Chapter 1

Lattice spin models: Crash course

1.1 Basic setup

Here we will discuss the basic setup of the models to which we will direct our attention
throughout this course. The basic ingredients are as follows:

e Lattice We will take thed-dimensional hypercubic lattic& as our underlying graph.
This is a graph with vertices at all points Rf with integer coordinates and edges
between anyearest neighbopair of vertices, which are those at Euclidean distance
one. We will usgx, y) to denote a nearest-neighbor pair.

e Spins At eachx e Z9 we will consider a spir§, by which we will mean a random
variable taking values in a closed sub&etf R", for somev > 1. We will useS; - S
to denote a scalar product betwegnandS; (Euclidean or otherwise).

e Spin configurationsFor A ¢ Z9, we will refer to S, = (S()xea as the spin configu-
ration in A. We will be generically interested in describing the statistical properties of
such spin configurations with respect to certain (canonical) measures.

e Boundary conditionsTo describe the law 08, , we will not be able to ignore that there
are (in general) also the spins outsitieWe will refer toS,c as the boundary condition.
The latter will usually be fixed and may often even be considered a parameter of the
game. When botls, andS,c are known, we will write

S= (S, Sro) (1.1)
to denote their concatenation on allZ.
The above setting incorporates rather varied physical interpretations. The spins may be
thought of as describing magnetic moments of atoms in a crystal, displacement of atoms

from their equilibrium position or even orientation of grains in nearly-crystalline granular
materials.

To define the dynamics of such spin systems, we will need to specify the energetics. This
is conveniently done by prescribing th¢amiltonian which is a function on the spin-
configuration spacézZd that tells us how much energy each spin configuration has. Of
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course, to have all quantities well defined we need to fiine volume A c Z9 and
compute only the energy in. The most general formula we need is

Ha(S = D ®ad (1.2)

AcZd finite
ANAA£D

where @, is a function that depends only d8x. To make everything well defined, we
require e.g. thatba is translation invariant and th3t ,_, [ Pallc < oco. (The infinity

norm may be replaced by some other norm, should the need to talk about unbounded spin
systems arise.) It is often more convenient—and is invariably done by physicist—to write
the above as a formal sum

H(S) =D ®a(S) (1.3)
A

with the above specific understanding in the situation where rigorous definition is required.

The energy is not sufficient on its own to determine the spin system; we also need to specify
thea priori measureon the spins. This will be done by prescribing a Borel meagyen Q

(which may or may not be finite); the spin configurations (in finite volume) will be “dis-
tributed” according to the product measure, e.g. alpeiori law of Sy is Q). #o(dS,).

1.2 Examples
Here are a few examples of spin systems:

(1) O(n)-model HereQ = S"! = {z € R": |z], = 1} with x( = surface measure. The
Hamiltonian is

HO=-1>s"S (1.4)
(X,y)

where the dot denotes the usual (Euclidean) dot-produRtf'iandJ > 0. (The sign ofJ
can be reversed by reversing the spins on the odd sublatti& Jof

Note that if A € O(n)—i.e., A is ann-dimensional orthogonal matrix—then

AS-AS =S, S (L.5)

and soH (AS) = H(S). Since alsquo o A~ = 1o, the model possessegmbal rotation
invariance(with respect to simultaneous rotation of all spins).

Two instances of this model are known by other nanmres: 2 is therotor modelwhile
n = 3 is the (classicalieisenberg ferromagnet

(2) Ising model Formally, this isO(1)-model. Explicitly, the spin variables, take values
in Q = {—1, +1} with uniform a priori measure; the Hamiltonian is

H(o) = -3 > oxoy (1.6)
(X,y)
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Note that the energy is smaller when the spins at nearest neighbors align and higher when
they antialign. A similar statement holds, of course, for@dh) models. This is due to the
choice of the sigrd > 0 which makes these modderromagnets

(3) Potts model This is a generalization of the Ising model to more spin states. Explicitly,
we fix g € N and letoy take values in{1, ..., q} (with uniform a priori measure). The
Hamiltonian is

H(o) = =3 8,0, (1.7)
(X,y)

so the energy is-J whenoy anday “align” and zero otherwise. Thg = 2 case is the Ising
model andy = 1 may be related to bond percolation% (via so calledrortuin-Kasteleyn
representatioleading to aandom-cluster modgl

It turns out that the above Hamiltonian can be brought to the form similar t®itmy-
model. Indeed, lef2 denote the set af points uniformly distributed on the unit sphere
in R9-1; we may think of these are vertices ofjssimplex (or regulag-hedron). The cases
g = 2, 3, 4 are depicted in this figure:

N /
o]
A\ %4

Explicitly, the elements of2 are vectory,, o = 1, ..., q such that
1, if a =8,
Vo - Vg = . ﬁ (1.8)
—1 otherwise.

(You may prove the existence of such vectors by inductiom 9t is easy to check that
if S, corresponds tey andS, to gy, then

q 1
S =0, 5 — ——— 1.
S8 = o qmey T g1 (1.9)
and so the Potts Hamiltonian can be written as
HSO=-J> S-S (1.10)

x,y)

with J = J“T‘l.

(4) Liquid-crystal model There are many models that describe materials known to many
of us from digital displays: liquid crystals. The distinct feature of such materials is the
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presence of orientational ordering where certain grains assume distinct relative orientation
despite the fact that the system as a whole is rotationally invariant. One of the simplest
models describing such situations is as follows: Consider s@ires S"~* with uniform a

priori measure. The Hamiltonian is

H(S) =-J > (S S)” (1.11)

x.y)

The dot product implies global rotation invariance, the square takes care of the fact that
reflection of any of the spins should not change the energy (i.e., ontyrigtationnot the
directionof the spin matters).

As for the Potts model, the Hamiltonian can again be brought to the form similar to the
O(n)-model. Indeed, given a spid e S"~* with Cartesian componen8,, o = 1,...,n,
define an x n matrix Q by

1
Qup =SS — 0ap (1.12)

(The subtraction of the identity is rather arbitrary at this point; the goal is to achieve zero
trace and thus reduce the number of independent variables charact€izmg — 1—
which is exactly as many degrees of freedon&dms.) As is easy to check,® < Sand

Q < Svia the above formula, then

~ = 1
Tr(QQ) = (S- 5% - = (1.13)
SinceQ is symmetric, the trace evaluates to

Tr(QQ) = D QusQus (1.14)
a.p

which is the canonical scalar productorx n matrices. In such language the Hamiltonian
again takes the form known from tt@(n) model.

At the point we pause to remark that all of the above Hamiltonians may be cast in the form
1 2
H :+§XZyZJX,y|s(—sy| (1.15)

This is possible because, in all cases, the norig.0f constant; the above formula ex-
tends the nearest-neighbor interaction to arbitrary length by introducing suitaiyiing
constants ,J,. The model thus obtained bears striking similarity to our last example:

(5) Gradient free fieldLet Q = R, uo = Lebesgue measure and Rix, y) be the transition

kernel of a random walk o®. We assume tha&(x, y) = P(0, y — x). We will denote the
variables bypy; the Hamiltonian is

1
Hg) =5 2 PO, Yy — 60° (1.16)
X,y
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This can be rewritten as

H@) = (. A= P)g) oo =1 Er-p(d. ) (1.17)

where experts on harmonic analysis of Markot chains will recogfiize(¢, ¢) to be the
Dirichlet form associated with the generato—1P of the above random walk. Once we
introduce Gibbs measures, the joint law of thewill be Gaussian; hence the name of the
model.

Note that the only difference between (1.15) and (1.16) is that the spin variables are gen-
erally confined to a subset of a Euclidean space—which will ultimately mean their law is
not Gaussian. One purpose of this course is to show how this similarity can be exploited
to provide information on the models (1.15). The key wor@aussian dominatio(cf the

title of this course).

1.3 Gibbs formalism

To describe the statistical-mechanical properties of the above models, we resort to the for-
malism of Gibbs-Boltzmann distributions. First we define measure in finite volume: Given
a finite setA ¢ Z9 and a boundary conditioB,c we define theéSibbs measurén A to be

the measure o given by

S e FHA(S)

sy = -

(&) LLo@S0. (29
K XeA

Here > 0 is theinverse temperature-in physics termsg = kBiT where lg is the Boltz-

mann constant and@l is the temperature measured in Kelvins—ahd;(Sx<) is theparti-
tion function

To extend this concept to infinite volume we have two options:

(1) Consider all possible weak cluster points of the famﬂ)}fﬁ)} asA 1 Z9 (with the
boundary condition possibly varying with).

(2) Identify a distinguishing property of Gibbs measures and use this to define infinite
volume objects directly.

While approach (1) is ultimately very useful in practical problems, option (2) is more ele-
gant at this level of generality. The requisite “distinguishing property” is as follows:

Lemma 1.1 [DLR condition] LetA c A c Z9 be finite sets and let,$ € Q*°. Then
(for 1 $%-ace. Sie), ] ]

15 (- [She) = 15 0. (1.19)
In simple terms, conditioning a measure Anon the configuration imA \ A, we get the
Gibbs measure i\ with the corresponding boundary condition.
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This leads to:

Definition 1.2 [DLR Gibbs measures] A probability measure ofZ’ is called aninfinite
volume Gibbs measuffer interaction H and inverse temperatugeif for all A ¢ Z% and
u-a.e. e,
(- [Sve) = 1557 0) (1.20)
(Sac)

whereyu ;" is defined using the Hamiltonian H.
We will use® to denote the set of all infinite volume Gibbs measures at inverse tempera-

ture f (assuming the model is clear from the context). It is clear &)ais convex.
Here are some straightforward, nonetheless important consequences of these definitions:

(1) As aconsequence of Lemma 1.1, any weak cluster poi@tﬁ@f)) isin&g.

(2) By the Backward Martingale ConvergenceAif 1 Z9 andu e &, then foru-a.e.
. . . (SAC) ..
spin configuratiorSthe sequencg, ", has a weak limit.

. . . . . Spe) .
(3) The measure: is extremal in the simplexb iff the limit of ﬂE\nAj}; is the same for
w-almost all spin configurationS.

Similarly direct is the proof of the following “continuity” property:

(4) Let H, be a sequence of Hamiltonians converging—in the sup-norm on the potentials
® ,—to HamiltonianH, and f, is a sequence witl#, — B < oo. Let u, be a
sequence of corresponding Gibbs measures. Thetonverges to a Gibbs measure
for HamiltonianH and inverse temperatuye

Now we give a meaning to the terms often used vaguely by physicists:

Definition 1.3 [Phase coexistence]We say that the model is @hase coexistenc@r
undergoes dst-order phase transitipwhenever the parameters are such thég| > 1.

The simplest example where this happens is the Ising modelALet {1, ..., L} and
consider the Ising model i with all boundary spins set te-1. This is the so called
plus boundary conditionAs a consequence of stochastic domination—which we will not
d?scuss' here#j{b/j - ﬂf asL — oo. Similarly, uy, , — w~. Itturns out that, in
dimensiong > 2 there existg.(d) € (0, co) such that

B>ped) = utF#u” (1.21)

while for < fc(d), the set of all infinite volume Gibbs measures is a singleton. We will
prove similar statements in all of the models introduced above.

1.4 Torus measures

In the above, we always put a boundary condition in the complement of the finite. set
However, it is sometimes convenient to consider other boundary conditions. One possibility
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is to ignore the existence af® complement altogether—this leads to the so cafted
boundary condition Another possibility is to wrap\ into a graph without boundary—
typically a torus. This is the case périodicor torus boundary conditions

Consider the toru¥, which we define a$Z/LZ)% endowed with the corresponding (pe-
riodicized) nearest-neighbor relation. For nearest-neighbor interactions, the corresponding
Hamiltonian is defined easily, but some care is needed for interactions that can be of arbi-
trary range. IfS € QT we define théorus Hamiltonian H (S) by

H.(S) = H,, (periodic extension oS to Z%) (1.22)

where we recalA| = {1, ..., L}. ForH(S) = %Zw JeySc - S, we thus get
1
HL(S =35> 45S S (1.23)
X’y

whereJ;) are the periodicized coupling constants

I =" Jyiz (1.24)

ze7d

The Gibbs measure dd"t is then defined accordingly:

e AHL(S
ZL,ﬂ

L p(dS) = [T #0(@S) (1.25)

xeTL

whereZ_ ;4 is the torus partition function. The following holds:

Lemma 1.4 Every (weak) cluster point @, g)L>1 liesin®g.

Thereis something to prove here because, due to (1.24), the interaction depehds on

1.5 Some thermodynamics

For historical, and also practical reasons, many accounts of statistical mechanics start with
the notion of free energy. We will need this notion only tangentially—it suffices to think of
the free energy as a cumulant generating function—in the proofs of phase coexistence. The
relevant statement is as follows:

Theorem 1.5 For x e Z9 let 7, be the shift-by-x which is defined %Sy = S
Letg: Q2" —5 R be a bounded, local function and let ; be the torus measures. Then:

(1) The limit
1
f(h = lim =logE,,, <exp(h > go zx)} (1.26)
XETL

exists for all he R and is convex in h.
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(2) If u € B, is translation invariant, then

of
oh— h:oS E.(@) = aF‘h:o' (1.27)

(3) There exist translation-invariant, ergodic measur€se & such that

of

E,:(g) = ah_i‘h:o‘ (1.28)

Proof of (1). The existence of the limit follows by standard subbadditivity arguments. In
fact, for compact state-spaces and bounded interactions, the mgaguceuld be replaced

by any sequence of Gibbs measureg\inwith (even variable) boundary conditions. The
convexity of f follows by Holder inequality. O

Proof of (2).Let 1 € &4 be translation invariant and abbreviate

z.(h) = Eﬂ{exp(h > go TX)} (1.29)

XeAL
Since logZ, is convex inh, we have for any > 0 that
0
l0g Z, (M) 109 2. (0) = h—-log Zu (h)] _

=hE, (D go ) = hIALIE ().

XeAL

(1.30)

Dividing by |A_|, passing toL — oo and applying independence éfon the boundary
condition, we get
f(h) = £(0) > hE,(9). (1.31)

Divide byh and leth |, 0 to get one half of (1.27). The other half is proved analogousdly.

Proof of (3). A variant of proof of (2) shows that if:;, is a translation-invariant Gibbs
measure for the Hamiltonian modified by adding the terth/5) >, g o 7«, then

of

of
oh- < Eu(9 < e (1.32)

In particular, ifh > 0 we have

of of

E —_— —_— 1.

-

by the monotonicity of derivatives of convex functions. Taking 0 and extracting a weak
limit from un, we get a Gibbs measufe" € &, such that

of

E.+(9) > hF (1.34)

‘h:o'
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(The expectations converge becaugés a local—and thus continuous, in the product
topology—function.) Applying (2) we verify (1.28) fau ™.

The measure:™ is translation invariant and so it remains to show thatcan actually be
chosen ergodic. To that end let us first prove that

1

T > gor — Ew(@. in w*-probability (1.35)

XeAL

The random variables on the left are bounded by the nomreoid have expectatid,+(Q)
so it suffices to prove that the limsup is no larger than the expectation. However, if that
weren't the case, we would have

ﬂ+(z gory > (E#+(g) —I—E)|A|_|) > € (1.36)

XeAL

for somee > 0 and some sequence lok. But then for allh > 0,

E,+ [exp(h > go TX)] > eeMINE,+ @+ (1.37)
XeAL
This implies
f(h) > h(E,+(g) +¢) (1.38)

which cannot hold for alh > 0 should the right-derivative of ath = 0 be equaE,+(g).
Hence (1.35) holds.

By the Pointwise Ergodic Theorem, the limit in (1.35) occurs-almost surely. This im-

plies that the same must be true for any measure in the decompositiohiofo ergodic
components. By classic theorems from Gibbs-measure theory, every measure in this de-
composition is also iB,; and so we can chooge" ergodic. O

The above theorem is very useful for the proofs of phase coexistence. Indeed, one can often
prove some estimates that via (1.27) imply tlias not differentiable ah = 0. Then one
applies (1.28) to infer the existence of two distinct, ergodic Gibbs measures saturating the
bounds in (1.27). Examples of the approach will be discussed momentarily.

1.6 Literature remarks

This chapter contains only the absolute minimum we need for understanding the rest of
the course. For a comprehensive treatment of Gibbs-measure theory, we refer to books by
Israel, Simon and Georgii. The acronym DLR stands for Dobrushin and Lanford-Ruelle
who first introduced the idea of conditional definition of infinite volume Gibbs measures.
The O(n) model goes back to Heisenberg, the Ising model was introduced by Lenz and
given to Ising as a thesis problem. An excellent reference for liquid crystals is the classic
monograph by de Gennes. The tetrahedral representation of the Potts model can be found
in Wu'’s review article on the Potts model; the matrix representation of the liquid-crystal
model goes back to (at least) Zagrebnov.



