) by the sum of two terms — contributions of all configurations with plus
or minus external contours, respectively,

Zper
L (β, h) ≈ Zper,+

L (β, h) + Zper,−
L (β, h). (55)

For h close to ht, so that max(a−, a+)L ≤ τ/4, both phases can be treated as stable
in Λ (in Lemma 2 we can clearly get the same statement with the damping weakened

12The function f is the standard free energy (cf. Remark 1 after Lemma 2).
13These are simply configurations for which we might be in doubt whether to classify them as

belonging to the plus or minus phase, and for which the notion of external contours might not be
well defined.
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to e−τ |Γ|/2 and with the bound a− diamΛ ≤ 1 replaced by a− diamΛ ≤ τ/4). The
right-hand side of (55) then equals

Z
per,+

L (β, h) + Z
per,−

L (β, h)

= exp{−βe+Ld}Zper(Ld; z+) + exp{−βe−Ld}Zper(Ld; z−). (56)

Here Zper(Ld; z±) are the contour model partition functions defined by (7) with
collections of contours on the torus without any contour wrapped around it. Being
defined on the torus, their approximation by exp{−βg(z±)Ld} is very accurate.
Namely, the first clusters C in which the cluster expressions for −βg(z±)Ld and
logZper(Ld; z±) differ are the clusters wrapped around the torus. In particular,
unlike in (39), there is no surface term proportional to Ld−1 and we have

∣

∣log Z
per,±

L (β, h) + βf±Ld
∣

∣ ≤ e−τL. (57)

On the other side, if say a−L ≥ τ/4, then

Zper,−
L (β, h)eβfLd

≤ e−a−Ld/2 + e−τb′′Ld−1

. (58)

Namely, one is either losing the bulk term of the order a− or there is a long contour
along which the configuration flips from minuses to pluses.

Thus we obtain the expression of the form (53) with the metastable free energies
f±. Even though the weights z± defined by (21) and (22) are smooth functions of
h (and of β), the definition (37) is rather discontinuous. However, it turns out that
there is actually some freedom in the definition of z± that allows us to modify the
definition of the metastable free energies to make them smooth.

Namely, the only property really needed is that the weights z± are damped and
that z± = z± in the metastable situation, (i.e., when max(a+, a−) diamΓ ≤ τ/4).
To avoid a reference to a+ and a− defined in the limit Λ → Zd, we have chosen in
[BK1] (see also [HKZ2]) the inductive definition

z+(Γ) = ρ((Γ, +))e−β(e−−e+)|∂IΓ|
ZInt Γ(−1)

ZInt Γ(+1)
Θ+,Γ (59)

(and a similar definition for z−(Γ)). Here Θ+,Γ is an indicator function (defined also
in an inductive way) that interpolates smoothly between 0 and 1 (in the metastable
region):

Θ+,Γ =

{

0 whenever (h is such that) ZInt Γ(+1) ≤ exp
{

− 1
4τ |Γ| − 1

}

ZInt Γ(−1)

1 whenever ZInt Γ(+1) ≥ exp
{

− 1
4τ |Γ| + 1

}

ZInt Γ(−1).

(60)
Following the method of the proof of Lemma 2, it is easy to verify that these weights
meet the above formulated conditions. Indeed, proceding by induction in diamΓ =
n, in the metastable region we have Θ±,Γ = 1 and ZInt Γ(±1) = ZIntΓ(±1). On the

other side, introducing z
(n)
± by taking z± as already defined for Γ with diamΓ < n



172 ROMAN KOTECKÝ

and setting z
(n)
± (Γ) = 0 otherwise, and denoting f

(n)
± the corresponding free energy

and a
(n)
± = β

(

f
(n)
± − min(f

(n)
+ , f

(n)
− )

)

, we prove by induction that

ZInt Γ(±1) ≤ exp
{

−β min(f
(n)
+ , f

(n)
− )| Int Γ| + |Γ|

}

.

Thus,

ZInt Γ(∓1)

ZInt Γ(±1)
≤ exp

{

|Γ| − β min(f
(n)
+ , f

(n)
− ) Int Γ + βf

(n)
± | IntΓ|

}

≤
ZInt Γ(∓1)

ZInt Γ(±1)
exp{2|Γ|},

and by (60) the indicator Θ±,Γ = 0 whenever the ratio

ZInt Γ(∓1)

ZInt Γ(±1)
≤

ZInt Γ(∓1)

ZInt Γ(±1)
e2|Γ|

is too large. The new weights z±(Γ) redefined in this way yield the metastable free

energies f± = limn→∞ f
(n)
± and a± = limn→∞ a

(n)
± . These parameters might slightly

differ from a± in Lemma 2 – they vanish, however, for the same set of external fields
h and yield the same ht (as they should).

Moreover, the new metastable free energies f± are smooth. Namely, in the
essentially same way as when proving Lemma 2 we can bound also the derivatives
of z±(Γ). An inductive step for that are bounds of the type (42) and (44) with (49)
for the derivatives of the left-hand sides of (42) and (44). See [BK1] for details. �

The magnetization mper
∞ (β, h) as well as the susceptibility χper

∞ (β, h) (recall that
the perturbed Ising model does not have the plus-minus symmetry) may have a
discontinuity at h = ht. Let us introduce the spontaneous magnetizations and
susceptibilities

m± = lim
h→ht±

mper
∞ (β, h), m0 = 1

2 (m+ + m−), m = 1
2 (m+ − m−),

χ± =
∂mper

∞ (β, h)

∂h±
, χ0 = 1

2 (χ+ + χ−), χ = 1
2 (χ+ − χ−).

It turns out that, in spite of the asymmetry of the model, the finite volume magne-
tization mper

L (β, h) has a universal behaviour in the neighbourhood of the transition
point ht. Expanding the metastable free energies in (53) into a Taylor expansion
around ht, we get the following proposition in a rather straightforward manner
(again, see [BK1] for the proof).

Proposition 3 [BK1]. For any A ∈ (0, 1) there exist constants K and b such that
the approximation

mper
L (β, h) = m0 + χ0(h − ht)

+ (m + χ(h − ht)) tanh
{

Ldβ
[

m(h − ht) + 1
2χ(h − ht)

2
]

}

+ R(h, L)
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with the error bound |R(h, L)| ≤ e−bβL + K(h − ht)
2 is valid whenever 2|κ|(d2−1)+

|h| < A and β is large enough.

Having now a good control over the behaviour of mper
L (β, h) in the transition

region, we can evaluate the asymptotic behaviour of different variants of the finite
volume approximations of the transition point. This is important for the interpreta-
tion of computer simulations. In particular, comparison with theoretically predicted
asymptotic behaviour is used to settle the question whether an unknown transition is
continuous or first-order. When only finite size data are available, a natural choice for
the transition point is the value hmax(L) for which the susceptibility ∂mper

L (β, h)/∂h
attains its maximum (the inflection point of mper

L (β, h)). Other possible definitions:
the point h0(L) for which mper

L (β, h) = m0 or the point ht(L) for which an approx-
imation to (54), say

NL(β, h) =

[

Zper
L (β, h)2

d

Zper
2L (β, h)

]
1

2d−1

,

attains its maximum. In fact, the latter is exactly the point for which mper
L (β, h) =

mper
2L (β, h). With the help of Proposition 3 we get:

Proposition 4 [BK1]. For a fixed constant δ, 2|κ|(d2 − 1) + |h| < 1, and β large
enough, one has

(i) hmax(L) = ht +
3χ

2β2m3
L−2d + O(L−3d),

(ii) in the interval [ht − δ, ht + δ], there exists a unique h0(L) for which
mper

L (β, h) = m0; for this h0(L) one has h0(L) = ht + O(e−b0βL), and

(iii) ht(L) = ht + O(e−b0βL).

A popular testing ground for discussion of finite size simulation data is the Potts
model (see, e.g., [CLB, BJ, BLM, LK]). Similar results as above can be proved
[BKM] for the Potts model with d ≥ 2 and q large enough. In this case, the mean
energy can be approximated by

Eper
L (β) ≈ E0 + E tanh

{

E(β − βt)L
d + 1

2 log q
}

. (61)

As a consequence, the inverse temperature βmax(L) where the slope of Eper
L (β) is

maximal is shifted by

βmax(L) − βt = −
log q

2E
L−d + O(L−2d), (62)

while the inverse temperature βt(L) for which NL(β) is maximal again differs from
βt only by an exponentially small error O(q−bL).

It seems that the value ht(L) (resp. βt(L)) with an exponentially small shift might
be particulary useful in determining the transition point. For further discussion
illustrated by computer simulations see [BKa, BJ].

Notice that the difference between the asymptotic behaviour of the shift in Propo-
sition 4(i) for the perturbed Ising model and (62) for the Potts model. Proposition
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4(i) actually settled a controversy [BL, CLB] about the order of the shift. The proof

that the shift is of the order L−2d follows by showing that
∂χper

L
(β,h)

∂h

∣

∣

h=ht

is of the

order Ld and
∣

∣

∂2χper

L
(β,h)

∂h2

∣

∣ does not exceed L3d in the interval (ht − const.L−d, ht +

const.L−d). The fact that the shift for the Potts model is of the order L−d can be
traced down to the term log q in the argument of tanh in (62), i.e., to the fact that
at βt we have coexistence of q low temperature phases with one high temperature
phase. Perturbed Ising model corresponds in this sense to q = 1 (coexistence of
one phase for h ≤ ht with one phase for h ≥ ht) and the term of the order L−d

multiplied by the factor log q vanishes.
Two final remarks: similarly, as in the last section, the theory can be extended

to cover more general situations with several coexisting phases. See [BK1] for a
discussion of such cases.

Secondly, as already mentioned, asymptotic behaviour for other geometries as
well as other boundary conditions was also studied. In the case of cylinder geometry,
Λ = M × · · · × M × L with L much larger than M , one obtains an effective one-
dimensional model and the asymptotics can be studied with the help of the method
of transfer matrix [BI2, B]. Another interesting case concerns surface induced shifts
(in cubic geometry) driven by the free boundary conditions with possible addition
of boundary fields. The shift of transition point is of the order L−1 and can be
explicitely computed in terms of (cluster expansions of) surface free energies [BK3].
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