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We formalize a pre-Cantorian continuum on the base of Balsatheory of
measurable numbers as exposed in his manudRejpte Zahlenlehreln doing so
we use the insights of nonstandard analysis and computablgsis. We define
dynamic real numbers as Bolzano-Cauchy sequences ofahtiombers and real
dynamic functions as limits of rational functions. The Hésg structure contains
infinitely small dynamic numbers which can be used in diffitied and integral
calculus without the need for a nonconstructive free ulteafiof nonstandard
analysis nor for advanced concepts of mathematical logic.
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1 Introduction

One of the theorems dfours d’Analyseof Cauchy (1825) 7] says that a limit of
continuous functions is continuous. According to many historians of mathesmatic
Cauchy proved a wrong theorem, overlooking that the continuity is néiciuit and

the uniform continuity is required in the assumptions. This reading of history is
guestioned and criticized by Lakatos(1988))Who points to several queer facts which
are at odds with such an interpretation. In 1825, counterexamples to trerhevere
well-known in the theory of Fourier’s series. Moreover, even aftedikeovery of the
concept of uniform convergence by Seidel in 1847, Cauchy prese&ntheorem in the
same form with the same proof in 1853.

Lakatos asserts that Cauchy made no errorin his proof. He just paalidrent correct
theorem because he worked with a different continuum concept. tresbio the static
Cantor-Weierstrassian continuum, the continuum of Cauchy was dynarh&itefm
variable (quantés variables) was not only a manner of speech but expressed the natur
of realnumbers. Areal number might have been conceived as amxapation process
(represented by a sequence of rational numbers) and not as aakesu#t process.
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This conception has significant consequences for the convergéfaections. If a
sequence of function$f,} is applied to a sequence of rationdls,}, we have no
limit x = limp_~ X, to which f, could be applied. Instead, we get a double sequence
{fn(xm)} and the resulf(x) should be some sequen¢g, (xm )}k which may depend

on the subsequencgsy} and {m¢}. In a dynamical continuum, two equivalent
approximating sequences with different speed of convergence weutddarded as
different. Only when we conceive real numbers as equivalenceeslagsonverging
sequences of rational numbers, we get real numbers as static objects.

One more reason to rehabilitate the pre-Cantorian dynamic continuum comes fro
the computable analysis (see Pour-El and Richards(198R) [A real number is
computable if it is the limit of a computable convergent sequence of rationabers
with a computable modulus of convergence. One of the main insights of computable
analysis is that the equivalence relation is undecidable for computableuedders.
There exists no algorithm which, given two computable convergent segaeand
their computable moduli of convergence, would decide whether they mpve the
same real number or not. Thus the standard concept of real numheegsigalence
class of converging sequences of rational numbers is highly noriraotige since the
equivalence relation is non-constructive. While this equivalence is gedffeiLin many
contexts, we should treat it with caution.

Cauchy does not analyze the concept of real number (qgagantnd relies rather on
geometrical intuition. However, the dynamical nature of his continuum is sometimes
hinted at:

Onditqu’une quanté devientinfiniment petite, lorsque sa valeur r@uique
décroitincefiniment de mamiirea converger vers la limiteezo. Cauchy(1821)
[2] p. 37.

An insight into the pre-Cantorian continuum can be obtained from the Bolzan
manuscriptReine Zahlenlehrésee Bolzano(1969-)18] 11A8, partially translated in
Russ(2004)11] pp. 357 - 428), where he develops his theory of measurable numbers.
As Lakatos(1980)4] observes (referring to an earlier editionRéine Zahlenlehrby
Rychlik(1962) [L2]),

It is a most interesting historical fact that Bolzano, the best logical mind
of the generation, made a real effort to clarify matters. He was possibly
the only one to see the problems related to the difference between the
two continuums: the rich Leibnizian continuum and, as he called it, its
'measurable’ subset - the set of Weierstrassian real numbers. Bolzan
makes it very clear that the field of 'measurable numbers’ constitutes



only an Archimedean subset of a continuum enriched by non-measurable
- infinitely small or infinitely large - quantities. The editor makes a
misguided attempt to reconstruct Bolzano’s theory as a mere precursor
of Cantor’s theory of real numbers (cf. his dictionary of the two theories
on p. 98); one wonders whether he has omitted some crucial passages
from those parts of the manuscript which try to set up a consistent theory
of the Leibnitz-Cauchy continuu No doubt, since Robinson has shed
new light on the latter, historians will approach the Bolzano manuscript
with new eyes and the relation between Bolzano’s measurable and non-
measurable quantities and Robinson’s standard and non-standardaumbe
will be clarified.

As claimed by Robinson(19969][(and qualified by Lakatos), the infinitesimal quanti-
ties of the pre-Cantorian continuum are captured in the non-standdysianéndeed
nonstandard real numbers are sequences of real numbers whidie daterpreted
as approximating processes. The equality and all relations between miarstaeal
numbers are defined in terms of a free ultrafilter. As a consequencentieziding of
real numbers into nonstandard real numbers satisfies the so calle@trars€iple.
Every property which holds for the structure of the standard real ntsizdds for the
structure of the nonstandard real numbers as well (see e.g., Albetati¢1986) L]
for areadable exposition). In particular, nonstandard real numbelisaarly ordered.
However, the existence of a free ultrafilter cannot be proved cotistelyc(axiom of
choice must be used) and the logical formalism of nonstandard analysibeyand
the reach of pre-Cantorian mathematics.

Much closer to the spirit of dynamic continuum of Bolzano and Cauchy isgheach

of Schmieden and Laugwitz (195813 who work with the space of all rational
sequence®! called Q-rational numbers. The subspace of r@atational numbers

is then defined by a condition which is equivalent to the Bolzano-Cauabyyepty.
Thus any standard real number is an equivalence class ofrxegational numbers.
Schmieden and Laugwitz then consider all functions defined on these resilonal
numbers and define continuity by a usaab-condition, where they admit as and

0 also positive infinitesimals. This results in a much finer topology than the sthndar
one, making the limit of function§,(x) = x" continuous from the leftat = 1.

In the present paper we propose a version of the pre-Cantoriamiyalacontinuum
on the base of BolzanoReine Zahlenlehreising the insights of nonstandard anal-
ysis and computable analysis. Imitating Bolzano’s measurable numbers,five de

With the availability of the critical edition of the Bolzalsananuscripts in Bolzano(1969-)
[18], it is now clear that the editor did omit some crucial pagsag



a dynamic real number as a Bolzano-Cauchy (BC) sequence of rational numbers.
This is equivalent to the concept of reatnumber of Schmieden and Laugwitz. Two
dynamic numbers are equivalent if their difference converges to Zémstandard real
numbers are obtained by factorizing dynamic numbers by this equivaleloveever,

we refrain from this factorization, so each standard real number isgepted by many
dynamic numbers. None of these representations is distinguished, soidynambers

do not contain standard real numbers as a subset. For the definitiorgaalitg we

use the filter of cofinite sets instead of a free ultrafilter of nonstandafgsimaAs a
consequence, our continuum is not linearly ordered.

In the theory of functions we depart from both Bolzanetectionenlehrd18] 11A10
and from Schmieden and Laugwitz (19583] and conceive @ynamic real function
as a sequence (or a limit) of rational functions. This is analogous to nalasthn
analysis, where a nonstandard function is defined as a sequencal dfietions.
Dynamic real functions need not be defined everywhere since thikimgssequences
need not be BC. This is reminiscent of computable analysis, where aomaalutable
function is undefined when the algorithm which computes it fails to terminate.

We say that a functiori is full at some dynamic numbex if it is defined for all y
which are infinitely close to<. In Theorem10 we prove that each full function is
continuous. This may be regarded as a rather strong version of théyCeamtinuity
theorem: The limitf of a sequencé, of (rational) functions is continuous whenever
the sequencg,(x,) converges for every dynamic number\We need not even assume
that f, are continuous. The class of dynamic functions is large enough to include
most of the functions considered in analysis, in particular all continuowdiéurs and

all functions with a finite number of discontinuities. We show that the differentia
and integral calculus with infinitesimals is feasible in this setting. The derivafive
a function at a point can be defined only from its values at infinitely cloggpand
the differential calculus can be based on the calculus with the infinitesimalshiVe
that a function which is continuous on a compact interval has an indefinitgratte
and prove the fundamental theorem of calculus (Thea2émn Finally we develop
the theory of power series so that we obtain all analytic functions with theialus
properties.

2 Bolzano’s infinite number concepts

Let us briefly recall the main ideas of Bolzano’s theory of measurable atsrds
presented in his manuscrigeine Zahlenlehrésee Bolzano(1969-1B] IIA8, partially



translated in Russ(20041]] pp. 357 - 428.) We follow closely the exposition (in
Czech) of Trlifajo\a(2006) [L5]. Bolzano treats rational numbers as number concepts
in which there is a finite multitude of arithmetic operations of addition, subtraction,
multiplication and division. Ininfinite number concepts an infinite multitude of
arithmetic operations occur. An expression representing such a ¢as@pnfinite
number expression Bolzano’s examples of infinite number expressions are as follows:

1+2+3+4+---ininf.
1 1 1 1

E_Z+§_E+~-|n|nf.

DD

An infinite number conceis called aneasurable number(§85) if for every positive
integerq there are an integgy and two positive number expressioRsand P!, the
former possibly being zero, such that the following equations are satisfied

p p+1

S:a+P and S= —PL

A number expression is positive if it contains only positive numbers andioiaction
(see Bolzano(1969-)11B] 11A8, page 96). Infinitely small numbers are a special sort
of measurable numbers. A positive number expresSiahinfinitely small (§22) if

for any positive integeq there are positive number concef$ and P? such that
S= P! = ¢ —P? Anexample isS = 17— A number expressiors is
infinitely large (827) if for any positiveq there is an integep such that one of the
equationsS = g +Pl= %1 — P? is satisfied, but there is np which satisfies them
both at once.

Bolzano proves many theorems about number concepts, for exampledisanthand
the product of two measurable numbers is a measurable number. The iheoty
entirely correct since an oscillating number expreséc}m%1 + % - 1—16 +---ininf.is
not measurable in this sense but can be obtained as a sum of two measurab&
concepts. As observed by Laugwitz(1962-196&) fhe theory can be saved if we
replace the condition of measurability 19= p%l + Pl = %1 — P2. In fact Bolzano
seems to have been aware of the problem since the last n®Reing¢ Zahlenlehre

suggests this modification as well:

Perhaps the theory of measurable numbers could be simplified if we
formulated the definition of them so that is called measurable if we
have two equations of the foriA = g +P= % — P, where for the
identical n, g can be increased indefinitely (Russ(2008}][§122, p.
428).



Obviously, the formula was intended in the fortn = g + Pl = ﬁq” — P? with
positive number expressiofs, P2. The omission of indexes could not be intentional
as it makes no sense in the whole context. With this modification of the definition of
measurability suggested by Laugwitz or by Bolzano himself, the measuringgso

is no more unique but the oscillating number concepts become measurabld as we
and measurable numbers become closed with respect to addition, subteaudion
multiplication (see Sebestik(1992)4] pp. 375-387 for a thorough discussion of this
issue).

Starting in 8§53 Bolzano discusses the concepts of order between nuxpbessons
and their equality or equivalence. Bolzano’s first definition of equality m@t correct
but he adds a note where he revised it.

If the pair of numbers\ andB have a differencé — B which, considered
absolutely, has the same characteristics as zero itself in the process of
measuring (i.e., it behaves like zero) in that for every denomingfor
however large, the numerator of the measuring fraction is found to be
= 0, and so it has only two equatioAs- B = g +Pl= % — P?, thenwe

say thatA = B. But if the difference has the characteristics of a number
different from zero, and its true value is positive, th&rn> B, if it is
negative , therA < B (Russ(2004)11] p. 391).

In 8107 Bolzano formulates the BC-condition and proves the theoremutbat BC-
sequence of measurable numbers has a limit that is a measurable numbearg ki
proof lacks some final demonstration, it is almost entirely correct (serd@k&2000)
[10Q], pp. 186 - 188). If we wish to interpret Bolzano’s theory in terms ofteamporary
mathematics, the easiest way is to interpret infinite number expression ansegu
of rational numbers (see Ry¢k{1962) [L2]). Every number expressio8 can be
described as a sequence of partial results of arithmetic operaf®ns and vice
versa, every sequends,} can be described as the first term plus the infinite sum of
differences between immediately following tersist+ > "(sh+1 — Sh). For instance the
number expression-£2+3+4+... ininf corresponds to the sequen@m(nJr 1)} =
{1,3,6,10, ...} and {1y corresponds td i} = {1,3,3,7,..}. Thenitis
easy to see thata sequer{sg} € QN of partial results represents a measurable number
if and only if it is a BC-sequence.

At first sight, in 853 Bolzano abandons infinitesimals and treats equivalenber
expressions as equal, which would be equivalent to the modern the@®l ofumbers.
Nevertheless Bolzano inserts the following note where he clarifies the issue



Since the infinitely small numbers are not equivalent to zero in every
respect, but only in respect of their process of measuring, it might be
expedient, if we call such numbers zero, to call themelative zero or
respectivezero frelative oder beziehungsweise Nulln contrast to that,

the concept of zero, which we already metin §116, EG Ill might be called
the absolute zero. (Russ(2004)] 858, p. 395)

Even in later paragraphs Bieine ZahlenlehrBolzano keeps speaking about infinitely
small numbers. This would make no sense if his equivalence (denoteg) byere
meant as equality or identity. Thus Bolzano’s continuum as exposediite Zahlen-
lehreis the rich continuum with infinitely small and infinitely large quantities and is not
equivalent to the factorized Cantorian continuum. Nevertheless, in hisdatauscript
FunctionenlehrgBolzano(1969-) 18] 11A10), where continuity and differentiability
issues are thoroughly discussed, infinitesimals are not used. In facartheever even
mentioned. Only in hi®aradoxien der UnendlichgiBolzano(1969-)18] 11A11, §30)

we find a short exposition how infinitesimals can be used in differential keeicu

3 Dynamic real numbers

Denote byN = {0, 1, 2, ...} the set of nonnegative integers, Bythe set of integers,
by Q the set of rational numbers, and Iiy" = {x € Q : x > 0} the set of
positive rational numbers. We say that a property of nonnegative nsteglsalmost
everywhere (a.e.)if it holds for all but a finite number of integers, i.e., if the set of
integers for which it holds belongs to the filter of cofinite sets.

Definition 1 A dynamic (real) number is a BC-sequence of rational numbers, i.e., a
mappingx : N — Q, such that/e € Q*,3n € N,Vi,j > n, [x — | < . We denote
by Q* the set of dynamic numbers.

The speed of convergence of a dynamic numbirgiven by itsmodulus of conver-
gencemy : QT — N defined bymy(c) = min{n € N : Vi,j > n,[x — x| < ¢}.
Rational numbers are representedlin as constant sequences, so we have an embed-
ding Q@ € Q*. We have some relations @@ defined by

X=y < X =Y ae.

X<y & X<y ae.

x<y <& x<yae.



The relations<, < are transitive but not linear. For the dynamic number
{(=1)"/n} we have neithex < 0 nor 0 < x. Define the equivalence relatios
by

x~y < lim(x—y)=0

Thusx = vy if for every e € Q7 there existsn € N such that for every > n we
have|x; — yi| < . The relations<, ~, > are not exclusive. Fax = {1/n} we have
both 0~ x and 0< x. We say thatx € Q* is aninfinitesimal number ifx =~ 0.
Arithmetical operations o@* are defined pointwise, in particulax € y)n = Xn + Yn,
(X—=Y)n = X% — Yn, X-Y)n = Xn-Yn. Forx > O define thek-th root of x by
(¥¥n = max{z € N : Z < x,-nK}/n. Denote by|x] € Z the closest integer to
X € Z which satisfiex] — 3 < x < [X] + 3. Forx € Q* set|X] = |Xm1/2)]-

Theorem 2 If x,y € Q*, thenx+y,x—y,x-y € Q*, so(Q*,0,1,+,—,-) isaring.
If x# 0, thenl/x € Q*. If x > 0 then(¥/X)* ~ x.

Proposition 3
Forx,y € Q* we havex ~ y iff [x—y| < ¢ for eache € Q™.

If x € Q*, then for eackr € Q' andn > my(c) we havelx, — X| < ¢.
If x ¢ y then eitherx <y ory < X.
Ifxe Q* then|x] —1<x< |X] +1.

A DN R

Proof 1. Thisis animmediate consequence of the definition.

2. Foreach, xn = X is regarded here as a constant sequence, so forpeaatm, (<)
we have|Xnp — Xo| = [Xn — Xp| < € and thereforegx, — x| < e.

3. If x sy, then there exists € Q1 such that for infinitely many we have either
Xn+ € < ¥n OF Yo+ € < Xa. In the former case for eagh> max{my(c/2), m/(c/2)}
there existsn such thatxy < Xp + 5 <yn — 5 < Yp, SOX < Y.

4. Forn = m(1/2) we have|x] — 3 < x, < [X] + 3 andx, — 3 <X <X+ 3. O

A sequence of dynamic numberss a mapx : N — Q*, or a double sequence
X:NxN—=Q, {x}={()} = {xj}. The convergent and BC sequendes} of
dynamic numbers are defined in a standard way, and the equivaleneseftbncepts
is easily proved:

{xa} is convergent iff 3z€ Q*,Ve € QT,In,Vp>n,|xp— 2 <€
{Xn} is BC iff VeeQT,3n,Vp,q>n,|x—Xq <e¢



Theorem 4 A sequence{x,} of dynamic numbers is convergent iff it is a BC-
sequence.

Proof Let x, € Q* be a BC sequence and denote Xy € Q the i-th member
of x5. For a givenn there existsk, > n such that for eaclp,q > k, we have
IXo — Xq| < 1/n. For eachn there existg, = my,(n) such that by Propositio8(2),
for eachi > j, we have|x,; — xn| < 1/n. Sety, = xnj,. Forp,q > k, we have
[Yo—Yal < Xpjp—Xp|+Xp =Xl +1%q—Xqjg| < 5+5+5 < 7,50y € Q*. Forp,q > kn,
q > jp we have|Xpq — Yol < [Xoq — Xp| + % — Xal + g — Xaje| < 3+ 2+ 1< 2.
so for eachp > k, we have|x, —y| < 3/n and therefore lif,o Xo = y and {xn} is
convergent. The converse implication is straightforward. O

Proposition 5 For a given a sequende,} of dynamic numbers, there exisis—=
liminfn_oc Xn, b= limsup,_, . X, Witha,b € Q* U {—o0, +00}, such that for each
e € QT we have

{neN: xy<a—c}isfinite {neN: x,<a+ e} isinfinite,

{neN: x, >b+c}isfinite {neN: x,>b— ¢} isinfinite.

Proof Ifforall a € Z theset{n € N : x, > a} isfinite, then limsup_, , X, = —ooc.
If for all b € Z the set{n € N : X, > b} is infinite, then limsup_, X, = +oo.
Otherwise letag be the maximum of ala € Z such that the sefn € N : x, > a} is
infinite and letby be the minimum of alb € Z such that the sefn € N : x, > b} is
finite. If & andb; have been defined then sit= (g + b;)/2 and

at1=a, by1=d if{neN: x,>d}isfinite

ar1=0d, byi=b if {neN: x,>d}isinfinite
Thena ~ b are BC sequences and we set limsup X, = b. Limes inferior is
defined analogously. a

Theorem 6 (Bolzano-Weierstrass)Every bounded sequence of dynamic numbers
has a convergent subsequence.

Proof Assume thatag < x, < bg for all n, whereap,bp € Q and setng = 0.
Assume thaty, b, nj have been defined and that the §et>n;j @ a < xy < b} is
infinite. Setd; = (& + b;)/2 and

ai1=a, bipi=d if {n>n: a <x <d}isinfinite,

a+1 =4, b1 =b; otherwise.

Nipp=min{n>n: g1 <X < biya}
Thena~ b e Q* and lim_ X, = a. O



4 Dynamic real functions

For dynamic numbera < b define the open and closed intervals by

(ab) = {xeQ*: FecQ: ate<x<b-e¢}
[ab] = {xeQ*:VeeQ:a-e<x<b+e}

Semi-open and infinite intervalsy,[b), (a, oc) are defined analogously. Note that the
interval (Q 1) does not contain any infinitesimal number while the closed interval [0
contains all infinitesimals. We now define dynamic functions as sequenckmifs)

of rational functions.

Definition 7 A dynamic (real) function is a partial mapping : D(f) — Q* whose
domainD(f) C Q* is aninterval, such that there exists a sequence of rational functions
fn: D(f)NQ — Q and forx € D(f) we havef (X) = {fn(xn)} provided{f.(x,)} € Q*
andf(xX) is undefined otherwise. We then say thas the limit of f,, f = limp_ fa.

Two dynamic functions are equivalerits g), if for everyx € Q*, f(x) is defined iff

g(X) is defined and in this cadéx) ~ g(x).

The simplest case is a constant sequence of rational fundtior®(f) N Q — Q.

Thenf is extended tdD(f) by f(X)n = (X)) if {f(x,)} € Q* andf(x) is undefined
otherwise. In the following examples we show that whenever a dynamicidmns

discontinuous, it is not defined at some dynamic numbers.

Example 1 The signum functiorsgn :Q — Q is defined bysgnk) = —1,0, 1 when
X < 0,x = 0,x > 0 accordingly.

Thus sgnX) = 1 for each positive infinitesimal but sgi(is undefined for oscillating
infinitesimals likex = {(—1)"/n}.

Example 2 Definef = lim,_, f, wheref, : Q — Q are given byf,(x) = 1/(1 +
n?x?).

Note that in the standard analysis this is an example of pointwise convengbitteis
not uniform. We havé(0) = 1 andf(x) ~ 0 whenevex € Q* is notinfinitesimal. For
x = {1/n?} we havef (x) ~ 1, for x = {1/n} we getf(x) = 1/2 and forx = {|/n]|}
we getf(x) ~ 0. There exist many infinitesimals for whidt{x) is undefined, for
example ifx, = 1/n for n odd andx, = 1/n2 for n even.

10



Definition 8 We say that a dynamic functidn: D(f) — Q* isfull atx € D(f), ifit
is defined for every € D(f) with y ~ x. We say thaf is afull function , if it is full
at everyx € D(f).

Proposition 9 If f : Q — Q is continuous then its extensidn Q* — Q* is a full
function.

The proof is straightforward. Thus every polynomial with rational coffits is a full
function. We now prove a version of Cauchy theorem saying that if aesegp of
(rational) functions converges at every dynamical number, then the limitimgibn is
continuous.

Theorem 10 If a dynamic functionf is full at x € D(f), then it is continuous at,
i.e., for everys € Qt there exist® € QT , such that for aliy € D(f) with [x—y| < ¢
we havelf (x) — f(y)| < e providedf(y) is defined.

Proof Assume by contradiction that a functién= lim,_. f, is full but not contin-
uous atx € D(f). Thus there exists € Q" such that for eacim € N* there exists
yn € D(f) such thatly, — x| < 1/n, f is defined aty, and |f(yn) — f(X)| £ . It

follows that there exists, with |ynr, — X,| < 1/n and|f.,(Ynr,) — fr,(X,)| > €. We

can assume thdtr,} is an increasing sequence. Define Q" by

2 = X, for rp<k<rpe1, neven
| Y, for rp<k<rp, nodd

Thenz € Q*, z~ x and we show that(z) is undefined. Sincé(x) € Q*, there exists
N such that for every > ny we havelf, ., (X.,,,) — fr,(X,)| < &/2. Then forn > ng
even we get

froca@Zops) = fra@)l > (s Ot y) — Frop (%) —

€ €
L e X N

sof(2) is not a BC-sequence, which is a contradiction. a

As an immediate consequence of TheotEdhwve get

Proposition 11 If a dynamic functiorf is full atx € D(f), then for ally € D(f) with
X~y we havef (x) ~ f(y).

11



Thus we have an analogous principle as the nonstandard analysisaviugreion is
continuous ak if f(x + &) — f(X) is infinitesimal for each infinitesimal. To clarify

the relation of dynamic functions to standard real functions we show tlyadtandard
continuous function can be represented by a dynamic function. As shwpt#ramples
1 and2, many noncontinuous real functions can be represented by dynanciofus
as well, but these real functions must be left undefined at the pointsaafrdisuity.

Proposition 12 Define the seR = Q*/ ~ of standard real numbers as the set of
equivalence classes of dynamic numbers. Then for any real furgti®— R there
exists a dynamic functioh: Q* — Q* such that for anx € Q*, if g is continuous at
[X], thenf is full at x and in this caséf (x)] = g([X]) . Here[X] € R is the equivalence
class ofx.

Proof Definef, : Q — Q by fa(X) = [n-g(X)|/n, where |y| € Z is the closest
integer toy € R. Then seff = limp_, fn. O

5 Full functions

In classical analysis, continuous functions on a compact interval aredea, uni-
formly continuous, attain their extrema, satisfy the intermediate value theomaran
Riemann integrable. We get analogous properties in our setting.

Definition 13 A full function f : [a,b] — Q* is uniformly continuous if
Vec Q36 € QF,vx,ye[ab],(x—y < = |[f(X) —f(y)| < 9).
A full function f : [a,b] — Q* is sequentially uniformly continuous if
Ve e QT,30 € QT,Ip e N,Vn > p,W¥x,y € [a b, (x-y| <& = [fa(¥)—Fa(y)| < €).

A full function f : [a,b] — Q* has auniform modulus of convergenceny : Q7 — N
if
Ve > 0,Yn,m > mx (), Vx € D(f) N Q, [fn(X) — fm(X)| < €.

Proposition 14 Every full functionf : [a,b] — Q™ is uniformly continuous.

Proof If not, there existg € QT such that for every there existx,, yn € [a, b] such
that [x, — yn| < 1/n and|f(xn) — f(yn)| > €. By the Bolzano-Weierstrass theorem
6 there exist converging subsequenggs— z, yn, — z andf is not continuous ar
which is a contradiction. m|

12



Theorem 15 If f : [a,b] — Q™ is a full function then there exists an equivalent full
functiong : [a, b] — Q* which is sequentially uniformly continuous and has a uniform
modulus of convergence.

Proof Letf = limp_ fn wherefy : [an, bn] NQ — Q. Setjn = |nan], kn = [nby].
Definegn : ‘ﬁ“, %] — @ as an approximation on eac¢pn and linearly betweei/n

and {(+ 1)/n.

g0 (=) = { NI/ for jn<i<ly
: Inf(b)]/n for =k

000 = 0n (L) + (- ) (gn ('+nl> o (;)) for Lox< L

For a givene € Q" taked € QT from the uniform continuity of . Takep such that
% < § and assum@ > p. Givenx € [a,b], there existd such thatx — § < i/n <
X< (i+1)/n<x+ 6. We havelf(a) — gn(jn/n)| < 1/n, |f(B) — gn(kn/N)| < 1/n.
For | = i,i + 1 we have|f(I/n) — gn(l/n)] < 1/n and |f(x) — f(I/n)] < €, so
If(X) — on(l/n)] < € + 1/n. Sinceg, is linear betweeni/n and { + 1)/n, we
have also|f(x) — gn(X)| < € + 1/n for all x € [iﬁ,”Tl]. Thus we have proved
Ve € QF,3p,Vn > p,¥X € [an, Gn, [f(X) — Gn(X)| < e+ 1, s0f ~ g. If [x—y| <4,
then for alln > p we have

) {Lnf(aﬂ/n for i=jn

190(¥) — G| < |gn(¥) — F] + [FC) — F)| + [F(Y) — an(Y)| < 3=+ %

S0 g is sequentially uniformly continuous. Farm > p we get

19n(¥) — Im()| < [Gn(X) — F)| + |F(X) — gm(X)| < 2= + % + %

so g has a uniform modulus of convergence. |

Theorem 16 (Intermediate value theoremjf f : [x,y] — Q* is a full function and
f(X) < 0 < f(y), then there exists € [x,y] such thaf (z) ~ 0.

Proof Define sequences, b; € Q* by ag = X, bg =y, and if a, andb, have been
defined then set, = (an + bn)/2, and

anr1 = Cp, bn+1 =cy |If f(Cn) ~0

8+1=2a bnpr=cyn if f(c) >0

8ni1=Cn, bnpi=bn if f(c) <0
If f(c,) =~ O for somen, thenz = ¢, is the required solution. If not, then both
andb are BC sequences of dynamic numbers, so they have adimitimp_, ., an &~
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limp.bn. If f(2 > 0 thenf(a,) > 0 for all sufficiently largen which is a
contradiction. Iff(z2) < O thenf(b,) > 0 for all sufficiently largen which is a
contradiction, sd (2) ~ 0. ad

6 Derivatives

Infinitesimals can be used in differential calculus. Koy € Q* definex <y (x
is infinitely smaller thany), if [x| < |y| - € for everye € Q. Thusx € Q* is
infinitesimal iff X < 1. There are many obvious laws for the relatien For example,
if X< zandy < zthenx+y < zandx-y < z.

Definition 17 We say that a dynamic functidrhas aerivative f'(x) € Q* atx € Q*,
if f is full at x and for each infinitesimal we havef(x +¢) — f(X) —e - f/(X) < €.

The derivative is not unique, but any two derivativesfo@ire equivalent: From the
inequalitiesf (x4 &) — f(X) — e - f{(X) < e andf(x+¢) — f(X) — e - f{(X) < e, we get
e - [f500) — f1(¥)| < &, sofi(x) =~ f{(x).

Example 3 Setfy(X) = (—1)" - x2.

Thenf is a dynamic function which is full at 0 and undefined everywhere else. At
each infinitesimalx, f has zero derivative. Thus a function need not be defined in
a neighborhood of a point to have a derivative. Nevertheless, if it finatktin a
neighborhood of a point, then it satisfies the standard limit condition. Thisisedr

in the next proposition which is an analogue of Theoddn

Proposition 18 Suppose thdt is a dynamic function with derivativE(x) atx. Then
for anyn € Q* there exists @ € Q* such that for aly € Q*, such thaty — x| < §
we havelf(y) — f(x) — f'(X)(y — X)| < n|y — X|), providedf(y) is defined..

Proof Assume by contradiction that there exigts Q" such that for§ = 1/n there
existsy, € Q* such thaf (yn) is defined,|y, — x| < 1/n, and|f(yn) —f(x) — f'(X)(yn —

X)| £ nlyn — X|. Thus there exists, such thatyn,, — %r,| < 1/n, [fr,(Ynr,) — fr. (%) —
f'0)r, Yor, — %)l = 0lYnr, — Xi,| - We can assume thag is an increasing sequence
and sety = Ynr, — X, forall rp, < k < rpp1. Thene is an infinitesimal which violates

the conditionf(x + &) — f(x) — ¢ - f'(X) < e. m|

14



Theorem 19 Let f,g be dynamic functions which have derivativE$x),d (x) at
X. Thenf + g, fg have atx derivatives(f + g)'(x) = f'(xX) + g'(x) and (fg)'(x) =
F(99(x) + F(X)g'(x).

Proof If ¢ isaninfinitesimal, then by the assumption= f (x+¢) —f(xX) —ef’(X) <
andS = g(x+¢) — g(X) — ed'(X) < . Then we get
f(x+e)glx + ) — F(g() — ef’'(¥)g(x) — f ()g'(¥)
= (f(x+e) = f)ax + ) — 9(x) +
FOIQX + ) — g(x) — eg' () +
(f(x+ ) = F(x) — £f'())g(x)
= (') + a)(eg' () + B) + F(¥)8 + gX)a
< €

For the sum, the proof is similar. O

It follows that each polynomiaP(x) = > ¢, ax¥ with ax € Q* has derivative
P'(X) = > p_; ka1,

7 Integration

Given afull functionf : [a, b] — Q* define thendefinite integral F, : [a,, b)) NQ —

Q of f by
= ky—an)\ Y—an
Fn(y)—zfn an + = . e
k=0

andF(y) = f;’f as the limitF(y) = {Fn(yn)} on [a,b].

Theorem 20 If f : [a,b] — Q* is a sequentially uniformly continuous function, then
F(y) = [Jf is a full function on[a, b].

Proof Givene > 0 there exist$y > 0 andq € N such that for everyn > q and
X —y| < § we have|fy(X) — fa(y)| < . Giveny € [a,b], take m > q such that
for all n > m we havela, — am| < d, |Yn — Ym| < 6 and by — an)/n < §. Set
Xni = an + (Yn — an)i/n and let &)i—o,...r be an increasing sequence which includes



all x,; with i < nand allxn; with i < m. There exists a sequende)(o,...n such
thatko = 0, kn =1, Xnj = %, SO
kip1—1
f (X)) Xnjirs — %nji) = Z f(X%n)(Z+1— 3)
=k
Fork <j < kiy1 we have|z — xnj| < d, so

n—1 r—1
D faln ) O —Xai) = > fa(@) - (71— 7)
i—0 j=0

n—1ky1—1

ST [falni) — (@) (@1 — 3)

j=0 j=k

IN

r—1
< €Y (311—3) =l — @)
j=0
Similarly we get| 36" fia(Xm) (Xmi1 — Xmi) — Y20 Tn(3) (@41 — )| < e(Ym — am)
so Fnp(yn) is a BC sequence. O

Theorem 21 If f : [a,b] — Q* is a sequentially uniformly continuous function, then
f is a derivative ofF (y) = [)f on[a,b].

Proof For a givens > 0 there exists positivé < ¢ andqg € N such that for every
n>qand|x—y| < we have|fy(x) — fo(y)| < €. Assume thak,y € [a,b], X~y
and takem > q such that for alln > m we have b, — a,)/n < §, [Xo — Yn| < 9.
Setzyk = a + (X — an)k/n, Wak = a + (Yo — an)k/n. SinC€Wnks1 — Wnk =
(Wn k1 — Znk+1) + (Znkt1 — Znk) — Wnk — Znk), Wn,0 = Zn,0 @NAWnn —Znn = Yn — Xn,
we get

n—1
Fn(yn) — Fa(X%n) = Z(fn(wn,k) — fa(Zn ) (@0 kr1 — Znk)
k=0
n—-1 n—-1
+ Z fo(Wn k) Wnk+1 — Znk+1) — Z fr(Wn,k) Wnk — Znk)
k=0 k=1
n—1
= > (fn(Wnk) — fa(z0k) @nkr1 — Z0k)
k=0
n—-2
+ Z(fn(wn,k) — fn(Wn k1) Wnki1 — Znki1)
k=0

+fn(Wn,n—1)(Wn,n — Znn)
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and

n—1
— X
IFa) = Fal) = O = Xfn0)] < [inWasd — folzni0l "
k=0
n—-2
+ Z [fa(Wnk) — Fa(Wnk+1)| - [Wnks1 — Znks1]
k=0

+|fn(Wn,n—l) — fa(Xn)| - [Yn — Xnl
< €|Yn— Xal/N+ €lYn — Xa| + £|Yn — Xq

Inthe lastinequality we have us@h k—znk| < ¢, [Wnk—Wnk+1| < 0, [Wnn—1—Xn| <
. Itfollows |F(y) — F(X) — (y — X) - f(X)| < |y — X| andf is a derivative ofF. O

8 Power series

Definition 22 A power seriesf(x) = S ax* is a dynamic function of the
form fa(xX) = Zﬂzoakxk, whereay € Q. Its radius of convergenceis R =

1/limsup,_,. V/lan|.

The proof that a power series converges in its interval of conveegsracstandard one.

Theorem 23 Let {ax} be a sequence of rational numbers &¢the radius of con-
vergence ofy(X) = Zﬂzo axX. Thenf : (—R R) — Q* is a full function. For each
x € Q* with |x| > R, f(x) is undefined.

Proof Givenx € (—R R), we show thatf(x) € Q*. There existss,;r € Q" with

IX| < s<r < R. There existsyp € N such that for allh > ng we have|x,| < s and
lan] < r~". Form > n > ng there exists a consta@ such that

[fmCm) — faO0)| < D lail - Py =0l + D Jail - X
i=1

i=n+1
n i—1 m
< X=Xl - Z il - Z a7 + Z (s/r)
i=1 j=0 i=n+1
< P = ol r_ Xl | (C—l— > i(s/r)“l) + > (/)
i=ng i=n+1
Xm — Xn| s/r (s/r)"*
= r '<C+(1—s/r)2>+ 1—s/r
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sof(x) € Q*. If |x| > R then there exists > 1 such that{n € N : |a,x"| > s"} is
infinite sofy(x,) is not a BC sequence. m|

Proposition 24 The power serie§(x) = >~ ; ka1 andF(x) = Y koo X have
the same radius of convergence.

Proof If f(X) € Q* thenF(x) € Q* sinced p_, |axX¥| < |ao| + [X| - -y [Kax<1.
Conversely, ifjx| < s andf(s) € Q*, then the sequends = k(x/9)*~1 converges to
zero, so there exists € QT such thatby| < b for all k. Then

Y ke = fads T Kx/s Tt < (b/9) ) Jauls
k=1

k=1 k=1
soF(X) € Q*. O

Theorem 25 The power serie$(x) = > o, kax*~1 is a derivative of the power
seriesF(X) = > "o, aX in their common interval of convergence.

Proof Let R be the radius of convergence of batfx) and F(x). Then ¢(X) =
S ks K(k — 1)ax*=2 has the same radius of convergeteAssume thatx|, |y| < R
so there exists < R with |x|, |y| < s, and

IFa(¥n) = Fn() — (0 — Xa)fa(a)| <> [ak] - [yi — X§ — k(¥ — Xa)Xgs |
k=1

n
< fyn =Xl Z Al - IV Y X YXs C X — ko
k=1
n
< Yo — Xl Z Ja] - (Y = X3+ Y — Xl - 52D
k=2
1 kk—1)
<

[Yn — Xa|? - Z|ak’ 2 72 = |yn — Xal?(9)/2.
k=2

Thus ify = x thenFp(yn) — Fn(Xn) — (Yn — X)fn(Xn) < Yn — Xy andf(x) is a derivative
of F(X). O

Thus for example, the exponential functicef)g = > ¢, XK /k! is full and continuous
in whole Q*. The standard identities are valid as equivalences. For example, a little
of algebra shows tha*™Y ~ €* - & for eachx,y € Q*.
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9 Discussion

While we do not claim to have reconstructed the continuum as it was undersyo
Bolzano and Cauchy, we have shown that a theory of a dynamical camimith
infinitesimal quantities is feasible and can be formulated with concepts whiah wer
well-known and current at the middle of the 19th century. Advanced equtscof
formal logic and set theory like ultrafilters are not necessary. The lbed€Cantor-
Weierstrass formalism of standard real numbers was not a historiedsigcbut one

of possible alternatives.

Rather than technical difficulties, there are two major conceptual issuieb Wwave

to be overcome to get a dynamical continuum. First, we should abandonfoine ef
to construct the continuum to the image of the structure of rational numbeess. W
cannot do with real numbers everything that we are used to do with rationabers.
One of the most significant results of the computable analysis is that any tainigou
full (everywhere defined) real function is continuous (see PoarEIRichards(1989)
[8]). The characteristic functions of inequalities are not defined evesysytsince the
algorithm which may try to compute them would fail to terminate. We obtain similar
results when we define dynamic real functions as limits of rational functibims fact
that the dynamical continuum of dynamic numbers is not linearly ordered e&ay s
paradoxical and counterintuitive but in fact the linearity is not essemtthtan be very
well disposed of.

The other preconception which should be abandoned, is the requirénatrgach
guantity is measurable by a unique number. This desire motivated Bolzano & mak
his measuring process unique and this desire is also behind the definitiamdasd

real numbers as equivalence classes of BC-sequences. Thisfdesingqueness has
been also dominant in representations of real numbers in positional nsydgiems

or continued fractions. Each irrational number can be expressed bigaeuinfinite
simple continued fractions and each rational number can be expressea [finite
simple continued fractions (see e.g., Perron(191B) [n fact the theory of continued
fractions may be regarded as an alternative foundation for real ngwbérh preceded

not only Bolzano and Cauchy but, according to some speculations, axtox&s
(see Fowler(1987)3)). Similarly in the binary positional system, a number has two
representations iff it is a rational number of the fopf2", otherwise it has a unique
representation. In both cases the unigqueness was desired but colld attained

for topological reasods But this near-uniqueness is highly undesirable when we
wish to compute with these representations. Arithmetical algorithms can work only

2While the real line is a connected topological space, the sjimbpace is totally discon-
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with number systems which aredundant, i.e., in which any real number has many
symbolic representations (see Weihrauch(20Q@), [Vuillemin(1990) [L6] or Klrka

and Kazda(2010)4]). And the representation of real numbers by BC-sequences of
rational numbers is one of the most redundant representations po3gitdés why the
arithmetical operations with them are so simple - it suffices to define them poéntwis

While we have refrained from adopting the intuitionistic constructive positmaswve
have admitted also noncomputable BC-sequences as dynamic numbersproachp
opens the way for computable analysis with infinitesimals. This would be, werbglie
an even more adequate version of a pre-Cantorian continuum. While Boézeh
Cauchy did not have the concept of computability, Bolzano speaks aldestor ideas
which form his infinite number expressions and it is tempting to interpret aulel r
or ideas as algorithms. The following short note suggests that Bolzanoowéstally
unaware of the issues of computability.

It may be worth remarking, for some readers, that in this definition | am
only saying that, in an infinite number concept, an infinite multitude of
operations of addition, subtraction, multiplication or divisiomagquired

| am not saying that it contains the idea of each one of these operations
individually, and thereby that it contains an infinite multitude of ideas as
its characteristic components. In this latter case such a concept would be
composed of infinitely many parts, and therefore it would be inconceivable
for a finite mind such as ours. (Russ(2008)][83 p. 358).

Acknowledgments

The research was supported by the Research Program CTS MSMZUB%5 and by
the Czech Science Foundation research projec€8/&01/09/0854. We thank Jan
Sebestik for inspiring discussions.

References

[1] S Albeverio, R Hgegh-Krohn, JE Fenstad TLindstrgm, Nonstandard methods in
stochastic analysis and mathematical physfsademic Press, New York (1986)

nected, so they cannot be homeomorphic and some real numiostshave more than one
symbolic representations.

20



(2]
3]

[4]

[5]

[6]

[7]
(8]

[9]
(10]

[11]

[12]

(13]

[14]

[15]

[16]

[17]

(18]

AL Cauchy, Cours d’Analyse de Ecole Royal Polytechniqu®ebure, Paris (1821)
DH Fowler, The Mathematics of Plato’s Academy. A new reconstructxford
University Press, Oxford (1987)

P Klrka, A Kazda, Mobius number systems based on interval coudmlinearity
23 (2010) 1031-1046

| Lakatos, Cauchy and the continuum: the significance of non-standnaalyais
for the history of mathematics (edited by J.P.Cleaf®m: “Mathematics, Science
and Epistemology”, (J Worall, G Currie, editors), Philobmal papers 2, Cambridge
University Press, Cambridge (1980) 43-60

D Laugwitz, Bemerkungen zu Bolzanos @Benlehre Archive for History of Exact
Sciences 2 (1962-1966) 398-409

O Perron, Die Lehre von Kettenliichen Teubner, Leipzig (1913)

M B Pour-El, J1 Richards, Computability in Analysis and PhysicSpringer-Verlag,
Berlin (1989)

A Robinson, Non-standard analysj$rinceton University Press (1996)

P Rusnock Bolzano’s Philosophy and the Emergence of Modern Mathes&odopi,
Amsterdam (2000)

S Russ The Mathematical Works of Bernard Bolzaxford University Press, Oxford
(2004)

K Rychlik (editor), Theorie der realen Zahlen im Bolzanos handschriftlicherciNa
lasse Academia, Praha (1962)

C Schmieden D Laugwitz, Eine Erweiterung der Infitesimalrechnungath. Zeitschr.
69 (1958) 1-39

J Sebestik Logique et matematique chez Bernard Bolzariabrarie Philosophique
J.Vrin, Paris (1992)

K Trlifajov &, Bolzanova r&itelna a dnéni realna Cisla (Bolzano’s measurable and
contemporary real numbersjrom: “Osangly myslitel Bernard Bolzano (A lonely
thinker Bernard Bolzano)”, (K Trlifajo&, editor), Filosofia, Praha (2006) 75-100

JE Wuillemin, Exact real computer arithmetic with continued fractiptSEE Trans-
actions on Computers 39 (August 1990) 1087-1105

K Weihrauch, Computable analysis. An introductioBATCS Monographs on Theo-
retical Computer Science, Springer-Verlag, Berlin (2000)

E Winter, J Berg, F Kambartel, J Louzil, E Morscher, B van Rootselaar(editors),
Bernard Bolzano Gesamtausgalt@ommann-Holzboog, Stuttgart (1969-)

kurka@cts.cuni.cz

http://www.cts.cuni.cz/~kurka

21


mailto:kurka@cts.cuni.cz
http://www.cts.cuni.cz/~kurka

	1 Introduction
	2 Bolzano's infinite number concepts
	3 Dynamic real numbers
	4 Dynamic real functions
	5 Full functions
	6 Derivatives
	7 Integration
	8 Power series
	9 Discussion
	Bibliography

