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Abstract. We generalize the positional systems and continued fraction
systems to number systems based on real Möbius transformations and
interval covers of the extended real line. We show that on-line algebraic
algorithms work for these systems.

1 Introduction

While the floating-point system is still dominant in computer arithmetic, alter-
native systems which allow arbitrary precision and on-line algorithms have been
considered as well. The classical ones are based on redundant positional systems
(see e.g., Knuth [5]). In an unpublished but influential manuscript, Gosper [2]
shows that continued fractions can be used for arithmetical algorithms, provided
they are redundant. This idea has been further developed by Vuillemin [11] or
Kornerup and Matula [6]. These number systems are based on the principle that
digits represent certain mappings, and words of digits represent compositions of
these mappings. There is a connection to the iterative contractive systems (see
Barnsley [1]) which possess unique attractors. The points of these attractors are
represented by infinite words of digits. The classical symbolic representations of
compact unit intervals in positional number systems are of this kind.

In Kůrka [7] and [8] we have considered number systems based on iterative
systems of Möbius transformations. An infinite word of digits represents a real
number, if the images of the Cauchy measure by the prefixes of the word converge
to the point measure concentrated on the number. A Möbius number system is
given by a subshift (obtained by forbidding some finite words), on which the sym-
bolic representation map is continuous and surjective. In [8] we have developed
the theory of Möbius number systems with sofic subshifts, whose languages can
be recognized by finite automata. In the present paper we use subshifts which
are obtained when we expand real numbers according to some interval cover.
While these subshifts are in general not sofic, the arithmetical algorithms are
simpler than in the sofic case. We present algorithms for expansions of rational
and algebraic numbers, and for computation of rational functions. We show ex-
amples of Möbius number systems which generalize the positional systems and
systems based on continued fractions.
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2 Möbius transformations

The extended real line R = R ∪ {∞} can be regarded as the projective real
line, i.e., the space of one-dimensional subspaces of the two-dimensional vector
space. On R we have homogenous coordinates x = (x0, x1) ∈ R2 \ {(0, 0)}
with equality x = y iff x0y1 = x1y0. We regard x ∈ R as a column vector, and
write it usually as x = x0/x1, for example ∞ = 1/0. For distinct a, b ∈ R, the
open interval (a, b) is the set {x ∈ R : a < x < b} if a < b, and {x ∈ R : a <
x or x < b}∪{∞} if a > b. We define closed intervals by [a, b] := (a, b)∪{a, b} if
a 6= b, and [a, b] = R if a = b. The singletons {a} are called degenerate intervals.
For x ∈ R we have x ∈ (a, b) iff (a − x)(x − b)(b − a) > 0. In homogenous
coordinates we get formulas which work for all a, b ∈ R.

(a, b) = {x ∈ R : (a0x1 − a1x0)(x0b1 − x1b0)(b0a1 − b1a0) > 0}

[a, b] = {x ∈ R : (a0x1 − a1x0)(x0b1 − x1b0)(b0a1 − b1a0) ≥ 0}

We can also regard R as a subspace of the extended complex plane C = C∪{∞}.
The map d(z) = (iz + 1)/(z + i) = (2z + i(z2 − 1))/(z2 + 1) maps R to the unit
circle T = {z ∈ C : |z| = 1}. Define the circle distance on R by

%(x, y) = 2 arcsin
|x − y|√

(x2 + 1)(y2 + 1)
= 2 arcsin

|x0y1 − x1y0|√
(x2

0 + x2
1)(y

2
0 + y2

1)

which is the length of the shortest arc joining d(x) and d(y) in T. The closed
intervals are balls Br(a) = {x ∈ R : %(x, a) ≤ r}, where r > 0. Their length is
||Br(a)|| = min{2r, 2π}. The intersection of two intervals can be the union of two
disjoint intervals. However, if ||I||+ ||J || < 2π, then I∩J is a (possibly empty or
degenerate) interval. A real orientation-preserving Möbius transformation
(MT) is a self-map of R of the form

M(a,b,c,d)(x) =
ax + b

cx + d
=

ax0 + bx1

cx0 + dx1
=

[
a b
c d

]
·

[
x0

x1

]

where a, b, c, d ∈ R and ad − bc > 0. We regard M as a (2 × 2)-matrix which
acts on the column vectors x ∈ R by multiplication. MT act also on the upper
half-plane U = {z ∈ C : =(z) > 0} consisting of complex numbers with
positive imaginary part. If z ∈ U, then M(z) ∈ U as well (see Katok [3]). Since
the map d maps U conformally to the unit disc D = {z ∈ C : |z| < 1}, we

get disc Möbius transformations M̂ which act on D ∪ T by M̂(a,b,c,d)(z) =

d ◦ M(a,b,c,d) ◦ d
−1(z) = (αz + β)/(βz + α), where α = (a + d) + (b − c)i, β =

(b+c)+(a−d)i. Define the norm of a Möbius transformation M = M(a,b,c,d) by
||M || := (a2+b2+c2+d2)/(ad−bc). The circle derivation and the expansion
quotient of M are defined by

M•(x) := lim
y→x

%(M(y), M(x))

%(y, x)
= |M̂ ′(d(x))| =

(ad − bc)(x2
0 + x2

1)

(ax0 + bx1)2 + (cx0 + dx1)2
,

q(M) := max{M•(x) : x ∈ R}

We have (MN)•(x) = M•(N(x)) · N•(x), and q(MN) ≤ q(M) · q(N).
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Proposition 1 (Kůrka [8]) Let M = M(a,b,c,d) be a Möbius transformation.
Then ||M || ≥ 2, q(M) ≥ 1, and

q(M) = 1
2 (||M || +

√
||M ||2 − 4) =

1 + |M̂(0)|

1 − |M̂(0)|

1/q(M) = 1
2 (||M || −

√
||M ||2 − 4) = min{M•(x) : x ∈ R}

||M || = q(M) + 1/q(M)

|M̂(0)| =
q(M) − 1

q(M) + 1
=

||M || − 2

||M || + 2
=

√
(a − d)2 + (b + c)2

(a + d)2 + (b − c)2

3 Möbius number systems

For a finite alphabet A denote by A∗ :=
⋃

m≥0 Am the set of finite words and

by A+ := A∗ \ {λ} the set of non-empty words. The length of a word u =
u0 . . . um−1 ∈ Am is |u| := m. We denote by AN the Cantor space of infinite
words equipped with metric d(u, v) := 2−k, where k = min{i ≥ 0 : ui 6= vi}. We
denote by u[i,j) = ui . . . uj−1 and u[i,j] = ui . . . uj subwords of u associated to

intervals. We say that v ∈ A∗ is a subword of u ∈ A∗ ∪ AN and write v v u, if
v = u[i,j) for some 0 ≤ i ≤ j ≤ |u|. Given u ∈ An, v ∈ Am, denote by u.v ∈ AN

the preperiodic word with preperiod u and period v defined by (u.v)i = ui

for i < n and (u.v)n+km+i = vi for i < m.
The shift map σ : AN → AN is defined by σ(u)i = ui+1. A subshift is a

nonempty set Σ ⊆ AN which is closed and σ-invariant, i.e., σ(Σ) ⊆ Σ. For a
subshift Σ there exists a set D ⊆ A+ of forbidden words such that Σ = ΣD :=
{x ∈ AN : ∀u v x, u 6∈ D}. A subshift is uniquely determined by its language
L(Σ) := {u ∈ A∗ : ∃x ∈ Σ, u v x}. An iterative system is a continuous map
F : A∗ × X → X , or a family of continuous maps (Fu : X → X)u∈A∗ satisfying
Fuv = Fu ◦ Fv, and Fλ = Id. It is determined by generators (Fa : X → X)a∈A.

Definition 2 We say that F : A∗ × R → R, is a Möbius iterative system,
if all Fa : R → R are orientation-preserving Möbius transformations. The con-
vergence space XF ⊆ AN and the symbolic representation Φ : XF → R are
defined by XF := {u ∈ AN : limn→∞ Fu[0,n)

(i) ∈ R}, Φ(u) = limn→∞ Fu[0,n)
(i),

where i ∈ U is the imaginary unit. If Σ ⊆ XF is a subshift such that Φ : Σ → R

is continuous and surjective, then we say that (F, Σ) is a Möbius number
system. We say that a Möbius number system is redundant, if for every con-
tinuous map g : R → R there exists a continuous map f : Σ → Σ such that
Φf = gΦ.

The condition of convergence in Definition 2 has probabilistic meaning. Denote
by µ the uniform measure on T and by µn = F̂u[0,n)

µ its image. Its mean is

E(µn) =
∫

T
z dµn = F̂u[0,n)

(0) (see Kůrka [7]). These means can be seen in
Figures 1 and 2. The condition Φ(u) = x is equivalent to limn→∞ µn = δ(d(x)),
where δ(d(x)) is the point measure concentrated at d(x) ∈ T. This is in turn
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equivalent to limn→∞ F̂u[0,n)
(0) = d(x) and even to limn→∞ F̂u[0,n)

(K) = d(x)
for every compact set K ⊂ D (see Kazda [4]). We shall use another equivalent
condition established in Kůrka [8]:

Lemma 3 Let u ∈ AN and x ∈ R. Then Φ(u) = x iff there exists c > 0 and a
sequence of intervals Im 3 x such that lim infn→∞ ||F−1

u[0,n)
(Im)|| > c for each m,

and limm→∞ ||Im|| = 0.

Definition 4 We say that W = {Wa : a ∈ A} is an interval cover for a
Möbius iterative system F , if each Wa is a closed non-degenerate interval, the
union of all Wa is R, and ||F−1

a (Wa)|| + ||Wb|| < 2π for each a, b ∈ A.

The diameter of W is ||W|| := max{||Wa|| : a ∈ A}. The Lebesgue number
`(W) of W is the supremum of all l ≥ 0 such that for each interval I of length
at most l there exists a ∈ A such that I ⊆ Wa. For u ∈ An+1 set

Wu := Wu0 ∩ Fu0(Wu1 ) ∩ Fu[0,2)
(Wu2) ∩ · · · ∩ Fu[0,n)

(Wun
)

q(u) := min{(F−1
u )•(x) : x ∈ Wu},

ΣW := {u ∈ AN : ∀n, int(Wu[0,n)
) 6= ∅},

Wn := {Wu : u ∈ LW ∩ An}

Qn(W) := min{q(u) : u ∈ LW ∩ An}

Rn(W) := ||Wn||/2π

where LW := L(ΣW) = {u ∈ A∗ : int(Wu) 6= ∅} is the language of ΣW . By
definition Wλ := R, q(λ) := 1, W0 = {Wλ} and W1 = W .

Proposition 5 Let W be an interval cover for a Möbius iterative system F :
A∗ × R → R, u, v ∈ A∗, and n, m ≥ 0.

(1) Wuv = Wu ∩ Fu(Wv).
(2) Each Wu is a (possibly empty) interval and each Wn covers R.
(3) q(uv) ≥ q(u) · q(v) and Qn+m(W) ≥ Qn(W) · Qm(W)
(4) ||Wn+m|| ≤ ||Wm||/Qn(W) and Rn(W) · Qn(W) ≤ 1.

Proof. (1) follows from the definition.
(2) Since ||F−1

a (Wa)||+ ||Wb|| < 2π, the set Wa∩Fa(Wb) = Fa(F−1
a (Wa)∩Wb) is

an interval. We continue by induction. If Wbu is an interval, then ||F−1
a (Wa)||+

||Wbu|| ≤ ||F−1
a (Wa)|| + ||Wb|| < 2π, so F−1

a (Wa) ∩ Wbu is an interval and
therefore Wabu = Wa ∩ Fa(Wbu) is an interval. Given x ∈ R there exists u ∈ An

such that for each k < n we have [F−1
u[0,k)

(x), yk] ⊆ Wuk
for some yk 6= F−1

u[0,k)
(x).

It follows u ∈ LW and x ∈ Wu, so Wn is a cover.
(3) For x ∈ Wuv we have (F−1

uv )•(x) = (F−1
u )•(x) ·(F−1

v )•(F−1
u (x)) ≥ q(u) ·q(v),

and therefore q(uv) ≥ q(u) · q(v). This implies Qn+m(W) ≥ Qn(W) ·Qm(W).
(4) For u ∈ An, v ∈ Am we have Wuv ⊆ Wu and F−1

u (Wuv) ⊆ Wv, so q(u) ·
||Wuv|| ≤ ||F−1

u (Wuv)|| ≤ ||Wv||. It follows Qn(W) · ||Wuv|| ≤ ||Wv|| ≤ ||Wm||
and therefore ||Wm+n|| ≤ ||Wm||/Qn(W). ut
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Definition 6 The expansion quotient and the interval quotient of an in-
terval cover W for a Möbius iterative system F are defined by

Q(W) := lim
n→∞

n
√

Qn(W)

R(W) := lim sup
n→∞

n
√

Rn(W)

Since Qn+m(W) ≥ Qn(W) · Qm(W), the limit Q(W) exists and Q(W) ≥
n
√

Qn(W) for each n. Since Rn(W) · Qn(W) ≤ 1, we have R(W) · Q(W) ≤ 1.

Theorem 7 Let F : A∗×R → R be a Möbius iterative system and W an interval
cover for F such that Q(W) > 1. Then

(1) ΣW ⊆ XF and Φ([u]) = Wu for each u ∈ LW .
(2) Φ : ΣW → R is continuous and surjective.
(3) (F, ΣW) is redundant iff `(W) > 0.

Proof. (1) There exists q > 1 such that for all sufficiently large n we have
Qn(W) > qn. Given u ∈ ΣW , we have ||Wu[0,n)

|| < 2π/qn, so the intersection⋂
n Wu[0,n)

= {x} is a singleton. Since (F−1
u[0,n)

)•(x) > qn, we get x = Φ(u) by

Lemma 3. Thus ΣW ⊆ XF . For u ∈ LW and uv ∈ ΣW we have Φ(uv) ∈ Wu, so
Φ([u]) ⊆ Wu. If x ∈ Φ([u]), then there exists v with Φ(uv) = x, so x ∈ Φ([u]).
(2) Since limn→∞ ||Wn|| = 0, and Φ([u]) = Wu, Φ is continuous. Since each Wn

is a cover of R, Φ is surjective.
(3) If g : R → R is continuous, then gΦ : Σ → R is uniformly continuous. Given
u ∈ Σ, we construct v = f(u) ∈ ΣW by induction so that for each n there exists
kn such that gΦ([u[0,kn)]) ⊆ int(Wv[0,n)

). If the condition holds for n, then there
exists kn+1 > kn such that ||gΦ([u[0,kn+1)])|| ≤ ||Wn+1|| so there exists vn such
that gΦ([u[0,kn+1)]) ⊆ int(Wv[0,n+1)

). Thus f : ΣW → ΣW is continuous and

Φf = gΦ. Conversely, if `(W) = 0, there exists y ∈ R and a, b ∈ A such that
y ∈ Wa ∩ Wb and int(Wa ∩ Wb) = ∅. Since the set of the endpoints of Wu is
countable, there exists x ∈ R such that whenever x ∈ Wu then x ∈ int(Wu). Let
g be a Möbius transformation which maps x to g(x) = y. If f : ΣW → ΣW is
such that Φf = gΦ, and Φ(u) = x, then f cannot be continuous at u. ut

4 Arithmetical algorithms

In arithmetical algorithms we work with the extended rational numbers Q =
Q∪{∞} with homogenous integer coordinates x = x0/x1 ∈ Z2 \{(0, 0)}. Denote
by I the set of non-degenerate closed intervals I = [a, b] with endpoints in Q. This
includes full intervals [a, a] = R. Denote by M1 the set of MT M = M(a,b,c,d)

whose coefficients a, b, c, d ∈ Z are integers with ad−bc > 0. Given x ∈ Q, I, J ∈
I, the following relations can be decided algorithmically: x ∈ I, I ⊆ J , I∩J ∈ I,
I ∪ J ∈ I. If M ∈ M1 and I = [I0, I1] ∈ I, then M(I) = [M(I0), M(I1)] ∈ I
can be obtained algorithmically as well.

From now on we assume that F : A∗ × R → R is a Möbius iterative system
and W = {Wa : a ∈ A} is an interval cover such that Fa ∈ M1 and Wa ∈ I
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for each a ∈ A. We also assume that Q(W) > 1 and `(W) > 0, so (F, ΣW ) is a
redundant Möbius number system. Denote by A := A∪{λ} and A∗ := A∗ ∪AN.

Definition 8 A (m, n)-labelled graph over A (with n ≥ 0 inputs and m ≥ 0
outputs) is a structure G = (V, E, s, t, l), where V is a countable set of vertices,
E is a countable set of edges, s, t : E → V are computable source and target

maps, and l : E → A
m+n

, is a computable map such that for each q ∈ V , the set
s−1(q) of edges with source q is finite, and the map q 7→ s−1(q) is computable.

A path in G is a word u ∈ E∗∪EN of edges such that t(ui) = s(ui+1). The label of
a path is the concatenation of labels of its edges. The graph G determines a many-
valued (nondeterministic) function Ψ : V ×A∗n

→ A∗m
such that w = Ψ(q, u) iff

(w, u) is a label of a path with source q. The graph yields a machine consisting of
a control unit (head) whose inner states are elements of V . The head is attached
to n input tapes and m output tapes. At each time step, the head chooses one of
the edges which leads from its state, updates its inner state, reads letters from
input tapes and/or writes letters to output states.

Definition 9 The (1, 0)-number expansion graph (no inputs and 1 output)
is a graph whose vertices are rational numbers x ∈ Q. We have a labelled edge
x

a
→ F−1

a (x) if x ∈ Wa and a ∈ A. The (1, 0)-interval expansion graph (no
inputs and 1 output) is a graph whose vertices are intervals I ∈ I. There is an

edge I
a
→ F−1

a (I) whenever I ⊆ Wa.

Proposition 10 For each x ∈ Q there exists an infinite path with source x. If
u ∈ AN is its label, then u ∈ ΣW and Φ(u) = x. If u ∈ A∗ is the label of a path
with source I, then u ∈ LW , and I ⊆ Φ([u]).

Proof. We have x ∈ Wu0 , F−1
u0

(x) ∈ Wu1 , so x ∈ Wu[0,1]
. By induction x ∈ Wu[0,k)

for each k > 0, so x = Φ(u). Similar argument works for the interval expansion
graph. If the interval is too long, there is no edge leading out of it, so the paths
in the interval expansion graph cannot be infinite. ut

Definition 11 The (0, 1)-checking graph (1 input and no output) is a graph

whose vertices are intervals I ∈ I. We have a labelled edge I
a
→ F−1

a (I) ∩ Wa

whenever F−1
a (I) ∩ Wa ∈ I.

Proposition 12 There exists a path with source [0, 0] = R and label u ∈ A∗ iff
u ∈ LW ∪ ΣW .

Definition 13 The (1, 1)-linear graph (1 input and 1 output) has vertices
(M, a), where M ∈ M1 and a ∈ A. The labelled edges are

(M, a)
(c,λ)
−→ (F−1

c M, a) if M(Wa) ⊆ Wc

(M, a)
(λ,b)
−→ (MFa, b) if ¬∃c, M(Wa) ⊆ Wc
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Proposition 14 If (w, u) is the label of a path with source (M, λ) and u ∈ ΣW ,
then w ∈ ΣW and Φ(w) = M(Φ(u)). If u ∈ LW , then w ∈ LW and M(Φ([u])) ⊆
Φ([w]).

Proof. We show by induction that when there is a path with source (M, λ) and
label (w, u) ∈ A∗×LW , then M(Wu) ⊆ Ww and its target is (F−1

w MFu, a), where
a = u|u|−1 is the last letter of u. Since Wλ = R, the first edge (M, λ) → (M, a) has
label (λ, a), so M(Wu) = M(Wa) ⊆ Wλ = Ww is satisfied. Suppose that the as-
sumption holds for (w, u), and consider an edge (F−1

w MFu, a) → (F−1
w MFua, b)

with label (λ, b). Then M(Wub) ⊆ M(Wu) ⊆ Ww, so the statement holds for the
path label (w, ub). Consider an edge (F−1

w MFu, a) → (F−1
wc MFu, a), with label

(c, λ), so F−1
w MFu(Wa) ⊆ Wc. Then M(Wua) ⊆ MFu(Wa) ⊆ Fw(Wc). Since

M(Wua) ⊆ M(Wu) ⊆ Ww, we get M(Wua) ⊆ Ww ∩ Fw(Wc) = Wwc, so the
statement holds for the path label (wc, u). ut

5 Bilinear functions

To obtain algorithms for functions of two variables like sum or product, we
consider orientation-reversing MT M(a,b,c,d) with ad − bc < 0, singular MT
with ad− bc = 0 and |a|+ |b|+ |c|+ |d| > 0 whose matrices have rank r(M) = 1,
and zero MT with a = b = c = d = 0 and rank r(M) = 0. If ad − bc 6= 0,
then r(M) = 2. We define the stable point sM ∈ R and the unstable point
uM ∈ R of a singular MT by sM ∈ {a

c
, b

d
} ∩ R, uM ∈ {− b

a
,− d

c
} ∩ R. A singular

MT can be regarded as a multi-valued almost-constant function, whose value at
uM is any y ∈ R, and its value at any x 6= uM is sM . In other words, a singular
MT represents the relation (R×{sM})∪ ({uM}×R). The value of a MT M on
an interval I = [I0, I1] ∈ I is

M(I) =






[M(I0), M(I1)] if ad − bc > 0
[M(I1), M(I0)] if ad − bc < 0
{sM} if ad − bc = 0 & uM 6∈ I
[0, 0] if ad − bc = 0 & uM ∈ I

A bilinear function is a function of two variables x, y ∈ R of the form

P (x, y) =
axy + bx + cy + d

exy + fx + gy + h
=

ax0y0 + bx0y1 + cx1y0 + dx1y1

ex0y0 + fx0y1 + gx1y0 + hx1y1
.

For each x, y ∈ R, P (x,−), P (−, y) are MT with matrices

P (x,−) =

[
ax0 + cx1 bx0 + dx1

ex0 + gx1 fx0 + hx1

]
, P (−, y) =

[
ay0 + by1 cy0 + dy1

ey0 + fy1 gy0 + hy1

]

With a bilinear function, we associate (2 × 4)-matrices

P =

[
a b c d
e f g h

]
, P x =

[
a b e f
c d g h

]
, P y =

[
a c e g
b d f h

]
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The matrix P has rank r(P ) = 2 iff its rows are linearly independent, i.e.,
if |af − be| + |ag − ce| + |ah − de| + |bg − cf | + |bh − df | + |ch − dg| > 0.
Otherwise, P has rank r(P ) = 1 provided it is nonzero. If r(P ) = 1, then
P (x, y) is an almost constant function taking values in {a

e
, b

f
, c

g
, d

h
} ∩ R, except

at points where both numerator and denominator are zero. If r(P x) = 1, then
P (x, y) does not depend on x and represents an MT in y. In fact r(P x) = 2 iff
r(P (x,−)) ≥ 1 for each x ∈ R. In this case there are at most two x ∈ R for
which r(P (x,−)) = 1. Similarly, if r(P y) = 1, then P (x, y) does not depend on
y. We say that a 2 × 4 matrix P is regular, if r(P ) = r(P x) = r(P y) = 2.
Denote by M(1,1) the set of (2 × 4) regular matrices with integer coefficients
a, b, . . . , h. For example the functions x, y 7→ x + y and x, y 7→ x · y belong
to M(1,1). Given a 2 × 2 matrix M = M(a,b,c,d) there exist 4 × 4 matrices
Mx and My whose entries are a, b, c, d, 0, such that P (Mx, y) = PMx(x, y) and
P (x, My) = PMy(x, y). Given P ∈ M(1,1) and intervals I = [I0, I1], J = [J0, J1]
from I, set P (I, J) := P (I0, J) ∪ P (I, J1) ∪ P (I1, J) ∪ P (I, J0). Then P (I, J)
is a connected set and therefore an interval. Since there exists x ∈ I such that
r(P (x,−)) = 2, we have P (I, J) ∈ I. If M is regular (2 × 2)-matrix and P is a
regular (2 × 4)-matrix, then PMx, PMy and MP are regular.

Definition 15 The (1, 2)-bilinear graph (2 inputs and 1 output) has vertices
(P, a, b), where M ∈ M(1,1), and a, b ∈ A. The edges are

(P, a, b)
(c,λ,λ)
−→ (F−1

c P, a, b) if P (Wa, Wb) ⊆ Wc

(P, a, b)
(λ,a′,b′)
−→ (PF x

a F y
b , a′, b′) if ¬∃c, P (Wa, Wb) ⊆ Wc

Proposition 16 If (w, u, v) is a label of a path with source (M, λ, λ), u, v ∈ ΣW ,
and w ∈ AN, then w ∈ ΣW and Φ(w) = P (Φ(u), Φ(v)).

More sophisticated versions of the algorithm would read separately the first and
the second input using some preference rules for their orders. Nevertheless, the
algorithm may give a finite output even on infinite inputs, for example when we
add words representing ∞ + ∞.

6 Rational functions

Consider rational functions of degree n of the form

P (x) =
a0 + a1x + · · · + anxn

b0 + b1x + · · · + bnxn
=

a0x
n
1 + a1x0x

n−1
1 + · · · + anxn

0

b0xn
1 + b1x0x

n−1
1 + · · · + bnxn

0

with |an|+ |bn| > 0 and linearly independent rows, so r(P ) = 2. Denote by Mn

the set of rational functions with rank 2, degree n, and integer coefficients. If
M ∈ M1, then both composed functions PM and MP belong to Mn. Denote
by t(x) := arg d(x) = 2 arctanx the isomorphism of R with (−π, π). The circle
derivation P • of P is defined (on whole R) by

P •(x) := (tP t
−1)′(t(x)) =

P ′(x)(1 + x2)

1 + P 2(x)

8



We have again |P •(x)| = limy→x %(P (y), P (x))/%(y, x), and the expansion quo-
tient q(P ) := max{|P •(x)| : x ∈ R} is finite. A monotone element is a pair
(P, I) such that I ∈ I and P ∈ Mn is monotone on I, i.e., P •(x) does not
change sign on I. We say that a monotone element (P, I) is sign-changing, if
either P •(x) > 0 for x ∈ I and P (I0) < 0 < P (I1), or P •(x) < 0 for x ∈ I and
P (I0) > 0 > P (I1). A sign-changing monotone element (P, I) has a unique root
x ∈ I with P (x) = 0.

Proposition 17

(1) There exists an algorithm which for a polynomial P (x) = a0+a1x+· · ·+anxn

with integer coefficients gives a list of monotone sign-changing elements
(P1, I1), . . . , (Pk, Ik), such that each root of P is a root of some (Pj , Ij).

(2) It is decidable, whether (P, I) is a monotone element or not.
(3) It is decidable whether P (I) ⊆ J .

These algorithms can be obtained from the Sturm theorem (see e.g., van der
Waerden [10]), which counts the number of roots of a polynomial in an interval.
The condition (3) can be decided without evaluating the interval P (I), which
may have irrational endpoints.

Definition 18 The (1, 0)-algebraic expansion graph is a graph whose ver-
tices are sign-changing monotone elements. Its edges are

(P, I)
a

−→ (PFa, F−1
a (I ∩ Wa)), if (P, I ∩ Wa) is a sign-changing element

Proposition 19 For each sign-changing monotone element (P, I) there exists
an infinite path with source (P, I). If w is its label, then w ∈ ΣW , Φ(w) ∈ I, and
PΦ(w) = 0.

Proof. It is easy to see that if (P, I) is a sign-changing monotone element, then
there exists a ∈ A such that (P, I∩Wa) is a sign-changing monotone element. If x
is a root of (P, I∩Wa), then x ∈ Wa and F−1

a (x) is a root of (PFa, F−1
a (I∩Wa)).

By induction we get x ∈ Ww[0,k)
, so x = Φ(w). ut

The graph for the computation of a rational function P ∈ Mn at Φ(u)
has the same formal structure as the linear graph from Definition 13. To test
the condition P (Wa) ⊆ Wc one must use the Sturm theorem rather than the
simple comparison of the endpoints of intervals. However, if P is monotone in a
neighbourhood I of Φ(u), the test simplifies.

7 Binary signed system

The classical binary signed number system for the interval [−1, 1] is based on
iterations of mappings (x − 1)/2, x/2, (x + 1)/2. In fact [−1, 1] is the attractor
of this iterative system with alphabet {−1, 0, 1}, and Φ(u) =

∑
n≥0 2−i−1ui is

its symbolic representation. We use simpler transformations x − 1, x/2, x + 1
and take also 2x to get the whole R.
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Fig. 1. Means of the binary signed system (BSS)

Example 1 The Möbius binary signed system (BSS) consists of the alpha-
bet A = {1, 0, 1, 2}, transformations F1(x) = −1 + x, F0(x) = x/2, F1(x) =
1 + x, F2(x) = 2x, and the intervals W1 = [−2,− 1

2 ], W0 = [− 2
3 , 2

3 ], W1 = [12 , 2],
W2 = [32 ,− 3

2 ].

The means F̂u(0) = E(F̂uµ) =
∫

T
z dF̂uµ of words u ∈ LW can be seen in Figure

1 (here µ is the uniform measure on T). For each MT M there exists a family
of MT (M t)t∈R such that M0 = Id, M1 = M , and M t+s = M tM s. In Figure

1, each mean F̂ua(0) is joined to F̂u(0) by the curve (F̂uF̂ t
a(0))0≤t≤1. The labels

u ∈ A+ at F̂u(0) are written in the direction of the tangent vectors F̂ ′
u(0).

We have `(W)
.
= 0.249, and 10

√
Q10(W)

.
= 1.368, so (F, ΣW) is a Möbius

number system. The length of the intervals is characterized by 10
√

R10(W)
.
=

0.624. The forbidden words of length two and three are 11, 12, 02, 11, 12, 20,
111, 011, 011, 111, so the letter 2 can occur only at the beginning of a word
of LW ∪ΣW . Each u ∈ LW has the form u = 2nv where v ∈ {1, 0, 1}∗ and n ≥ 0.
Moreover, for some k ≥ 0 and si ∈ {−2,−1, 0, 1, 2}, s0 6= 0, Fu can be written

10



as

Fu(x) = 2n

(
s0 +

1

2

(
s1 +

1

2

(
s2 + · · · +

1

2

(
sk−1 +

x

2

)
· · ·
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Fig. 2. Means of the binary continued fractions (BCF)

8 Continued fractions

Regular continued fractions are based on iterations of transformations 1+x and
1/x. Since 1/x is orientation-reversing, we use rather the orientation preserving

transformation F0(x) = −1/x which corresponds to the rotation F̂0(z) = −z of
the unit circle by π.

Example 2 The Möbius system of regular continued fraction (RCF see
[8]) consists of the alphabet A = {1, 0, 1}, transformations F1(x) = −1+x, F0(x) =
−1/x, F1(x) = 1 + x, and the interval cover W1 = [∞,−1], W0 = [−1, 1],
W1 = [1,∞].
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We have Qn(W) = 1, Rn(W) = ||[n,∞]||/2π ≈ 1/πn, so Q(W) = R(W) = 1
and `(W) = 0. Nevertheless ΣW = Σ{00,11,11,101,101} ⊆ XF and (F, ΣW) is a

non-redundant Möbius number system (see Kůrka [8]). For each u ∈ L(ΣD),the
transformation Fu can be written as Fu(x) = F a0

1 F0F
a1
1 · · ·F0F

an

1 (x) where
ai ∈ Z, aiai+1 ≤ 0 and ai 6= 0 for i > 0. Thus we obtain a continued fraction
whose partial quotients (−1)iai are either all positive or all negative and such
continued fractions converge. Each rational number has exactly two expansions
of the form u.1, and v.1, while each irrational number has a unique expansion.
If we replace W by the interval cover W1 = [∞,− 1

2 ], W0 = [−1, 1], W1 = [12 ,∞],
we obtain semi-regular continued fractions, which converge by a theory
exposed in Perron [9]. We have again `(W) = 0, and Q(W) = R(W) = 1, so the
convergence is quite slow. We add the transformation F2(x) = 2x to make the
convergence faster.

Example 3 The Möbius system of binary continued fraction (BCF, Fig-
ure 2) consists of the alphabet A = {1, 0, 1, 2}, transformations F1(x) = −1 +
x, F0(x) = −1/x, F1(x) = 1 + x, F2(x) = 2x, and intervals W1 = [−3,− 1

2 ],
W0 = [−1, 1], W1 = [12 , 3], W2 = [2,−2].

The system corresponds to the continued logarithms of Gosper [2]. The forbidden
words of length 2 are {11, 12, 00, 11, 12, 20}, `(W)

.
= 0.284, 10

√
Q10(W)

.
= 1.364,

10
√

R10(W)
.
= 0.629. Each expansion of each rational number has the form u.a,

where a ∈ {1, 1, 2} (see Kůrka [8]).
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