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Abstract. We characterize interval Möbius number systems with sofic
expansion subshifts and show that they can be obtained as factors of interval
Möbius number systems with expansion subshifts of finite types. The endpoints
of interval cylinders of such systems can be computed by a simple formula which
generalizes the computation of Farey fractions in the Stern-Brocot graph. We
treat in detail the bimodular number system which has many nice properties and
could be used for exact real computer arithmetic.
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1. Introduction

Möbius number systems (MNS) have been introduced in Kůrka [4] and [5] as a
generalization of both positional number systems and continued fractions. Real
numbers are represented by infinite words from a one-sided subshift. The letters of
the alphabet represent real Möbius transformations and the concatenation of letters
corresponds to the composition of transformations. In Kůrka and Kazda [8] we
have investigated interval MNS which are determined by an interval cover or almost-
cover indexed by the alphabet. Given a number x, we find an interval to which
x belongs, take the inverse image of x by the corresponding transformation and
repeat the procedure. The expansion subshift consists of all infinite words obtained.
Using the concept of expansion quotient, we have given conditions which ensure that
the extended real line is a factor of the expansion subshift. In Kůrka [6] we have
investigated rational MNS in which rational numbers have periodic or preperiodic
expansions.

In the present paper we study interval MNS whose expansion subshifts are of finite
type or sofic. It turns out that the expansion subshift cannot be of finite type when
the interval almost-cover is actually a cover. The important class of redundant MNS
which admit efficient arithmetic algorithms thus cannot be of finite type. Nevertheless,
any system with sofic expansion subshift is a factor of a system with the expansion
subshift of finite type. For expansion subshifts of finite type we have a simple formula
which computes the endpoints of interval cylinders from the endpoints of the parent
interval cylinders. This is a generalization of the computation of Farey fractions in the
Stern-Brocot graph, which works for the parabolic modular system (see Niqui [10] and
Kůrka [6]). However, modular systems whose transformations have unit determinant
cannot be redundant and arithmetic algorithms do not work for them.

In order that a redundant interval MNS has a sofic expansion subshift and admits
the generalized Stern-Brocot formula, it must have some symmetries and satisfy some



constraints. We treat in detail the simplest system with these properties. It consists
of the only eight transformations with integer entries, determinant 2, norm 6, and
trace 3. It has several sofic expansion subshifts, some of them being redundant. The
generalized Stern-Brocot formula works nicely in this system.

2. Möbius transformations

The extended real line R = R ∪ {∞} can be regarded as a projective space, i.e.,
the space of one-dimensional subspaces of the two-dimensional vector space. On R

we have homogenous coordinates x = (x0, x1) ∈ R̂ = R2 \ {(0, 0)} and R = R̂/ ≈,

where x ≈ y iff det(x, y) = x0y1 − x1y0 = 0. We regard x ∈ R̂ as a column vector,
and write it usually as x = x0/x1, for example ∞ = 1/0. The stereograhic projection
h(z) = (iz+1)/(z+i) maps R to the unit circle ∂D = {z ∈ C : |z| = 1} and the upper
half-plane U = {z ∈ C : ℑ(z) > 0} conformally to the unit disc D = {z ∈ C : |z| < 1}.
Define the circle distance on R by

̺(x, y) = 2 arcsin
|x0y1 − y0x1|√

(x20 + x21)(y
2
0 + y21)

,

which is the length of the shortest arc joining h(x) and h(y) in ∂D.
A real orientation-preserving Möbius transformation (MT) is a self-map of R

of the form M(a,b,c,d)(x) =
ax+b
cx+d = ax0+bx1

cx0+dx1
where a, b, c, d ∈ R and det(M(a,b,c,d)) =

ad−bc > 0. MT act also on the upper half-plane U. On D = D∪∂D we get disc Möbius
transformation defined by M̂(a,b,c,d)(z) = h ◦M(a,b,c,d) ◦ h−1(z) = (αz + β)/(βz + α),
where α = (a + d) + (b − c)i, β = (b + c) + (a − d)i. The circle derivation and the
expansion interval of M are defined by

M•(x) := lim
y→x

̺(M(y),M(x))

̺(y, x)
=

det(M) · ||x||2
||M(x)||2 ,

V(M) := {x ∈ R : (M−1)•(x) > 1},
where ||x|| =

√
x20 + x21 is the norm of x. If M = Rα = M(cos α

2 ,sin α
2 ,− sin α

2 ,cos α
2 ) is a

rotation by α then M•(x) = 1 for all x ∈ R and V(M) is empty. Otherwise V(M)
is a proper set interval, i.e., a nonempty open connected set properly included in R.
A Möbius transformation M is hyperbolic if it has the stable fixed point sM ∈ R

with M•(sM ) < 1 and the unstable fixed point uM ∈ R with M•(uM ) > 1. A
transformation is parabolic if it has a unique fixed point sM ∈ R with M•(sM ) = 1.
It is elliptic if it has no fixed point in R.

3. Intervals

A set interval is an open connected subset of R. A proper interval is a nonempty set
interval properly included in R. We represent proper intervals by (2 × 2)-matrices
whose columns are their left and right endpoints. In the calculation of the Farey
fractions by the Stern-Brocot formula, an interval I = (x, y) = (x0

x1
, y0

y1
) is cut into two

intervals I0 = (x, x0+y0

x1+y1
) and I1 = (x0+y0

x1+y1
, y) (see Figure 2). These two intervals can

be obtained from I by matrix multiplication

I0 =

[
x0 y0
x1 y1

]
·
[

1 1
0 1

]
, I1 =

[
x0 y0
x1 y1

]
·
[

1 0
1 1

]
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To carry out such computations, we regard the endpoints of intervals as elements
of R̂ rather than elements of R = R̂/ ≈. Equivalent but different representations

would give different results. The stereographic projection applied to x = r sinα
r cosα ∈ R̂

gives h(x) = sin 2α − i cos 2α = ei(2α−
π
2 ), so it duplicates the angles. Intervals with

endpoints x = r sinα
r cosα , y = s sin β

s cos β where 0 ≤ α < 2π, α < β < α + π can therefore

represent any proper interval. Since det(x, y) = x0y1 − x1y0 = rs sin(α − β) < 0, we
define matrix intervals as (2× 2)-matrices with negative determinant, which we write
as pairs I = (ac ,

b
d ) of their left and right endpoints l(I) = a

c , r(I) = c
d . The set of

matrix intervals is therefore

I(R) = {(ac , bd ) ∈ GL(R, 2) : ad− bc < 0}

The length of an interval is defined by |(ac , bd )| = π + 2arctan ab+cd
ad−bc . Then we get

|( r sinα
r cosα ,

s sin β
s cos β )| = 2(β − α), provided 0 < β − α < π. A matrix interval defines an

open and closed set interval by

z ∈ I ⇔ det(l(I), z) · det(z, r(I)) > 0,

z ∈ I ⇔ det(l(I), z) · det(z, r(I)) ≥ 0.

If I = ( r sinα
r cosα ,

s sin β
s cos β ), then z = t sin γ

t cos γ ∈ I iff either α < γ < β or α + π < γ < β + π.

For two intervals I, J ∈ I(R) we have J ⊆ I, (i.e., ∀x ∈ J, x ∈ I) iff either

det(l(I), l(J)) ≤ 0, det(l(J), r(I)) < 0, det(l(I), r(J)) < 0, det(r(J), r(I)) ≤ 0, or
det(l(I), l(J)) ≥ 0, det(l(J), r(I)) > 0, det(l(I), r(J)) > 0, det(r(J), r(I)) ≥ 0.

We write I ≈ J if I ⊆ J and J ⊆ I. The intersection of two intervals need not be an
interval. However, if |I|+ |J | < 2π then I ∩J is a (possibly empty) interval. When we
transform intervals, we work with the matrix representations of MT rather than with
the transformations themselves. Möbius transformations are represented by matrices

M(R) = {M(a,b,c,d) ∈ GL(R, 2) : ad− bc > 0}

which act on vectors x ∈ R̂ by multiplication x 7→ Mx. Two matrices represent the
same MT if one is a nonzero multiple of the other. If M ∈ M(R) and I ∈ I(R), then
both MI and IM are intervals. While MI =M(I) represents the M -image of the set
interval of I, IM is the interval cut from I by M .

4. Subshifts

For a finite alphabet A denote by A∗ =
⋃

m≥0A
m the set of finite words and

by A+ =
⋃

m>0A
m the set of finite non-empty words. The length of a word

u = u0 . . . um−1 ∈ Am is |u| = m. We denote by AN the Cantor space of infinite
words with the metric d(u, v) = 2−k, where k = min{i ≥ 0 : ui 6= vi}. We say that
v ∈ A∗ is a subword of u ∈ A∗ ∪ AN and write v ⊑ u, if v = u[i,j) = ui . . . uj−1 for

some 0 ≤ i ≤ j ≤ |u|. Given u ∈ Am and v ∈ Ap with p > 0, denote by u.v ∈ AN

the periodic word with preperiod u and period v defined by (u.v)i = ui for i < m
and (u.v)m+kp+i = vi for i < p, k ≥ 0. The set of periodic words is denoted by
PA = {u ∈ AN : ∃m ≥ 0, ∃p > 0, σm+p(u) = σm(u)} The cylinder of u ∈ An is the set
[u] = {v ∈ AN : v[0,n) = u}. The shift map σ : AN → AN is defined by σ(u)i = ui+1.

A subshift is a nonempty set Σ ⊆ AN which is closed and σ-invariant, i.e., σ(Σ) ⊆ Σ.
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If D ⊆ A+ then ΣD = {x ∈ AN : ∀u ⊑ x, u 6∈ D} is the subshift with forbidden set
D. Any subshift can be obtained in this way. A subshift is uniquely determined by
its language L(Σ) = {u ∈ A∗ : ∃x ∈ Σ, u ⊑ x}. Denote by Ln(Σ) = L(Σ) ∩ An;
in particluar we assume L1(Σ) = A. A map F : Σ0 → Σ1 between two subshifts is
called a morphism, if there exists r > 0 and a local rule f : Lr(Σ0) → L1(Σ1) such
that F (x)i = f(x[i,i+r)) for each x ∈ Σ0 and i ∈ N. A surjective morphism is called

a factor. For u ∈ A+ define σu : AN → AN by σu(v) = uv. Given a subshift Σ ⊆ AN

denote by Ou = {v ∈ Σ : uv ∈ Σ} the follower set of u ∈ L(Σ), so [u] ∩ Σ = σu(Ou).
If uv ∈ L(Σ) then σv(Ouv) ⊆ Ou.

A labelled graph over an alphabet A is a structureG = (V,E, s, t, ℓ), where V = |G|
is the set of vertices, E is the set of edges, s, t : E → V are the source and target
maps, and ℓ : E → A is a labelling function. The subshift ΣG ⊆ AN of G consists
of labels of all infinite paths of G. A subshift is sofic, if it is the subshift of a finite
labelled graph. This happens iff the set {Ou : u ∈ A∗} of its follower sets is finite. In

this case the graph with labelled edges Ou
a→ Oua presents Σ (see Lind and Marcus

[9]). A subshift is of finite type (SFT) of order p, if its forbidden words have length
at most p, i.e., if there exists a forbidden set D ⊂ Ap such that Σ = ΣD. In this case
u ∈ AN belongs to Σ iff all subwords of u of length p belong to L(Σ). A subshift is
sofic iff it is a factor of a subshift of finite type (see Lind and Marcus [9]).

5. Möbius number systems

Definition 1 A Möbius iterative system is a map F : A∗ × R → R, or a family
of orientation-preserving Möbius transformations (Fu : R → R)u∈A∗ satisfying
Fuv = Fu ◦ Fv and Fλ = Id, where λ is the empty word. The convergence space
XF ⊆ AN and the symbolic representation Φ : XF → R are defined by

XF = {u ∈ AN : lim
n→∞

Fu[0,n)
(i) ∈ R},

Φ(u) = lim
n→∞

Fu[0,n)
(i),

where i ∈ U is the imaginary unit. If Σ ⊆ XF is a subshift such that Φ : Σ → R

is continuous and surjective, then we say that (F,Σ) is a Möbius number system
(MNS). We say that a Möbius number system is redundant, if for every continuous
map g : R → R there exists a continuous map f : Σ → Σ such that Φf = gΦ.

Redundancy is necessary for the existence of exact arithmetical algorithms (see
Weihrauch [14], Vuillemin [13], Kornerup and Matula [3], Potts [11] or Potts et al.
[12]). If u ∈ XF then Φ(u) = limn→∞ Fu[0,n)

(z) for every z ∈ U (see Kazda [2]). For

v ∈ A+, w ∈ AN we have vw ∈ XF iff w ∈ XF and then Φ(vw) = Fv(Φ(w)). If Σ ⊆ XF

then vΣ = {vw : w ∈ Σ} ⊆ XF , Φ([v] ∩ Σ) = FvΦ(Ov), and the following diagrams
commute

XF
σv

//

Φ

��

XF

Φ

��

R
Fv

//
R

Σ
σv

//

Φ

��

vΣ

Φ

��

R
Fv

//
R

Ouv
σv

//

Φ

��

Ou

Φ

��

Φ(Ouv)
Fv

// Φ(Ou)

Definition 2 An open almost-cover for a Möbius iterative system F : A∗ ×R → R is
a family of matrix intervals W = {Wa : a ∈ A} such that

⋃
a∈AWa = R. If for each
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a, b ∈ A either Wa ≈ Wb or Wa ∩Wb = ∅ then we say that W is a multipartition. If
moreover Wa 6≈ Wb for a 6= b then we say that W is a partition. If

⋃
a∈AWa = R

then we say that W is a cover. Denote by E(W) = {l(Wa), r(Wa) : a ∈ A} the set of
endpoints of W. The expansion subshift SW is defined by

SW = {u ∈ AN : ∀k > 0,Wu[0,k)
6= ∅}, where

Wu =Wu0
∩ Fu0

Wu1
∩ Fu[0,2)

Wu2
∩ · · · ∩ Fu[0,n)

Wun
, u ∈ An+1.

We call Wu the interval cylinder of u.

It follows Wuv = Wu ∩ FuWv for each uv ∈ L(SW). Multipartitions are used in the
construction of the extension MNS in Definition 9.

Theorem 3 (Kůrka and Kazda [8]) Let F : A∗ × R → R be a Möbius iterative
system and assume that W = {Wa : a ∈ A} is an almost-cover of R such that
Wa ⊆ V(Fa) for all a ∈ A. Then (F,SW) is a Möbius number system. It is redundant
provided W is a cover. For each u ∈ SW and v ∈ L(SW) we have

{Φ(u)} =
⋂

n≥0

Wu[0,n)
, Φ([v] ∩ SW) =Wv.

A stronger theorem which uses the concept of expansion quotient has been proved in
Kůrka and Kazda [8]. Nevertheless our examples satisfy the condition of Theorem 3,
so we adopt it as a definition:

Definition 4 An interval Möbius number system over alphabet A is a pair (F,W),
where F : A∗ × R → R is a Möbius iterative system and W = {Wa : a ∈ A} is an
almost-cover of R such that Wa ⊆ V(Fa) for each a ∈ A.

If (F,W) is an interval MNS then limn→∞ max{|Wu| u ∈ Ln(SW)} = 0. This is an
immediate consequence of the uniform continuity of Φ : SW → R.

6. Expansion subshifts of finite type

Theorem 5 Assume that (F,W) is an interval MNS. Then SW is a SFT of order at
most m+1 iff ∀a ∈ A, ∀u ∈ Lm(SW), (FaWu∩Wa 6= ∅ ⇒ FaWu ⊆Wa). In this case
Wu = Fu[0,n−m]

Wu(n−m,n]
for each u ∈ L(SW) of length at least m+ 1. In particular,

if m = 1 then Wu = Fu[0,n)
Wun

for each u ∈ Ln+1(SW).

Proof: Assume that (F,W) satisfies the condition. Let u ∈ An+1, and suppose that
for all v ⊑ u with |v| = m+ 1 we have Wv 6= ∅. Then

Wu =Wu0
∩ Fu0

Wu[1,m]
∩ Fu[0,m]

Wu[m+1,n]

= Fu0
Wu[1,m]

∩ Fu[0,m]
Wu[m+1,n]

= Fu0
Wu[1,n]

= · · · = Fu[0,n−m]
Wu(n−m,n]

,

and Wu(n−m,n]
6= ∅, so Wu 6= ∅. Conversely, assume by contradiction that SW is

a SFT of order at most m + 1 and that there exist a ∈ A and u ∈ Lm(SW) with
FaWu ∩ Wa 6= ∅ and FaWu 6⊆ Wa. Thus FaWu \ Wa is nonempty and therefore
F−1
u Wu \ F−1

au Wa is nonempty. Since lim|v|→∞ |Wv| = 0, there exists v ∈ L(SW)
such that Wv ⊂ F−1

u Wu \ F−1
au Wa. It follows Wuv = Wu ∩ FuWv 6= ∅ and

Wauv = Wa ∩ FaWu ∩ FauWv = ∅, so au ∈ L(SW), uv ∈ L(SW) but auv 6∈ L(SW).
This is a contradiction.
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Corollary 6 Let (F,W) be an interval MNS with a multipartition W whose endpoint
set E(W) is invariant in the sense that ∀a ∈ A, ∀x ∈Wa∩E(W), F−1

a x ∈ E(W). Then
SW is a SFT of order 2.

Proof: For m = 1, the condition of Theorem 5 can be equivalently stated as

∀a, b ∈ A, (Wb ∩ F−1
a Wa 6= ∅ ⇒ Wb ⊆ F−1

a Wa)

If Wb ∩ F−1
a Wa and Wb 6⊆ F−1

a Wa, then Wb contains an endpoint of F−1
a Wa which,

by the assumption, belongs to E(W). Thus W cannot be a multipartition which is a
contradiction.

Proposition 7 Assume that (F,W) is an interval MNS with the expansion subshift
SW of finite type of order 2. For ab ∈ L2(SW) define the cut matrices by Ψab =
W−1

a FaWb. Then for each uab ∈ LW we have Wuab =WuaΨab.

Indeed, Wuab = FuFaWb = FuWaW
−1
a FaWb = WuaΨab. Thus for every u ∈

Ln+1(SW) we have two ways of computing Wu:

Wu = Fu0
Fu1

· · ·Fun−1
Wun

=Wu0
Ψu0u1

Ψu1u2
· · ·Ψun−1un

.

In arithmetical algorithms (see Kůrka and Kazda [8]), the latter way is more efficient,
since we search for the first n such that the interval cylinder of u[0,n) is sufficiently
small. Unfortunately, redundant MNS in which these arithmetical algorithms work
cannot have expansion subshifts of finite type:

Theorem 8 If (F,W) is an interval MNS and W is a cover of R then SW is not a
SFT.

Proof: By the assumption, {Wu : u ∈ Lm(SW)} is a cover of R for each m. If x is
an endpoint of some F−1

a Wa and m > 0, then there exists u ∈ Lm(SW) with x ∈Wu,
so Wu ∩ F−1

a Wa 6= ∅ but Wu 6⊆ F−1
a Wa. Thus SW is not a SFT of order m+ 1.

7. Sofic expansion subshifts

One of the characterizations of sofic subshifts is that they are factors of subshifts of
finite type. We extend this characterization to MNS. Each interval MNS with sofic
expansion subshift is a factor of an interval MNS with expansion subshift of finite
type and order 2. The extension is obtained by cutting the interval almost-cover into
a sufficiently fine multipartition. There are many redundant MNS with sofic expansion
subshifts and their arithmetical algorithms can be simplified by using their extension
MNS with expansion subshifts of order 2.

Definition 9 Let (F,W) be an interval MNS over an alphabet A. A partition
P = {Pc : c ∈ C} is a refinement of W = {Wa : a ∈ A}, if for each a ∈ A,
c ∈ C we have Pc ⊆ Wa whenever Pc ∩Wa 6= ∅. The extension of (F,W) by P is the
pair (G,V) over the alphabet B = {(a, c) ∈ A× C : Pc ⊆ Wa} defined by V(a,c) = Pc

and G(a,c) = Fa. The projection map ℓ : B → A is given by ℓ(a, c) = a and extends to
the map ℓ : L(SV) → L(SW) and to the morphism ℓ : SV → SW by ℓ(v)i = ℓ(vi).
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Theorem 10 Assume that (F,W) is an interval MNS over an alphabet A, P is a
partition refinement of W and (G,V) is the extension of (F,W) by P. Then (G,V)
is an interval MNS, V is a multipartition, the projection ℓ : SV → SW is a surjective
factor map which commutes with Φ, i.e., ΦG = ΦF ◦ ℓ, and Wu =

⋃{Vv : ℓ(v) = w}
for each u ∈ L(SW). Each w ∈ SW has at most 2 ℓ-preimages. There exists p > 0
such that for each w ∈ LW , the set {v[0,|w|−p] : ℓ(v) = w} has at most two elements.

Proof: Since Vb ⊆ Wℓ(b) ⊆ V(Fℓ(b)) = V(Gb), the pair (G,V) is an interval MNS
and V is clearly a multipartition. We show by induction that Vv ⊆ Wℓ(v) for each
v ∈ L(SV). By the assumption the statement holds for |v| = 1. If the statement
holds for v and av ∈ L(SV) then Vav = Va ∩ GaVv ⊆ Wl(a) ∩ Fℓ(a)Wℓ(v) = Wl(av).
If v ∈ SV then Gv[0,n)

(i) = Fℓ(v)[0,n)
(i) for each n (here i is the imaginary unit), so

v ∈ XG and ΦG(v) = ΦF (ℓ(v)). We show that ℓ : SV → SW is surjective and each
w ∈ SW has at most two ℓ-preimages. For a given w ∈ SW denote by x0 = ΦF (w). If
x0 6∈ E(V), then there exists a unique v0 with x0 ∈ Vv0

and ℓ(v0) = w0, so Gv0
= Fw0

.
If x1 = F−1

w0
(x0) 6∈ E(V), then there exists a unique v1 with x1 ∈ Vv1

and ℓ(v1) = w0

and we continue the construction of vi by induction. If n is the first index for which
xn ∈ E(V), then there exist unique vn, v

′
n with xn = r(Vvn

) = l(Vv′

n
). If xm ∈ E(V)

for some m > n, then we cannot choose vm with xm = l(Vvm
), since in this case Vv

would be empty. Thus we have unique choice for vm, v
′
m with xm = r(Vvm

) = l(Vv′

m
).

It follows that there exist only two v, v′ ∈ SV with ℓ(v) = ℓ(v′) = w. Consider now
the map ℓ : L(SV) → L(SW) which preserves the length of words. Let p be the
smallest integer such that ∀w ∈ Lp(SW), ∀b ∈ B, |Wv| < |Vb|. We show that for each
w ∈ LW with |w| = n > p, the set {v[0,n−p] : ℓ(v) = w} has at most two elements. If
ℓ(v) = w then ∅ 6=Ww ∩Vv =Ww[0,n−p)

∩Fw[0,n−p)
Ww[n−p,n)

∩Gv[0,n−p)
Vv[n−p,n)

. Since
Gv[0,n−p)

= Fw[0,n−p)
, we get Ww[n−p,n)

∩ Vvn−p
⊇ Ww[n−p,n)

∩ Vv[n−p,n)
6= ∅ and there

exist at most two vn−p with this property. Since Gvn−p−1
Vn−p ⊆ Vvn−p−1

, vn−p−1 is
uniquely determined by vn−p and by induction, every vm with m < n− p is uniquely
determined by vn−p.

An immediate consequence of Theorem 10 is that there exists m > 0, such that
each w ∈ L(SW) has at mostm preimages and that all these preimages can be obtained
by a finite transducer whose algorithm is based on the formula

ℓ−1(wc) = {vab : va ∈ ℓ−1(w) & b ∈ ℓ−1(c) & ab ∈ L(SW)}.

Theorem 11 Assume that (F,W) is an interval MNS with a sofic subshift SW . Then
there exists a refinement partition P of W such that in the extension (G,V) of (F,W)
by P, SV is a SFT of order 2. The sofic subshift SW is presented by a graph whose
vertices are sets P ∈ P and labelled edges are P

a→ Q where P ⊆Wa and Fa(Q) ⊆ P .

Proof: Assume that u, v ∈ L(SW) have the same follower sets Ou = Ov. For w ∈ A+

we have Wu ∩ FuWw =Wuw 6= ∅ iff Wv ∩ FvWw =Wvw 6= ∅, so F−1
u Wu ∩Ww 6= ∅ iff

F−1
v Wv ∩Ww 6= ∅. Since {Ww : w ∈ Ln(SW)} is an almost-cover for each n and since

lim|w|→∞ |Ww| = 0, we get F−1
u Wu ≈ F−1

v Wv. Since SW is sofic, the set of its follower
sets is finite, so the set {F−1

u Wu : u ∈ L(SW)} is finite as well. Denote by P the
partition whose endpoints E(P) are all endpoints of all Wa and of all F−1

u Wu, so P is
a refinement of W. We show that if P ∈ P and P ⊆Wa, then both endpoints of F−1

a P
belong to E(P). An endpoint of F−1

a P is either an endpoint of some F−1
a Wa or an
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endpoint of some F−1
a (F−1

u Wu ∩Wa) = F−1
ua (Wu ∩ FuWa) = F−1

ua Wua. In both cases
such an endpoint belongs to E(P). By Corollary 6, SV is a SFT of order 2. Assume

that P0
u0→ P1

u1→ · · · un−1→ Pn is a labelled path, so Pi ⊆ Wui
and Fui

(Pi+1) ⊆ Pi.
Then

Fu[0,n)
Pn ⊆ Fu[0,n−1)

Pn−1 ⊆ · · · · · · ⊆ Fu0
P1 ⊆ P0,

Fu[0,n)
Pn ⊆ Fu[0,n−1)

Wun−1
∩ · · · · · · ∩ Fu0

Wu1
∩Wu0

=Wu[0,n)
,

so Wu[0,n)
6= ∅ and u[0,n) ∈ L(SW). Conversely assume that Wu[0,n)

6= ∅ and

x0 ∈Wu[0,n)
. There exist Pi ∈ P such that x0 ∈ P0 ⊆Wu0

, x1 = F−1
u0

(x0) ∈ P1 ⊆Wu1

and similarly xi = F−1
u[0,i)

(x0) ∈ Pi ⊆ Wui
for all i ≤ n. Since xi ∈ Fui

Pi+1 ∩ Pi 6= ∅,
P0

u0→ P1
u1→ · · · un−1→ Pn is a path in the expansion graph.

Some examples of labelled graphs constructed by Theorem 11 are in Figure 4.

8. Integer Möbius number systems

Denote by Z the set of integers and by Q̂ = Z2 \ { 0
0}. For x = x0

x1
∈ Q̂ we denote by

gcd(x) > 0 the greatest common divisor of x0, x1. Denote by Q = {x ∈ Q̂ : gcd(x) =

1}. Each rational number has two representations in Q. We have the map d : Q̂ → Q

defined by d(x) = x0/ gcd(x)
x1/ gcd(x) . Set

M(Z) = {M ∈ GL(Z, 2) : det(M) > 0, gcd(M) = 1},
I(Z) = {I ∈ GL(Z, 2) : det(I) < 0, gcd(I) = 1},

where gcd(M) > 0 is the greatest common divisor of the entries of M . The norm

of x ∈ Q̂ is ||x|| = x20 + x21 and the norm of M(a,b,c,d) is ||M || = a2 + b2 + c2 + d2.
For M = M(a,b,c,d) ∈ GL(Z, 2) denote by d(M) = M(a/g,b/g,c/g,d/g) ∈ M(Z), where
g = gcd(M). The pseudoinverse ofM isM−1 =M(d,−b,−c,a). With the multiplication
operation M,N 7→ d(MN) and pseudoinvers M−1, M(Z) is a group. Each MT with
integer entries has two representations in M(Z) and each interval with integer entries
has two representations in I(Z). We say that (F,W) is an integer MNS, if Fa ∈ M(Z)
and Wa ∈ I(Z) for each a ∈ A. In integer MNS we have an algorithm for expansion
of rational numbers.

Definition 12 The rational expansion graph of an integer MNS (F,W) is a labelled

graph whose vertices are (x, s) ∈ Q̂× {−, 0,+} and labelled edges are

(x, s)
a→ (F−1

a x, s), if x ∈Wa & s ∈ {−, 0,+},
(x, s)

a→ (F−1
a x,−), if x = r(Wa) & s ∈ {−, 0},

(x, s)
a→ (F−1

a x,+), if x = l(Wa) & s ∈ {0,+}.

Proposition 13 Let (F,W) be an interval MNS and x ∈ Q̂. Then a word u ∈ AN is
the label of a path with source (x, 0) iff u ∈ SW and Φ(u) = x.

See Kůrka [6] for a proof. The expansion algorithm works in Q if we replace the edges

of the expansion graph by (x, s)
a→ (d(F−1

a x), t). Figure 5 shows the expansion graph

of rational numbers of the bimodular system (F,R) in Q (left) and in Q̂ (right).

8



Definition 14 The rational expansion interval of M ∈ M(Z) is defined by

R(M) = {x ∈ R̂ : (M−1)•(x) > det(M)}.

We say that an integer MNS (F,W) is rational, if Wa ⊆ R(Fa) for each a ∈ A.

Note that if x ∈ R(M) and y = M−1x then ||y|| ≤ ||x||. For each M ∈ M we have
R(M) ⊆ V(M) and either R(M) ⊆ ( 01 ,

1
0 ) or R(M) ⊆ (−1

0 ,
0
1 ) (see Kůrka [6]). Thus

if W is a cover, then (F,W) cannot be a rational MNS.

Theorem 15 (Kůrka [6]) In a rational Möbius number system, every expansion of

every rational number is periodic. i.e., Φ−1(Q̂) ⊆ PA ∩ SW .

This follows from the fact that if (x0, 0)
u0→ (x1, s1)

u1→ · · · is a path in the expansion
graph then ||xi+1|| ≤ ||xi||. Theorem 15 holds in the space Q as well. For d ∈ Z \ {0}
define ψd : Q̂ → Q̂ by ψd(x) = dx0/dx1.

Theorem 16 Every rational MNS has a sofic expansion subshift. In this case the
partition P of the extension SFT has a Q̂-invariant endpoint set E(P) ⊂ Q̂ such that
∀x ∈ E(P) ∩ Wa, F

−1
a x ∈ E(P), and if x, y ∈ E(P), x ≈ y, then either x = y or

x = ψ−1(y) = −y0/− y1.

Proof: Start with the set

E0 = {x ∈ Q̂ : ∃a ∈ A, (x ≈ l(Wa) or x ≈ r(Wa)), gcd(x) = 1}.

Thus E0 contains every endpoint of every Wa in two versions x and ψ−1(x) such that

x0 is coprime with x1. Let E1 ⊂ Q̂ be the smallest subset of Q̂ which contains E0 and
has the property that y = F−1

a x ∈ E1 whenever x ∈ E1 ∩Wa. Since ||y|| ≤ ||x|| in this
case, the set E1 is finite. The set E2 = {x ∈ E1 : ∀p > 1, ψp(x) 6∈ E1}. is still invariant.
Let P be the partition with endpoints E(P) = E2. By Corollary 6, the extension of
the system by P is a SFT of order 2.

The Q̂-invariant endpoint set of the bimodular system (F,R) is show in thick in
Figure 5 right.

Proposition 17 Let (F,W) be an integer MNS whose expansion subshift is a SFT of
order 2 and assume that all Fa have the same determinant det(Fa) = d. Then if Wu

and Wua have the common left endpoint, then l(Wua) = ψd(l(Wu)). Similarly for the
right endpoints.

Proof: If ab ∈ L2(SW) and l(Wab) = l(Wa), then F−1
a (l(Wa)) = l(Wb) and

l(Wab) = l(FaWb) = Fal(Wb) = FaF
−1
a l(Wa) = ψd(l(Wa)). If l(Wuab) ≈ l(Wua)

then l(Wuab) = Ful(Wab) = Fuψd(l(Wa)) = ψd(Ful(Wa)) = ψd(l(Wua)).

If the condition of Proposition 17 is satisfied, the neighboring interval cylinders
have the same Q̂-endpoints. Then the system of endpoints of cylinders can be regarded
as a generalized Stern-Brocot graph. Its edges are l(u) → l(ua) and r(u) → r(ua).
See Figure 2 for the Stern-Brocot graph of the parabolic modular system, and Figure
6 for the Stern-Brocot graph of the bimodular system (F,R).
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In integer MNS with expansion subshifts of order 2, the arithmetical algorithms
can be simplified. A general algorithm for the computation of a MT M ∈ M(Z) in a
redundant integer MNS has been given in Kůrka and Kazda [8]. Its simplified version
is in Proposition 19.

Definition 18 Let (F,W) be a redundant integer MNS. The linear graph of (F,W)
is defined as follows: Its vertices are (M,a), where M ∈ M and a ∈ A ∪ {λ}. The
labelled edges are

emission: (M,a)
(c,λ)−→ (F−1

c M,a) if MWa ⊆Wc,

absorption: (M,a)
(λ,b)−→ (MFa, b)

For the empty word λ we set Wλ = R and Fλ = Id. The labels of paths are
concatenation of the labels of their edges. They are pairs (w, u), where u ∈ L(SW)
is the input word and w ∈ L(SW) is the output word. Given M ∈ M and u ∈ SW ,
the lazy algorithm which computes w ∈ SW with Φ(w) = MΦ(u) starts at the
vertex (M,λ), applies the emission action whenever possible and the absorption action
otherwise.

Proposition 19 If (w, u) is the label of a finite path with source (M,λ) and u ∈
L(SW), then w ∈ L(SW) and M(Φ([u])) ⊆ Φ([w]). If (w, u) is the label of an infinite
path with source (M,λ), u ∈ SW , and w ∈ AN, then w ∈ SW and Φ(w) =M(Φ(u)).

Proof: We show by induction that when there is a path with source (M,λ) and label
(w, ua) ∈ A∗ × L(SW), then M(Wua) ⊆ Ww and its target is (F−1

w MFu, a). Since
Wλ = R, the first edge (M,λ) → (M,a) has label (λ, a), so M(Wλ) ⊆Wλ is satisfied.
Suppose that the assumption holds for (w, ua), and consider an edge (F−1

w MFu, a) →
(F−1

w MFua, b) with label (λ, b). Then MWuab ⊆ MWua ⊆ Ww, so the statement
holds for the path label (w, uab). Consider an edge (F−1

w MFu, a) → (F−1
wc MFu, a),

with label (c, λ), so F−1
w MFuWa ⊆ Wc. Then MWua ⊆ MFuWa ⊆ FwWc. Since

MWua ⊆ MWu ⊆ Ww, we get MWua ⊆ Ww ∩ FwWc = Wwc, so the statement holds
for the path label (wc, ua). By Theorem 3 we get M(Φ([u])) ⊆ Φ([w]). If u,w are
infinite words, then for each n there exists kn such that MWu[0,kn)

⊆ Ww[0,n]
and

MΦ(u) ∈M(Wu[0,kn)
) ⊆Ww[0,n]

and therefore MΦ(u) = Φ(w).

Definition 20 Let (F,W) be an integer MNS whose expansion subshift is a SFT of
order 2. The linear cut graph of (F,W) is defined as follows: Its vertices are (M,λ),
where M ∈ M and (I, a) where I ∈ I(Z) and a ∈ A. The labelled edges are

(M,λ)
(λ,a)−→ (MWa, a),

(I, a)
(λ,b)−→ (IΨab, b) if ab ∈ L2(SW),

(I, a)
(c,λ)−→ (F−1

c I, a) if I ⊆Wc.

Proposition 19 holds for the linear cut graph as well. The proof is based on the fact that
if (w, ua) is the label of a path with source (M,λ), then its target is (F−1

w MFuWa, a)
and MFuWa ⊆Ww.
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Figure 1. Parabolic modular system: means F̂u(0) (left) and circle derivations
of F−1

a with intervals Wa (right).

a Fa Wa F−1
a Wa ab : Ψab

0 [1, 0, 1, 1] ( 01 ,
1
1 ) ( 01 ,

1
0 ) 00 : ( 10 ,

1
1 ), 01 : ( 11 ,

0
1 )

1 [1, 1, 0, 1] ( 11 ,
1
0 ) ( 01 ,

1
0 ) 10 : ( 10 ,

1
1 ), 11 : ( 11 ,

0
1 )

2 [1,−1, 0, 1] (−1
0 ,

−1
1 ) (−1

0 ,
0
1 ) 22 : ( 10 ,

1
1 ), 23 : ( 11 ,

0
1 )

3 [1, 0,−1, 1] (−1
1 ,

0
1 ) (−1

0 ,
0
1 ) 32 : ( 10 ,

1
1 ), 33 : ( 11 ,

0
1 )

Table 1. Parabolic modular system: transformations, intervals, their inverse
images, and cut matrices.

9. Parabolic modular system

Example 1 The parabolic modular system with alphabet A = {0, 1, 2, 3} has
transformations Fa and intervals Wa given in Table 1.

All Fa are parabolic with fixed points ∞ or 0. The values F̂u(0) in the unit complex

disc are given in Figure 1 left. The curves between F̂u(0) are constructed as follows.
For each MT M there exists a family of MT (M t)t∈R such that M0 = Id, M1 = M ,

and M t+s = M tMs. Each value F̂u(0) in the diagram is joined to F̂ua(0) by the

curve (F̂uF̂
t
a(0))0≤t≤1. The labels u ∈ A+ at F̂u(0) are written in the direction

of the tangent vectors F̂ ′
u(0). In Figure 1 right there are circle derivations of the

inverse transformations F−1
a . The system is rational and its expansion subshift

SW = {0, 1}N ∪ {2, 3}N is a SFT of order 2. The cut matrices are in Table 1. If
u ∈ {0, 1}+ and Wu = (x, y), then Wu0 = (x, x0+y0

x1+y1 ), Wu1 = ( x0+y0

x1+y1 , y) (see Figure

2).

10. The bimodular group

For each integer p ≥ 1, we have the group of p-modular Möbius transformations

Mp = {M ∈ M(Z) : ∃n ≥ 0, det(M) = pn}.
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Figure 2. The Stern-Brocot graph of the parabolic modular system. Words u
are written (in vertical) at the midpoints of intervals Wu. New endpoints are
obtained from the old ones by (x, y) 7→ (x0 + y0)/(x1 + y1).

In particular the modular group consists of transformations with unit determinant and
the bimodular group consists of transformations whose determinant is a power of 2.
It is well-known that the transformations S(x) = −1/x, T (x) = x + 1 generate the
modular group (see e.g., Coppel [1]). The proof can be generalized to the case of any
p-modular group, where p is a prime.

Proposition 21 If p is a prime, then the transformations S(x) = −1/x, T (x) = x+1
and Q(x) = px generate the p-modular group and satisfy the identities S2 = Id,
(ST )3 = Id, (QS)2 = Id, QT = T pQ.

Proof: Let M = M(a,b,c,d) be a p-modular transformation. We multiply it from
the left by a sequence of generators until we get a generator. If 0 < |c| ≤ |a| then
TnM(x) = (a′x+ b′)/(c′x+d′) = ((a+nc)x+ b+nd)/(cx+d) and there exists n such
that |a′| + |c′| < |a| + |c|. If 0 < |a| ≤ |c| then STnSM(x) = (a′x + b′)/(c′x + d′) =
(ax+b)/((c−an)x+d−bn) and there exists n such that |a′|+|c′| < |a|+|c|. Thus after
finitely many steps we obtain a matrix with ac = 0. If c = 0 thenM(x) = (pnx+b)/pm

for some n,m and M = Q−mT bQn. If a = 0 then M(x) = −pn/(pmx + d) and
M = SQ−nT dQm.

If we classify bimodular matrices M(a,b,c,d) according to their norm n = a2+ b2+
c2+d2 and trace t = |a+d|, we get two rotationsM(1,−1,1,1),M(1,1,−1,1) with n = 4, t =
2, two elliptic transformationsM(0,1,−2,0),M(0,2,−1,0) with n = 5, t = 0, two hyperbolic
transformations M(1,0,0,2), M(2,0,0,1) with n = 5, t = 3, eight elliptic transformations
with n = 6, t = 1 and eight hyperbolic transformations with n = 6, t = 3. These
eight transformation form a rational MNS with high symmetry and nice properties.
Its transformations satisfy many identities and have several almost-covers with sofic
subshifts. Moreover, arithmetical algorithms work faster in the bimodular system than
in the classical positional binary system (see Kůrka [7]).

11. The bimodular system

Example 2 The (6, 3)-bimodular Möbius iterative system consists of the transforma-
tions

F0 =M(1,0,1,2), F1 =M(1,1,0,2), F2 =M(2,0,1,1), F3 =M(2,1,0,1),
F4 =M(2,−1,0,1), F5 =M(2,0,−1,1), F6 =M(1,−1,0,2), F7 =M(1,0,−1,2).
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Figure 3. The bimodular systems (F,R) (top left), (F,W23) (top right) and the
circle derivations of F−1

a with intervals of R (bottom).

over the alphabet A = {0, 1, 2, 3, 4, 5, 6, 7}.
All transformations Fa are hyperbolic with stable fixed points 0, 1, 1, ∞, ∞, −1,
−1, 0. The circle derivations of all these transformations have the same shape
(Figure 3 bottom). The two pictures in Figure 3 top give values of the disc Möbius

transformations F̂u(0) with the interval almost-cover R = {R(Fa) : a ∈ A} (left) and
with a cover W23 from Table 11 (right). The transformations of the bimodular system
generate the bimodular group. Indeed for S(x) = −1/x, T (x) = x+ 1 and Q(x) = 2x
we have S = F0260, T = F13, Q = F134.

There are several partitions, almost-covers and covers whose expansion subshifts
are of finite type or sofic (see Table 2 bottom and Figure 4). If we start with midpoints
of the intervals (0, 1), (1,∞), (∞,−1), (−1, 0), we get a partition W1 with endpoints
E(W1) = {0,±(

√
2− 1),±1,±(

√
2 + 1),∞} whose expansion subshift is of finite type

of order 3. Its SFT extension has endpoints

{0,±(3− 2
√
2),±(

√
2− 1),±

√
2/2,±1,±

√
2,±(

√
2 + 1),±(3 + 2

√
2),∞}.

Several other almost-covers are obtained by choosing endpoints from the set C =
{0,± 1

3 ,± 1
2 ,±1,±2,±3,∞} whose many preimages remain in C (see Table 2 top).

The subshifts of the partitions W2 and W3 are of finite type of order 2. The subshift
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Figure 4. The labelled graphs for the sofic subshifts of the bimodular system
constructed by Theorem 11.

x 0 1
3

1
2 1 2 3 ∞ −3 −2 −1 − 1

2 − 1
3

F−1
0 (x) 0 1 2 ∞ −4 −3 −2 − 3

2 − 4
3 −1 − 2

3 − 1
2

F−1
1 (x) −1 − 1

3 0 1 3 5 ∞ −7 −5 −3 −2 − 5
3

F−1
2 (x) 0 1

5
1
3 1 ∞ −3 −1 − 3

5 − 1
2 − 1

3 − 1
5 − 1

7

F−1
3 (x) − 1

2 − 1
3 − 1

4 0 1
2 1 ∞ −2 − 3

2 −1 − 3
4 − 2

3

F−1
4 (x) 1

2
2
3

3
4 1 3

2 2 ∞ −1 − 1
2 0 1

4
1
3

F−1
5 (x) 0 1

7
1
5

1
3

1
2

3
5 1 3 ∞ −1 − 1

3 − 1
5

F−1
6 (x) 1 5

3 2 3 5 7 ∞ −5 −3 −1 0 1
3

F−1
7 (x) 0 1

2
2
3 1 4

3
3
2 2 3 4 ∞ −2 −1

W0 W1 W2 W3

W1 (0,
√
2− 1) (

√
2− 1, 1) (1,

√
2 + 1) (

√
2 + 1,∞)

W2 ( 01 ,
1
2 ) ( 12 ,

1
1 ) ( 11 ,

2
1 ) ( 21 ,

1
0 )

W3 ( 01 ,
1
3 ) ( 13 ,

1
1 ) ( 11 ,

3
1 ) ( 31 ,

1
0 )

R ( 01 ,
1
2 ) ( 13 ,

1
1 ) ( 11 ,

3
1 ) ( 21 ,

1
0 )

W23 (−1
3 ,

1
2 ) ( 13 ,

2
1 ) ( 12 ,

3
1 ) ( 21 ,

3
−1 )

V (−1
3 ,

1
1 ) ( 01 ,

2
1 ) ( 12 ,

1
0 ) ( 11 ,

3
−1 )

Table 2. Preimages of the cutpoint set C (top) and interval almost-covers for the
bimodular system (bottom). Intervals W4,W5,W6,W7 can be obtained from the
symmetry. If Wa = (x, y) then W7−a = (−y,−x).

of the almost-cover R = {R(Fa) : a ∈ A} is of finite type of order 3. Its Q̂-invariant
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b ca Pc Fa bd : Ψbd

0 00 ( 02 ,
1
3 ) [1, 0, 1, 2] 00 : ( 20 ,

2
1 ), 01, 02 : ( 21 ,

1
1 ), 03 : ( 11 ,

0
2 )

1 10 ( 13 ,
1
2 ) [1, 0, 1, 2] 14 : ( 20 ,

0
2 )

2 11 ( 13 ,
1
2 ) [1, 1, 0, 2] 2F : ( 20 ,

0
2 )

3 21 ( 12 ,
2
2 ) [1, 1, 0, 2] 30 : ( 20 ,

2
1 ), 31, 32 : ( 21 ,

1
1 ), 33 : ( 11 ,

0
2 )

4 32 ( 22 ,
2
1 ) [2, 0, 1, 1] 44 : ( 20 ,

1
1 ), 45, 46 : ( 11 ,

1
2 ), 47 : ( 12 ,

0
2 )

5 42 ( 21 ,
3
1 ) [2, 0, 1, 1] 58 : ( 20 ,

0
2 )

6 43 ( 21 ,
3
1 ) [2, 1, 0, 1] 63 : ( 20 ,

0
2 )

7 53 ( 31 ,
2
0 ) [2, 1, 0, 1] 74 : ( 20 ,

1
1 ), 75, 76 : ( 11 ,

1
2 ), 77 : ( 12 ,

0
2 )

8 64 ( 20 ,
3
−1 ) [2,−1, 0, 1] 88 : ( 20 ,

2
1 ), 89, 8A : ( 21 ,

1
1 ), 8B : ( 11 ,

0
2 )

9 74 ( 3
−1 ,

2
−1 ) [2,−1, 0, 1] 9C : ( 20 ,

0
2 )

A 75 ( 3
−1 ,

2
−1 ) [2, 0,−1, 1] A7 : ( 20 ,

0
2 )

B 85 ( 2
−1 ,

2
−2 ) [2, 0,−1, 1] B8 : ( 20 ,

2
1 ),B9,BA : ( 21 ,

1
1 ),BB : ( 11 ,

0
2 )

C 96 ( 2
−2 ,

1
−2 ) [1,−1, 0, 2] CC : ( 20 ,

1
1 ),CD,CE : ( 11 ,

1
2 ),CF : ( 12 ,

0
2 )

D A6 ( 1
−2 ,

1
−3 ) [1,−1, 0, 2] D0 : ( 20 ,

0
2 )

E A7 ( 1
−2 ,

1
−3 ) [1, 0,−1, 2] EB : ( 20 ,

0
2 )

F B7 ( 1
−3 ,

0
−2 ) [1, 0,−1, 2] FC : ( 20 ,

1
1 ),FD,FE : ( 11 ,

1
2 ),FF : ( 12 ,

0
2 )

Table 3. The extended system of the bimodular system (F,R) constructed by
Definition 9.

endpoint set

{−2
0 ,

−3
1 ,

−2
1 ,

−2
2 ,

−1
2 ,

−1
3 ,

0
2 ,

1
3 ,

1
2 ,

2
2 ,

2
1 ,

3
1 ,

2
0 ,

3
−1 ,

2
−1 ,

2
−2 ,

1
−2 ,

1
−3 ,

0
−2 ,

−1
−3 ,

−1
−2 ,

−2
−2 ,

−2
−1 ,

−3
−1}

is shown in thick in Figure 5 right. The extended system of (F,R) is given in Table
3 and its Stern-Brocot graph is in Figure 6. The three systems (F,W2), (F,W3) and
(F,R) are rational. There exist also two covers W23 and V = {V(Fa) : a ∈ A} with
sofic expansion subshifts (see Table 2).
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Figure 5. The expansion graphs of the bimodular system (F,R) in Q (left) and

in Q̂ (right). Fixed points are surrounded by circles. The Q̂-invariant endpoint
set is displayed in thick.
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Figure 6. The Stern-Brocot graph of the extended system of the rational
bimodular systems (F,R).

12. Conclusions

In Kůrka [6] two more bimodular systems (each with eight transformations) have been
considered, one with norm n = 9 and trace t = 3, the other with norm n = 14 and
trace t = 3. The (14, 3)-system has the same rational expansion intervals as our (6, 3)-
system and has also several interval covers with sofic subshifts. For a trimodular
system with det(Fa) = 3, we need at least 12 transformations to obtain a rational
system. Since modular systems do not give redundant MNS, it seems that the simplest
bimodular hyperbolic system with the smallest norm n = 6 is a good alternative for
the implementation of computer arithmetic. In fact, arithmetical algorithms work
faster in it than in the standard positional binary system (see Kůrka [7]).
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