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CENTER FORTHEORETICAL STUDY,
ACADEMY OF SCIENCES ANDCHARLES UNIVERSITY IN PRAGUE,
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We formalize a pre-Cantorian continuum on the base of Bolzano’s theory of
measurable numbers as exposed in his manuscriptReine Zahlenlehre. In doing so
we use the insights of nonstandard analysis and computable analysis. We define
dynamic real numbers as Bolzano-Cauchy sequences of rational numbers and real
dynamic functions as limits of rational functions. The resulting structure contains
infinitely small dynamic numbers which can be used in differential and integral
calculus without the need for a nonconstructive free ultrafilter of nonstandard
analysis nor for advanced concepts of mathematical logic.
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1 Introduction

One of the theorems ofCours d’Analyseof Cauchy (1825) [2] says that a limit of
continuous functions is continuous. According to many historians of mathematics,
Cauchy proved a wrong theorem, overlooking that the continuity is not sufficient and
the uniform continuity is required in the assumptions. This reading of history is
questioned and criticized by Lakatos(1980) [5] who points to several queer facts which
are at odds with such an interpretation. In 1825, counterexamples to the theorem were
well-known in the theory of Fourier’s series. Moreover, even after thediscovery of the
concept of uniform convergence by Seidel in 1847, Cauchy presents his theorem in the
same form with the same proof in 1853.

Lakatos asserts that Cauchy made no error in his proof. He just proveda different correct
theorem because he worked with a different continuum concept. In contrast to the static
Cantor-Weierstrassian continuum, the continuum of Cauchy was dynamic. The term
variable (quantit́es variables) was not only a manner of speech but expressed the nature
of real numbers. A real number might have been conceived as an approximation process
(represented by a sequence of rational numbers) and not as a resultof this process.
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This conception has significant consequences for the convergence of functions. If a
sequence of functions{fn} is applied to a sequence of rationals{xn}, we have no
limit x = limn→∞ xn to which fn could be applied. Instead, we get a double sequence
{fn(xm)} and the resultf (x) should be some sequence{fnk(xmk)}k which may depend
on the subsequences{nk} and {mk}. In a dynamical continuum, two equivalent
approximating sequences with different speed of convergence would be regarded as
different. Only when we conceive real numbers as equivalence classes of converging
sequences of rational numbers, we get real numbers as static objects.

One more reason to rehabilitate the pre-Cantorian dynamic continuum comes from
the computable analysis (see Pour-El and Richards(1989) [8]). A real number is
computable if it is the limit of a computable convergent sequence of rational numbers
with a computable modulus of convergence. One of the main insights of computable
analysis is that the equivalence relation is undecidable for computable realnumbers.
There exists no algorithm which, given two computable convergent sequences and
their computable moduli of convergence, would decide whether they converge to the
same real number or not. Thus the standard concept of real number as an equivalence
class of converging sequences of rational numbers is highly non-constructive since the
equivalence relation is non-constructive. While this equivalence is quite useful in many
contexts, we should treat it with caution.

Cauchy does not analyze the concept of real number (quantités) and relies rather on
geometrical intuition. However, the dynamical nature of his continuum is sometimes
hinted at:

On dit qu’une quantit́e devient infiniment petite, lorsque sa valeur numérique
décroit ind́efiniment de manièreà converger vers la limite zéro. Cauchy(1821)
[2] p. 37.

An insight into the pre-Cantorian continuum can be obtained from the Bolzano’s
manuscriptReine Zahlenlehre(see Bolzano(1969-) [18] IIA8, partially translated in
Russ(2004) [11] pp. 357 - 428), where he develops his theory of measurable numbers.
As Lakatos(1980) [5] observes (referring to an earlier edition ofReine Zahlenlehreby
Rychĺık(1962) [12]),

It is a most interesting historical fact that Bolzano, the best logical mind
of the generation, made a real effort to clarify matters. He was possibly
the only one to see the problems related to the difference between the
two continuums: the rich Leibnizian continuum and, as he called it, its
’measurable’ subset - the set of Weierstrassian real numbers. Bolzano
makes it very clear that the field of ’measurable numbers’ constitutes
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only an Archimedean subset of a continuum enriched by non-measurable
- infinitely small or infinitely large - quantities. The editor makes a
misguided attempt to reconstruct Bolzano’s theory as a mere precursor
of Cantor’s theory of real numbers (cf. his dictionary of the two theories
on p. 98); one wonders whether he has omitted some crucial passages
from those parts of the manuscript which try to set up a consistent theory
of the Leibnitz-Cauchy continuum1. No doubt, since Robinson has shed
new light on the latter, historians will approach the Bolzano manuscript
with new eyes and the relation between Bolzano’s measurable and non-
measurable quantities and Robinson’s standard and non-standard numbers
will be clarified.

As claimed by Robinson(1996) [9] (and qualified by Lakatos), the infinitesimal quanti-
ties of the pre-Cantorian continuum are captured in the non-standard analysis. Indeed
nonstandard real numbers are sequences of real numbers which canbe interpreted
as approximating processes. The equality and all relations between nonstandard real
numbers are defined in terms of a free ultrafilter. As a consequence, the embedding of
real numbers into nonstandard real numbers satisfies the so called transfer principle.
Every property which holds for the structure of the standard real numbers holds for the
structure of the nonstandard real numbers as well (see e.g., Albeverio et al.(1986) [1]
for a readable exposition). In particular, nonstandard real numbers are linearly ordered.
However, the existence of a free ultrafilter cannot be proved constructively (axiom of
choice must be used) and the logical formalism of nonstandard analysis was beyond
the reach of pre-Cantorian mathematics.

Much closer to the spirit of dynamic continuum of Bolzano and Cauchy is the approach
of Schmieden and Laugwitz (1958) [13] who work with the space of all rational
sequencesQN calledΩ-rational numbers. The subspace of realΩ-rational numbers
is then defined by a condition which is equivalent to the Bolzano-Cauchy property.
Thus any standard real number is an equivalence class of realΩ-rational numbers.
Schmieden and Laugwitz then consider all functions defined on these realΩ-rational
numbers and define continuity by a usualε, δ -condition, where they admit asε and
δ also positive infinitesimals. This results in a much finer topology than the standard
one, making the limit of functionsfn(x) = xn continuous from the left atx = 1.

In the present paper we propose a version of the pre-Cantorian dynamical continuum
on the base of Bolzano’sReine Zahlenlehreusing the insights of nonstandard anal-
ysis and computable analysis. Imitating Bolzano’s measurable numbers, we define

1With the availability of the critical edition of the Bolzano’s manuscripts in Bolzano(1969-)
[18], it is now clear that the editor did omit some crucial passages.
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a dynamic real number as a Bolzano-Cauchy (BC) sequence of rational numbers.
This is equivalent to the concept of realΩ-number of Schmieden and Laugwitz. Two
dynamic numbers are equivalent if their difference converges to zero.The standard real
numbers are obtained by factorizing dynamic numbers by this equivalence.However,
we refrain from this factorization, so each standard real number is represented by many
dynamic numbers. None of these representations is distinguished, so dynamic numbers
do not contain standard real numbers as a subset. For the definition of inequality we
use the filter of cofinite sets instead of a free ultrafilter of nonstandard analysis. As a
consequence, our continuum is not linearly ordered.

In the theory of functions we depart from both Bolzano’sFunctionenlehre[18] IIA10
and from Schmieden and Laugwitz (1958) [13] and conceive adynamic real function
as a sequence (or a limit) of rational functions. This is analogous to nonstandard
analysis, where a nonstandard function is defined as a sequence of real functions.
Dynamic real functions need not be defined everywhere since the resulting sequences
need not be BC. This is reminiscent of computable analysis, where a real computable
function is undefined when the algorithm which computes it fails to terminate.

We say that a functionf is full at some dynamic numberx if it is defined for all y
which are infinitely close tox. In Theorem10 we prove that each full function is
continuous. This may be regarded as a rather strong version of the Cauchy continuity
theorem: The limitf of a sequencefn of (rational) functions is continuous whenever
the sequencefn(xn) converges for every dynamic numberx. We need not even assume
that fn are continuous. The class of dynamic functions is large enough to include
most of the functions considered in analysis, in particular all continuous functions and
all functions with a finite number of discontinuities. We show that the differential
and integral calculus with infinitesimals is feasible in this setting. The derivativeof
a function at a point can be defined only from its values at infinitely close points and
the differential calculus can be based on the calculus with the infinitesimals. Weshow
that a function which is continuous on a compact interval has an indefinite integral
and prove the fundamental theorem of calculus (Theorem21). Finally we develop
the theory of power series so that we obtain all analytic functions with their usual
properties.

2 Bolzano’s infinite number concepts

Let us briefly recall the main ideas of Bolzano’s theory of measurable numbers as
presented in his manuscriptReine Zahlenlehre(see Bolzano(1969-) [18] IIA8, partially

4



translated in Russ(2004) [11] pp. 357 - 428.) We follow closely the exposition (in
Czech) of Trlifajov́a(2006) [15]. Bolzano treats rational numbers as number concepts
in which there is a finite multitude of arithmetic operations of addition, subtraction,
multiplication and division. Ininfinite number concepts, an infinite multitude of
arithmetic operations occur. An expression representing such a concept is aninfinite
number expression. Bolzano’s examples of infinite number expressions are as follows:

1+ 2+ 3+ 4+ · · · in inf .
1
2
− 1

4
+

1
8
− 1

16
+ · · · in inf .

(

1− 1
2

)(

1− 1
4

)(

1− 1
8

)(

1− 1
16

)

· · · in inf .

An infinite number conceptS is called ameasurable number(§5) if for every positive
integerq there are an integerp and two positive number expressionsP and P1, the
former possibly being zero, such that the following equations are satisfied:

S=
p
q
+ P and S=

p+ 1
q

− P1.

A number expression is positive if it contains only positive numbers and no subtraction
(see Bolzano(1969-) [18] IIA8, page 96). Infinitely small numbers are a special sort
of measurable numbers. A positive number expressionS is infinitely small (§22) if
for any positive integerq there are positive number conceptsP1 and P2 such that
S = P1 = 1

q − P2. An example isS = 1
1+1+1+... in inf . A number expressionS is

infinitely large (§27) if for any positiveq there is an integerp such that one of the
equationsS=

p
q + P1 =

p+1
q − P2 is satisfied, but there is nop which satisfies them

both at once.

Bolzano proves many theorems about number concepts, for example that the sum and
the product of two measurable numbers is a measurable number. The theoryis not
entirely correct since an oscillating number expression1

2 − 1
4 + 1

8 − 1
16 + · · · in inf . is

not measurable in this sense but can be obtained as a sum of two measurablenumber
concepts. As observed by Laugwitz(1962-1966) [6], the theory can be saved if we
replace the condition of measurability byS=

p−1
q + P1 =

p+1
q − P2. In fact Bolzano

seems to have been aware of the problem since the last note ofReine Zahlenlehre
suggests this modification as well:

Perhaps the theory of measurable numbers could be simplified if we
formulated the definition of them so thatA is called measurable if we
have two equations of the formA =

p
q + P =

p+n
q − P, where for the

identical n, q can be increased indefinitely (Russ(2004) [11] §122, p.
428).
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Obviously, the formula was intended in the formA =
p
q + P1 =

p+n
q − P2 with

positive number expressionsP1,P2. The omission of indexes could not be intentional
as it makes no sense in the whole context. With this modification of the definition of
measurability suggested by Laugwitz or by Bolzano himself, the measuring process
is no more unique but the oscillating number concepts become measurable as well
and measurable numbers become closed with respect to addition, subtractionand
multiplication (see Sebestik(1992) [14] pp. 375-387 for a thorough discussion of this
issue).

Starting in §53 Bolzano discusses the concepts of order between number expressions
and their equality or equivalence. Bolzano’s first definition of equality was not correct
but he adds a note where he revised it.

If the pair of numbersA andB have a differenceA−B which, considered
absolutely, has the same characteristics as zero itself in the process of
measuring (i.e., it behaves like zero) in that for every denominatorq,
however large, the numerator of the measuring fraction is found to be
= 0, and so it has only two equationsA−B = 0

q +P1 = 1
q −P2, then we

say thatA = B. But if the difference has the characteristics of a number
different from zero, and its true value is positive, thenA > B, if it is
negative , thenA < B (Russ(2004) [11] p. 391).

In §107 Bolzano formulates the BC-condition and proves the theorem that every BC-
sequence of measurable numbers has a limit that is a measurable number. Although his
proof lacks some final demonstration, it is almost entirely correct (see Rusnock(2000)
[10], pp. 186 - 188). If we wish to interpret Bolzano’s theory in terms of contemporary
mathematics, the easiest way is to interpret infinite number expression as sequences
of rational numbers (see Rychlı́k(1962) [12]). Every number expressionS can be
described as a sequence of partial results of arithmetic operations{sn}, and vice
versa, every sequence{sn} can be described as the first term plus the infinite sum of
differences between immediately following termss1+

∑

(sn+1− sn). For instance the
number expression 1+2+3+4+ ... in inf corresponds to the sequence{1

2n(n+1)} =

{1, 3, 6, 10, ...} and 1
1+1+1+... in inf corresponds to{1

n} = {1, 1
2,

1
3,

1
4, ...}. Then it is

easy to see that a sequence{sn} ∈ QN of partial results represents a measurable number
if and only if it is a BC-sequence.

At first sight, in §53 Bolzano abandons infinitesimals and treats equivalentnumber
expressions as equal, which would be equivalent to the modern theory ofreal numbers.
Nevertheless Bolzano inserts the following note where he clarifies the issue.
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Since the infinitely small numbers are not equivalent to zero in every
respect, but only in respect of their process of measuring, it might be
expedient, if we call such numbers zero, to call them arelative zero or
respectivezero [relative oder beziehungsweise Null]. In contrast to that,
the concept of zero, which we already met in §116, EG III might be called
the absolute zero. (Russ(2004) [11] §58, p. 395)

Even in later paragraphs ofReine ZahlenlehreBolzano keeps speaking about infinitely
small numbers. This would make no sense if his equivalence (denoted by=) were
meant as equality or identity. Thus Bolzano’s continuum as exposed inReine Zahlen-
lehreis the rich continuum with infinitely small and infinitely large quantities and is not
equivalent to the factorized Cantorian continuum. Nevertheless, in his latermanuscript
Functionenlehre(Bolzano(1969-) [18] IIA10), where continuity and differentiability
issues are thoroughly discussed, infinitesimals are not used. In fact, they are never even
mentioned. Only in hisParadoxien der Unendlichen(Bolzano(1969-) [18] IIA11, §30)
we find a short exposition how infinitesimals can be used in differential calculus.

3 Dynamic real numbers

Denote byN = {0, 1, 2, . . .} the set of nonnegative integers, byZ the set of integers,
by Q the set of rational numbers, and byQ+ = {x ∈ Q : x > 0} the set of
positive rational numbers. We say that a property of nonnegative integers holdsalmost
everywhere (a.e.) if it holds for all but a finite number of integers, i.e., if the set of
integers for which it holds belongs to the filter of cofinite sets.

Definition 1 A dynamic (real) number is a BC-sequence of rational numbers, i.e., a
mappingx : N → Q, such that∀ε ∈ Q+, ∃n ∈ N, ∀i, j ≥ n, |xi − xj | < ε. We denote
by Q∗ the set of dynamic numbers.

The speed of convergence of a dynamic numberx is given by itsmodulus of conver-
gencemx : Q+ → N defined bymx(ε) = min{n ∈ N : ∀i, j ≥ n, |xi − xj | < ε}.
Rational numbers are represented inQ∗ as constant sequences, so we have an embed-
ding Q ⊂ Q∗ . We have some relations onQ∗ defined by

x = y ⇔ xi = yi a.e.

x < y ⇔ xi < yi a.e.

x ≤ y ⇔ xi ≤ yi a.e.
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The relations<,≤ are transitive but not linear. For the dynamic numberx =

{(−1)n/n} we have neitherx ≤ 0 nor 0 ≤ x. Define the equivalence relation≈
by

x ≈ y ⇔ lim
i→∞

(xi − yi) = 0

Thus x ≈ y if for every ε ∈ Q+ there existsn ∈ N such that for everyi ≥ n we
have|xi − yi | < ε. The relations<, ≈, > are not exclusive. Forx = {1/n} we have
both 0≈ x and 0< x. We say thatx ∈ Q∗ is an infinitesimal number if x ≈ 0.
Arithmetical operations onQ∗ are defined pointwise, in particular (x+ y)n = xn + yn,
(x − y)n = xn − yn, (x · y)n = xn · yn. For x > 0 define thek-th root of x by
( k
√

x)n = max{z ∈ N : zk < xn · nk}/n. Denote by⌊x⌉ ∈ Z the closest integer to
x ∈ Z which satisfies⌊x⌉ − 1

2 ≤ x < ⌊x⌉+ 1
2 . For x ∈ Q∗ set⌊x⌉ = ⌊xmx(1/2)⌉.

Theorem 2 If x, y ∈ Q∗ , thenx+ y, x− y, x · y ∈ Q∗ , so (Q∗, 0, 1,+,−, ·) is a ring.
If x 6≈ 0, then1/x ∈ Q∗ . If x > 0 then( k

√
x)k ≈ x.

Proposition 3

1. Forx, y ∈ Q∗ we havex ≈ y iff |x− y| < ε for eachε ∈ Q+ .

2. If x ∈ Q∗ , then for eachε ∈ Q+ andn ≥ mx(ε) we have|xn − x| < ε.

3. If x 6≈ y then eitherx < y or y < x.

4. If x ∈ Q∗ then⌊x⌉ − 1 < x < ⌊x⌉+ 1.

Proof 1. This is an immediate consequence of the definition.
2. For eachn, xn = xn,p is regarded here as a constant sequence, so for eachp ≥ mx(ε)
we have|xn,p − xp| = |xn − xp| < ε and therefore|xn − x| < ε.
3. If x 6≈ y, then there existsε ∈ Q+ such that for infinitely manyn we have either
xn + ε ≤ yn or yn + ε ≤ xn. In the former case for eachp ≥ max{mx(ε/2),my(ε/2)}
there existsn such thatxp < xn +

ε
2 ≤ yn − ε

2 < yp, sox < y.
4. Forn = mx(1/2) we have⌊x⌉ − 1

2 ≤ xn < ⌊x⌉+ 1
2 andxn − 1

2 < x < xn +
1
2 .

A sequence of dynamic numbersis a mapx : N → Q∗ , or a double sequence
x : N × N → Q, {xi} = {(xi)j} = {xij}. The convergent and BC sequences{xn} of
dynamic numbers are defined in a standard way, and the equivalence of these concepts
is easily proved:

{xn} is convergent iff ∃z∈ Q∗, ∀ε ∈ Q+, ∃n, ∀p ≥ n, |xp − z| < ε

{xn} is BC iff ∀ε ∈ Q+, ∃n, ∀p, q ≥ n, |xp − xq| < ε
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Theorem 4 A sequence{xn} of dynamic numbers is convergent iff it is a BC-
sequence.

Proof Let xn ∈ Q∗ be a BC sequence and denote byxn,i ∈ Q the i -th member
of xn. For a givenn there existskn > n such that for eachp, q ≥ kn we have
|xp − xq| < 1/n. For eachn there existsjn = mxn(n) such that by Proposition3(2),
for eachi ≥ jn we have|xn,i − xn| < 1/n. Set yn = xn,jn . For p, q ≥ kn we have
|yp−yq| ≤ |xp,jp−xp|+|xp−xq|+|xq−xq,jq| < 1

p+
1
n+

1
q ≤ 3

n , soy ∈ Q∗ . Forp, q ≥ kn,

q ≥ jp we have|xp,q − yq| ≤ |xp,q − xp| + |xp − xq| + |xq − xq,jq| < 1
p +

1
n +

1
q ≤ 3

n .
so for eachp ≥ kn we have|xp − y| < 3/n and therefore limn→∞ xn = y and{xn} is
convergent. The converse implication is straightforward.

Proposition 5 For a given a sequence{xn} of dynamic numbers, there existsa =

lim inf n→∞ xn, b = lim supn→∞
xn, with a, b ∈ Q∗ ∪ {−∞,+∞}, such that for each

ε ∈ Q+ we have

{n ∈ N : xn < a− ε} is finite, {n ∈ N : xn < a+ ε} is infinite,
{n ∈ N : xn > b+ ε} is finite, {n ∈ N : xn > b− ε} is infinite.

Proof If for all a ∈ Z the set{n ∈ N : xn > a} is finite, then lim supn→∞
xn = −∞.

If for all b ∈ Z the set{n ∈ N : xn > b} is infinite, then lim supn→∞
xn = +∞.

Otherwise leta0 be the maximum of alla ∈ Z such that the set{n ∈ N : xn > a} is
infinite and letb0 be the minimum of allb ∈ Z such that the set{n ∈ N : xn > b} is
finite. If ai andbi have been defined then setdi = (ai + bi)/2 and

ai+1 = ai , bi+1 = di if {n ∈ N : xn > di} is finite
ai+1 = di , bi+1 = bi if {n ∈ N : xn > di} is infinite

Then a ≈ b are BC sequences and we set lim supn→∞
xn = b. Limes inferior is

defined analogously.

Theorem 6 (Bolzano-Weierstrass)Every bounded sequence of dynamic numbers
has a convergent subsequence.

Proof Assume thata0 ≤ xn ≤ b0 for all n, where a0, b0 ∈ Q and setn0 = 0.
Assume thatai , bi , ni have been defined and that the set{n ≥ ni : ai ≤ xn ≤ bi} is
infinite. Setdi = (ai + bi)/2 and

ai+1 = ai , bi+1 = di if {n > ni : ai ≤ xn ≤ di} is infinite,

ai+1 = di , bi+1 = bi otherwise.

ni+1 = min{n > ni : ai+1 ≤ xn ≤ bi+1}.
Thena ≈ b ∈ Q∗ and limi→∞ xni = a.
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4 Dynamic real functions

For dynamic numbersa < b define the open and closed intervals by

(a, b) = {x ∈ Q∗ : ∃ε ∈ Q+ : a+ ε < x < b− ε}
[a, b] = {x ∈ Q∗ : ∀ε ∈ Q+ : a− ε < x < b+ ε}

Semi-open and infinite intervals [a, b), (a,∞) are defined analogously. Note that the
interval (0, 1) does not contain any infinitesimal number while the closed interval [0, 1]
contains all infinitesimals. We now define dynamic functions as sequences (or limits)
of rational functions.

Definition 7 A dynamic (real) function is a partial mappingf : D(f ) → Q∗ whose
domainD(f ) ⊆ Q∗ is an interval, such that there exists a sequence of rational functions
fn : D(f )∩Q → Q and forx ∈ D(f ) we havef (x) = {fn(xn)} provided{fn(xn)} ∈ Q∗

and f (x) is undefined otherwise. We then say thatf is the limit of fn, f = limn→∞ fn.
Two dynamic functions are equivalent (f ≈ g), if for every x ∈ Q∗ , f (x) is defined iff
g(x) is defined and in this casef (x) ≈ g(x).

The simplest case is a constant sequence of rational functionsf : D(f ) ∩ Q → Q.
Then f is extended toD(f ) by f (x)n = f (xn) if {f (xn)} ∈ Q∗ and f (x) is undefined
otherwise. In the following examples we show that whenever a dynamic function is
discontinuous, it is not defined at some dynamic numbers.

Example 1 The signum functionsgn :Q → Q is defined bysgn(x) = −1, 0, 1 when
x < 0, x = 0, x > 0 accordingly.

Thus sgn(x) = 1 for each positive infinitesimal but sgn(x) is undefined for oscillating
infinitesimals likex = {(−1)n/n}.

Example 2 Define f = limn→∞ fn where fn : Q → Q are given byfn(x) = 1/(1+

n2x2).

Note that in the standard analysis this is an example of pointwise convergencewhich is
not uniform. We havef (0) = 1 andf (x) ≈ 0 wheneverx ∈ Q∗ is not infinitesimal. For
x = {1/n2} we havef (x) ≈ 1, for x = {1/n} we getf (x) = 1/2 and forx = {⌊√n⌉}
we get f (x) ≈ 0. There exist many infinitesimals for whichf (x) is undefined, for
example ifxn = 1/n for n odd andxn = 1/n2 for n even.
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Definition 8 We say that a dynamic functionf : D(f ) → Q∗ is full at x ∈ D(f ), if it
is defined for everyy ∈ D(f ) with y ≈ x. We say thatf is a full function , if it is full
at everyx ∈ D(f ).

Proposition 9 If f : Q → Q is continuous then its extensionf : Q∗ → Q∗ is a full
function.

The proof is straightforward. Thus every polynomial with rational coefficients is a full
function. We now prove a version of Cauchy theorem saying that if a sequence of
(rational) functions converges at every dynamical number, then the limiting function is
continuous.

Theorem 10 If a dynamic functionf is full at x ∈ D(f ), then it is continuous atx,
i.e., for everyε ∈ Q+ there existsδ ∈ Q+ , such that for ally ∈ D(f ) with |x− y| < δ

we have|f (x) − f (y)| < ε providedf (y) is defined.

Proof Assume by contradiction that a functionf = limn→∞ fn is full but not contin-
uous atx ∈ D(f ). Thus there existsε ∈ Q+ such that for eachn ∈ N+ there exists
yn ∈ D(f ) such that|yn − x| < 1/n, f is defined atyn and |f (yn) − f (x)| 6< ε. It
follows that there existsrn with |ynrn − xrn| < 1/n and |frn(ynrn) − frn(xrn)| ≥ ε. We
can assume that{rn} is an increasing sequence. Definez∈ QN by

zk =

{

xrn for rn ≤ k < rn+1, n even
ynrn for rn ≤ k < rn+1, n odd

Thenz∈ Q∗ , z≈ x and we show thatf (z) is undefined. Sincef (x) ∈ Q∗ , there exists
n0 such that for everyn ≥ n0 we have|frn+1(xrn+1) − frn(xrn)| < ε/2. Then forn ≥ n0

even we get

|frn+1(zrn+1) − frn(zrn)| ≥ |frn+1(yn+1,rn+1) − frn+1(xrn+1)| −
|frn+1(xrn+1) − frn(xrn)| ≥ ε− ε

2
=

ε

2

so f (z) is not a BC-sequence, which is a contradiction.

As an immediate consequence of Theorem10we get

Proposition 11 If a dynamic functionf is full at x ∈ D(f ), then for ally ∈ D(f ) with
x ≈ y we havef (x) ≈ f (y).
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Thus we have an analogous principle as the nonstandard analysis wherea function is
continuous atx if f (x+ ε) − f (x) is infinitesimal for each infinitesimalε. To clarify
the relation of dynamic functions to standard real functions we show that any standard
continuous function can be represented by a dynamic function. As shownby Examples
1 and2, many noncontinuous real functions can be represented by dynamic functions
as well, but these real functions must be left undefined at the points of discontinuity.

Proposition 12 Define the setR = Q∗/ ≈ of standard real numbers as the set of
equivalence classes of dynamic numbers. Then for any real functiong : R → R there
exists a dynamic functionf : Q∗ → Q∗ such that for anyx ∈ Q∗ , if g is continuous at
[x] , thenf is full at x and in this case[f (x)] = g([x]) . Here[x] ∈ R is the equivalence
class ofx.

Proof Define fn : Q → Q by fn(x) = ⌊n · g(x)⌉/n, where⌊y⌉ ∈ Z is the closest
integer toy ∈ R. Then setf = limn→∞ fn.

5 Full functions

In classical analysis, continuous functions on a compact interval are bounded, uni-
formly continuous, attain their extrema, satisfy the intermediate value theorem and are
Riemann integrable. We get analogous properties in our setting.

Definition 13 A full function f : [a, b] → Q∗ is uniformly continuous if

∀ε ∈ Q+, ∃δ ∈ Q+, ∀x, y ∈ [a, b], (|x− y| < δ ⇒ |f (x) − f (y)| < ε).

A full function f : [a, b] → Q∗ is sequentially uniformly continuous if

∀ε ∈ Q+, ∃δ ∈ Q+, ∃p ∈ N, ∀n ≥ p, ∀x, y ∈ [a, b], (|x−y| < δ ⇒ |fn(x)−fn(y)| < ε).

A full function f : [a, b] → Q∗ has auniform modulus of convergencemf : Q+ → N

if
∀ε > 0, ∀n,m≥ mf (ε), ∀x ∈ D(f ) ∩Q, |fn(x) − fm(x)| < ε.

Proposition 14 Every full function f : [a, b] → Q∗ is uniformly continuous.

Proof If not, there existsε ∈ Q+ such that for everyn there existxn, yn ∈ [a, b] such
that |xn − yn| < 1/n and |f (xn) − f (yn)| > ε. By the Bolzano-Weierstrass theorem
6 there exist converging subsequencesxni → z, yni → z and f is not continuous atz
which is a contradiction.
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Theorem 15 If f : [a, b] → Q∗ is a full function then there exists an equivalent full
functiong : [a, b] → Q∗ which is sequentially uniformly continuous and has a uniform
modulus of convergence.

Proof Let f = limn→∞ fn wherefn : [an, bn] ∩Q → Q. Setjn = ⌊nan⌋, kn = ⌈nbn⌉.
Define gn : [ jn

n ,
kn
n ] → Q as an approximation on eachi/n and linearly betweeni/n

and (i + 1)/n.

gn

( i
n

)

=







⌊nf(a)⌉/n for i = jn
⌊nf( i

n)⌉/n for jn < i < kn

⌊nf(b)⌉/n for i = kn

gn(x) = gn

( i
n

)

+ (nx− i)

(

gn

(

i + 1
n

)

− gn

( i
n

)

)

for
i
n
≤ x ≤ i + 1

n
.

For a givenε ∈ Q+ takeδ ∈ Q+ from the uniform continuity off . Takep such that
1
p < δ and assumen ≥ p. Given x ∈ [a, b], there existsi such thatx − δ < i/n ≤
x < (i + 1)/n < x+ δ . We have|f (a) − gn(jn/n)| < 1/n, |f (b) − gn(kn/n)| < 1/n.
For l = i, i + 1 we have|f (l/n) − gn(l/n)| < 1/n and |f (x) − f (l/n)| < ε, so
|f (x) − gn(l/n)| < ε + 1/n. Since gn is linear betweeni/n and (i + 1)/n, we
have also|f (x) − gn(x)| < ε + 1/n for all x ∈ [ i

n,
i+1
n ]. Thus we have proved

∀ε ∈ Q+, ∃p, ∀n ≥ p, ∀x ∈ [an, gn], |f (x) − gn(x)| < ε+ 1
n , so f ≈ g. If |x− y| < δ ,

then for alln ≥ p we have

|gn(x) − gn(y)| ≤ |gn(x) − f (x)|+ |f (x) − f (y)|+ |f (y) − gn(y)| ≤ 3ε+
2
n

so g is sequentially uniformly continuous. Forn,m≥ p we get

|gn(x) − gm(x)| ≤ |gn(x) − f (x)|+ |f (x) − gm(x)| ≤ 2ε+
1
n
+

1
m

so g has a uniform modulus of convergence.

Theorem 16 (Intermediate value theorem)If f : [x, y] → Q∗ is a full function and
f (x) < 0 < f (y), then there existsz∈ [x, y] such thatf (z) ≈ 0.

Proof Define sequencesai , bi ∈ Q∗ by a0 = x, b0 = y, and if an andbn have been
defined then setcn = (an + bn)/2, and

an+1 = cn, bn+1 = cn if f (cn) ≈ 0
an+1 = an bn+1 = cn if f (cn) > 0
an+1 = cn, bn+1 = bn if f (cn) < 0

If f (cn) ≈ 0 for somen, then z = cn is the required solution. If not, then botha
andb are BC sequences of dynamic numbers, so they have a limitz = limn→∞ an ≈

13



limn→∞ bn. If f (z) > 0 then f (an) > 0 for all sufficiently largen which is a
contradiction. If f (z) < 0 then f (bn) > 0 for all sufficiently largen which is a
contradiction, sof (z) ≈ 0.

6 Derivatives

Infinitesimals can be used in differential calculus. Forx, y ∈ Q∗ define x ≪ y (x
is infinitely smaller than y), if |x| < |y| · ε for every ε ∈ Q+ . Thus x ∈ Q∗ is
infinitesimal iff x ≪ 1. There are many obvious laws for the relation≪. For example,
if x ≪ z andy ≪ z thenx+ y ≪ z andx · y ≪ z.

Definition 17 We say that a dynamic functionf has aderivative f ′(x) ∈ Q∗ atx ∈ Q∗ ,
if f is full at x and for each infinitesimalε we havef (x+ ε) − f (x) − ε · f ′(x) ≪ ε.

The derivative is not unique, but any two derivatives off are equivalent: From the
inequalitiesf (x+ ε) − f (x) − ε · f ′0(x) ≪ ε and f (x+ ε) − f (x) − ε · f ′1(x) ≪ ε, we get
ε · |f ′0(x) − f ′1(x)| ≪ ε, so f ′0(x) ≈ f ′1(x).

Example 3 Set fn(x) = (−1)n · x2.

Then f is a dynamic function which is full at 0 and undefined everywhere else. At
each infinitesimalx, f has zero derivative. Thus a function need not be defined in
a neighborhood of a point to have a derivative. Nevertheless, if it is defined in a
neighborhood of a point, then it satisfies the standard limit condition. This is proved
in the next proposition which is an analogue of Theorem10.

Proposition 18 Suppose thatf is a dynamic function with derivativef ′(x) at x. Then
for any η ∈ Q+ there exists aδ ∈ Q+ such that for ally ∈ Q∗ , such that|y− x| < δ

we have|f (y) − f (x) − f ′(x)(y− x)| < η|y− x|), providedf (y) is defined..

Proof Assume by contradiction that there existsη ∈ Q+ such that forδ = 1/n there
existsyn ∈ Q∗ such thatf (yn) is defined,|yn−x| < 1/n, and|f (yn)− f (x)− f ′(x)(yn−
x)| 6< η|yn− x|. Thus there existsrn such that|ynrn − xrn| < 1/n, |frn(ynrn)− frn(xrn)−
f ′(x)rn(ynrn − xrn)| ≥ η|ynrn − xrn|. We can assume thatrn is an increasing sequence
and setεk = ynrn −xrn for all rn ≤ k < rn+1. Thenε is an infinitesimal which violates
the conditionf (x+ ε) − f (x) − ε · f ′(x) ≪ ε.

14



Theorem 19 Let f , g be dynamic functions which have derivativesf ′(x), g′(x) at
x. Then f + g, fg have atx derivatives(f + g)′(x) = f ′(x) + g′(x) and (fg)′(x) =

f ′(x)g(x) + f (x)g′(x).

Proof If ε is an infinitesimal, then by the assumption,α = f (x+ε)−f (x)−εf ′(x) ≪ ε

andβ = g(x+ ε) − g(x) − εg′(x) ≪ ε. Then we get

f (x+ ε)g(x+ ε) − f (x)g(x) − εf ′(x)g(x) − εf (x)g′(x)

= (f (x+ ε) − f (x))(g(x+ ε) − g(x)) +

f (x)(g(x+ ε) − g(x) − εg′(x)) +

(f (x+ ε) − f (x) − εf ′(x))g(x)

= (εf ′(x) + α)(εg′(x) + β) + f (x)β + g(x)α

≪ ε

For the sum, the proof is similar.

It follows that each polynomialP(x) =
∑n

k=0 akxk with ak ∈ Q∗ has derivative
P′(x) =

∑n
k=1 kakxk−1.

7 Integration

Given a full functionf : [a, b] → Q∗ define theindefinite integral Fn : [an, bn]∩Q →
Q of f by

Fn(y) =
n−1
∑

k=0

fn

(

an +
k(y− an)

n

)

· y− an

n
.

andF(y) =
∫ y

a f as the limitF(y) = {Fn(yn)} on [a, b].

Theorem 20 If f : [a, b] → Q∗ is a sequentially uniformly continuous function, then
F(y) =

∫ y
a f is a full function on[a, b] .

Proof Given ε > 0 there existsδ > 0 andq ∈ N such that for everyn ≥ q and
|x − y| < δ we have|fn(x) − fn(y)| < ε. Given y ∈ [a, b], take m ≥ q such that
for all n ≥ m we have|an − am| < δ , |yn − ym| < δ and (bn − an)/n < δ . Set
xn,i = an + (yn − an)i/n and let (zi)i=0,...,r be an increasing sequence which includes
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all xn,i with i ≤ n and all xm,i with i ≤ m. There exists a sequence (ki)i=0,...,n such
that k0 = 0, kn = r , xn,i = zki , so

f (xn,i)(xn,i+1 − xn,i) =
ki+1−1
∑

j=ki

f (xn,i)(zj+1 − zj)

For ki ≤ j < ki+1 we have|zj − xn,i | < δ , so
∣

∣

∣

∣

∣

∣

n−1
∑

i=0

fn(xn,i)(xn,i+1 − xn,i) −
r−1
∑

j=0

fn(zj) · (zj+1 − zj)

∣

∣

∣

∣

∣

∣

≤
n−1
∑

j=0

ki+1−1
∑

j=ki

|fn(xn,i) − fn(zj)|(zj+1 − zj)

≤ ε
r−1
∑

j=0

(zj+1 − zj) = ε(yn − an)

Similarly we get|∑m−1
i=0 fm(xm,i)(xm,i+1 − xm,i)−

∑r−1
j=0 fn(zj)(zj+1 − zj)| ≤ ε(ym− am)

so Fn(yn) is a BC sequence.

Theorem 21 If f : [a, b] → Q∗ is a sequentially uniformly continuous function, then
f is a derivative ofF(y) =

∫ y
a f on [a, b] .

Proof For a givenε > 0 there exists positiveδ < ε and q ∈ N such that for every
n ≥ q and |x− y| < δ we have|fn(x) − fn(y)| < ε. Assume thatx, y ∈ [a, b], x ≈ y
and takem ≥ q such that for alln ≥ m we have (bn − an)/n < δ , |xn − yn| < δ .
Set zn,k = ak + (xn − an)k/n, wn,k = ak + (yn − an)k/n. Sincewn,k+1 − wn,k =

(wn,k+1−zn,k+1)+ (zn,k+1−zn,k)− (wn,k−zn,k), wn,0 = zn,0 andwn,n−zn,n = yn−xn,
we get

Fn(yn) − Fn(xn) =

n−1
∑

k=0

(fn(wn,k) − fn(zn,k)(zn,k+1 − zn,k)

+

n−1
∑

k=0

fn(wn,k)(wn,k+1 − zn,k+1) −
n−1
∑

k=1

fn(wn,k)(wn,k − zn,k)

=

n−1
∑

k=0

(fn(wn,k) − fn(zn,k)(zn,k+1 − zn,k)

+

n−2
∑

k=0

(fn(wn,k) − fn(wn,k+1)(wn,k+1 − zn,k+1)

+fn(wn,n−1)(wn,n − zn,n)
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and

|Fn(yn) − Fn(xn) − (yn − xn)fn(xn)| ≤
n−1
∑

k=0

|fn(wn,k) − fn(zn,k)|
yn − xn

n

+

n−2
∑

k=0

|fn(wn,k) − fn(wn,k+1)| · |wn,k+1 − zn,k+1|

+|fn(wn,n−1) − fn(xn)| · |yn − xn|
≤ ε|yn − xn|/n+ ε|yn − xn|+ ε|yn − xn|

In the last inequality we have used|wn,k−zn,k| < δ , |wn,k−wn,k+1| < δ , |wn,n−1−xn| <
δ . It follows |F(y) − F(x) − (y− x) · f (x)| ≪ |y− x| and f is a derivative ofF .

8 Power series

Definition 22 A power seriesf (x) =
∑

∞

k=0 akxk is a dynamic function of the
form fn(x) =

∑n
k=0 akxk , where ak ∈ Q. Its radius of convergenceis R =

1/ lim supn→∞

n
√

|an|.

The proof that a power series converges in its interval of convergence is a standard one.

Theorem 23 Let {ak} be a sequence of rational numbers andR the radius of con-
vergence offn(x) =

∑n
k=0 akxk . Then f : (−R,R) → Q∗ is a full function. For each

x ∈ Q∗ with |x| > R, f (x) is undefined.

Proof Given x ∈ (−R,R), we show thatf (x) ∈ Q∗ . There existss, r ∈ Q+ with
|x| < s < r < R. There existsn0 ∈ N such that for alln > n0 we have|xn| < s and
|an| ≤ r−n. For m> n ≥ n0 there exists a constantC such that

|fm(xm) − fn(xn)| ≤
n
∑

i=1

|ai | · |xi
m − xi

n|+
m
∑

i=n+1

|ai | · |xi
m|

≤ |xm − xn| ·
n
∑

i=1

|ai | ·
i−1
∑

j=0

|xj
mxi−1−j

n |+
m
∑

i=n+1

(s/r)i

≤ |xm − xn|
r

·
(

C+

n
∑

i=n0

i(s/r)i−1

)

+

m
∑

i=n+1

(s/r)i

≤ |xm − xn|
r

·
(

C+
s/r

(1− s/r)2

)

+
(s/r)n+1

1− s/r
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so f (x) ∈ Q∗ . If |x| > R then there existss > 1 such that{n ∈ N : |anxn| > sn} is
infinite so fn(xn) is not a BC sequence.

Proposition 24 The power seriesf (x) =
∑

∞

k=1 kakxk−1 andF(x) =
∑

∞

k=0 akxk have
the same radius of convergence.

Proof If f (x) ∈ Q∗ thenF(x) ∈ Q∗ since
∑n

k=0 |akxk| ≤ |a0|+ |x| ·∑n
k=1 |kakxk−1|.

Conversely, if|x| < s and f (s) ∈ Q∗ , then the sequencebk = k(x/s)k−1 converges to
zero, so there existsb ∈ Q+ such that|bk| < b for all k. Then

n
∑

k=1

|kakx
k−1| =

n
∑

k=1

|ak|sk−1k|x/s|k−1 ≤ (b/s)
n
∑

k=1

|ak|sk

so F(x) ∈ Q∗ .

Theorem 25 The power seriesf (x) =
∑

∞

k=1 kakxk−1 is a derivative of the power
seriesF(x) =

∑

∞

k=0 akxk in their common interval of convergence.

Proof Let R be the radius of convergence of bothf (x) and F(x). Then ϕ(x) =
∑

k=2 k(k− 1)akxk−2 has the same radius of convergenceR. Assume that|x|, |y| < R
so there existss< R with |x|, |y| < s, and

|Fn(yn) − Fn(xn) − (yn − xn)fn(xn)| ≤
n
∑

k=1

|ak| · |yk
n − xk

n − k(yn − xn)xk−1
n |

≤ |yn − xn| ·
n
∑

k=1

|ak| · |yk−1
n + yk−2

n xn · · ·+ ynxk−2
n + xk−1

n − kxk−1
n |

≤ |yn − xn| ·
n
∑

k=2

|ak| · (|yk−1
n − xk−1

n |+ · · ·+ |yn − xn| · |xk−2
n |)

≤ |yn − xn|2 ·
n
∑

k=2

|ak|
k(k− 1)

2
sk−2

= |yn − xn|2ϕ(s)/2.

Thus if y ≈ x thenFn(yn)−Fn(xn)− (yn− xn)fn(xn) ≪ yn− xn andf (x) is a derivative
of F(x).

Thus for example, the exponential function (ex)n =
∑n

k=0 xk
n/k! is full and continuous

in whole Q∗ . The standard identities are valid as equivalences. For example, a little
of algebra shows thatex+y ≈ ex · ey for eachx, y ∈ Q∗ .
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9 Discussion

While we do not claim to have reconstructed the continuum as it was understood by
Bolzano and Cauchy, we have shown that a theory of a dynamical continuum with
infinitesimal quantities is feasible and can be formulated with concepts which were
well-known and current at the middle of the 19th century. Advanced concepts of
formal logic and set theory like ultrafilters are not necessary. The Dedekind-Cantor-
Weierstrass formalism of standard real numbers was not a historical necessity but one
of possible alternatives.

Rather than technical difficulties, there are two major conceptual issues which have
to be overcome to get a dynamical continuum. First, we should abandon the effort
to construct the continuum to the image of the structure of rational numbers. We
cannot do with real numbers everything that we are used to do with rationalnumbers.
One of the most significant results of the computable analysis is that any computable
full (everywhere defined) real function is continuous (see Pour-Eland Richards(1989)
[8]). The characteristic functions of inequalities are not defined everywhere, since the
algorithm which may try to compute them would fail to terminate. We obtain similar
results when we define dynamic real functions as limits of rational functions.The fact
that the dynamical continuum of dynamic numbers is not linearly ordered may seem
paradoxical and counterintuitive but in fact the linearity is not essential and can be very
well disposed of.

The other preconception which should be abandoned, is the requirementthat each
quantity is measurable by a unique number. This desire motivated Bolzano to make
his measuring process unique and this desire is also behind the definition of standard
real numbers as equivalence classes of BC-sequences. This desirefor uniqueness has
been also dominant in representations of real numbers in positional numbersystems
or continued fractions. Each irrational number can be expressed by a unique infinite
simple continued fractions and each rational number can be expressed bytwo finite
simple continued fractions (see e.g., Perron(1913) [7]). In fact the theory of continued
fractions may be regarded as an alternative foundation for real numbers which preceded
not only Bolzano and Cauchy but, according to some speculations, even Eudoxos
(see Fowler(1987) [3]). Similarly in the binary positional system, a number has two
representations iff it is a rational number of the formp/2n, otherwise it has a unique
representation. In both cases the uniqueness was desired but could not be attained
for topological reasons2. But this near-uniqueness is highly undesirable when we
wish to compute with these representations. Arithmetical algorithms can work only

2While the real line is a connected topological space, the symbolic space is totally discon-
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with number systems which areredundant, i.e., in which any real number has many
symbolic representations (see Weihrauch(2000) [17], Vuillemin(1990) [16] or Kůrka
and Kazda(2010) [4]). And the representation of real numbers by BC-sequences of
rational numbers is one of the most redundant representations possible.This is why the
arithmetical operations with them are so simple - it suffices to define them pointwise.

While we have refrained from adopting the intuitionistic constructive positionsand we
have admitted also noncomputable BC-sequences as dynamic numbers, our approach
opens the way for computable analysis with infinitesimals. This would be, we believe,
an even more adequate version of a pre-Cantorian continuum. While Bolzano and
Cauchy did not have the concept of computability, Bolzano speaks aboutrules or ideas
which form his infinite number expressions and it is tempting to interpret such rules
or ideas as algorithms. The following short note suggests that Bolzano wasnot totally
unaware of the issues of computability.

It may be worth remarking, for some readers, that in this definition I am
only saying that, in an infinite number concept, an infinite multitude of
operations of addition, subtraction, multiplication or division isrequired.
I am not saying that it contains the idea of each one of these operations
individually, and thereby that it contains an infinite multitude of ideas as
its characteristic components. In this latter case such a concept would be
composed of infinitely many parts, and therefore it would be inconceivable
for a finite mind such as ours. (Russ(2004) [11] §3 p. 358).
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