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Abstract. Many different definitions of computational universalityr fvarious types of dynamical
systems have flourished since Turing’'s work. We propose argédefinition of universality that
applies to arbitrary discrete time symbolic dynamical eys. Universality of a system is defined
as undecidability of a model-checking problem. For Turingcimnes, counter machines and tag
systems, our definition coincides with the classical oneyidlds, however, a new definition for
cellular automata and subshifts. Our definition is robugihwespect to initial condition, which is a
desirable feature for physical realizability.

We derive necessary conditions for undecidability and ensiality. For instance, a universal system
must have a sensitive point and a proper subsystem. We torgebat universal systems have
infinite number of subsystems. We also discuss the thes@diog to which computation should
occur at the ‘edge of chaos’ and we exhibit a universal chaystem.

1. Introduction

Computability is usually defined via universal Turing mamgs. A Turing machine can be regarded
as a dynamical system, i.e., a set of configurations togetitara transformation acting on this set.

*Address for correspondence: Université catholique devaim) Department of Mathematical Engineering, Avenue Gesr
Lemaitre 4, B-1348 Louvain-la-Neuve, Belgium
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A configuration consists of the state of the head and the nbofethe tape. Computation is done by
observing the trajectory of an initial point under iteratezhsformation.

There is no reason why Turing machines should be the onlyrdiga systems capable of universal
computation. Indeed, such capabilities have been alsmethifor artificial neural networks [34, 18],
piecewise linear maps [19], analytic maps [20], cellulatoeata [40], piecewise constant vector fields
[2], billiard balls on particular pool tables [13], or a ra¥lmht between a set of mirrors [28]. For all
these systems, many particular definitions of universalitye been proposed. Most of them mimic the
definition of computation for Turing machines: an initialipiois chosen, then we observe the trajectory
of this point and see whether it reaches some ‘halting’ set;far instance [35] and [5]. However, many
variants of these definitions are possible and lead to difteclasses of universal dynamical systems. In
particular, there is no consensus for what it means for aleelautomaton to be universal. Moreover,
in the presence of noise many of these systems loose theijputational properties [1, 25, 14]; see
[32, 31, 30] for definitions of analog computation and issudative to noise and physical realizability.

Another field of investigation is to make a link between thmpatational properties of a system and
its dynamical properties. For instance, attempts have brete to relate ‘universal’ cellular automata
to Wolfram’s classification. It has also been suggesteddhlabmplex’ system must be on the ‘edge
of chaos’: this means that the dynamical behavior of suchstesyis neither simple (i.e., a globally
attracting fixed point) nor chaotic; see [40, 27, 7, 24]. @tugthors nevertheless argue that a universal
system may be chaotic; see [34].

The basic questions we would like to address are the follgwin

e How to define computationally universality for dynamicas®ms?
e What are the dynamical properties of a universal system?

A long-term motivation is to answer these questions frompihiat of view of physics. What phys-
ical systems are universal? Is the gravitational N-bodylerm universal [28]? Is the Navier-Stokes
equation universal [29]? However in this paper we focusymbolic effectivelynamical systems, i.e.,
systems defined on the Cantor éet1}" or a subset of it, whose transformations are computable eSom
motivating examples of such systems are Turing machinds|areautomata and subshifts.

Turing’s machine was originally meant as a model of a contjmrtgperformed by a human operator
using paper and pencil [38]. We adapt Turing’s reasonindi¢ocse where the human operator does
not compute by himself, but relies on a dynamical system tkentlae computation. The system is said
to be computationally universal if the observations madéhieyhuman operator allow him to solve any
problem that could also be solved by a universal Turing mechiVe conclude that a system is universal
if some property of its trajectories, such as reachabilits balting set, is r.e.-complete.

In this contribution, rather than considering point-tar@r point-to-set properties, we consider set-
to-set properties. Typically, given an initial set and aihgl set, we want to know whether there is at
least one configuration in the initial set whose trajectorgrgually reaches the halting set. We require
the initial and halting sets to be clopen (closed and opds)addhe Cantor state space. Clopen sets can
be described in a natural way with a finite number of bits. Binave do not restrict ourselves to the
property ‘Is there a trajectory going frobi to V2’ alone. In a previous paper [10] we have considered
properties expressible by temporal logic. In the presepépae consider the wider class of all properties
that can be observed by some finite automaton.
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This definition addresses the two issues raised above lyf-itss a general definition directly ap-
plicable to any (effective) symbolic system. Secondly,lidgawith clopen sets rather than points takes
into account some constraints of physical realizabilitighsas robustness to noise.

With this definition in mind, we prove necessary conditioasd symbolic system to be universal.
In particular, we show that a universal symbolic system ismmimal, not equicontinuous and does
not satisfy the shadowing property. We conjecture that seusal system must have infinitely many
subsystems, and we show that there is a chaotic system thatvisrsal, contradicting the idea that
computation can only happen at the ‘edge of chaos'.

Preliminaries are given in Sections 2, 3 and 4. Decidableuscbersal systems are defined in Sec-
tions 5 and 6. In Section 7, necessary conditions for a systelbre universal are given, related to
minimality, equicontinuity and shadowing property; chaosl edge of chaos are considered in Section
8. The definition of universality is discussed in Section 9.

2. Effective symbolic spaces

A symbolic spacés a compact metric space whose clopen (closed and operfpeata countable
basis: every open set is a union of clopen sets. The elemeatsymnbolic space are callgmbintsor
configurations A typical example is the Cantor séb, 1} endowed with the product topology. The
topology is given by the metrid(z,y) = 27", wheren is the index of the first bit on whick andy
differ. Note that this metric satisfies tltrametric inequality d(x, z) < max(d(z,vy),d(y, z)) for any
x,y andz.

If w e {0,1}* is a finite binary word, themw]| denotes the set of all infinite configurations with
prefix w. Sets of this form, usually callecylinders are exactly the balls of the metric space. They are
clopen sets and any clopen set{6f 1}" is a finite union of cylinders. Similar distances are defined o
the spaceq0,1}* U {0, 1}V, AN, Q x A%, AZ" where and A are finite andd is a positive integer.
Closed subsets of the Cantor space are symbolic spacesatlremsThe converse is well known to hold
as well: Every symbolic space is homeomorphic to a closededudf the Cantor space and every perfect
symbolic space is homeomorphic to the Cantor space. Famiost{0, 1}Z is homeomorphic t¢0, 1},

To define computational universality, we need effective lsglic spaces, in which we can perform
boolean combinations on clopen sets effectively.

Definition 1. An effective symbolic spaéea pair(X, P), whereX is a symbolic space and : N — 2%

is an injective function whose range is the set of all clopets ef X, such that the intersection and com-
plementation of clopen sets are computable operations. filbans that there exist computable functions
f:N—=Nandg:Nx N — NsuchthatX \ P, = Py, and P, N Py, = Py, -

Of course, union of clopen sets is then also computable.nQfie denote an effective symbolic space
by X rather than( X, P) when no confusion is to be feared. In Cantor spfe }", the lexicographic
ordering yields a standard enumeration

I\, 0], [1], [00], [01], [10], [11], [00] U [11], [01] U [10], [00] U [01] U [10], [00] U [01] U [11], ...

Other widely used symbolic spaces like, 1}* U {0, 1}N, AN’ 42" Q x AZ, have also their standard
enumerations. Note that we could require intersectionscantplements to be primitive recursive rather
than computable, without altering the examples and resfiltse paper.
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Definition 2. Let (X, P) and(Y, Q) be two effective symbolic spaces. Asffective continuous map
a continuous map : X — Y such thati=1(Q,,) = Py.(n), for some computable map: N — N. If A
is bijective then it is areffective homeomorphisrand (X, P) is said to beeffectively homeomorphio

¥, Q).

Note that the composition of effective continuous maps isféective continuous map, the identity
is an effective continuous map and the inverse map of antefelsomeomorphism is also an effective
homeomorphism. In particular, being effectively homeaophar is an equivalence relation for effective
symbolic spaces.

Given an effective symbolic spa¢&, P), a closed subsét is said to beeffective if the family of
clopen sets intersecting is decidable. In particular any clopen set is effective. Kraive setY” can
be endowed with the relative topology, whose clopen setalaimstersections of clopen sets af with
Y. Thus, the enumeratioR, P;, P, . .. of clopen sets o yields an enumeration of clopen setsYaf
YNP,YNP,YNP,,.... Thisenumeration may contain empty sets and repatitiout we can detect
them in an effective way and renumber the sequence acctydiHgnce we get an effective topology
for the effective closed séf. Equivalently, the inclusion : Y — X is an effective continuous map.

Proposition 1. Every effective symbolic space is effectively homeomaocpghian effective subset of the
Cantor space. Every perfect effective symbolic space &ctfiely homeomorphic to the Cantor space.

Proof:

Let (X, P) be an effective symbolic space. For every paing X, construct the infinite configuration
g(x) € {0,1}", whereg(x),, = 1 if and only ifz € P,. Then the mag : X — {0, 1}V is injective and
continuous. SinceX is compactg(X) is closed. Moreover, every step of the construction is &ffec
and sog(X) is an effective closed set and the mgaijs effective.

If the space is perfect, then we construct another mapX — {0,1}. We may writeX as a
partition of two clopen setX = Ay U A1, whereAy is the clopen set of smallest index to be different
from X and0; this is always possible thanks to perfectness. Supposevithhave already constructed
A, Wherew is a binary word. Let be the first index such that,, N P, differs from bothA,, and(,
and setd, o = A, N P,, Ay1 = Ay \ P,. Forz € X let h(x) € {0,1}" be the unique configuration
such thatr € A,, for all prefixesw of h(z). Thenh : X — {0,1}" is an effective homeomorphism.O

We see that there is no loss of generality in supposing thabyneffective symbolic space, for any
rationale there exists a finite number of balls of radiuand that we can compute all of them. Indeed,
this is the case for all effective subsets of the Cantor space

3. Effective symbolic systems

Definition 3. An effective symbolic dynamical syst&ran effective continuous map from an effective
symbolic space to itself.

In other words, an effective symbolic system is a symboliacgpwith a continuous self-map in
which intersections, complements, and inverse imagesopkd sets are computable. This definition of
effective function in a Cantor space is equivalent to ctadgiefinitions in computable analysis; see for
instance [39]. We denote an effective symbolic system by p fha X — X or simply f, when the
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enumerationP of X is implicit. Extending Definition 2, we define a relation ofubgalence between
effective systems.

Definition 4. The effective symbolic systemé: X — X andg : Y — Y areeffectively conjugated
if there exists an effective homeomorphigm X — Y suchthatio f = goh. If h: X — Yisan
effective surjective map (and not bijective), then theeysy : Y — Y is said to be amrffective factor
of f: X — X. The factorg can be seen as a ‘simplification’ ¢f

The identity on any symbolic space is the simplest examplanoéffective symbolic system. A
cellular automaton is an effective symbolic system actim¢he spaceﬁlZd, whereA is the finite alphabet
andd is the dimension.

Turing machines are usually described as working on finitgfigarations. A finite configuration
is an element of0,1}* x @ x {0,1}*, where@ denotes the set of states of the head, the first binary
word is the content of the tape to the left of the head and thergkbinary word is the right part of
the tape. HoweveK0, 1}* cannot be naturally equipped with a compact topology, so evesider its
compactificationiV = {0, 1}* U{0, 1}, i.e., the set of finite and infinite binary words. Then theifigr
machine function is also defined ¥ x Q x W, which is a compact space, whose isolated points are
{0,1}* x Q x {0,1}*. Anisolated point is clopen il x Q x W. Hence a Turing machine with a blank
symbol is an effective symbolic system on the spAcex @ x W.

A Turing machine without blank symbol is an effective symbaystem as well. As we do not
suppose that almost all cells are filled with a blank symbatoafiguration is given by an arbitrary
element of{0, 1} x Q x {0, 1} or, equivalentlyQ x A%. This is a Turing machine with moving tape,
as considered in [21]: the head is always in position zerd the tape moves to the left or to the right.

3.1. Shifts and subshifts

A one-sided or two-sideghift is a dynamical system oA or A% (where A is a finite alphabet)
with the mapo : AN — AN oro : AZ — A” defined byo(z); = z;,1. A shift is an effective
system. Asubshiftis a subsystem of the shift, i.e., a closed subset that isiamtaunder the shift map.
Most subshifts we consider in this article are one-sidedlisifils. Aneffective subsysteonf an effective
symbolic system is an effective closed subset that is iamarinder the map. With the relative topology,
it is itself an effective symbolic system. In particular, ubshift that is an effective closed subset&Hf
is again an effective symbolic system.

The setZ(X) of all finite words appearing at least once in at least onetgdithe subshiftX is called
the languageof the subshift. It is easy to see that a subshift is effedffvies language is recursive. In
particular everysofic subshift (a subshift whose language is regular) is effecti subshift of finite
type is the set of sequences avoiding a finite set of forbiddimvords. Subshifts of finite type are sofic
subshfits, hence are effective. Another widely studiedsatdisubshifts argubstitutivesubshifts defined
by substitutionsy : A — A™. Since a substitution is a finitary object, every substitusubshift is
effective. A Sturmian subshift,, associated to an irrational numhbeiis a symbolic model of rotation
of the circlex — z + «; see e.g. [23]. A Sturmian subshit, is is effective iff« is a computable real
number.

From any symbolic dynamical system (effective or not), we ganerate one-sided subshifts in a
natural way. Aclopen partitionof a symbolic space is a partition of the space into a finite bemof
disjoint clopen sets. A partitiod is finer than B, or B is coarserthan A4, if every clopen set of4
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is included in some clopen set 8f Given a clopen partitiotd = {A;,..., Ay} of X, the subshift
inducedby this partition is the set of infinite wordga azas ... € AY, such that there is a point im
whose trajectory goes successively throughas, . ... Note that herel,, say, is both a subset &f and

a symbol from a finite alphabet. Thut A3A4; denotes a word of three symbols and not for instance a
cartesian product. The language of the subshift is alsotedieinducedby the partition. An induced
subshift is a factor of the system and conversely any faatbshft is induced by a clopen partition.
Following this observation, we can characterize effeciymbolic systems in terms of their induced
subshifts.

Proposition 2. A symbolic system is effective if and only if there is an altfum deciding from any
given clopen partition and any given finite word whether #isd belongs to the language of the subshift
induced by the patrtition.

Proof:
Let A= {A,..., Ay} be aclopen partition. Then awotda; ...a;—1 € A* isin the language of the
subshift induced by the partition if and onlydf N f ' (a1) N --- N f~¢=D(a;_;) is not empty. But this
can be checked algorithmically.

Conversely, suppose that all induced subshifts have daeitenguages, and that given the partition
we can effectively find a decision algorithm for the corresfing language. LeP,, be a clopen set of
X. There exists a clopen partitioh = { A1, ..., Ay} such that

e for everyi, either4; C P,or A; C X \ Py;

o if A;A; andA; A, belong to the language of the induced subshift, therand A;, are either both
parts of P, or both parts ofX \ P,.

The first condition says that the partition is finer thep the second condition says that the partition is
finer thanf—1(P,). It can be checked algorithmically whether a clopen partitias these two properties.
Thus a partition with these properties can be found algmiitally. Then we can computé=!(P,) as
the union of all4; such that there exists a wort} A; in the language of the induced subshift and that
A; C P,. O

If the subshifts have decidable languages, but decisiarittigns are not computable with respect to
the clopen partition, then the system may fail to be effectivhis happens in the following example.

Example 1. Assumek : N — N is an non-computable strictly increasing total functione @éfine a
function f on the Cantor spacf, 1} by f(z) = fo(z)f1(x) f2(x) ..., where theith bit f;(zoz122 . . .)
is given bymax{xg, z1, 22, ..., Tk }. There are two fixed point§)” and1“, and the image of a point
is of the form0*1* or 0¥ (where0* is a shortcut fof00...). Then it is easy to see that for any point
either f(z) = 0¥ or f™(z) = 1¥ for somen > 0. For any partitiond = {A;,..., Ay}, if 0¥ € Ay
and1¥ € A, (say), then every point idlg U ... U Ay reachesA, in bounded time, say. Then every
finite word of the language of the subshift induced by theitpamtis of the form A} or S A%, whereS is
some subset of Ay, ..., Ay}, This is certainly a decidable language. Howeyés not effective, for
otherwise we could compute

In the rest of the paper, we use the terms ‘symbolic systeraven ‘system’ to denote an effective
symbolic dynamical system.
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3.2. Products

Let (f, : X, — X, )nen be afamily ofuniformly effectivesystems on the effective symbolic spaces
(Xn, P,) ; we mean that there exists an algorithm that, giveand two clopen sets of,,, can compute
their intersection, complements and inverse images. Theeffective productf (f,,).cn is the system
f: X — X on the effective symbolic spa¢&’, P) such that

e the setX is the product of all setX,,;;

o the clopen sets oX are all products of clopen s€ft§, ., A, such that only finitely many,, € X,
are different fromX,, (this is the usual product topology);

¢ the clopen sets are indexed by finite sets of integers in gktfarward manner, and is defined
componentwise.

We see that this is indeed an effective symbolic dynamicstiesy. The projections,, : X — X, are
effective maps as well. Products are useful to build exasmpfesystems with particular properties, as
illustrated in Propositions 13 and 17.

4. Finite automata

Consider an effective systefn: X — X and two clopen set§, 1V C X. We would like to know if
there is a point oUU that eventually reachds, that is, if there exists an such that

xeUandin e N: f*(z) e V. @

We call halting problem off, the problem of answering this question givérand V. We will see
later that this is indeed a generalization of the haltindfem traditionally defined for Turing machines
or counter machines. Note the relation of the halting probleith the (topologicalitransitivity: a
dynamical system is transitive if from any two non-empty ogetsU andV there is a trajectory from
U to V. In such a system, the halting problem is trivial.

We consider now another formulation of the halting probleBuppose that the systeghis only
partially observable. All we can know abotitis whether the system is currently U, in V' or in
W =X\ (UUV) (we suppose for simplicity thdf andV" are disjoint). The system is observed by a
finite automaton (formally defined below) as illustrated igufe 1. At every time step, the automaton
jumps to a new state, according to which 8etl” or W the system is currently in. The halting problem
amounts to deciding whether it is possible, for some inpiaint of the spaceX, that the automaton
eventually reaches the final state from the initial state.

We would like also consider variants of the halting problétar instance, given three disjoint clopen
setsU, V andW, we want to check whether the following formula is satisfieddomex:

xeUandan: f*(x) e Vandvm < n: f"(x) ¢ W, @)

wheren andm are non-negative integers. A finite automaton which accepégtly points with this
property is constructed in Figure 2.
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Figure 1. The symbolic system is partitioned iifoV andWW = X \ (U U V). At every time step, the finite
automaton is fed with the symbbl, V or W and jumps to a new state. It is possible to reach the final gidtem
the initial statey, iff it is possible thaty; (and onlyg;) is reached infinitely often from the initial stagg iff there
is a point ofU that eventually reachds. Checking whether this is true givéhandV/, is thehalting problemof
f. The automaton can be considered as a finite automaton (dlestate isg¢) or as a Muller automaton (for the

family {{q;}}).

We can also ask whether the formula
Vn: ff(z)eU 3)

is satisfied for some € X. This is the case if and only if the automaton in Figure 3 tstgrfrom the
initial state and observing the systeimreaches infinitely often the final state from the initialtstal his
leads us to the theory af-regular languages which can be recognized by Muller ohBéaatomata.

In general we are interested in all properties that can berebd by automata. A (deterministic)
finite automatoris given by a finiteset of states), aninitial stateqy € @, a set offinal states); C @,

a finiteinput alphabet4 and a transition functiodh : Q x A — Q. The transition function is extended
toA:Q x A* — Q by A(q,ua) = A(A(q,u),a). Alanguagel C A* isregular if there exists a finite
automaton which accepfs i.e.,u € L iff A(qo,u) € Q1.

A Muller automatonconsists of a finite set of staté} a transition functiom : Q x A — @, an
initial stateqy € Q and a familyF of subsets ofp. A given infinite wordu € AY is accepted by a
Muller automaton if the set of states that are visited irdigitoften by the path generated by the given
word is a member af. A languagel. C AN is w-regular, if it is accepted by a Muller automaton, i.e.,

weLiff {ge@: VYn,3Im >n:A(q,up...,um-1)=q} € F.

Alternatively, w-regular languages can be defined by nondeterministic iHinite automata. An infi-
nite word is accepted, if there is a trajectory passing itdipioften through a given set of final states.
Although Buchi automata are simpler to define, Muller auatarare deterministic, which is sometimes
an advantage. In this paper we make little use of Biichi aatanComing back to Figure 1, the halting
problem for a symbolic system asks whether there is a finitel\wwluced by the partitiot/,V', W that
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Figure 2. The symbolic system is partitioned ifoV, W and7T = X \ (U UV UW). There is a point ot/
that stays inX \ W until it eventually reache¥’, iff it is possible thaty; (and onlygy) is reached infinitely often
from the initial statey,.

is accepted by the finite automaton. It is equivalent to asétidr there is an infinite word induced by
the partition that is accepted by the automaton interprasea Muller automaton.

In general, given a clopen partitioh = { A, ..., Ay} and afinite automaton ovet, we would like
to know whether there is a non-empty intersection betweerathguage associated to the partition and
the regular language accepted by the automaton. In othefswtire problem is to know whether there
exists a point of the symbolic system whose trajectory, witeserved through the partition, is accepted
by the automaton. The same question can be asked for a Muttamaton instead of a finite automaton.

The automaton may be interpretecbaservinghe system with a finite memory (where the ‘memory’
is the number of states of the automaton). This formalisrudes all three properties described above,
including the halting problem. These are examplemoflel-checkingroblems, although we prefer to
call themobservationproblems. Model-checking aims at finding decision algonghto check whether
the trajectories of a dynamical system satisfy a given ptgpBut systems considered in the literature of
model-checking are often non-deterministic and finite amtable, whereas we deal with deterministic
systems with a possibly uncountable configuration space.

Note that Muller (or Biichi) automata are rather powerfukelgress properties on infinite words.
They are equivalent to several logical formalisms, inalgdhe so-callegi-calculus and monadic second-
order formulae. First-order formulae, including (1), (@), are equivalent to linear temporal logic and
strictly weaker than Muller automata. For precise defingi@f all these formalisms, see for instance
[33, 17, 15].

5. Decidable systems
Definition 5. An effective symbolic system idecidableif there exists an algorithm that decides the

infinite-time observation probleme., that decides whether the subshift induced by a gil@rea par-
tition has a nonempty intersection with a giverregular language (described by a Muller automaton).
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System Uy

Automaton

Figure 3. The system is partitioned intbandV’. There is a point that never leavEsiff it is possible thatg,
(and onlyq) is reached infinitely often from the initial stagg.

Clearly, decidability is preserved by effective conjugacand the factor of a decidable system is
decidable. The identity map on any effective symbolic spacdecidable. Indeed, for a partition
Ay, Ay, ..., Ay, the only words induced by the partition ady, Ay, ... and A%,. Given a Muller
automaton, it is enough to check whether one of these pathgtfrom an initial state of the automa-
ton passes infinitely often through a final state. Alterragivit is a consequence of the forthcoming
Proposition 20. The map — 0z on {0, 1} with a unique attracting fixed poir¥’ is decidable. This
follows from Proposition 7. The full shift on any finite algbet is a decidable system by a corollary to
Proposition 15.

If a system is not decidable, how undecidable can it be? We shat the infinite-time observation
problem is at mosEi-complete, which is rather high. Al setis the set of integers: satisfying a
formula of the kind

E”{i, anl’ e ,Qmi . R(k:,m,nl, N ,ni),

wherek runs over all total functions from¥ to N, @1, ..., Q; are quantifierspy,...,n; run overN,
and R is a recursive relation. By recursive we mean that there isran@ machine witht as oracle and
m,ny,...,n; as data that decides in finite time whettiik, m, ny, ..., n;) holds or not. AX1 set is
¥1-completef every $:1 is many-one reducible to it. The class®f problems belongs to the so-called
analytical hierarchy; see [16] for more details.

Proposition 3. The infinite-time observation problem on an effective sytitbsystem is:! for every
effective symbolic system arid!-complete for at least one effective symbolic system.

Proof:

Let f : X — X be an effective symbolic system. First we show that the it&itime observation prob-
lem is in¥1. Then we construct a system simulating a universal Turinghine with oracle for which
the infinite-time observation problem ¥}-complete. The proof, although rigorous, is not completely
formalized.
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We can suppose that the spakeof the system is an effective closed subset of the Cantorespac
{0,1}N. Letx be a sequence taking valuesih Then the assertionz' € X' is equivalent to the
recursive relationVt € N : xg,21,...,2¢ € {0,1} and [zoz1...2¢) N X # (". Let m be a natural
integer encoding a Buchi automaton whose alphabet is @iparof X. Here Buchi automata are of
easier use than Muller automata. A Biichi automaton is ginea finite set of states, an alphabet and
a transition relation, a set of initial states and a set of States. For any € X, call R¢(x,m,t) the
relation ‘for the initial conditionz, the Biichi automatom observing the system can be in a final state
at timet'. It is a recursive relation; the configuratiancan be seen as a function frddto N. Then the
infinite-time observation problem can be expressed by thiedbformula

Jz:x € X andVt,3t' >t : Ry(z,m, 1),

with m as free variable; hence the infinite-time observation Enwohis inE%.

The set of natural integers such that there exists a sequence of integer&N — N for which the
universal Turing machine with initial dataand oraclék does not halt is well known to be{-complete;
see [16]. An oracle universal Turing machine can be builthim following way. We take a one-tape
universal Turing machine in the usual sense, to which weimdjtape that contains on its right part the
oracle encoded in form0*(© 105110521, ... The head has access to both tapes. Not every possible
content of the second tape is a valid oracle; indeed the Wérdannot appear on the tape. We can
suppose without loss of generality that when the head wantgiéry k(7), it first checks thak () is
properly encoded by scanning the tape in some gtatg:nhuntil it discovers al and then jumps to the
stateqgroung- This two-tape Turing machine is an effective dynamicalttesys similar to the one-tape
Turing machine discussed just above Section 3.1. Qdhe states of the heady the initial state and
gn the halting state. It can be supposed that it is impossibleaeeq; once we reach it. We want to
know whether there is an initial configuration of this syste@mposed of a state 6f and the contents
of both tapes, that is in the clopen deb} x [n] x [1] (i.e., the head is in statg), the initial datan
is encoded at the right of the head on the first tape and a symmibaturrently read by the head on the
second tape) and such that the head reaches infinitely @ft€nsearch ¢ }. For if an initial configuration
is such that the head does not reach infinitely offeR {gsearch g1}, then it either reaches the halting
state or gets stuck in a query on an invalid oracle. This ptgman be observed by a Muller automaton
in a straightforward manner. Putting all together, we hawestructed a reduction fromXt-complete
problem to an infinite-time observation problem of some figsghbolic system; the latter is therefore
¥1-complete as well. O

6. Universal systems

We are now ready to state the main definition of computationalersality. We define a universal
symbolic system as a special kind of undecidable systemrenMeller automata are replaced by finite
automata. The universality of Turing machines is a paricakample of this definition.

Definition 6. An effective dynamical system isniversalif the finite-time observation problemf this
system, i.e., the problem whether the language induced kyea glopen partition has a honempty
intersection with a given regular language, is recursiheglymerable complete.
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An r.e.-completgroblem, orX,-completeproblem, is a recursively enumerable problem, to which
any recursively enumerable problem is many-one reducd#e that the finite-time observation prob-
lem (described in Definition 6) is always recursively enuafée, because the language induced by a
clopen partition is recursively enumerable and the languagepted by a finite automaton is recursive;
the intersection can be recursively enumerated and if ibieempty then we can know it after a finite
time. Universality is obviously preserved by effective gmacies, and a system with a universal factor
is also universal.

Proposition 4. A universal system is not decidable.

Proof:

If the infinite-time observation problem is decidable therissthe finite-time observation problem. In-
deed, the latter is reducible to the former in the followingywGiven a deterministic finite automaton,
modify it in a such a way that the final states are fixed pointtheftransition function, whatever the
input is; the resulting automaton is interpreted as a Mwlgiomaton, for the family of all sets whose
unique elements is a final state. O

Note that a non-deterministic scheme of computation uiedethe definition of universality. The
computation succeeds if and only if at least one trajectghjbits a given behavior. For example, recall
from Section 4 that the halting problem consists in deteimgingiven the clopen setg andV', whether
there is a configuration iy that eventually reachds. We may think ofl” as the halting set and &f
as an initial configuration of which we know only the first digi The unspecified digits of the initial
configuration may be seen as encoding the non-determigistices occurring during the computation.

6.1. Examples
Turing machines with blank symbol.

A Turing machine with blank symbol that is universal in the@se of Turing, is also universal ac-
cording to Definition 6, because the halting problem ‘Can wérgm a clopen st/ to a clopen seV?’
is r.e.-complete. Indeed the halting problem restrictediapen sets that are isolated points is already
r.e.-complete. Recall that isolated points are exactlydioonfigurations. Incidentally, we have shown
that what we have called ‘halting problem’ for a general sglitbsystem is indeed a generalization of
the usual halting problem for Turing machines.

Turing machines without blank symbol.

It is only slightly more complicated to build a universal Tng machine without blank symbol. In
such a Turing machine, there is no obvious notion of ‘finitefaguration’. The trick is basically to
encode the initial data in a self-delimiting way. Take a mgrimachine that is universal in the sense
given by Turing. Then add two new symbdlsand R to the tape alphabet. On an initial configuration,
put anZ on the left end and aR on the right end of the encoded data. When the head encowamtérs
it pushes it one cell to the left, leaving some more spacdadlaifor computation. It acts similarly for
an R symbol. The working space is always delimited by/aand anR; the symbols situated outside this
zone are considered as noise, and do not influence the caimputgor this modified universal Turing
machine, the (clopen-set-to-clopen-set) halting prokikagain undecidable.
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Cellular automata.

Let us take a universal Turing machine with a blank symbol.sifgpose that when the halting state
is reached, then the head comes back to the cell of ind&Xe can simulate it in a classic way with a
one-dimensional cellular automaton. The alphabet of themaaton isA U (A x Q) U {L, R, Error},
whereA is the tape alphabet (including the blank symbol) ghthe set of states. Let us take a point in
the cylinder[L, initial data of the Turing machinez], and observe its trajectory. The symtomoves to
the left at the speed of one cell per time step, leaving bebliak symbols. The symbdt moves to the
right in a similar way. Meanwhile, the space betwdeand R is used to simulate the Turing machine
and is composed of symbols frorh and exactly one symbol from x @, which denotes the position
of the head. Wherd, or R symbols meet each other, then a spreadingor symbol is produced, that
erases everything.

This cellular automaton is again universal, because tlpécl-set-to-clopen-set) halting problem is
r.e.-complete. Indeed, there is an orbit from the cylindeinitial data of the Turing machine?] to the
cylinder [A x {halting staté} (both cylinders centered at cell of index zero) if and onlth# universal
Turing machine halts on the initial data.

Tag systems.

Tag systems were introduced by Post in 192Gad\ systenis a transformation rule acting on finite
binary words. At every step, a fixed number of bits is removethfthe beginning of the word and,
depending on the values of these bits, a finite word is appeatithe end of the word. Minsky [26]
proved that there is a so-called universal tag system, factwbhecking whether a given word will
eventually produce the empty word when repeating the toamsftion is an r.e.-complete problem.

We can extend the rule of tag systems to infinite words, byrgrsioving from them a fixed number
of bits. Thus we have a dynamical system on the compact sfgadé* U {0, 1} of finite and infinite
words, in which finite words are clopen sets. Again, if thegggtem is universal for the word-to-word
definition, then itis universal for Definition 6 with the halg problem on clopen sets §6, 1}*U{0, 1},

Collatz functions.

We can also apply our definition to functions on integers.N.et{co} be the topological space with
the metricd(n, m) = |27 — 27™|. This is effectively homeomorphic to the ggt*0¥|n € N} U {1¢}.
Then some functions on integers may be extended to infindy.irstance, the famouss: + 1 function
sends evem’s to n/2, oddn’s to 3n + 1 andoo to co. Whether this map is decidable is unsettled. But
Conway [6] proved that similar functions, called Collatnétions, can be universal.

Counter machines.

A k-counter machine is composed/otounters, each containing a non-negative integer, andda hea
that can test which counters are at zero and can incremeecoerdent every counter (with the conven-
tion 0 — 1 = 0). Thus a counter machine is a mp Q x N*¥ — @ x N*, whereQ is the finite set of
states of the head. There exists such a machiioe which given two configurations, y € Q x N*, the
problem to check whether the trajectoryaofeaches is r.e.-complete; see Minsky [26].
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The mapf is easily extended to the compact spate (NU{oo})¥, with the conventiomo+1 = oc.
Here again, the points @ x N* are clopen sets @ x (NU {oo})¥, hencef is universal for the halting
problem.

More examples.

In Section 8 we give an example of a universal system thatastaty and for which the halting
problem is decidable, but not the variant expressed by &darmula (2). In Section 7.3 we build a
system which is neither decidable nor universal. In thergetf point-to-point properties, it was proved
by Sutner [36] that there exist cellular automata with aihglproblem of an intermediate degree between
decidability and r.e.-completeness. The same kind of elesripr Turing machines are known for long
time (Friedberg-Muchnik theorem, see for instance [16]pwdver we have not been able to build a
system for which finite-automata properties of trajec®eee undecidable, but not r.e.-complete.

7. Sufficient conditions for decidability

The purpose of this section is to link computational cajitédsl of a system to its dynamical proper-
ties: minimality, equicontinuity, etc. Most results provia this section are in fact sufficient conditions
of decidability and can thus be interpreted as necessarglitgmms for universality. For instance, we
prove that minimal systems are decidable, thus universa¢sys are not minimal. We have chosen these
sufficient conditions because they are natural and ofted inséhe analysis of a system, and because we
can derive clear-cut results from them.

The following constructions and propositions are usefidaneral proofs. Given an effective system
f: X — X, aclopen partitiond = {44, ..., Ay} of X and the transition functiosA : @ x A — @ of
a deterministic finite automaton, we construct dservation systenfn : X x Q — X x @Q by

falz,q) = (f(x),Ag, A;)), wherex € A;

Clearly fa is an effective system, and the projectiog : X x Q — X is an effective factor map ofa

to f.

Definition 7. We say that a dynamical systefn: X — X hasclopen basinsif for every clopen set
V C X, itsbasinB(V) = U, f"(V) is a clopen set.

Proposition 5. If f: X — X is an effective system with clopen basins, then the operafie—~ B(V)
is computable.

Proof:
If V andB(V') are clopen sets, then by compactness there exists0 such that

Bv)=J )= |J ).
n<m n<m+1

GivenV we can determinen effectively so the operatio8(V) is effective too. Hence there exists a
computable functio : N — N such that3(F,) = Py (,), whereP, is the clopen set of inde¥. O
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Proposition 6. If an effective system is such that for any transition fumctithe resulting observation
system has clopen basins, then the system is decidable.

Proof:
For every clopen partitiotd, for every finite setp and for every transition function : @ x A — @Q,
the systemfa : X x Q — X x @ has clopen basins.

Assume now that” C X x @ is clopen, so tha3(V) is clopen and the index d§(V') can be
computed from the index df . MoreoverI (V'), defined a#3(B(V')¢)¢, where® denotes the complement,
is a clopen set too and its index can be again computed fronotth& A point (z, ¢) belongs tal (V') iff
the trajectory of z, ¢) passes through infinitely often. Giveny, ¢1 € Q, then(X x{qo})NI(X x{q1})
is again a computable clopen set, so the{set X : Vn,3m > n, fi(z,q) = ¢1} is computable as
well. It follows that for a familyF of subsets of), the set

{reX: {qge@: VYn,Im >n, f(z,q) =q} € F}

is computable too. In particular, whether this set is empty be decided algorithmically. Hence the
infinite-time observation problem is decidable. O

7.1. Minimality

A minimal dynamical system is a system with no subsystem (except tiptyesat and itself). In a
minimal system, all orbits are dense and the basin of anyedagt is the full set.

Any dynamical system has a minimal subsystem, thanks to'Zdé@mma and compactness. In
particular, any point comes arbitrarily close to a minimgtem, since the closed orbit of the point is
itself a dynamical system. Suppose that the symbolic sysermt minimal but consists of one minimal
subsystem attracting the whole space of configurations.tHaravords, the limit set is minimal. The
limit set of a dynamical systerfi : X — X is the se{"),,~, f"(X). Then such a system is decidable.
This results from the more general following proposition.

Proposition 7. A symbolic system whose limit set is the union of finitely mamynimal systems is
decidable.

Proof:
Given a symbolic systenf : X — X and a Muller automaton whose set of state§jsve build the
observation systernfin : X x Q — X x Q.

First we prove that the observation systgmcontains finitely many minimal sets. L&f;, ..., X,
be the minimal subsystems ¢f: X — X. For everyi = 1,...,k choose an arbitrary point; € X;.
A minimal subsystem of A, when projected oiX, is exactly a minimal subsystem ¢f as easily seen.
Thus any minimal subsystem ¢ must contain at least one point of the fofm, ¢), for someq € Q.
Since any two different minimal subsystems are disjoing theans that there are at mé$f)| minimal
subsystems irfa.

Then we show that the limit set gfy is exactly the union of all minimal subsystems.

It is clear that the minimal subsystems are in the limit sef,0f Now we prove that each minimal
subsystemZ of fa has a nonempty interior in the limit set gf (for the relative topology). The
projection of the limit set offo on X is the limit set of f. The projection ofZ on X is a minimal



16 J.-Ch. Delvenne et al. / Decidability and Universality

subsystem of, which has a nonempty interior in the limit set ffand the projection of is quQ Zg,
whereZ = J, Z, x {¢}. From Baire's theorem, one of the&g has a nonempty interior in the limit set
of f, andZ itself has a nonempty interior in the limit set 6.

LetY; be a set included i&; that is open in the limit set ofa, whereZ4, ..., Z,, are the minimal
subsystems ofa. All sets|J,, (/A" (Y3)) are disjoint sets, are open in the limit set and cover the limi
set, since the closed orbit of every point in the limit sef@fmust include a minimal subsystem. From
compactness, all points of the limit set £ fall in a minimal subsystem in bounded time. We conclude
that the union of all minimal subsystems is the exactly timétlset of f.

So the limit set of the observation systein is a finite union of minimal subsystems. We get from
the lemma below thafa has clopen basins. From Proposition 6 we deduceftlimtecidable. O

For instance, the systerh : {0,1}" — {0,1} : 2 — 0z is decidable. The following lemma
finishes the proof.

Lemma 8. A symbolic system whose limit set is the finite union of minirsgstems has clopen basins.

Proof:

Suppose that the limit set}§ U- - -UY}, whereY; are minimal subsystems, so thany; = () for i # j.

LetV C X be aclopenset. ¥ NY; =0, thenB(V)NY; =0.If VNY; # 0, then for somen > 0,

Y; € Vin = Upem f"(V). Thus there exists: > 0 such that for all eitherY; C V,, orY; NV, = 0.

ThenW,, = f~™(V) \ V., is a clopen set disjoint from the limit set. From compactrtégse exists
k > 0 such thatf ~*(W,,) = 0, soB(W,,) is a clopen set. It follows thas(V') = V;, U B(W,,) is a
clopen set too. O

We immediately have the following corollary.

Corollary 9. A minimal symbolic system is decidable.

This is in a way not surprising since in some way all trajege®pof a minimal system have the same
behavior. The following proposition leads to another cousace of Proposition 7:

Proposition 10. A symbolic system such that all nonempty subsystems haveenmaty interior has a
limit set composed of finitely many minimal subsystems.

Proof:

Let f be a system such that all nonempty subsystems have a nonangtgr. In the interior of every
minimal subsystem choose a clopen 8gt The basin of the open sk, U; is the full space, because
every point of the system must come arbitrarily close to sorimémal subsystem, thus must fall in some
U;. By compactness, there is a finite seti®fand a natural integen such thal J;,.; U,,.,,, f 7" (U;) is
the full space. So there are finitely many minimal subsystemd every point falls in a finite time into
a minimal subsystems. The union of the minimal subsystenigeigfore the limit set. O

Corollary 11. A symbolic system such that all nonempty subsystems haveenmaty interior is decid-
able.
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In another words, an undecidable system must have a ‘thimBystem. A stronger statement than
Proposition 7 is suggested by the intuition that an undébidsystem (and especially a universal system)
is likely to be able to ‘simulate’ many other systems.

Conjecture 1. A universal symbolic system has infinitely many minimal stgbems.

7.2. Regular Systems

A subshift is called sofic, if its language is regular. A syiibsystem is calledegular, if all its
induced subshifts are sofic; see [22]. Can a regular systemnibersal? We first consider a closely
related question. We say that an effective systemffisctively regulaiif it is regular and there is an
algorithm that builds from a given clopen partition the frétutomaton recognizing the regular language
induced by the partition.

Proposition 12. An effectively regular system is decidable.

Proof:

The intersection of twau-regular languages is well known to be arregular language, and a Muller

automaton accepting the intersection can be computed;38ddr instance. Moreover, whether the

language accepted by a given Muller automaton is empty isidaee problem too. And a sofic subshift

is anw-regular language: the finite automaton accepting the kgguinterpreted as a Bichi automaton
with the same set of final states, accepts the sofic subshift.

Suppose that we are given an effectively regular systemopenl partition.A of the space and a
Muller automaton over the alphahdt Then we construct another Muller automaton that accetstiyx
the subshift induced byl and verify whether the languages accepted by these two Madkemata has
a nonempty intersection. Hence the system is decidable. O

If the system is regular but not effectively regular, thea #ingument of the proof fails.
Proposition 13. There exists a symbolic system that is regular and universal

Proof:

Let X,, be the subshift of0, 1} whose forbidden words are words of the foif 1, wheret is less
than the (possibly infinite) halting time of the universatihg machine launched on data If the Turing
machine does not halt, theXy, is the sofic subshiff0*10«, 0« }. If the Turing machine halts ik steps,
then X,, is the subshift of finite type with forbidden words, 101, 1001, ...,10¥"!1. So all subshifts
are sofic, but we cannot effectively build the automaton gacng the language, for it would allow to
solve the halting problem.

Now consider the product of ak’,,. This product is again an effective symbolic syst&mand all
its induced subshifts are sofic, due to the fact that the fprideluct of sofic subshifts is a sofic subshift
and the induced subshift of a sofic subshift is again sofic{28e Thus the system is regular, but not
effectively regular. Finally, itis r.e.-complete to chegkether there is a trajectory starting fram?* ([1])
which eventually reaches;, }([01]). Herer,, : X — X, is the projection. 0
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7.3. Shadowing property

Definition 8. Let f : X — X be a symbolic dynamical system.¥pseudo-orbitis a (finite or infinite)
sequence of point&ey,),>o such thatd(f(z,),zn,+1) < 0 for all n. A point z e-shadowsa (finite
or infinite) sequencéz,,),>o if d(f"(x),z,) < € for all n. A dynamical system is said to have the
shadowing propertyf for every e > 0 there is & > 0 such that any-pseudo-orbit is-shadowed by
some point. If moreover such a ratiodatan be effectively computed from a ratiorghen we say that
the system has theffective shadowing property

For example, the one-sided and two-sided shifts have théoshiag property ford = ¢. By a
theorem of Walters, a subshift of finite type has the shadgwioperty, with a linear relation between
andJ (see [23] for a proof), thus has the effective shadowing @rtyp Clearly, the effective shadowing
property is invariant under effective conjugacies. We daa the following interpretation to the effective
shadowing property. Suppose that we want to compute nuatigrtbe trajectory ofc such that at every
step numerical errors are bounded byThe resulting sequence of points i$-pseudo-orbit, and the
shadowing property ensures that this pseudo-orbitiese to an actual trajectory of the system, ensuring
that the result of the numerical computation is not meaeisg|

Proposition 14. A symbolic system (effective or not) with the shadowing pp is regular. An effec-
tive symbolic system with the effective shadowing propéstgffectively regular.

Proof:

The proof generalizes Proposition 5.69 of [23] about callidutomata. Consider a symbolic system
f+ X — X with the shadowing property and a clopen partitidn= { A1, ..., Ay }. There exists ana
such that all clopen sets of the partition are finite unionisatis of radiuse. By the shadowing property,
there exist9 such that every-pseudo-orbit ig-shadowed. We may suppose without loss of generality
thato < e. LetB = {By,..., By} the clopen partition where eadh; is a ball of radius). Then the
set of all infinite words induced by adtpseudo-orbits through is a subshift of finite type: the word
B; B, is forbidden iff B; N f~(B;) = 0, i.e., we cannot go fron; to B; in one step. But the partition
A is coarser thai8, so the subshift induced hy is a factor of a subshift of finite type, hence sofic. If
the system has the effective shadowing property, then weffactively findd, effectively describe the
subshift of finite type and effectively build the sofic sulfishi O

Theorem 15. A symbolic system that has the effective shadowing progsrtiecidable.

Proof:
By Propositions 14 and 12. O

In particular, the shift and any subshift of finite type is ideble. We also have the following result.
Proposition 16. A symbolic system that has the shadowing property is noteusal.

Proof:

Let f : X — X be a symbolic system with the shadowing property. Given ardehistic finite
automaton observing the system through a given clopertipartthe problem is to check whether there
exists a finite word induced by the clopen partition that isepted by the automaton. As we have noticed
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after stating Definition 6, this problem is recursively erarable. We show that it is also co-recursively
enumerable. This will prove that the problem is decidabkt that f is not universal.

Let A = {4,,...,Ax} be a clopen partition and : @ x A — @ the transition function of a
deterministic finite automaton. We must essentially prdwa the halting problem is decidable for the
observation systernfin : X x Q — X x Q.

But fa is an effective symbolic system with the shadowing propesty we now show. We can
suppose that the distance betwéeng) and(z/,¢’) is 1 if ¢ # ¢’ andd(z, z") otherwise. For am > 0,
choose ar’ < e such that anyd; can be written as a union of balls of radids Then the shadowing
property forf yields a corresponding. Choose & < ¢’ such that is strictly smaller than the distance
between any two set¥ x {¢} and X x {¢’}. Then it is easy to see that anypseudo-orbit offs is
e-shadowed by some point &f x @Q): such a pseudo-orbit is projected onté-pseudo-orbit off, which
is e-shadowed by some point, and this point can be lifted to atpbat e-shadows the pseudo-orbit of
fa.

Take two clopen set§, V' C X x @. There exists an orbit frorfy to V' iff for every 6 > 0 there
exists aj-pseudo-orbit fronl/ to V' (see Proposition 2.15 of [23]). If there is no orbit startind’ that
reached/, then there exists@such that n@-pseudo-orbit goes froii to V', and we can algorithmically
check it by the following method. For a fixéd defineV’ as the union of balls of radiuswhose center
is in fx'(V). Then computd’”, V", and so on. As there are only finitely many balls of radius
V® = v+ for somet. Then check whethdr ) N U is empty; it is the case if and only if there is no
0-pseudo-orbit fronU to V. Start again with smaller and smalter

Thus the halting problem fofx is decidable. In particular 7 = X x {qo} (whereq is the initial
state of the automaton) arld = X x F' (where F' C (@ is the set of final states of the automaton),
then we can algorithmically check whether there exists atpufi.X which induces through the clopen
partition a word that is accepted by the automaton. O

The following proposition shows that the effective shadayproperty is stronger than the shadowing
property.

Proposition 17. There exists an undecidable effective symbolic systemhiémthe shadowing property,
but not the effective shadowing property.

Proof:

Let X, be the subshift with forbidden word@$, where the universal Turing machine stops on dataat
mostt steps. If the Turing machine does not halt-grihen X, is the full shift; if it stops ink steps, then
the forbidden word i$*. All these subshifts are effective, but we cannot compudd set of forbidden
words.

The productX of all X, is an effective system. Whether there is a point that remfainsver in
7, 1[0] is co-r.e.-complete (wherg, : X — X, is the projection). This property has been shown in
Figure 3 to be expressible in terms of Muller automata. Heheesystem is undecidable.

Recall that a subshift of finite type has the shadowing ptgp&¥e show that the countable product
of subshifts that have the shadowing property also has #osting property. A ball of radiusin the
product system may be expressed as the finite union of pdddtalls of radius’ in a finite number
of constituent subshifts. We choose the smallest of theespondingy’ given by shadowing property in
the subshifts. The product of balls of raditisnay be expressed as union of balls of radiuthis is the
 corresponding te.
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Hence the systerX has the shadowing property but not the effective shadowiapgsty, since it is
undecidable. 0

As the shadowing property implies non-universality, itbgfsoves that universality is stronger than
undecidability.

Corollary 18. There exists a symbolic system that is neither decidableimiwersal.

Note also that Turing machines that satisfy the shadowinggaty have been given a combinatorial
characterization in [21]; in particular, the proof showattthe link betweer ands (see Definition 8) is
linear. Hence the effective shadowing property is not gteorthan the shadowing property in the case of
Turing machines.

7.4. Equicontinuity

A systemf : X — X is equicontinuousf for every e > 0 there exists @ > 0 such thatl(z,y) < ¢
impliesd(f'(x), f'(y)) < e, for any pointsr, y andt € N. Note that equicontinuity in symbolic systems
is a topological property, not just a metric one. Instead-of ‘everye > 0, there is & ...’ we could say
‘For every clopen partition, there is a finer clopen pantitsuch that if two points are in the same subset
of the finer partition, then they generate the same infinitehirothe coarser partition.’

Proposition 19. An equicontinuous effective symbolic system has the affecthadowing property.

Proof:
Let f : X — X be an equicontinuous system. Then for every 0, there is & such that any two points
distant of less than havee-close trajectories. We show that afwpseudo-orbit is-shadowed by some
point.

Let xg, 1, T2, . . . be aj-pseudo-orbit. We show by induction emthatd(f" (z,,), [T (z0)) < €
for everym andn. The casen = 0 is obvious. If it is true form thend ("1 (z,,), f* ™™ (xg)) < e.
But d(zmi1, f(zm)) < & implies d(f™(xmi1), [P (2,)) < e. From the ultrametric inequality we
haved(f™(zmy1), 7T (29)) < e.

It is now enough to prove that a suitakiés computable frong, i.e. an equicontinuous symbolic
system is always ‘effectively’ equicontinous. Take thetitian B, of all balls of radiuse. For every
n=0,1,2,..., let B, be the coarsest partition finer th&n and f~*(B,,). From equicontinuity, this

sequence of finer and finer partitions must stabilize to sBme- B, .1 = B,,12 = ---. To check that
we have reached this point it is enough to check Byat= 5,, 1. We choosé so that the clopen sets of
B,, can be expressed as balls of radius O

Corollary 20. An equicontinuous effective symbolic system is decidable.

Proof:
By the above proposition and Proposition 15. Alternativelg can prove it from Proposition 6. O

We say that a point of a dynamical systent is sensitiveif there is ane > 0 such that for every
§ > 0 there is a poiny with d(z,y) < ¢ and a non-negative timesuch thatd(f*(z), f*(y)) > e. It
is easy to show with compactness that an equicontinuousnigahsystem is exactly a system with no
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sensitive point. Hence, Proposition 20 implies that an ait#dle symbolic system must have a sensitive
point. Equicontinuity in the case of cellular automata averya combinatorial characterization in [23],
where it is also proved that equicontinuous cellular autarage eventually periodic, thus confirming in
this particular case that equicontinuity is incompatibiehweomputational universality.

7.5. Families of dynamical systems

Let us take for instance Proposition 7. The proof shows thagdsion procedure for an individual
system can be effectively found from programs of the contgatfunctions that compute inverse image
and the boolean connectors. So we can generalize Propositio

Proposition 21. Let (X, f»)nen be a family of effective dynamical systems such that gikeand two
clopen setd/ andV of X,,, we can comput& NV, U \ V andf, }(U). Suppose in addition that any
(Xn, frn) has a limit set composed of finitely many minimal systems.nTlgé&zenn and an instance for
(X, fn) of the infinite-time observation problem, we can decide it.

For instance, the problem of infinite-time, finite-memorysetyvation can be solved for the whole
family of sturmian subshifts with algebraic slopes. Indegiden an algebraic number (described by
the polynomial it is the root of), we can effectively find a gram witnessing that the corresponding
sturmian subshift is effective; hence the above propostioplies.

Similar results can be proved with families of equicontinsieystems, for instance. For other results
about decidable and undecidable properties in familieyonfdical systems, see [9].

8. A universal chaotic system

According to Devaney [11], a system éhaoticif it is infinite, topologically transitive and has a
dense set of periodic points. Bgpologically transitivewe mean that for any two open séfsandV/,
there is a point of/ that eventually reachélg. One can prove that every point of a chaotic system is
sensitive [3]. For instance, the full shift is chaotic andsitive in every point.

It is not difficult to construct a universal subshift. Indedud {0, 1}" consider all forbidden words
of the form01™00"1, where the universal Turing machine launched on dad®@es not halt in less than
t steps. Then the subshift of all configurations avoiding #as of words is effective and universal:
the halting problem is r.e.-complete. Note that it is notgpaixical or unreasonable to have a universal
subshift while the shift itself is decidable: it is a commdrservation that a subshift can be much more
complicated than the shift itself.

Modifying this construction, we get the following result:

Proposition 22. There exists an effective system on the Cantor space thaa@tic and universal.

Proof:

Consider a subshif c {0, 1, §}" whose forbidden words are @l1"00'1, where the universal Turing
machine launched on datadoes not halt in less thansteps. Denote by. C {0, 1}* the language of
binary words with no forbidden subword. Then the languag«& afonsists of wordsv;§ws5. . . §w,,
wherew; € L. We show thatX is a universal chaotic system.
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First note thatX is a perfect subshift, so it is effectively conjugated to stesn on the Cantor space.
Then X has dense periodic points:if € L, then(w§)“ is in X. Finally X is topologically transitive:
for any two finite word, w of the language we can go frop| to [w] with the pointv§w. ... Thus X
is chaotic.

Moreover, givem it is r.e.-complete whether there is a point[@f”0] that eventually reachdg01]
without passing througfs]. This property can be expressed by the finite automatonremtst! in Figure
2. ThusX is universal. O

Note that the system built in the proof is a one-sided subdieéhce it is positively expansive: there
is ane such that any two points are eventually separated by atdelkite also that the halting problem
for a chaotic symbolic system is trivially decidable, besmof the topological transitivity.

The central idea of the ‘edge of chaos’ is that a system thaalmmplex behavior should be neither
too simple nor chaotic. There are several ways to understeid Here we interpret ‘complex system’
by ‘universal symbolic system’. Then ‘too simple’ could eeto the situation treated in Proposition 7:
one or several attracting minimal subsystems. This induafecourse the case of a globally attracting
fixed point. If we take ‘chaotic’ as meaning ‘Devaney-chaothen computational universality need not
be on the ‘edge of chaos’, since we have just constructedaichsystem that is universal.

However, many examples of chaotic systems (whatever thet @x@aning given to ‘chaotic’, and
for symbolic systems as well as for analog ones), have th@osking property. For instance the shift
and Smale’s horseshoe (present in some physical systesnglelhas hyperbolic systems, satisfy the
shadowing property.

Thus we suggest that the term ‘edge of shadowing propertylavioe more appropriate (at least for
symbolic systems), although not as thrilling.

Note nevertheless that the ‘edge of chaos’ has been mudedtimdcellular automata, and we don’t
know whether an example of a chaotic universal cellularmaton exists.

9. Discussion of universality

Turing [38] justified the form of his machine along the folliow lines. A human operator applying
an algorithmic procedure can be supposed to be at every fstigpedn a uniqgue mental state. He can be
supposed to have finitely many possible mental states, ahavioat his disposal a pencil and as much
paper as needed, on which he may write out letters or digits finite time he may read or write only
finitely many symbols on the paper. Paper is modelled by the &gnd the human by a kind of finite
automaton that is able to read, write or shift the tape.

Now suppose that the human operator has no paper or pertatiabwbserve a (physical realization
of) a symbolic dynamical system, without being able to adritr The system can serve as a ‘universal
computer’ if with its help, the human operator is able to ecdll problems he could also solve with
paper and pencil. As the human operator has finitely manyiljessental states, at every step he can
distinguish only finitely many configurations of the systeifi.we group together all points that are
undistinguishable between them, we obtain a partition efdystem state space. We suppose that this
partition is clopen, because clopen partitions expressnataral way that finitely many symbols are
observed from the system at every step of time, analogoaslyring’s assumption.

Consequently, we model the situation as a symbolic systelovezd with a clopen partition observed
by a finite automaton. Now suppose that deciding whether tfie fautomaton can reach a final state
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from an initial state is at least as difficult as deciding th#ihg problem for a universal Turing machine.
Then to get the answer to a recursively enumerable probtesemough to observe the system, provided
we are ‘lucky’ and wait long enough. We say that such a syssetotnputationally universal.

Our definition of universality perhaps differs in severalywdrom what we could expect at first
glance from a generalization of Turing machine univergalife give now various arguments to support
the present definition against seemingly more obvious att®nn particular, we justify the use eét-
to-setproperties, observed Hinite automataon systems defined bycmputablemap.

9.1. Set-to-set properties

Many definitions of universality for particular systemsllgar automata, for instance) propose to
observe point-to-point properties. Typically, a coungabét of pointyz,,),cn, and the system is said
universal if the relation<,, is in the orbit ofz,,’ is r.e.-complete (this is a generalization of Davis’
definition of universality for Turing machines [8]).

This definition has in our opinion three drawbacks.

e If the system is uncountable, there are infinitely many a®ior the countable family of points
(). In the literature points with periodic or eventually pelio sequence of symbols are of-
ten considered, but there is apparentlyanpriori argument for this somewhat arbitrary choice
(although Sutner's reflection principle [37] sheds sombtligto that direction).

e Asremarked in [12], this definition leads to conclude thatshift is universal, for some choice of
the (z,,),; a consequence that sounds unreasonable, because ttaoskifiot compute anything
but just reads the memory. Indeed, consider the set of aflgroations with primitive recursive
digits. This set is countable and dense, and every such coafign is computable. Then we take
as an initial configuration the sequence of pairs (state efiiad, currently read symbol) of a
universal Turing machine during a computation. And we orayéehto shift it to know whether the
halting state will ever appear.

e From a physical point of view, point-to-point propertieg aather unsatisfactory. Indeed, if the
system is uncountable, specifying an initial point for teenputation means that we must give an
infinite amount of information. Preparing a physical systerhe in a very particular configuration
is likely to be impossible, because of the noise or finite igien inherent to every measure.

The definition presented in Section 6 overcomes these thioddems in a simple manner: the user
needs only to specify a finite number of bits as an initial é¢mal Instead of initialconfigurations
we should rather talk about initizkets which may be seen as ‘fuzzy points’, points defined with dinit
accuracy. The system is said universal if some propertytahese sets is r.e.-complete.

9.2. Finite automata

What kind of property are we going to test on clopen sets @ujvalently, on induced subshifts)?
We choose properties that can be expressed by finite autdreesaise they agree with Turing’s idea of
modelling a human operator as having finitely many possildatal states. Finite automata are also a
simple and well-established framework, extensively stddn the literature.
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Moreover, observing a larger class of properties may leabsurdities. For instance, suppose that
we look at identity on the Cantor space. We now choose to wbgbe following property: a clopen
set satisfies the property if and only if its index (i.e., theeger describing the clopen set) satisfies some
r.e.-complete property dN. Then we find that the identity is computationally universaich is a result
not to be desired. The complexity of computation is artifigihidden in the decoding.

On the other hand, we see no reason to restrict ourselve® teotk halting property: ‘there is a
trajectory from this clopen set to that clopen set’. Foranse, the chaotic system built in Section 8 is
universal but the halting property is decidable.

We do not use the powerful setting of Muller automata to defimeersality, because it may need
an infinite time to check that a trajectory has the requiragperty, which goes against the idea that a
successful computation should end in a finite time. Whethgven observer Muller automaton accepts
at least one trajectory of the system is actually a more gémgrestion, which is dealt with in our
definition of ‘decidable system’. This question is inteiregtas well (independently of the debate over
universality), since many properties of interest in dynaahsystems, such as ‘Is there a trajectory that
reaches the set infinitely often’ for instance, can be expressed in this derfprmalism. Informally,
they observe all properties that can be observed with a fimteory of the past.

9.3. Effectiveness

Finally, the following example shows the usefulness to adéféectiveness structure on dynamical
systems. Fix an r.e.-complete st C N of integers and consider the symbolic dynamical system
f {0, 1} — {0,1}" such thatf(1¥) = 1¢ and f(1"0zor172...) = 1™0x0z172 ..., Wherem
depends om in the following way. Ifn € H, thenm is the largest integer strictly smaller tharsuch
thatm € H or 0 if no such number exists. § ¢ H, thenm = n. Suppose now thdt3 € H. Then the
relation ‘the clopen sdi™0] will eventually react{1130]’ is r.e.-complete, becaudé is.

On the other hand, if we were provided with an actual implesatéon of f : {0, 1} — {0, 1}",
we could decide an undecidable problem (namély, by observing the trajectories. So this system
has ‘super-Turing’ capabilities, whereas the goal of tlaipgy is to characterize those systems that have
exactly the same power as universal Turing machines. Taudgcuch examples, we therefore restrict
ourselves to systems such that the inverse image of a cl@gpénmputable. Note that for instance in
[34] Siegelmann allows neural networks with non-recursigghts, leading to a non-computable maps
and to super-Turing capabilities.

10. Conclusions and future work

We provided a definition of decidability and universalityr fa symbolic systems, and established
some links between decidability and the dynamical propertf the system. We also constructed a
chaotic system that is universal. These results are summied-igure 4. Let us list some open problems.

Is there a cellular automaton that is chaotic and univeSattfon 8)? Do undecidable system have
infinitely many disjoint subsystems (Conjecture 1)? Can wd fufficient conditions of universality?
What can be said about distal systems, Furstenberg sysigmosogical entropy with respect to univer-
sality? Are the Game of Life and the automaton 110 univeimabir definition? Can a linear cellular
automaton be universal?
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Figure 4. Summary of the results. Arrows read ‘implies’,.ss@d arrows read ‘does not imply’.

— Effective shadowing prop. Shadowing property

The collection oB21 problems can be stratified into a rich variety of intermesllavels. For instance,
it contains the so-called arithmetic hierarchy. Which @& levels contain the infinite-time observation
problem of some symbolic system?

It also remains to extend the definitions and results to Byst@R"™ in discrete time or even con-
tinuous time. The resulting definition of universality cduthen be compared to existing definitions,
for instance [35, 5, 32, 30]. Then, results such as those ctid®e?7 could hopefully be adapted. For
instance, are minimal systems capable of universal conipn®a Such results could then be applied to
physical systems. What systems that can be found in Nataratde to compute? For instance, hyper-
bolic dynamical systems are known to have the effective @any property. This would suggest that
hyperbolic systems are not universal.

A theory a computational complexity could also be invesdda What problems can be solved in
polynomial time with a discrete-time dynamical system? @Garformulate a ‘P-NP’ conjecture? See
[4, 35] for theories of complexity in analog computation.
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