
Chapter 1

Lattice spin models: Crash course

1.1 Basic setup

Here we will discuss the basic setup of the models to which we will direct our attention
throughout this course. The basic ingredients are as follows:

• Lattice: We will take thed-dimensional hypercubic latticeZd as our underlying graph.
This is a graph with vertices at all points inRd with integer coordinates and edges
between anynearest neighborpair of vertices, which are those at Euclidean distance
one. We will use〈x, y〉 to denote a nearest-neighbor pair.

• Spins: At eachx ∈ Zd we will consider a spinSx, by which we will mean a random
variable taking values in a closed subset� of Rν , for someν ≥ 1. We will useSx · Sy

to denote a scalar product betweenSx andSy (Euclidean or otherwise).

• Spin configurations: For 3 ⊂ Zd, we will refer toS3 = (Sx)x∈3 as the spin configu-
ration in3. We will be generically interested in describing the statistical properties of
such spin configurations with respect to certain (canonical) measures.

• Boundary conditions: To describe the law ofS3, we will not be able to ignore that there
are (in general) also the spins outside3. We will refer toS3c as the boundary condition.
The latter will usually be fixed and may often even be considered a parameter of the
game. When bothS3 andS3c are known, we will write

S = (S3, S3c) (1.1)

to denote their concatenation on all ofZd.

The above setting incorporates rather varied physical interpretations. The spins may be
thought of as describing magnetic moments of atoms in a crystal, displacement of atoms
from their equilibrium position or even orientation of grains in nearly-crystalline granular
materials.

To define the dynamics of such spin systems, we will need to specify the energetics. This
is conveniently done by prescribing theHamiltonian which is a function on the spin-
configuration space�Zd

that tells us how much energy each spin configuration has. Of
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course, to have all quantities well defined we need to fix afinite volume 3 ⊂ Zd and
compute only the energy in3. The most general formula we need is

H3(S) =

∑
A⊂Zd finite

A∩36=∅

8A(S) (1.2)

where8A is a function that depends only onSA. To make everything well defined, we
require e.g. that8A is translation invariant and that

∑
A30 ‖8A‖∞ < ∞. (The infinity

norm may be replaced by some other norm, should the need to talk about unbounded spin
systems arise.) It is often more convenient—and is invariably done by physicist—to write
the above as a formal sum

H(S) =

∑
A

8A(S) (1.3)

with the above specific understanding in the situation where rigorous definition is required.

The energy is not sufficient on its own to determine the spin system; we also need to specify
thea priori measureon the spins. This will be done by prescribing a Borel measureµ0 on�

(which may or may not be finite); the spin configurations (in finite volume) will be “dis-
tributed” according to the product measure, e.g., thea priori law of S3 is

⊗
x∈3 µ0(dSx).

1.2 Examples

Here are a few examples of spin systems:

(1) O(n)-model: Here� = Sn−1
= {z ∈ Rn : |z|2 = 1} with µ0 = surface measure. The

Hamiltonian is
H(S) = −J

∑
〈x,y〉

Sx · Sy (1.4)

where the dot denotes the usual (Euclidean) dot-product inRn and J ≥ 0. (The sign ofJ
can be reversed by reversing the spins on the odd sublattice ofZd.)

Note that ifA ∈ O(n)—i.e., A is ann-dimensional orthogonal matrix—then

ASx · ASy = Sx · Sy (1.5)

and soH(AS) = H(S). Since alsoµ0 ◦ A−1
= µ0, the model possesses aglobal rotation

invariance(with respect to simultaneous rotation of all spins).

Two instances of this model are known by other names:n = 2 is therotor modelwhile
n = 3 is the (classical)Heisenberg ferromagnet.

(2) Ising model: Formally, this isO(1)-model. Explicitly, the spin variablesσx take values
in � = {−1, +1} with uniforma priori measure; the Hamiltonian is

H(σ) = −J
∑
〈x,y〉

σxσy (1.6)
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Note that the energy is smaller when the spins at nearest neighbors align and higher when
they antialign. A similar statement holds, of course, for allO(n) models. This is due to the
choice of the signJ ≥ 0 which makes these modelsferromagnets.

(3) Potts model: This is a generalization of the Ising model to more spin states. Explicitly,
we fix q ∈ N and letσx take values in{1, . . . , q} (with uniform a priori measure). The
Hamiltonian is

H(σ) = −J
∑
〈x,y〉

δσx,σy (1.7)

so the energy is−J whenσx andσy “align” and zero otherwise. Theq = 2 case is the Ising
model andq = 1 may be related to bond percolation onZd (via so calledFortuin-Kasteleyn
representationleading to arandom-cluster model).

It turns out that the above Hamiltonian can be brought to the form similar to theO(n)-
model. Indeed, let� denote the set ofq points uniformly distributed on the unit sphere
in Rq−1; we may think of these are vertices of aq-simplex (or regularq-hedron). The cases
q = 2, 3, 4 are depicted in this figure:

Explicitly, the elements of� are vectorŝvα, α = 1, . . . , q such that

v̂α · v̂β =

{
1, if α = β,

−
1

q−1, otherwise.
(1.8)

(You may prove the existence of such vectors by induction onq.) It is easy to check that
if Sx corresponds toσx andSy to σy, then

Sx · Sy =
q

q − 1
δσx,σ̃y −

1

q − 1
(1.9)

and so the Potts Hamiltonian can be written as

H(S) = − J̃
∑
〈x,y〉

Sx · Sy (1.10)

with J̃ = J q−1
q .

(4) Liquid-crystal model: There are many models that describe materials known to many
of us from digital displays: liquid crystals. The distinct feature of such materials is the
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presence of orientational ordering where certain grains assume distinct relative orientation
despite the fact that the system as a whole is rotationally invariant. One of the simplest
models describing such situations is as follows: Consider spinsSx ∈ Sn−1 with uniform a
priori measure. The Hamiltonian is

H(S) = − J̃
∑
〈x,y〉

(Sx · Sy)
2 (1.11)

The dot product implies global rotation invariance, the square takes care of the fact that
reflection of any of the spins should not change the energy (i.e., only theorientationnot the
directionof the spin matters).

As for the Potts model, the Hamiltonian can again be brought to the form similar to the
O(n)-model. Indeed, given a spinS ∈ Sn−1 with Cartesian componentsSα, α = 1, . . . , n,
define an × n matrix Q by

Qαβ = SαSβ −
1

n
δαβ (1.12)

(The subtraction of the identity is rather arbitrary at this point; the goal is to achieve zero
trace and thus reduce the number of independent variables characterizingQ to n − 1—
which is exactly as many degrees of freedom asShas.) As is easy to check, ifQ ↔ Sand
Q̃ ↔ S̃via the above formula, then

Tr(QQ̃) = (S · S̃)2
−

1

n
. (1.13)

SinceQ is symmetric, the trace evaluates to

Tr(QQ̃) =

∑
α,β

Qαβ Q̃αβ (1.14)

which is the canonical scalar product onn × n matrices. In such language the Hamiltonian
again takes the form known from theO(n) model.

At the point we pause to remark that all of the above Hamiltonians may be cast in the form

H = +
1

2

∑
x,y

Jx,y|Sx − Sy|
2 (1.15)

This is possible because, in all cases, the norm ofSx is constant; the above formula ex-
tends the nearest-neighbor interaction to arbitrary length by introducing suitablecoupling
constants Jxy. The model thus obtained bears striking similarity to our last example:

(5) Gradient free field: Let � = R, µ0 = Lebesgue measure and letP(x, y) be the transition
kernel of a random walk onZd. We assume thatP(x, y) = P(0, y − x). We will denote the
variables byφx; the Hamiltonian is

H(φ) =
1

2

∑
x,y

P(x, y)(φy − φx)
2. (1.16)
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This can be rewritten as

H(φ) =
(
φ, (1 − P)φ

)
L2(Zd)

= : E1−P(φ, φ) (1.17)

where experts on harmonic analysis of Markot chains will recognizeE1−P(φ, φ) to be the
Dirichlet form associated with the generator 1− P of the above random walk. Once we
introduce Gibbs measures, the joint law of theφx will be Gaussian; hence the name of the
model.

Note that the only difference between (1.15) and (1.16) is that the spin variables are gen-
erally confined to a subset of a Euclidean space—which will ultimately mean their law is
not Gaussian. One purpose of this course is to show how this similarity can be exploited
to provide information on the models (1.15). The key word isGaussian domination(cf the
title of this course).

1.3 Gibbs formalism

To describe the statistical-mechanical properties of the above models, we resort to the for-
malism of Gibbs-Boltzmann distributions. First we define measure in finite volume: Given
a finite set3 ⊂ Zd and a boundary conditionS3c we define theGibbs measurein 3 to be
the measure on�3 given by

µ
(S3c)
3,β (dS3) =

e−βH3(S)

Z3,β(S3c)

∏
x∈3

µ0(dSx). (1.18)

Hereβ ≥ 0 is theinverse temperature—in physics terms,β =
1

kBT where kB is the Boltz-
mann constant andT is the temperature measured in Kelvins—andZ3,β(S3c) is theparti-
tion function.

To extend this concept to infinite volume we have two options:

(1) Consider all possible weak cluster points of the family{µ
(S3c)
3,β } as3 ↑ Zd (with the

boundary condition possibly varying with3).

(2) Identify a distinguishing property of Gibbs measures and use this to define infinite
volume objects directly.

While approach (1) is ultimately very useful in practical problems, option (2) is more ele-
gant at this level of generality. The requisite “distinguishing property” is as follows:

Lemma 1.1 [DLR condition] Let 3 ⊂ 1 ⊂ Zd be finite sets and let S1c ∈ �1c
. Then

(for µ
(S1c)
1,β -a.e. S3c),

µ
(S1c)
1,β

(
·
∣∣S3c

)
= µ

(S3c)
3,β (·). (1.19)

In simple terms, conditioning a measure in1 on the configuration in1 \ 3, we get the
Gibbs measure in3 with the corresponding boundary condition.
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This leads to:

Definition 1.2 [DLR Gibbs measures] A probability measure on�Zd
is called aninfinite

volume Gibbs measurefor interaction H and inverse temperatureβ if for all 3 ⊂ Zd and
µ-a.e. S3c,

µ
(
·
∣∣S3c

)
= µ

(S3c)
3,β (·) (1.20)

whereµ
(S3c)
3,β is defined using the Hamiltonian H.

We will useGβ to denote the set of all infinite volume Gibbs measures at inverse tempera-
tureβ (assuming the model is clear from the context). It is clear thatGβ is convex.

Here are some straightforward, nonetheless important consequences of these definitions:

(1) As a consequence of Lemma 1.1, any weak cluster point of(µ
(S3c)
3,β ) is in Gβ .

(2) By the Backward Martingale Convergence, if3n ↑ Zd andµ ∈ Gβ , then forµ-a.e.

spin configurationS the sequenceµ
(S3c

n
)

3n,β has a weak limit.

(3) The measureµ is extremal in the simplexGβ iff the limit of µ
(S3c

n
)

3n,β is the same for
µ-almost all spin configurationsS.

Similarly direct is the proof of the following “continuity” property:

(4) Let Hn be a sequence of Hamiltonians converging—in the sup-norm on the potentials
8A—to HamiltonianH , andβn is a sequence withβn → β < ∞. Let µn be a
sequence of corresponding Gibbs measures. Thenµn converges to a Gibbs measure
for HamiltonianH and inverse temperatureβ.

Now we give a meaning to the terms often used vaguely by physicists:

Definition 1.3 [Phase coexistence]We say that the model is atphase coexistence(or
undergoes a1st-order phase transition) whenever the parameters are such that|Gβ | > 1.

The simplest example where this happens is the Ising model. Let3L = {1, . . . , L}
d and

consider the Ising model in3L with all boundary spins set to+1. This is the so called
plus boundary condition. As a consequence of stochastic domination—which we will not
discuss here—µ+

3L ,β → µ+ as L → ∞. Similarly, µ−

3L ,β → µ−. It turns out that, in
dimensionsd ≥ 2 there existsβc(d) ∈ (0, ∞) such that

β > βc(d) ⇒ µ+
6= µ− (1.21)

while for β < βc(d), the set of all infinite volume Gibbs measures is a singleton. We will
prove similar statements in all of the models introduced above.

1.4 Torus measures

In the above, we always put a boundary condition in the complement of the finite set3.
However, it is sometimes convenient to consider other boundary conditions. One possibility
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is to ignore the existence of3c complement altogether—this leads to the so calledfree
boundary condition. Another possibility is to wrap3 into a graph without boundary—
typically a torus. This is the case ofperiodicor torus boundary conditions.

Consider the torusTL which we define as(Z/LZ)d endowed with the corresponding (pe-
riodicized) nearest-neighbor relation. For nearest-neighbor interactions, the corresponding
Hamiltonian is defined easily, but some care is needed for interactions that can be of arbi-
trary range. IfS ∈ �TL we define thetorus Hamiltonian HL(S) by

HL(S) = H3L (periodic extension ofS to Zd) (1.22)

where we recall3L = {1, . . . , L}
d. For H(S) =

1
2

∑
x,y Jx,ySx · Sy we thus get

HL(S) =
1

2

∑
x,y

J(L)
x,y Sx · Sy (1.23)

whereJ(L)
x,y are the periodicized coupling constants

J(L)
x,y =

∑
z∈Zd

Jx,y+Lz. (1.24)

The Gibbs measure on�TL is then defined accordingly:

µL ,β(dS) =
e−βHL (S)

ZL ,β

∏
x∈TL

µ0(dSx) (1.25)

whereZL ,β is the torus partition function. The following holds:

Lemma 1.4 Every (weak) cluster point of(µL ,β)L≥1 lies inGβ .

Thereis something to prove here because, due to (1.24), the interaction depends onL.

1.5 Some thermodynamics

For historical, and also practical reasons, many accounts of statistical mechanics start with
the notion of free energy. We will need this notion only tangentially—it suffices to think of
the free energy as a cumulant generating function—in the proofs of phase coexistence. The
relevant statement is as follows:

Theorem 1.5 For x ∈ Zd let τx be the shift-by-x which is defined by(τx S)y = Sy−x.
Let g: �Zd

→ R be a bounded, local function and letµL ,β be the torus measures. Then:

(1) The limit

f (h) = lim
L→∞

1

Ld
log EµL ,β

{
exp

(
h

∑
x∈TL

g ◦ τx

)}
(1.26)

exists for all h∈ R and is convex in h.
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(2) If µ ∈ Gβ is translation invariant, then

∂ f

∂h−

∣∣∣
h=0

≤ Eµ(g) ≤
∂ f

∂h+

∣∣∣
h=0

. (1.27)

(3) There exist translation-invariant, ergodic measuresµ±
∈ Gβ such that

Eµ±(g) =
∂ f

∂h±

∣∣∣
h=0

. (1.28)

Proof of (1). The existence of the limit follows by standard subbadditivity arguments. In
fact, for compact state-spaces and bounded interactions, the measureµL ,β could be replaced
by any sequence of Gibbs measures in3L with (even variable) boundary conditions. The
convexity of f follows by Hölder inequality.

Proof of (2).Let µ ∈ Gβ be translation invariant and abbreviate

ZL(h) = Eµ

{
exp

(
h

∑
x∈3L

g ◦ τx

)}
(1.29)

Since logZL is convex inh, we have for anyh > 0 that

log ZL(h) − log ZL(0) ≥ h
∂

∂h
log ZL(h)

∣∣∣
h=0

= hEµ

( ∑
x∈3L

g ◦ τx

)
= h|3L |Eµ(g).

(1.30)

Dividing by |3L |, passing toL → ∞ and applying independence off on the boundary
condition, we get

f (h) − f (0) ≥ hEµ(g). (1.31)

Divide byh and leth ↓ 0 to get one half of (1.27). The other half is proved analogously.

Proof of (3). A variant of proof of (2) shows that ifµh is a translation-invariant Gibbs
measure for the Hamiltonian modified by adding the term−(h/β)

∑
x g ◦ τx, then

∂ f

∂h−
≤ Eµh(g) ≤

∂ f

∂h+
. (1.32)

In particular, ifh > 0 we have

Eµh(g) ≥
∂ f

∂h−
≥

h>0

∂ f

∂h+

∣∣∣
h=0

(1.33)

by the monotonicity of derivatives of convex functions. Takingh ↓ 0 and extracting a weak
limit from µh, we get a Gibbs measureµ+

∈ Gβ such that

Eµ+(g) ≥
∂ f

∂h+

∣∣∣
h=0

. (1.34)
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(The expectations converge becauseg is a local—and thus continuous, in the product
topology—function.) Applying (2) we verify (1.28) forµ+.

The measureµ+ is translation invariant and so it remains to show thatµ+ can actually be
chosen ergodic. To that end let us first prove that

1

|3L |

∑
x∈3L

g ◦ τx −→
L→∞

Eµ+(g), in µ+-probability (1.35)

The random variables on the left are bounded by the norm ofg and have expectationEµ+(g)

so it suffices to prove that the limsup is no larger than the expectation. However, if that
weren’t the case, we would have

µ+

( ∑
x∈3L

g ◦ τx >
(
Eµ+(g) + ε

)
|3L |

)
> ε (1.36)

for someε > 0 and some sequence ofL ’s. But then for allh > 0,

Eµ+

{
exp

(
h

∑
x∈3L

g ◦ τx

)}
≥ εe|3L |h[Eµ+ (g)+ε] . (1.37)

This implies
f (h) ≥ h

(
Eµ+(g) + ε

)
(1.38)

which cannot hold for allh > 0 should the right-derivative off at h = 0 be equalEµ+(g).
Hence (1.35) holds.

By the Pointwise Ergodic Theorem, the limit in (1.35) occursµ+-almost surely. This im-
plies that the same must be true for any measure in the decomposition ofµ+ into ergodic
components. By classic theorems from Gibbs-measure theory, every measure in this de-
composition is also inGβ and so we can chooseµ+ ergodic.

The above theorem is very useful for the proofs of phase coexistence. Indeed, one can often
prove some estimates that via (1.27) imply thatf is not differentiable ath = 0. Then one
applies (1.28) to infer the existence of two distinct, ergodic Gibbs measures saturating the
bounds in (1.27). Examples of the approach will be discussed momentarily.

1.6 Literature remarks

This chapter contains only the absolute minimum we need for understanding the rest of
the course. For a comprehensive treatment of Gibbs-measure theory, we refer to books by
Israel, Simon and Georgii. The acronym DLR stands for Dobrushin and Lanford-Ruelle
who first introduced the idea of conditional definition of infinite volume Gibbs measures.
The O(n) model goes back to Heisenberg, the Ising model was introduced by Lenz and
given to Ising as a thesis problem. An excellent reference for liquid crystals is the classic
monograph by de Gennes. The tetrahedral representation of the Potts model can be found
in Wu’s review article on the Potts model; the matrix representation of the liquid-crystal
model goes back to (at least) Zagrebnov.


