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1 Introduction

Exact real arithmetical algorithms have been introduced in an unpublished
manuscript of Gosper [5] and developped by Vuillemin [16], Potts [14] or Kor-
nerup and Matula [10, 9]. These algorithms perform a sequence of input ab-
sorptions and output emissions and update their inner state which may be a
(2× 2× 2)-tensor in the case of binary operations like addition or multiplication
or a (2× 2)-matrix in the case of a Möbius transformation. If the norm of these
matrices remains bounded, then the algorithm runs only through a finite number
of states and can be therefore computed by a finite state transducer. Delacourt
and Kůrka [3] show that this happens if the digits of the number system are
represented by modular matrices, i.e., by matrices with integer entries and unit
determinant. This generalizes a result of Raney [15] that a Möbius transfor-
mation can be computed by a finite state transducer in the number system of
continued fractions. Frougny [4] shows that in positional number systems with
an irrational Pisot base β > 1, the addition can be also computed by a finite
state transducer.

In the opposite direction, Konečný [8] shows that under certain assump-
tions, a finite state transducer can compute only Möbius transformations. In
the present paper we strenghten and generalize this result and show that if an
analytic function is computed by a finite state transducer in a number system
with sofic expansion subshift, then this function is a Möbius transformation
(Theorem 10). Since modular number systems have some disadvantages (slow
convergence), we address the question whether a Möbius transformation can be
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computed by a finite state transducer also in nonmodular systems which are ex-
pansive, so that they converge faster. Kůrka and Delacourt [13] show that in the
bimodular number system (which extends the binary signed system) the compu-
tation of a Möbius transformation has an asymptotically linear time complexity.
Although the norm of the state matrices is not bounded, it remains small most
of the time. In the present paper we show that this result cannot be improved.
For any expansive number systems whose transformations have integer entries
and determinant at most 2 there exists a Möbius transformation which cannot
be computed by a finite state transducer (Theorem 15).

2 Subshifts

For a finite alphabet A denote by A∗ =
∪

m≥0 A
m the set of finite words. The

length of a word u = u0 . . . um−1 ∈ Am is |u| = m. Denote by AN the Cantor
space of infinite words with the metric

d(u, v) = 2−k, where k = min{i ≥ 0 : ui ̸= vi}.

We say that v ∈ A∗ is a subword of u ∈ A∗ ∪AN and write v ⊑ u, if v = u[i,j) =

ui . . . uj−1 for some 0 ≤ i ≤ j ≤ |u|. The shift map σ : AN → AN is defined
by σ(u)i = ui+1. A subshift is a nonempty set Σ ⊆ AN which is closed and
σ-invariant, i.e., σ(Σ) ⊆ Σ. If D ⊆ A∗ then

ΣD = {u ∈ AN : ∀v ⊑ u, v ̸∈ D}

is the subshift (provided it is nonempty) with forbidden wordsD. Any subshift
can be obtained in this way. A subshift is uniquely determined by its language
L(Σ) = {v ∈ A∗ : ∃u ∈ Σ, v ⊑ u}. A nonempty language L ⊆ A∗ is extend-
able, if for each word u ∈ L, each subword v of u belongs to L, and there exists
a letter a ∈ A such that ua ∈ L. If Σ is a subshift, then L(Σ) is an extendable
language and conversely, for each extendable language L ⊆ A∗ there exists a
unique subshift Σ ⊆ AN such that L = L(Σ). The cylinder of a finite word
u ∈ L(Σ) is the set of infinite words with prefix u: [u] = {v ∈ Σ : v[0,|u|) = u}.

3 Finite accepting automata

We consider finite automata which accept (regular) extendable languages, so the
classical definition simplifies: we do not need accepting states (see Kůrka [11]).

Definition 1 A (deterministic) finite automaton over an alphabet A is a
triple A = (B, δ, ι), where B is a finite set of states, δ : A×B → B is a partial
transition function, and ι ∈ B is an initial state.

A finite automaton determines a labelled graph, whose vertices are states p ∈ B
and whose labelled edges are p a−→ q provided δ(a, p) = q. For each a ∈ A we have
a partial mapping δa : B → B defined by δa(p) = δ(a, p) and for each u ∈ A∗ we
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have a partial mapping δu : B → B defined by δu = δu|u|−1
◦ · · · ◦ δu0 . We write

∃δu(p) if δu is defined on p. For u ∈ AN we write ∃δu(p) if ∃δu[0,n)
(p) for each

prefix u[0,n) of u. The follower set of a state p ∈ B is Fp = {u ∈ AN : ∃δu(p)}.
We assume that every state of A is accessible from the initial state, i.e., for

every q ∈ B there exists u ∈ A∗ such that δu(ι) = q. The states that are not
accessible can be omitted without changing the function of the automaton. The
language accepted by A is LA = {u ∈ A∗ : ∃δu(ι)}, so a word u is accepted iff
there exists a path with source ι and label u. We say that Σ ⊆ AN is a sofic
subshift, if its language is regular iff it is accepted by a finite automaton, i.e., if
there exists an automaton A such that Σ = Fι = {u ∈ AN : ∃δu(ι)}.

4 Möbius transformations

On the extended real line R = R∪{∞} we have homogeneous coordinates
x = (x0, x1) ∈ R2 \ {(0, 0)} with equality x = y iff det(x, y) = x0y1 − x1y0 = 0.
We regard x ∈ R as a column vector, and write it usually as x = x0

x1
, for example

∞ = 1
0 . A real Möbius transformation (MT) is a self-map of R of the form

M(x) =
ax+ b

cx+ d
=

ax0 + bx1

cx0 + dx1
,

where a, b, c, d ∈ R and det(M) = ad− bc ̸= 0. If det(M) > 0, we say that M is
increasing. An MT is determined by a (2× 2)-matrix which we write as a pair
of fractions of its left and right column M = (ac ,

b
d ). If m ̸= 0, then (ma

mc ,
mb
md )

determines the same transformation as M . Denote by M(R) the set of real MT
and by M+(R) the set of increasing MT. The composition of MT corresponds to
the product of matrices. The inverse of a transformation is (ac ,

b
d )

−1 = ( d
−c ,

−b
a ).

Denote by Mn the n-th iteration of M .
The stereographic projection h(z) = (iz + 1)/(z + i) maps R to the unit

circle T = {z ∈ C : |z| = 1} in the complex plane. For each M ∈ M(R) we get

a disc Möbius transformation M̂ : T → T given by M̂(z) = h ◦M ◦ h−1(z).
The circle derivation of M at x ∈ R is

M•(x) = |M̂ ′(h(x))| = | det(M)| · ||x||2

||M(x)||2
,

where ||x|| =
√
x2
0 + x2

1. The trace and norm of M = (ac ,
b
d ) ∈ M+(R) are

tr(M) =
|a+ d|√
ad− bc

, ||M || =
√
a2 + b2 + c2 + d2√

ad− bc
.

We say that x ∈ R is a fixed point of M if M(x) = x. If M = (ac ,
b
d ) is not the

identity, M(x) = x yields a quadratic equation bx2
0+(d− a)x0x1− cx2

1 = 0 with
discriminant D = (a− d)2 +4bc = (a+ d)2 − 4(ad− bc), so D ≥ 0 iff tr(M) ≥ 2.
If tr(M) < 2, then M has no fixed point and we say that M is elliptic. If
tr(M) = 2, then M has one fixed point and we say that M is parabolic. If
tr(M) > 2, then M has two fixed points and we say that M is hyperbolic.
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Definition 2 The similarity, translation and rotation are transformations
with matrices

Sr =

(
r

0
,
0

1

)
, Tt =

(
1

0
,
t

1

)
, Rt =

(
cos t

2

− sin t
2

,
sin t

2

cos t
2

)
.

Sr is a hyperbolic transformation with the fixed points 0,∞. Tt is a parabolic
transformation with the fixed point ∞, and Rt is an elliptic transformation.

Definition 3 We say that transformations P,Q ∈ M+(R) are conjugated if
there exists a transformation M ∈ M(R) such that Q = M−1PM .

Conjugated transformations have the same dynamical properties and the
same trace. A direct computation shows that tr(PQ) =

∑
i,j PijQji = tr(QP ).

It follows that if Q = M−1PM , then tr(Q) = tr(PMM−1) = tr(P ). If x is a
fixed point of P , then y = M−1x is a fixed point of Q and Q•(y) = P •(x).

Theorem 4 (Beardon [2])

1. Transformations P,Q ∈ M+(R) are conjugated iff tr(P ) = tr(Q).
2. Each hyperbolic transformation P is conjugated to a similarity with quotient

0 < r < 1. P has an unstable fixed point u(P ) and a stable fixed point s(P )
such that limn→∞ Pn(x) = s(P ) for each x ̸= u(P ).

3. Each parabolic transformation P is conjugated to the translation T1(x) =
x+ 1. P has a unique fixed point s(P ) such that limn→∞ Pn(x) = s(P ) for
each x ∈ R.

4. Each elliptic transformation is conjugated to a rotation Rt with 0 < t ≤ π.

5 Möbius number systems

An iterative system over a finite alphabet A is a system of Möbius transfor-
mations F = {Fa ∈ M+(R) : a ∈ A}. For each finite word u ∈ An, we have
the composition Fu = Fun−1

◦ · · · ◦ Fu0
, so Fuv(x) = Fv(Fu(x)) for any uv ∈ A∗

(Fλ = IdR is the identity). The convergence space XF ⊆ AN and the value
function Φ : XF → R are defined by

XF = {u ∈ AN : lim
n→∞

F−1
u[0,n)

(i) ∈ R}, Φ(u) = lim
n→∞

F−1
u[0,n)

(i).

Here i is the imaginary unit. If u ∈ XF then Φ(u) = limn→∞ F−1
u[0,n)

(z) for every

complex z with positive imaginary part and also for most of the real z. The
concept of convergence space is related to the concept of convergence of infinite
product of matrices considered in the theory of weighted finite automata (see
Culik II et al. [6] or Kari et al [7]).

Proposition 5 (Kůrka [12]) Let F be an iterative system over A.

1. For v ∈ A+, u ∈ AN we have vu ∈ XF iff u ∈ XF , and then Φ(vu) =
F−1
v (Φ(u)).
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2. For v ∈ A+ we have v∞ ∈ XF iff Fv is not elliptic. In this case Φ(v∞) =
s(F−1

v ) is the stable fixed point of F−1
v .

Definition 6 We say that (F,Σ) is a number system if F is an iterative
system and Σ ⊆ XF is a subshift such that Φ : Σ → R is continuous and
surjective. We say that (F,Σ) is an expansive number system if for each
u ∈ Σ, we have F •

u0
(Φ(u)) > 1. We say that (F,Σ,A) is a sofic number

system, if (F,Σ) is a number system and A is a finite automaton with LA =
L(Σ).

If (F,Σ) is expansive, then the convergence in Φ(u) = limn→∞ F−1
u[0,n)

(i) is

geometric. In nonexpansive systems this convergence may be much slower (see
Delacourt and Kůrka [13]).
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p Φ(Fp)

ι R
1 [−1, 1

2
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∞
), Φ(01∞)]
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∞
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∞
), Φ(1∞)]

0 [ 1
4
,− 1

4
] = [Φ(101

∞
), Φ(101∞)]

Fig. 1. The accepting automaton of the subshift of the binary signed system with
forbidden words D = {10, 00, 10, 00, 11, 11} (left) and Φ-images of the follower sets
(right). Here [ 1

4
,− 1

4
] = {x ∈ R : x ≥ 1

4
or x ≤ − 1

4
} ∪ {∞} is an unbounded interval

which contains ∞.

Example 1 The binary signed system (F,ΣD) has alphabet A = {1, 0, 1, 0},
transformations

F1(x) = 2x+ 1, F0(x) = 2x, F1(x) = 2x− 1, F0(x) = x/2,

and forbidden words D = {10, 00, 10, 00, 11, 11}.

The digits 1, 0 stand for −1 and ∞. A finite word of ΣD can be written as 0
m
u,

where m ≥ 0 and u ∈ {1, 0, 1}∗. If |u| = n then

F−1
0
m
u
(x) = 2m

(u0

2
+ · · ·+ un−1

2n
+

x

2n

)
,

so for u ∈ {1, 0, 1}N we get

Φ(0
m
u) = lim

n→∞
F−1
0
m
u
(i) =

∑
i≥0

ui · 2m−i−1.
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Thus ΣD ⊆ XF and Φ : ΣD → R is continuous and surjective. The subshift ΣD

is sofic. Its accepting automaton has states B = {ι, 1, 0, 1, 0}, initial state ι and
transitions which can be seen in Figure 1 left. Computing for each p ∈ B the
minimum and maximum of paths which start at p, we obtain the Φ-images of
the follower sets in Figure 1 right.

6 Finite state transducers

Definition 7 A finite state transducer over an alphabet A is a quadruple T =
(B, δ, τ, ι), where (B, δ, ι) is a finite automaton over A and τ : A×B → A∗ is a
partial output function with the same domain as δ.

For each u ∈ A we have a partial mapping τu : B → A∗ defined by induction:
τλ(p) = λ, τua(p) = τu(p)τ(a, δu(p)) (concatenation). The output mapping works
also on infinite words. If u is a prefix of v, then τu(p) is a prefix of τv(p), so for
each p ∈ B and u ∈ AN we have τu(p) ∈ A∗ ∪ AN. A finite state transducer
determines a labelled oriented graph, whose vertices are elements of B. There is

an oriented edge p a/v
−→ q iff δa(p) = q and τa(p) = v. The label of a path is the

concatenation of the labels of its edges, so there is a path p u/v
−→ q iff δu(p) = q

and τu(p) = v.

Definition 8 We say that a finite state transducer T = (B, δ, τ, ι) computes a
real function G : R → R in a number system (F,Σ) with sofic expansion subshift
Σ, if for any u ∈ AN we have ∃δu(ι) iff u ∈ Σ and in this case Φ(τu(ι)) =
G(Φ(u)).

Proposition 9 Assume that a finite state transducer T computes a real function
G in a number system (F,Σ) with sofic expansion subshift. Then for every state
p ∈ B there exists a real function Gp : Φ(Fp) → R such that if w ∈ Fp and
τw(p) = z, then Φ(z) = GpΦ(w). We say that T computes Gp at the state p. If
u, v ∈ L(Σ), δu(p) = q and τu(p) = v then Gq = FvGpF

−1
u .

Proof. Assume that ι u/v
−→ p w/z

−→ and set Gp = FvGF−1
u . By Proposition 5,

GpΦ(w) = FvGF−1
u Φ(w) = FvGΦ(uw) = FvΦ(vz) = Φ(z),

so T computes Gp at p. If p u/v
−→ q w/z

−→ , then

FvGpF
−1
u Φ(w) = FvGpΦ(uw) = FvΦ(vz) = Φ(z),

so T computes FvGpF
−1
u at q and must be equal to Gq.

7 Analytic functions

A real function G : R → R is analytic, if it can be written as a power series
G(x) =

∑
n≥0 an(x−w)n in a neighbourhood of every point w ∈ R. For w = ∞

this means that the function G(1/x) is analytic at 0. Every rational function,
i.e., a ratio of two polynomials is analytic in R. The functions ex, sinx or cosx
are analytic in R but not in R.
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Lemma 1 Let G : R → R be a nonzero analytic function and let F0, F1 ∈
M+(R) be hyperbolic transformations such that F0G = GF1. Then G is a rational
function.

Proof. Any hyperbolic transformation is conjugated to a similarity Sr(x) = rx
with 0 < r < 1. Thus there exist transformations f0, f1 and 0 < r0, r1 < 1 such
that F0 = f0Sr0f

−1
0 , F1 = f1Sr1f

−1
1 . For H = f−1

0 Gf1 we get

Sr0H = Sr0f
−1
0 Gf1 = f−1

0 F0Gf1 = f−1
0 GF1f1 = Hf−1

1 F1f1 = HSr1 .

Since G is analytic, H also is analytic and H(x) = a0 + a1x + a2x
2 + · · · in a

neighbourhood of zero, so

r0a0 + r0a1x+ r0a2x
2 + · · · = a0 + a1r1x+ a2r

2
1x

2 + · · ·

Since r0 ̸= 0 we get a0 = 0. If n is the first integer with an ̸= 0, then r0 = rn1 .
For m > n we get rn1 am = amrm1 , so am = 0. Thus H(x) = anx

n and therefore
G = f0Hf−1

1 is a rational function.

Konečný [8] proves essentially Lemma 1 but makes the assumption that the
derivation of G at the fixed point of F1 is nonzero, i.e., H ′(0) ̸= 0 which implies
that H is linear. Without the assumption of analyticity, we would get a much
larger class of functions. Given 0 < r0, r1 < 1, let h : [r1, 1] → [r0, 1] be any
continuous function with h(r1) = r0, h(1) = 1. Then the function H : (0,∞) →
(0,∞) defined by H(x) = rn0 · h(r−n

1 · x) for rn+1
1 ≤ x ≤ rn1 , n ∈ Z, satisfies

H(r1x) = r0H(x). We can defineH similarly on (−∞, 0), and if we setH(0) = 0,
H(∞) = ∞, then H : R → R is continuous but not necessarily analytic or
differentiable.

To exclude rational functions of degree n ≥ 2, we prove Lemma 2. Recall
that the degree of a rational function is the maximum of the degree of the
numerator and denominator, so rational functions of degree 1 are just Möbius
transformations.

Lemma 2 Let G be a rational function of degree n ≥ 2, and let F0, F1, F2, F3 ∈
M+(R) be hyperbolic transformations such that F0G = GF1, F2G = GF3. Then
F2 has the same fixed points as F0 and F3 has the same fixed points as F1.

Proof. By Lemma 1 there exist transformations f0, f1 and 0 < r0, r1 < 1 such
that F0 = f0Sr0f

−1
0 , F1 = f1Sr1f

−1
1 , and H = f−1

0 Gf1 is a function of the form
H(x) = pxn with n ≥ 2. Since G = f0Hf−1

1 , we get

f−1
0 F2f0H = f−1

0 F2Gf1 = f−1
0 GF3f1 = Hf−1

1 F3f1.

Setting f−1
0 F2f0 = (ac ,

b
d ), f

−1
1 F3f1 = (AC , B

D ) we get

(apxn + b)(Cx+D)n = p(cpxn + d)(Ax+B)n

Comparing the coeficients at x2n and x2n−1 we get aCn = pcAn, aCn−1D =
pcAn−1B. Thus pcAnD = aCnD = pcAn−1BC, so pcAn−1(AD −BC) = 0 and
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therefore cA = 0 and it follows aC = 0. Comparing the coeficients at x and x0,
we get bCDn−1 = pdABn−1, bDn = pdBn, so pdABn−1D = bcDn = pdCBn and
pdBn−1(AD−BC) = 0. Thus dB = 0 and it follows bD = 0. We have therefore
proved cA = aC = dB = bD = 0. It follows that either A = D = a = d = 0 or
B = C = b = c = 0. In the former case, F2 and F3 would be elliptic which is
excluded by the assumption. Thus B = C = b = c = 0, so both f−1

0 F2f0 and
f−1
1 F3f1 have the fixed points 0 and ∞, which are also fixed points of Sr0 and
Sr1 . It follows that F2 has the same fixed points as F0 and F3 has the same fixed
points as F1.

Lemma 3 Let G : R → R be an analytic function and let F0, F1 ∈ M+(R) be
parabolic transformations such that F0G = GF1. Then G ∈ M(R) is a MT.

Proof. A parabolic transformation is conjugated to the translation T1(x) = x+1.
Thus there exist transformations f0, f1 such that F0 = f0T1f

−1
0 , F1 = f1T1f

−1
1 .

For H = f−1
0 Gf1 we get T1H = HT1. The function H0(x) = H(x) − x is then

periodic with period 1, i.e., H0(x + 1) = H0(x). Since H0 is analytic at ∞, it
must be zero, otherwise it would not be even continuous at ∞. Thus H(x) = x
and G is an MT.

Lemma 4 Let G : R → R be an analytic function and let F0, F1 ∈ M+(R) be
transformations such that F0G = GF1. If one of the F0, F1 is hyperbolic and the
other is parabolic, then G is the zero function.

Proof. LetH = f−1
0 Gf1 as in the proof of Lemma 3. IfH(x)+1 = H(r1x), where

H(x) = a0 + a1x + · · ·, then we get a0 + 1 = a0 which is impossible. Suppose
r0 ·H(x) = H(x+ 1) with 0 < r0 < 1. If H(0) = 0, then H(n) = 0 for all n ∈ Z
and H = 0, since H is continuous at ∞. If H(0) ̸= 0, then H(n) = H(0) · rn0 , so
limn→∞ H(n) = 0, limn→−∞ H(n) = ∞ which is impossible.

Theorem 10 Let (F,Σ) be a number system with sofic subshift Σ. If G : R → R
is a nonzero analytic function computed in Σ by a finite state transducer, then
G ∈ M(R) is a Möbius transformation (the determinant of G may be negative).

Proof. Let ι u/v
−→ p w/z

−→ p be a path in the graph of the transducer. By Proposition
9, Gp = FvGF−1

u is analytic and GpFw = FzGp. By Proposition 5, Fw, Fz

cannot be elliptic and by Lemma 1, 3, 4, Gp must be a rational function, so
G = F−1

v GpFu is rational too. Assume by contradiction that the degree of G is
at least n ≥ 2. Then all Gp must have degree n and by Lemma 3 and 4, Fu, Fv

must be hyperbolic whenever p u/v
−→ p. Take any infinite path u/v. There exists

a state p ∈ B which occurs infinitely often in this path, so we have words u(i),
v(i) such that u = u(0)u(1)u(2) · · · and

ι u(0)/v(0)

−→ p u(1)/v(1)

−→ p u(2)/v(2)

−→ p · · · .

By Lemma 2, all Fu(i) with i > 0 have the same fixed points. It follows that
Φ(u) = F−1

u(0)(s), where s is one of the fixed points of Fu(1) . However the set

of such numbers is countable, while the mapping Φ : Σ → R is assumed to be
surjective, so we have a contradiction. Thus Gp ∈ M(R) and therefore G ∈ M(R).
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8 Rational transformations and intervals

Denote by Z the set of integers and by Q = {x ∈ Z2 \ { 0
0} : gcd(x) = 1} the

set of (homogeneous coordinates of) rational numbers which we understand as a
subset of R. Here gcd(x) is the greatest common divisor of x0 and x1. The norm
||x|| =

√
x2
0 + x2

1 of x ∈ Q does not depend on the representation of x. We have

the cancellation map d : Z2 \ { 0
0} → Q given by d(x) = x0/ gcd(x)

x1/ gcd(x) . Denote by

Z2×2 the set of 2× 2 matrices with integer entries and

M(Z) = {M ∈ Z2×2 : gcd(M) = 1, det(M) > 0}.

We say that a Möbius transformation is rational if its matrix belongs to M(Z).
For x ∈ Q we distinguish M · x ∈ Z2 from Mx = d(M · x) ∈ Q. For

M = (ac ,
b
d ) ∈ Z2×2 denote by d(M) = (a/gc/g ,

b/g
d/g ), where g = gcd(M), so we

have a cancellation map d : Z2×2 \ {( 00 ,
0
0 )} → M(Z). We distinguish the matrix

multiplication M · N from the multiplication MN = d(M · N) in M(Z). The
inverse of M = (ac ,

b
d ) ∈ M(Z) is M−1 = ( d

−c ,
−b
a ), so M · M−1 = det(M) · I,

MM−1 = I.

Lemma 5 If M,N ∈ M(Z), then g = gcd(M · N) divides both det(M) and
det(N).

Proof. Clearly g divides M−1 ·M ·N = det(M) ·N . Since gcd(N) = 1, g divides
det(M). For the similar reason, g divides det(N).

Definition 11 A number system (F,Σ) is rational, if all its transformations
belong to M(Z). A rational number system is modular, if all its transformations
have determinant 1.

Theorem 12 (Delacourt and Kůrka [3]) If (F,Σ) is a sofic modular num-
ber system, then each transformation M ∈ M+(Z) can be computed in (F,Σ) by
a finite state transducer.

Proposition 13 A modular number system cannot be expansive.

Proof. Assume by contradiction that a modular system (F,Σ) is expansive and
let u ∈ Σ be such that Φ(u) = 0, so F •

u0
(0) > 1. If Fu0 = (ac ,

b
d ), then F •

u0
(0) =

1
b2+d2 > 1, so b = d = 0 and therefore det(Fu0) = 0 which is a contradiction.

9 The binary signed system

It is well-known that in redundant number systems, the addition can be com-
puted by a finite state transducer (see e.g. Avizienis [1] or Frougny [4]), provided
both operands are from a bounded interval. The binary signed system of Exam-
ple 1 is redundant, since the intervals Vp = Φ(Fp) overlap: their interiors cover
whole R. It is not difficult to show that any linear function G(x) = rx, where r is
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rational, can be computed by a finite state transducer. This is based on the fact
that the matrices Fv ·Gp · F−1

u have a common factor which can be cancelled:

( 10 ,
0
2m ) · (p0 ,

0
q ) · (

2n

0 , 0
1 ) = ( 2

np
0 , 0

2mq ),

( 2
m

0 , −b
1 ) · (p0 ,

0
q ) · (

1
0 ,

a
2n ) = ( 2

mp
0 , 2map−2nbq

2nq ),

On the other hand we have

Proposition 14 The function G(x) = x+ 1 is not computable by a finite state
transducer in the binary signed system.

Proof. Assume that T = (B, δ, τ, ι) computes G(x) = x+ 1. Since τ0∞(ι) = 0
∞
,

there exists p ∈ B and r, s ≥ 0, m,n > 0 such that ι 0
r
/0

s

−→ p 0
n
/0

m

−→ p. However,
for Gp = F0

sGF−1
0
r = ( 2

r

0 , 1
2s ) we get

F0
mGpF

−1
0
n = ( 10 ,

0
2m ) · ( 2

r

0 , 1
2s ) · (

2n

0 , 0
1 ) = ( 2

r+n

0 , 1
2m+s ) ̸= Gp.

and this is a contradiction.

10 Bimodular systems

We are going to prove another negative result concerning the computation of a
Möbious transformations in expansive number systems. We say that a rational
number system (F,Σ) is bimodular, if Fa ∈ M(Z) and det(Fa) ≤ 2 for each
a ∈ A. Kůrka and Delacourt [13] show that there exists a bimodular number
system (which extends the binary signed system) in which the computation of a
Möbius transformation has an asymptotically linear time complexity. Although
the norm of the state matrices is not bounded, it remains small most of the time.
We show that this result cannot be improved. There exist transformations which
cannot be computed by a finite state transducer.

Lemma 6 Assume F ∈ M(Z) and det(F ) ≤ 2.
1. If F •(0) > 1, then either F = ( 2c ,

0
1 ), F (0) = 0, or F = (a2 ,

−1
0 ), F (0) = ∞.

2. If F •(∞) > 1, then either F = ( 0
−1 ,

2
d ), F (∞) = 0, or F = ( 10 ,

b
2 ), F (∞) = ∞.

Proof. Let F = (ac ,
b
d ). If F

•(0) = det(F )
b2+d2 > 1, then det(F ) = 2 since b, d cannot

be both zero. Thus b2 + d2 < 2 and b, d ∈ {−1, 0, 1}, so either F = (2c ,
0
1 ) or

F = (a2 ,
−1
0 ). If F •(∞) = det(F )

a2+c2 > 1, then det(F ) = 2, a, c ∈ {−1, 0, 1} and

either F = ( 10 ,
b
2 ), or F = ( 0

−1 ,
2
d ).

Theorem 15 Let (F,Σ) be a rational bimodular system. Then there exists a
transformation G ∈ M(Z) which cannot be computed by a finite state transducer
in (F,Σ).
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Proof. Denote by mod2 the modulo 2 function. Choose any transformation G
such that G(0) = 0 and mod2(G) = ( 01 ,

0
0 ), e.g., G(x) = 2x

x+2 . Pick a word u ∈ Σ
with Φ(u) = 0 and assume that we have a finite state transducer which computes
G on u with the result v, so Φ(v) = 0. The computation of the transducer
determines a path whose vertices compute functions Gn,m = Fv[0,m)

GF−1
u[0,n)

and

in each transition we have either Gn,m
un/λ−→ Gn+1,m or Gn,m

λ/vn−→ Gn,m+1. We
show by induction that during the process no cancellation ever occurs: either
det(Gn+1,m) = 2 det(Gn,m) or det(Gn,m+1) = 2 det(Gn,m). Denote by xn =
Φ(u[n,∞)) = Fu[0,n)

Φ(u) = Fu[0,n)
(0), so x0 = 0 and ym = Fv[0,m)

GΦ(u) =
Fv[0,m)

(0), so y0 = 0. Denote by Hn,m = mod2(Gn,m). We show by induction
that xn, ym ∈ {0,∞}, and Hn,m is determined by xn, ym by the table

xn, ym 0, 0 0,∞ ∞, 0 ∞,∞
Hn,m ( 01 ,

0
0 ) (

1
0 ,

0
0 ) (

0
0 ,

0
1 ) (

0
0 ,

1
0 )

If xn = ym = 0, then F •
un

(0) > 1 so by Lemma 6 either xn+1 = FunFu[0,n)
(0) =

Fun(xn) = 0 and then Hn+1,m = ( 01 ,
0
0 ) · (

0
c ,

0
1 )

−1 = ( 01 ,
0
0 ) · (

1
c ,

0
0 ) = ( 01 ,

0
0 ),

or xn+1 = ∞ and then Hn+1,m = ( 01 ,
0
0 ) · (

a
0 ,

1
0 )

−1 = ( 01 ,
0
0 ) · (

0
0 ,

1
a ) = ( 00 ,

0
1 ).

Similarly F •
vm

(0) > 1 so by Lemma 6 either ym+1 = 0 and then Hn,m+1 =
( 0c ,

0
1 ) · (

0
1 ,

0
0 ) = ( 01 ,

0
0 ), or ym+1 = ∞ and then Hn,m+1 = (a0 ,

1
0 ) · (

0
1 ,

0
0 ) = ( 10 ,

0
0 ).

If (xn, ym) = (0,∞), then either xn+1 = 0 and Hn+1,m = ( 10 ,
0
0 ) · (

1
c ,

0
0 ) = ( 10 ,

0
0 ),

or xn+1 = ∞ and Hn+1,m = ( 10 ,
0
0 ) · (

0
0 ,

1
a ) = ( 00 ,

1
0 ), or ym+1 = 0 and Hn,m+1 =

( 01 ,
0
d ) · (

1
0 ,

0
0 ) = ( 01 ,

0
0 ), or ym+1 = ∞ and Hn,m+1 = ( 10 ,

b
0 ) · (

1
0 ,

0
0 ) = ( 10 ,

0
0 ).

If (xn, ym) = (∞, 0) then either xn+1 = 0 and Hn+1,m = ( 00 ,
0
1 ) · (

d
1 ,

0
0 ) = ( 01 ,

0
0 ),

or xn+1 = ∞ and Hn+1,m = ( 00 ,
0
1 ) · (

0
0 ,

b
1 ) = ( 00 ,

0
1 ), or ym+1 = 0 and Hn,m+1 =

( 0c ,
0
1 ) · (

0
0 ,

0
1 ) = ( 00 ,

0
1 ) or ym+1 = ∞ and Hn,m+1 = (a0 ,

1
0 ) · (

0
0 ,

0
1 ) = ( 00 ,

1
0 ).

If (xn, yn) = (∞,∞) then either xn+1 = 0 and Hn+1,m = ( 00 ,
1
0 ) · (

d
1 ,

0
0 ) = ( 10 ,

0
0 ),

or xn+1 = ∞ and Hn+1,m = ( 00 ,
1
0 ) · (

0
0 ,

b
1 ) = ( 00 ,

1
0 ), or ym+1) = 0 and Hn,m+1 =

( 01 ,
0
d ) · (

0
0 ,

1
0 ) = ( 00 ,

0
1 ), or ym+1 = ∞ and Hn,m+1 = ( 10 ,

b
0 ) · (

0
0 ,

1
0 ) = ( 00 ,

1
0 ). It

follows that in all cases det(Gn,m) = 2n+m det(G). If n + m ̸= n′ + m′, then
Gn,m ̸= Gn′,m′ and the corresponding states of the transducer must be different.
Thus the number of states cannot be finite.

11 Conclusions

We have shown that the only analytical functions in extended real line com-
putable by finite state transducers in Möbius number systems are Möbius trans-
formations. However, many questions remain still open. For example, without
the assumption of analyticity, we obtain a wider class of functions. Namely, in
the signed binary system from Example 1, the function f(x) = |x| can be also
computed by a finite state transducer. Thus the question arises, which continu-
ous, or differentiable (to some degree) functions can be computed in such a way.
Similarly, one can also ask which “wild” functions, such as nowhere continuous,
or continuous but nowhere differentiable function, can be computable by finite
state transducers in Möbius number systems.
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