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Abstract—We analyze the time complexity of exact real Using the concept of expansion quotient, we have given
arithmetical algorittms in M 6bius number systems. Using conditions which ensure that the extended real line is a
the methods of Ergodic theory, we associate to any bbius factor of the expansion subshift. Infika [10] we have

number system its transaction quotientT and show that the . tigated MNS i hich rati | b h iodi
norm of the state matrix after » transactions is of the order 'nvestigate In which rauonal numbers have periodic

T". We argue that the Bimodular Mébius number system OF preperiodic expansions. Iniikka [11] we have charac-
introduced in Kdrka [10] has transaction quotient less than terized MNS whose expansion subshifts are of finite type

1.1, so that it computes the arithmetical operations faster than or sofic and we have generalized the computation of the
the standard positional r-ary systems. endpoints of cylinders by the Stern-Brocot graph.

Index Terms—expansion subshifts; exact real arithmetical ~ The time complexity of exact real algorithms depends
algorithms; emissions; absorptions; transactions. on the growth of their inner state matrices during compu-
tations. Heckmann [3] analyzes this process in positional
number systems and proves thaw of big numbers,
saying that the norm of the state matrix aftetransactions

While the floating-point system is still dominant in comis at least of the order”/? for r-ary systems. This
puter arithmetic, alternative systems which allow arlpjtra implies that the bit size of the state matrix grows at least
precision and on-line algorithms have been considered lasearly, and arithmetical operations have quadratic time
well. The classical ones are based on redundant positionamplexity. In the present paper we show that the Law of
systems (see e.g., Knuth [5]). In an unpublished but influebig numbers does not apply to alldlius number systems.
tial manuscript, Gosper [2] shows that continued fractioridsing methods of Ergodic theory we define thensaction
can be used for arithmetical algorithms, provided they aggiotient T of a MNS and argue that the average norm of
redundant. Based on these ideasact real arithmetical the state matrix aften transactions iSI". We show that
algorithms have been developped in Vuillemin [17], Kor-the Nonredundant bimodular systemconsidered in Kirka
nerup and Matula [6], Potts [15], or Potts et al [16]. Thesd0] has transaction quotierlf < /2 and outperforms
algorithms perform a sequence iofput absorptions and the standard--ary positional systems. In fact, numerical
output emissionsand update their inner state, which magxperiments suggest that the transaction quotient of the
be a(2 x 2)-matrix in the case of a Bbius transformation, Nonredundant bimodular system is much closerljoat
a (2 x 4)-matrix in the case of binary operations likeleastT < 1.1.
addition, multiplication or division, or an expressiondre In redundant systems with sofic expansion subshift we
in the case of a transcendental function. Both emissiongnsider theLeast norm algorithm which minimizes the
and absorptions are referred tote@nsactions norm of the state matrices during the computation. In

Using the concepts and methods of symbolic dynamidéie Redundant bimodular systemintroduced in Kirka
exact real arithmetic has been generalized in the theory[df], the algorithm gives good practical results. For the
Mobius number systems(MNS) introduced in Kirka [8] input length of several thousands, the norms of the state
and [9]. Mobius number systems represent real numbergtrices remain most of the time bounded by 100, although
by infinite words from a one-sided subshift. The letters dfuctuations to much larger values occur sporadically. This
the alphabet stand for real orientation-preservingbMs suggests that the transaction quotient of the Bimodular
transformations and the concatenation of letters corredpo system may be even equal to one, which would imply
to the composition of transformations. Inikka and Kazda the existence of arithmetical algorithms with averagedine
[12] we have investigated interval MNS whose subshifts atéine complexity.
determined by an interval cover or almost-cover indexed .
by the alphabet. Given a numbet we find an interval Il. MOBIUS TRANSFORMATIONS
to which = belongs, take the inverse image ®fby the Theextended real lineR = RU{oo} can be regarded as
corresponding transformation and repeat the proceduee. Thprojective space, i.e., the space of one-dimensional sub-
expansion subshiftconsists of all infinite words obtained.spaces of the two-dimensional vector space FOme have

I. INTRODUCTION



homogenous coordinatest = (zg,z1) € R? \ {(0,0)}
with equality z = y iff det(z,y) = xoy1 — z1y0 = 0.
The norm of a vectorr € R? is ||z|| = \/z3 + 3. We

Ill. | NTERVALS

A set interval is an open connected subset Rf A
proper interval is a nonempty set interval properly in-

regardz € R as a column vector, and write it usually ag|,ded inR. We represent proper intervals g x 2)-

r=2= xo/x1, for exampleco = 1/0. Thestereograhic
projection h(z) = (iz + 1)/(z + i) mapsR to the unit

matrices whose columns are their left and rig_ht endpoints.
The stereographic projection applied to= 2% ¢ R

T COS ¢

circle JD = {z € C: [z = 1} in the complex plane, and givesh(z) = sin 2a —i cos 2 = (22~ %) s0 it duplicates

the upper half-plan& = {z € C: 3(z) > 0} conformally
to the unit discD = {z € C: |z| < 1}. Define thecircle
distanceon R by

: |z —y|
o(z,y) = —arcsin
@ Vit +1-y/y2+1
= 1 arcsin [20y1 — yo|

i V(@§+ 215 + u7)
. | det(z, )|

— arcsin ————=,

@ IEIIE)

which is the length of the shortest arc @t which joins
h(z) andh(y) divided by 2.

A real orientation-preserving Mobius transformation
(MT) is a self-map ofR of the form

ax—|—b_am0—|—ba:1
cx+d  cxo+dry’

M(a,b,c,d) (J}) =

wherea,b,c,d € R anddet(Mq . .q)) = ad — be > 0.
MT acts also on the upper half-plari& If 2 € U then
M(z) € U as well. OnD := D U dD we getdisc Mobius
transformations defined by

J/\Z(a,b,c,d) (Z) = ho M(u,b,c,d) o hfl(z)
= (az+p)/(Bz+7a),

wherea = (a +d) + (b—¢)i, 5= (b+¢) + (a — d)i. We
have

— M]||? — det(M)

T |

|M(0) [|M]]? + det(M)’

where||Mq p.c.a)| = Va? + b2 + ¢ 4 d? is the norm of
the matrix M (see Kirka [9]). Thecircle derivation of
M = M4,c.q is defined by

o(M(y), M(z))
o(y, )
(ad —be) - (22 + 23)
(azo + bx1)2 + (cxo + dp)2’
det(M) - [|[|?
IM@IE

lim
Yy—x

M*(z) =

The expansion interval of M = M4 . c.q) IS

VIM)={zecR: (M 1)*(z)>1}.

the angles. Intervals with endpoints= 52 ) — jjf;g
where0 < a < 27, a < § < a+ 7 can therefore represent
any proper interval. Sincéet(z,y) = rssin(a — §8) < 0,
we define matrix intervals a2 x 2)-matrices with negative
determinant, which we write as paifs= (3, %) of their
left and right endpoints(7) = 2, v(I) = 7¢. The set of
matrix intervals is therefore

I(R) = {(52,22) € GL(R,2) : woy1 — 190 < 0}

The length of an interval is defined by

ToYo + T11
oY1 — 1Yo

+ Larctan —2Y
= — 4+ —arctan ————
2 det(z,y)

Then we get(rsine S50y — (3 — q)/x, provided0 <

8 — a < 7. A matrix interval defines an open and closed
set interval by

zel <« det(l(I),z)-det(z,r(I)) >0,
zel & det(l(1),z2)-det(z,r(I)) > 0.

If [ = (Lsina ssinfy 4hen, — 503 ¢ 1 iff either o <

rcosa’ scosf tcosy

y<Bora+nm<y<p+mIf z,y R, then

(x,y)={

When we transform intervals, we work with the matrix

representations of MT rather than with the transformations
themselves. Nbius transformations are represented by
matrices

M(R) = {M4,p,c,q) € GL(R,2) :

xT + arctan
Y 2

{zeR: z<2z<y} if
{zeR: z<zorz<y}U{oo} Iif

<y,
T >y

ad — bc > 0}

which act on vectors: € R? by multiplicationz — Mz.
Two matrices represent the same MT if one is a nonzero
multiple of the other and the matrix multiplication cor-
responds to the composition of MT. f/ € M(R) and

I € I(R), then bothMI and IM are intervals. While
MI = M(I) represents thé//-image of the set interval

of I, IM is the interval cut froml by M. This operation

is used to obtain the Stern-Brocot graph of a MNS with
expansion subshift of finite type (sedika [11]).

IV. SUBSHIFTS

For a finite alphabef\ denote byA* :=J,,.,A™ the
set of finite words. The length of a wotd= ug ... u,,_1 €
A™ is |u| = m. We denote byA" the Cantor space of

If M =R, = Mcos 2 sin &, sin & cos &) is a rotation, then infinite words with the metriai(u,v) = 27%, wherek =

M*(z) = 1 and V(M) is empty. OtherwiséV (M) is a

min{i > 0 : u; # v;}. We say thav € A* is a subword of

proper set interval, i.e., a nonempty open connected subset A* U AN and writev C u, if v = u j) = u;...uj1

of R.

for some0 < i < j < |ul. The cylinder ofu € A™ is the set



[u] ={veAY: vg,) = u}. Theshift map o : AN — AN For wv € Ly, we haveW,, = W, N F,W,. Given a

is defined byo(u); = u;+1. A subshift is a nonempty set coverV, we construct nondeterministically the expansion
¥ C AN which is closed and-invariant, i.e.,0(X) C X. u € Sy of + = 2y € R as follows: Choosey, with

If DC A*thenYXp = {z € AN : Vu C z,u ¢ D} is x € W,,, chooseu; with x; = E:[)l(l"o) e W,,, choose
the subshift (provided it is nonempty) witbrbidden set wy with 25 = Fujl(xl) € W.y,, etc. Thenz € W, ., for

D. Any subshift can be obtained in this way. A subshift isachn, so W, is the set of points which have expansion
uniquely determined by itanguage U.
) Theorem 3 (Kirka and Kazda [12]):Let F : A* xR —
LE)={ucA™: IreXulz} R be a Mbbius iterative system and assume thtis an

Denote byL™(X) = £() N A™. almost-cover ofR such that, C V(F,) for eacha € A.
A labelled graph over an alphabe is a structureg = Then (F, Sy) is a Mobius number system. It is redundant
(V,E,s,t,0), whereV = |G| is the set of verticesE is providedW is a cover. For each € Syy andv € Lyy,
the set of edgess,t : E V' are the source and target e =
e I J (@)} = () Wy (] NSw) = W,

maps, and : £ — A is a labelling function. The subshift
Y C AN of G consists of all labels of paths af. A
subshift issofic if it is the subshift of a finite labelled A Stronger theorem which uses the concept of expansion
graph. A subshift is ofinite type (SFT) of orderp, if its quotient has been proved inlkka and Kazda [12]. Nev-
forbidden words have length at mgstin this casew € AN~ ertheless our examples satisfy the condition of Theorem 3,

belongs toX iff all subwords ofu of lengthp belong to SO we adopt it as a definition.
L(%) (see Lind and Marcus [13] or ika [7]). Definition 4: An interval M dbius number systemover

an alphabet\ is a pair(F,W), whereF : A* x R — R is
a Mobius iterative system anV = {W, : a € A} is an

o o ] almost-cover ofR such that, C V(F,) for eacha € A.
Definition 1: A Mobius iterative systemover an alpha- (F,W) is an interval MNS then

betA is a mapF : A* xR — R or a family of orientation-
preserving Mbbius transformationgF, : R — R),ca- lim max{|W,|: u € L},} =0.
satisfying F,, = F, o F,, and F, = Id, where X is the e
empty word. Theconvergence spac&y C AN and the
symbolic representation® : X — R are defined by

n>0

V. MOBIUS NUMBER SYSTEMS

This is an immediate consequence of the uniform continuity

of & : S — R. Interval Mdbius number systems

- whose expansion subshifts are of finite type have been
Xp = {ueA": lim F,, (i) €R}, characterized in &rka [11]:

®(u) = lim EL[O,”:L(;;O Theorem 5 (Kirka [;1]): Assume tha(E, W) is an in-

n—o0 terval MNS. ThenS,y is a SFT of order iff

wherei € U is the imaginary unit. 1 C X is a subshift

such that® : ¥ — R is continuous and surjective, then Va,b € A, (Fa(Wo) NWa # 0 = Fa(Wy) € Wa).

we say that(F,X) is a Mobius number system(MNS). In this caseW, = Fy,

We say that a MNS(F,X) is redundant, if for every

continuous map : R — R there exists a continuous map VI. RATIONAL MOBIUS NUMBER SYSTEMS

f:X — ¥ such thatd f = g®.

Redundancy is necessary for the existence of exact arith-\.Ne say that an interval pfblus nump er syster(nF_, w)is .
rational, if its transformations have integer entries and its

metical algorithms (see Weihrauch [18], Vuillemin [17], i s h tional endpoints. W id thrabti
Kornerup and Matula [6], Potts [15] or Potts et al. [16]). intervais have rational en p0|r'1' S. VVe consider arithragtic
o algorithms in rational interval Kfbius number systems. To
u € Xp then ®(u) = limy, o0 Fy ,, (2) for everyz € U . . . .
(see Kazda [4]). " analyze thg cancellatlons Whlch occur during transactions
Definition 2: An open almost-coverfor a Mobius iter- we t_vvork W':;‘ thteh matr.';? SthWTCh rfe preste_znt thtf] translfor-
ative systemt' : A* x R — R is a family ofipen intervals ggnlgtnes’b ra theer se?gf Y:I]Ite erz ILE;?S (;érzna '(? nZengtn;Sbe Ves.
W = {W, : a € A} such that{J,., Wo = R. We Yz INtEQers. € R\ {5} Y

denote byE(W) — {L(W.),r(W,) - a € A} the set ged(z) the greatest common divisor afy andz;. Denote
of endpointsof W. If W, "W, = () for a # b, thenW is

W, for eachu € L},

0,n)

ol O - 2\ £07. _
an open partition. If |J,., W, = R thenW is a cover. Q={z€Z2\ {5} ged(x) =1}
Theinterval cylinder of u € A" is the set of (homogenous coordinates of) rational numbers
hich we understand as a subseffofWe have a magl :
Wy = Wy 0 FygWa, NN Fyy W w wder
? o (o) 7 72\ {2} — Q given byd(z) = ii’fg whereg = ged(z).
The expansion subshiftS,y, is defined by Denote by
Sw={uecA: Vk>0,W,,, #0} M(Z) = {M € GL*(Z,2) : ged(M) =1},

We denote byly, = L£(Syy) the language o8y, and by where GL(Z,2) is the set 0f2 x 2)-matrices with integers
W= L"(Sw). entries and positive determinant. F&f = M, ;. q) €



nonredundant unary procedure;
GL"(Z,2) denote byd(M) = M,/g.b/g.c/g.d/g), Where input matrix M € M(Z);
g = ged(M), so we have a mapping : GL™(Z,2) —  input numberu € Lyy U Syy;
M(Z). In M((Z) we have multiplicationV/ N = d(M - N), Output numbew € Lyy U Sy;

! . L. . variablesX € M(Z) (state matrix)n, m € N (input and output pointers
where M - N is the matrix multiplication and a pseudo-egin @ o, m (ne putp )

inverse M., . o = M(a_p—cq)- Matrices of M(Z) act X = M; n:=0;m:=0;
T while n < |u| repeat

onQ by Mz =d(M - z). if Vb e A, XW,, Z W, then begin
We consider now the computation of an MT € M(Z) X = XFy,;

in an MNS. This means that we search for an algorithm ’e“n:;m“l?

which would compute a continuous functidn,; : Sy — else begin

Sy such that®Wy,(u) = M®(u) for eachu € Syy. U 1= b;_\lNhereXWu,n CW,

Such a mappingV,; can exist only in redundant MNS. Xi= Fb+)1(j

We consider first nonredundant systems in whify is Z;(‘,;_ T

a partial mapping. If a MNS has the expansion subshift end;
of finite type of order2, then W,, = F,W, for each end;
ua € Ly, (see Theorem 5), which simplifies the algorithm
Considerably. THE NONREDUN;QI\?‘:'_ILEJI\:ARY ALGORITHM
Definition 6: Let (F, W) be a rational interval MNS
with an open partitionV, whose expansion subshift is an
SFT of order2. The unary graph of (F,W) is defined
as follows: Its vertices ar€X,a), whereX € M(Z) and  Assume tha F, V) is an integer MNS such thad is

a € AU{A}. The labelled edges are an open partition andy, is a SFT of orde®. We consider
b/ the Nonredundant unary algorithm (see Table 1) which
absorption: (X,a) — (XF,,b) if abe L3, computesM on symbolic representations of real numbers

emission: (X, a) Ae (F-'X,a) if XW,CW.. with the use of the unary graph. The input for the algorithm
’ c L= is either a finite word: € £,y or an infinite wordu € Sy, .
For the empty word\ we setiVy = R. The labels of paths SinceW is an open partition, there exists at each step at
are concatenations of the labels of their edges. They hg(i@st oneb € A with MW, C W, so the algorithm
the formu/v, whereu € Ly is the input word and € Ly is deterministic. If the inputu € Ly is finite then the

is the output word. Gived/ € M(Z) andu € Sy, the lazy @90rithm halts in a finite time, its outputc Lyy is finite,
algorithm which computes € Sy, with ®(v) = M®(u) its I(_angth is store_d i_n fch.e variable and o(W,) CW,. If
starts at the verteX,\), applies the emission actionthe inputu € Sy is infinite, the algorithm never stops and
whenever possible and the absorption action otherwig4ring infinite time produces either infinite or finite output
SinceW is assumed to be an open partition, the algorithfy The latter possibility occurs (with probability zero) if
is deterministic but partial. On some infinite input wordd? (?(¢(n.c))) € (W) is an endpoint oV’ for somen.
the algorithms may give only a finite output word. If the entries of the state matriX are represented in
Proposition 7: If u/v is the label of an infinite path in & Positional binary system, then the length of this repre-

the unary graph with sourd@Z, \), u € Sy, andw € A, sentation (the bit length oK) is of the orderlog, || X]||.
thenw € Sy and ®(w) = M(®(u)). If u/v is the label A multiplication of X with a matrix F, then requires

of a finite path with sourcéM, ), andu € Ly, then log, || X|| - log, ||F.|| elementary operations on their bi-
w € Ly and M(®([u])) C ®([w]). nary representations. The comparisdbnC W, requires

Proof: We show by induction that when there is e}ogz 1] - log, ||W,|| elementary operations. Thus there
path with sourc M, \) and labelua/w € Ly x A*, then exists a constant > 0 such that each step of the algorithm

MW, C W, and the target of the path ¥ MF,, a). requires at most - log, || X|| elementary operations. We
Sincgavf :'” R, the first edge(M, \) — “’(M a)mhas argue in next sections that the norm of the state matfiges
label a/)f o M’W C Wy is sat’isfied Sup;aose thatdt timen is of the orderT™, whereT > 1 is a transaction

the assumption holds fona/w, and consider an edgequotlent. For the. bit size we Qﬁ"gz || Xl ~ 7.“°g2 T.lt
(F-\MF,,a) — (F;'MF,.,b) with label b/A\. Then follows that the time complexity of the algorithm (number
wy w uas .

ke of elementary operations with the bit representations ef th
MWy < MW,, € W,, so the statement holds for ) . .
b= matrices) is quadratic of the orderg, T -n?/2. If T =1,

the path labekiab/w. Consider an edgéF, ! M F,,a) — ' : : .
(F=1MF,,a), with label \/c, S0 F-'MF,W, C W.. then the mqtrlceg re_mam_bound_ed and the time complexity
Then MW,, = MF,W, C F,W,. Since MW,, C W, of the algorithm is linear in the input lengti

we getMW,, C W, N F, W, = Wy, So the statement
holds for the path labekia/wc. By Theorem 3 we get VII. SINGULAR TRANSFORMATIONS

M (®([ua])) € ®([w]). If u,v are infinite words, then for  Besides orientation-preserving MT with positive determi-
eachn there existsk, such thatMW, . C Wy, ., nant, we consider orientation-reversing MT with negative
so M(®(u)) € MWy, ) S Wy, It follows determinantsingular MT with det(M) = 0 and||M || > 0,
M(®(u)) = ®(w). m  and thezeroMT Mg ,0,0) = 0. Each MT defines a closed

4



graph (relation) w(F~Y(U)). For an integrable functiop : ¥ — R we

have

/@d(Fu)=/ poFdu
AN MT M = My p.c.q) is singular iff Vz € U, M(2) € R v X
iff M(:) € R wherei € U is the imaginary unit. In this The circle length of intervals determines the Cauchy mea-
case we cals(M) = M (i) the stable point ofi/. If ¢ £ 3 surey € M(R) by y(I) = |I| for each intervall. If
then M(i) = ¢, and if & # 8 then M (i) = b Thus pe M(R) is absolutely continuous with respect{cthen
s(M) € {2, g} N R. Similarly the unstable point ol is it has a density:, : R — [0, 00) given by
defined byu(M) = M~1(i) € {-2, -4} nR. A singular B
MT yields the graphM = (R x {su}) U (iUM} x R), hy(z) = lim m,
and the zero MT yields the full graph/ = R". The space €
of all nonzero MT can be identified with the projectivyhere B.(z) = {y € R : o(y,z) < ¢}. Thusdu(z) =
linear space P(R, 4) of one-dimensional subspaces of th%u(a:) dv(z) and
Euclidean spac&* with metric

M= {(z,y) € R (azo + bx1)y1 = (cxo + dz1)yo}-

’||§| + ||§||H} M(I):/Ihu(x)dv(m):/lm

for each intervall. If M is a MT andu has a density, then

)

X Y
ds(X,Y :min{H —
X.Y) = TV

Assume that(F,W) is a MNS such thatSy, is a
SFT of order2. If X is an orientation preserving MT Parp(x) = hy (M~ (2)) - (M™% (2)

R = Iz H ’
and v € Sy then lim,_ XFM[O,M(O) ¢ R and
limy, o0 | X Fuy,,, Wa, | = 0. This means that the sequencén particular iy (z) = (M~')*(x). For an integrable
MF,, , of MT converges to the subspace of singuldiunction ¢ and an intervall, the substitutiony = M (z)
MT: There exists a sequendé, of singular MT such that gives
limy, 0 da(X Fuy,y, Hp) = 0.

We modify the unary algorithm from Table | so that the / o(y) dy(y) = /gp(M(x)) - M*(x) - dy(z).

absorption step is performed whenever the length of the JM(1) 1
interval X W, is greater thar_1 so_m_e_small fl_xed> 0. Then Given an interval MNS(F,W), denote by iV, —
the state matrices remain in vicinity of singular matnce%

The growth of the norm of the state matrices during thsg#oié(%c)%x)e tsheemslzltof)?illln;‘[ﬁ:]\::?ilovxg _'%Iej E[E(;ldoz(;mt.
computation can then be approximated by the growth of thqﬁich are continuous on eadi, and have'limits fro7m the

norm of singular matrlces.subjected to the unary algonthr%ﬂ at eachr(WW, ). With the supremum distana, g) —
To test the length of an intervdl = (z,y) we need not ; .
evaluate its actual length. Instead we perform the test SUPzcR [h(z) _.g(x)l’ C(W) is a compact metric space. A
partition of unity for a MNS (F, ) over an alphabe#
Y 5= tan(re — 7/2), is a system of nonnegative functions, € C(W) indexed
det(z,y) by the alphabet such thaty_ ., w.(z) = 1 for each
r € R andsupp(w,) = {r € R: wy(z) >0} C W,. A
Hartition of unity determines the emission Markov process
n>0 overR with transition probabilities

where we choose a rationdle (—oo, +00).

Next proposition shows that the absorption and emissi
actions on singular matrices are independent. Emissian alctn)
on the columns of singular matrices while absorption acts

: ) ) P X1 = F, 1 (2)| X, = 7] = wa(2) :
on the rows of the singular matrices. Thus the absorption K1 o (@) ?] = wa(®)

and emission processes can be studied separately. The emissionz % F.!(z) happens with probability
Proposition 8:If X is a singular matrix, then for eachy,,, (z). The path with source: € R and labelu € Lkt
matrix £’ with positive determinant we have has probability

S(XF) = s(X), s(FX) = F(s(X)), W (1) = Wy (1) - Wy (Fy (1)) -+ wu, (Fy L (),
w(FX) = u(X), w(XF) = F~H(u(X)) We havew,, (z) = wy(z)-w, (F, ' (z)) for eachuv € Lyy.
This follows from X F (i) = X (i). E?ﬁ%ﬁ?jﬂ ;/J'etermi”es the emission map: M(R) —

VIII. | NVARIANT EMISSION MEASURE d(Ep)(x) = Zwa(Fa(x)) Cd(F ') ().

Denote by M(X) the space of Borel probability mea- acA
sures on a compact metric spagewith the Hutchinson This means that
metric (see Barnsley [1]). A continuous mappifg X —

Y between compact metric spaces can be extended to a/(p z)d(Ep)(z) = /w(Fa(y ) - wa(y) duly
continuous mapping” : M(X) — M(Y) by (Fu)(U) = ( @) ,% ) ) duty)



for each continuous functiop : R — R. If 1 has density ande,,,, <e, +e,, |

hy, then&p has density Thus there exists the limi = lim,, .o, e,/n, ande <
‘ ((Fy(Be())) - wa (Fu(x e, for ga(;hn. We_caIIEn = gxp(en/@)_ andE = exp(e)
heu(z) = glg(l)z (Fa E(|B))zx)| alFua(z) the emission quotients If W is a partition then
a€A €
)| - . 1 det(F),
— lim Z |Fa(Be(2))| - hy(Fa(2)) - wa(Fa(z)) E—= lim - Z In _16.( 7) (W)
e—0 cA |B€(‘r)‘ n—oon ueLn (Fu ) (]’(Wu))
a w
= Z F () - hy(Fo(z)) - we(Folx)) Since the invariant measure is ergodic, the norm of the state
a€h matrices in the emission process growskFds
We say thaty € M(R) is an (F,w)-invariant emission ~ Theorem 11:Assume that(F,)}V) is a MNS such that
measure i€, = p. In this case W is a partition,Syy is a SFT of order2, £ is transitive

du(z) = Y wu(Fu(x)) - d(E; p) () andW, C V(F,) for eacha € A. Then

e lim IFe- o Ol =1 almost surely.
for eachn > 0. If W is a partition, thenw, (z) = 1 iff n—oo [|z]| - E"
r € W, andw,(x) = 0 otherwise. The emission process
is then a deterministic functiod : R — R defined by IX. INVARIANT SYMBOLIC MEASURE
E(x) = F, ' (x) for z € W,. We say that is expanding | ; is an (F,w)-invariant measure orR, then the

if there existsr > 1 such that(F,')*(x) > r for each propability that the expansion of € R is u € Ly is
x € W,. We say that is transitive, if for each honempty

open setd/, V C R there exists: such that™ (U)NV # 0. P, = /wu(x) du(z).
Theorem 9:Assume that(F, W) is an interval MNS

such thatW is an open partitionsS,y, is a SFT of order This formula g|ves a measu® € M(Syy) which we de-

2, £ is transitive andV, C V(F,) for eacha € A. Then note byP = &, 1. If W is a partition thenP, = u( W ,,).

there exists a uniqué-invariant ergodic Borel probability  Proposition 12:1f p is an (F,w)-invariant measure,

measurg: on R which is absolutely continuous with respecthen the measur® = ®,,! 1 is o-invariant and®P = .

to the Cauchy measure. Proof: For an intervall ¢ R we have
Proof: SinceW,, C V(F,), £ is expanding, and the

theorem is a consequence of Theorem 1.2 im#dE. 4], p. (@P)(I) = P(@7(I)
168. The existence and unicity of the density can be also = lim Z{P s u € L, W,n1I#0}
proved directly. The map noee
. = 1 u d
2) = F(@) h(Fa(@))  wa(Fa(z)) nllr;oug /w nie
a€A
is a contraction or€()V), so it has a unique fixed poinm = /d,u(x) = u(I)
Since||M (x)||/||x]| = \/det(M)/M*(z), we define the I
n-th emission quotieng,, by so &P = pu. We show thatP is o-invariant. Using
substitutionse = F,,(y) we get
o det
2 P = 3 [ wnla) wF @) hula) dr(a)

Proposition 10: e, ., < e, + e, for eachn,m > 0.
Proof: Since F,,, = o(F), - F,,), we havedet(F,,) <
det(F,) - det(F,) for eachuv € L},/™. Foru € Ly and
z € R setg,(x) = 3 In(det(F,)/(F,;*)*(z)). Then

u

1 det(Fu) ) det(FU) /hu

Il
—
/ﬁ ¢

S

iy

S

S

=

~

§!

: a\y 'ay>
ac€A

wy(y) dy(y)

gu®) < I o S S ) )

= gu(@) + g0 ((F, ! (2)). n
Using the substitution: = F,,(y) we get
X. INVARIANT ABSORPTION MEASURE

entm < Z / 9u(@) - wuo (2) dpa() + We assume that the input for the absorption process are
weLy wordsu € Sy distributed according to the measufe=
- .l 11, wherey, is the invariant emission measure. Given
Wy (Fy, -w d(Ft w i K
Z /g“ u(Fu(y)) - wo(y) d(Fy " 1)(y) a matrix M = M, pc.a), denote by"M = M4cp,a) its

€£n+7n
v transposed matrix and BM = M(4,—c,—v,q) the inverse
€nim < e+ Z / 9o (y) - wo(y) du(y) of its transposed matrix. A matrid/ acts on the rows
vELT, of matrices (by multiplication from the right) in the same



way as the transposed matriX/ acts on the columns of If there exists anA-invariant measure of, then we
matrices or on homogenous coordinates of real humbedgfine then-th absorption quotient by

The absorbtion process is a mappid@n the spac® xSy

given by A(z,u) = (*Fy,(x),0(u)). The map extends to a,
a self-mapA of M(R x Syy) by RXSW wom)

-1 det
1% . tF
achA ueU

") dl/xu

(AV)(L,u) =) v(F, " (1), au)

Proposition 15:a,, 1, < a, + an,

If v(R,u) = P, then (Av)(R,u) = P, as well. In this Proof: For (z,u) € R x Sy set

case we say thaP is the S)y-projection ofv. Eachu €
Ly, determines the conditional measwg € M(R) by () = 1 det(Fu,.,)
l/u(l) = V(I u)/P Note thatzveﬁm Vauw * Pyo = Vo - Py gn (T, u) = D) n (tFu[O m)'(l‘j'

for each and For thé densities we get
r u € Ly andm > 0. For sities we g We getgnim (2, 1) < gn(z, ) + gm(A™(x,u)) and

- (Av)(Be(x),u)
hiavy,(x) = Ehﬂ% W €ntm = /gn+m(a:,u) dv(z,u)
—1
— lim (.AV)au(tFa (Be(l')) 'Pau < /gn dI/(.CE,u) + /gm o A" dl/(I7u)
€0 |Be(2)] - Pu
achA
= S (F @) (F, ) @) - P/ P = eut [andarn)
ach SO €ntm S €n + €m- |
and The invariant absorption measure need not be absolutely

continuous with respect to the Cauchy measure, so we can-
h (z) = Z h (tF—l(l,)) . (tF—l)o(x) - Py,/P not always compute with densities. The absorption quotient
(AkV), Vou v v vu/ 4w . . T -
si defined as limita = lim,,_,o, a,/n, A, = exp(a,/n),
A = exp(a). If the absorption process is ergodic, ahfis
We can prove the existence of an invariant absorptiéhsingular matrix, then the norm éf F°, , ,, grows asA".
measure for a class of MNS: If emissions alternate with absorptlon so that the ratio of

Definition 13: We say that(F,)V) is a MNS with their numbers converges tahen the norn¥; | MF,
transpositions, if for eacha € A there existsi(a) € A 9rows asE™A". Thus we define the transaction quotients

with Ft(a) = tFa and by
t,=a,+e,, t=a+e, T,=A, - E,, T=A-E.

vEAF

u € Ly iff t(u) = t(up—1) - - t(u1)t(uo) € L.
We haveT > 1, since the norm of the state matrices cannot
Theorem 14:Assume that F, W) is a MNS with trans- be smaller thari.
positions such thatV is an open partitionsS,y, is a SFT of
order2, £ is transitive andiV, c V(F,) for eacha € A. Xl. BINARY SYSTEM
Then there exists a stablg-invariant absorption measure The essential feature of positional number systems is that
v whoseS,y-projection isP = &, . they consist of linear transformations of the fof(z) =
Proof: Denote byV, = Ft(a)(Wt(a ). The mappings ax + b which have fixed pointo.
Fy(ay : Vu — Wy, are contractions since, C V(F,). Example 1:The non_redgndant binary system in the al-
If ab € £2, thent(b)t(a) € L2, Wy, C V4. Denote by phabetA = {2,1,1,2} is given by the following transfor-
mations and open intervals:

X=J(Vaxla]) CR xSy

a F, W, [ F 1(W,)

ach 2([2,-1,0,1] | (c0,—1) | (o0,0)

1[[1,-1,0,2] | (=1,0) | (=1,1)

If (z,u) € X, then Fy,(x) € Wiy € Vi, SO 1] [1,1,0,2] (0,1) (-1,1)
A(r,u) € X. Thus X is A-invariant. SinceF;, are 2| [2,1,0,1] | (1,00) (0, 0)

contractions also on a sufficiently small neighbourhood of
V,, the setX is actually an attractor ofd. Consider the The values of the disc bbius transformations’, (0) € D
space are shown in Figure 1 top. The curves between the values
F,(0) are constructed as follows. For each M there
X ={veM(X): supp(vu) C Vi, ¥(R,u) = P,} exists a family (M"),cr of MT such that M° = 1d,
M' = M, and M"** = M"M?*. Each valueF, (0) in the
Then A : X — X is a contraction and therefore has aliagram is joined td?ua( ) by the curve(F F (0))o<r<1-
unique fixed pointy € X € M(R x Sw). m The labelsu € A* at F,(0) are written in the direction



P, =1/4 for a,b € {1,1}, we get

1 det(Fo) det(Fg) —In
<1 ( 1 )> =1In2.

AT L\ o 0) T a0

ThusE; =1, A; = 2 and the first transaction quotient is
T, = 2. Foru € {1,1}" we get

F, = { 12" g4+ 2upg + Uy }

0 2"

so det(F,) = 2", anddet(F,,) = det(F,) - det(F,) for
eachuv € {1,1}*. In the proofs of Proposition 10 and
Proposition 15 we have equalities in this caseg,$6= ne;,

a, = naj, andT,, = T, = 2 for eachn. This corresponds
with the results of Heckmann [3], whose Law of big
numbers can be interpreted in our settingTas> /2 for
binary positional systems. Note however, that Heckmann
uses the norm| M, ; c.q)|| = max{|al,[b],|c], |d|} which

is smaller than our Euclidean norm.

— N N —

o o o o

~ ~ 3 — -

N bl = N XII. A NONREDUNDANT BIMODULAR SYSTEM

= = 2 = = Bimodular systems have been studied irirka [10]

>< >< and [11] because of their high symmetry and nice prop-

erties. The rational numbers have preperiodic expansions
in these systems, and there exist several almost-covers

whose expansion subshifts are of finite type or sofic. The
- system consists of the only eight transformations with norm
Y% L W L V6, the trace (the sum of the entries on the diagosal)

and the determinari. Its transformations generate whole
Fig. 1. A nonredundant binary system: Meafis(0) (top), expansion Pimodular group which consists of all MT with integer
intervals W, and the circle derivation§F;, *)®(z) (bottom) entries whose determinant is a power2of

Example 2: A nonredundant bimodular system in alpha-
bet A = {0,1,2,3,4,5,6,7} is given by the following
transformations and open intervals:

1/0
-1/1
0/1
1/1
1/0

of the tangent vectorﬂ(o). Figure 1 bottom shows the

intervalsW, and the circle derivation&F, *)*(z). We can a F, W, FX(Wa) | t(a) : V,
see thatiV, C V(F,) and that all these circle derivations 5 [1,0, 1, 2] 0,5 (0,2) 1:[0,1]
have the same shape. 1| [1,1,0,2] (%’ 1) (0,1) 0:[0,2]
The expansion subshiffy, is a SFT of order 2 with | 2 | [2,0,1,1] (1,2) (1,00) |3:[3,00]
forbidden words?21,22,12,12,12,12,21,21. Each word |3 | [2,1,0,1] (2,00) (3,00) |2:[1,00]
u € Sy can be written as: = a"v, wherea € {2,2}, 41[2,-1,0,1] | (00,—2) | (00,—3) | 5: [00,—1]
0 < n < ooandv e {1,1}. The emision transformation | 5 | [2,0,—1,1] | (=2,-1) | (co0,—1) | 4:[o0,—2]
has the attractof—1,1] where it is transitive and has |6 | [1,-1,0,2] | (-1,—2) | (=1,0) |7:[-2,0]
the unique absolutely continuous invariant meagusegith 7 [1,0,-1,2] | (—3,0) (—=2,0) |6:[-1,0]

Lebesgue densityi(z) = 1/2, so h,(x) = m(1 + z?)/2.

since (F;1)*(x) = 2 fora e {T.1} = {~1,1},

Means, circle derivations and intervals of the system
can be seen in Figure 2. The expansion subshift is an

we get SFT of order2 with transitions00, 01, 02, 10, 11, 22,
23, 31, 32, 33, 44, 45, 46, 54, 55, 66, 67, 75, 76, 77.

1/ 2z +1)2+1 The emission process is not transitive, but it has two
et = 3 /_ I | dz + transitive subsystemsy, Fy, Fy, F3 are transitive o0, oc]

11 2 andFy, F5, Fs, F; are transitive orjoo, 0]. On each interval
2r—1)*+1 . . L

— / In——5———dz=0 [0, 0] and [0, 0] there exists a unique invariant absolutely

4o z=+1 continuous measure and any convex combination of these
two measures is invariant di. The density of the 1, 1)-

Since both the transformationB(z) = —*, 'Fi(z) = convex combination can be seen in Figure 3. The system

13 have the stable fixed poirfi, the unique invariant has transpositions (see Definition 13) and the assumptions

measure of the absorption process is the point measofeTheorem 14 are satisfied, so there exists a unique

concentrated ab. Since (‘F1)*(0) = 'F;(0) = 1/2 and invariant absorbtion measure
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Fig. 3. The density of the invariant emission measure of thegthmdant
bimodular system.

Fig. 4. Approximations of the invariant absorption measuréshe
nonredundant bimodular system: densitied.df~)q.

arithmetical algorithms are faster than in the binary syste
Numerical simulations suggest that the transaction quobtie
is less thant.2.

XIIl. SOFIC REDUNDANT SYSTEMS

Numerical approximations suggest that the conditional Recall that an interval MNSF, W) is redundant if
measures, do not have densities. Figure 4 shows thS expansion intervals overlap, i.e., ¥ is a cover (see
densities of the fifth iterationd? (v, P) of the uniform Theorem 3). In no_nredgndant systems, the computations
Cauchy measure. For the computation of the absorptigh the unary algorithm is not guaranteed to produce an
quotients we therefore approximate, by the uniform infinite output. Unfortunately, as shown inukka [11], an

measures on the interval, = thal)(Wt(a)). We get:

n 1 2 3 -7 8 9

A,|220 190 1.88 --- 177 1.76 1.76
E, 091 079 078 --- 0.74 0.73 0.73
T, [2.00 150 147 --- 131 130 1.29

MNS whose interval cylinders form a cover cannot have the
expansion subshift of finite type. A more general class are
sofic subshifts which are factors of subshifts of finite type.
A MNS with sofic expansion subshift has a presentation
whose vertices are intervals of an open partition which
refinesv:

Definition 16: Let (F,V) be an interval MNS over an

In contrast to the binary system the higher transacti@phabetA. An open interval partition’ = {V,, : p € B} is

quotients steadily decrease. We see tfat< /2, so

an SFT refinement of W, if the following two conditions



are satisfied for each € A, p,q € B:

1. 1f V,NW, #0 thenV, C W,,

2.1V, CW, andV, N E; 'V, # 0 thenV, C F,'V,.
The labelled graptg of (F,W,V) has verticedG| = B
and labelled edges

p——qif V,CW, and V, C F;'V,

For u € Lyy U Sy, denote byP(u) C B* UBY the set of
paths with labek.

Theorem 17 (Rirka [11]): Assume that(F, W) is an
interval MNS over an alphabed. Then Sy is a sofic
subshift iff there exists an SFT refinemantof W.

Theorem 18:Assume that(F, W) is an interval MNS
over A with an SFT refinemeny = {V,, : p € B} and
let G be the labelled graph afF, W, V). ThenS,y is the
language ofG. For each infinite word: € Sy, there exist
at most two paths iy with label u. There exists: > 0
such that the sefpy,,,—) : » € P(u)} has at most two
elements for each finite word € L7,,. There existss > 0
such thatP(u) has at most elements for each € £,y .

Proof: Assume thaipy —% p; —% ... = p, is a
labelled path, sd/,, € W,,, and F,,V,,., € V,,. Then

i+1

Fu[o,n)VPn c Fu[O,n—l)Vpnfl c---C Fropl c Vpoﬁ
Fu[O,n,)Vpn c Fu[o,n—l)Wunfl M---N FUOWUI n Wuo
c W,

[0,n)?

S0 Wy, ., # 0 andu ) € L. Conversely assume that

u € LY, soW,, # (. There existp, € B such that
0 # Voo N Wy C Vi N Wy,
soV,, € W,,. There existg, such that
0 # Vo NE N (Vpy NWy)
C Vo NE Wy NWy,

S0V, C Wy, Vp, C F 'V, andV,, N F W, # 0.
We continue by induction. If we have constructed with

u € Sy there exist at most two infinite paths with label
u and that there exists an integersuch thatP(u) has at
most s elements for each € L. [ |

The algorithm for computing?(u) of u € Syy is based
on a simple recursive fromula

P(ua) = {pb € B"™' : pc P(u) & u,_1 > b}

Since the size oP(u) is bounded, the algorithm has linear
time complexity. The number of elementary operations to
computeP(u) is bounded by a linear function of the length
u. Given a wordu € Syy and its pathp € P(u), we can
computev € Syy with M (®(u)) = ®(v) for any MT M:

Definition 19: Let (F,W,V) be an integer MNS with
sofic expansion subshift and the refinement partitioithe
redundant unary graph has vertice§ X, p) where X ¢
M(Z) andp € B. Its labelled edges are

(X, p) o (XF,,q) if V,CW, F,V,CV,
X.p) % (F7'X,p) i XV, CW,

Theorem 20:Let (F, W, V) be an integer MNS such that
W is a cover with sofic expansion subshiif{, andV is
an SFT refinement partitiol.

1. If u/v € AN x AN is the label of an inifinite path with
source(M, py), thenu,v € Sy, and M (P(u)) = @(v).
2. If u € Syy then there exists € Sy, and an infinite path
with label u/v.

Proof: First note that if

A/b

_ /A
(M7p) - (Fb 1M5p> E

—

(F,'MF,,q)

is a path in the graph, thel F,V, C MV, C W,, so

a/\
-

/b
—

(Map) (Fb_lMF(h(I)

is a path as well. lfu/v € A™ x A™ is the label of a finite
path, then it is the label of a path

(MF,,q)

u A 1 )\
Vo N Eyy W # 0, there existgy1 with (M, po) uo/3 (MF,,,p1) /.
' Up—1 /A A/vo _1 A/v1
" >‘/'Umf _
C Vo NE'V,, N Wy, Tt (FE7IME,, pn)
So Vpk'Jrl g Wuk+1’ _%k+1 g FJleI)k' and Vl)k+1 N We getvpi g Wui’ Fui quz+1 g Vpi and
;(}HI)WM # . In this way we construct the whole path
p for u. Thusu € Ly iff it is the label of a path ing. EyVp, C 0 C Fugy Vpy C© FuyVpy € Vi

Let r be the smallest integer such that for alE L7, and
for all p € B we have|W,| < |V,|. Let u € L}, with
|u| = n > r and letp € B"*! be a path with label. Then

-
C

Fuoo Von F,

Fy

Voo N Wy
Voo N WU[

[0,n) [0,n—7)

[U,nfr)( n—r,n))

ThusV,, . N Wy, _, .
letters p,,—, with this property. SinceF,, _, .,
Vo _._., the letterp,,_,._4 is uniquely determined by,, _,.
Similarly, all lettersp; with i < n — r are uniquely
determined byp, 1, so the sef{pjy,,—) : p € P(u)}

Vpn—r <

has at most two elements. It follows that for each infinite

, # 0 and there exist at most two

SinceF,Vy, C Fuy Vo, C Fuy ., W, for eachi <n, we

get F,V,, C W,. Since MF,V,, C F,, W, foreach
j < m, we getMFE,V, C W,. If u/v e A¥ x AN is
the label of an infinite path, then for eaohthere exist::

such thatu )y /vio,m) is the label of a finite path and

0 # Fu.,,
0 # MEF,

P, CW,

LICRD)
P, CcW,

[0,m) [0,m)

sou,v € Syy. The intersection

ﬂ Fu[w)E < ﬂ W“[oﬂn)

n n

10



redundant unary procedure;
input matrix: M € M(Z);
input numberu € Ly U Syy;
input path:p € B* U BN with label u;
input thresholdd < ¢ < L(W);
output numbery € Syy;
variablesX € M(Z) (state),n, m € N (input and output pointers)
begin
X :=M;n:=0;,m:=0;
while n < |u| repeat
if | XVp,, | > € then begin T/T-
X = Uy 3
n:=n++1,
end;
else begin
vm = b, whereXV, C W, and
||F- x| > ||F, ' X]| for eache with XV, C We
1

X = F, 'X;
m:=m+ 1;
end;

end;

TABLE I
REDUNDANT UNARY LEAST NORM ALGORITHM

N N
o ~
~— o
- -l
© N~

is nonempty by compactness and has zero diameter, so it>< >©< N ><>< X
contains the unique poir(u). The intersection

m MFU[O,W)K < m Wv[o,m>
n m

4 ®d 94 A998 949 4 |« o4
is a nonempty singleton which contains bdth(®(«)) and W W W W W
®(v), sOM(D(u)) = ®(v). If u € Syy then the diameter of W W —
Fug..., Vi, CONVErges to zero asgoes to infinity. SinceV it V¥ W

is a cover, there exists its LebeSgue numb@r\/) >0 (the Fig. 5. Means, circle derivations and intervals of the rethunt bimodular
length of overlaps) such that for each interyakith length  gygiem.

|I| < L(W) there exists: € A with I C W,. Thus for each
m there existsv € A™ andn such that(u[o,n%],v) is the
label of a path. It follows that there existse A" such that XIV. REDUNDANT BIMODULAR SYSTEM

u/v is the label of a path and thereford ®(u) = ®(v).  Example 3: The redundant bimodular system in the al-
_ _ B phabetA = {0,1,2,3,4,5,6,7} is given by the following
Assume thai(F,V, V) is an integer MNS such thad’  transformations and expansion intervals:
is a cover,Syy is sofic andy is its SFT refinement. Given

a constant > 0 smaller than the Lebesgue numbgpV), a| Fa Wa FJ:(Wa)
we consider thdRedundant unary least norm algorithm 01[1,0,1,2] (=351 | (=5,00)
with input matrix M € M(Z), input wordu € Lyy U Syy 1| [1,1,0,2] ((1)72) (;173)
and input pattp with label« (see Table Il). The algorithm 2| [2,0,1,1] (3,00) (3,—1)
performs an absorption whenever the length of the interval 3102,1,0,1] |(1,-3) |(0,-2)
XV, is greater than. If | XV,| < ¢ then at least one letter 41[2,-1,0,1] | (3, —1)1 (270)1

b with XV, C W, exists and the algorithm chooses the 51[2,0,-1,1] | (00,—=3) | (1,—3)
letter with the smallest norm df, ' X. If the inputp, — 6| [1,~1,0,2] (_2»?) (= ’11)
Pl Pno1 == p, is finite then the outpuv € Ly is 7]01,0,-1,2] | (=1,3) |(c0,3)

finite too andM F,(V,) C M(W,) C W,. If the input Means, circle derivations and intervals of the system can
pathp € BY with labelu € Sy is infinite, then the output be seen in Figure 5. The covéy has been obtained by
v € Syy is infinite andM (®(u)) = ®(v). = p—lye,.

The time complexity of the Least norm algorithm de- Wa=V(Fa) ={zeR: (F,7)"(z) > 1}
pends on the norm of the state matricEs There exists The system is sofic and its SFT-refinement partition over
a constantc > 0 such that then-th step of the Least alphabef = {0,1,2,3,4,5,6,7,8,9, A, B} has endpoints
norm algorithm requires at most- In||X,,|| elementary 0,3,1,1,2,3,00,—3,—2,—1,—%, —%. Table Ill shows for
operations. If the state matrices remain bounded during teach (p,a) € B x A with V,, C W, the intervalsV,,
computation, then the algorithm would have linear timgansformationst,, preimagest, ! (V,,) and the followers
complexity in the length of the input number of p with label a. Figure 6 shows the labelled graghof
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pa v, F, F, (V) | followers input numberu = 524600160

00 (O7 l) [1’07 172] (O7 1) 0’ 1’2 0 0,1, 2,3, 4, 5, 6, 7, 8,9, A, B

o | 1 1109 | (-1-1) |04 1: 63, 64, 75, 86, 87, 88, 99, 9A
'3 thy 13 2: 633, 634, 635, 646, 757, 758

07| (03 | [L0-121 (0,5) |01 3: 6354, 6355, 6466, 6467, 6468, 7579, T58A, 75813

10 (? ?) (1,0,1,2] (1,2) |3 4: 64687, 64688, 75799, T579A, 75798, 758 A0, 758 B1, 758 B2

L (3.9) 1,1,0,2] | (-%,00 | B 5: T579BA, 7579BB, 758 A00, 758 A01, 758 A02, 758B13,

20 | (%,1) [1,0,1,2] | (2,00) | 4,5 758 B24, T58 B25

o | (I 1,1,0,2] ©0,1) |0,1,2 6: 7579BBA, 7579BBB, T58A000, T58 A001, T58 A002,

2| () 2,0.1.1] (1) |12 758 A013, 758 A024, 758 A025

31 i) [1.0.2] A3y |34 7: T58A0009, 758 AD00A, 758 A001 B, 758 A0020, 758 A0021,

52| (12 2011 | (Loo) |345 758 A0022, 758 A0133, 75840134
’ D ) v 8: 758400099, 758 A0009A, 758 A0009B, 758 AO00AO,

33 (1,2 | 121,01] 1 (0,3) |01 758A001B1, T58A001 B2

421 (23 [2,0,1,1] | (00, =3) | 6 9: 758A0009B A, 758A0009B B, 758 A000A00, 758 A000AO1,

43 (23 | 2L01] 1 (3,1 |2 758 A000A02, 758 A001B13, 7584001524, 758 A001B25

52 | (3,00) [2,0,1,1] | (=3,-1) | 7,8

53 | (3,00) (2,1,0,1] | (1,00) |3,4,5

54 | (3,00) | [2,-1,0,1] | (2,00) | 4,5 TABLE IV

63 | (co,—3) [2,1,0,1] (00,—2) | 6,7 PATHS WITH A GIVEN LABEL

64 | (c0,—3) | [2,-1,0,1] | (00,—1) | 6,7,8

65 | (co,—3) | [2,0,—1,1] | (1,3) | 3,4

4 (_37_2) [27_1707]-] (_17_%) 9

75 | (—3,-2) | [2,0,—1,1 3,00) | 5, _ _

84 2_2 _13 {2 _1.0 1} ((_; 0)) A B the input vertexp,, and input letter,,. The second column
b b b b 27 b . . . .

85 | (—2,-1) | [2,0,-1,1] | (00, —1) | 6,7,8 gives the output pointer to the output lettew,, whixh is

86 | (=2,-1) | [1,-1,0,2] | (=3,~1) 7,3 in the third column, so that the whole outputan be read

gg g_i _§§ Eol_é;} ((_1’1_[3) g’A B in the third column from top to bottom. The fourth column

o7 | (=1,-8) | (0,~1.2] | (00,-2) | 6.7 gives the state matriX’ and the last column gives a part
I » Yy I El ) . an An+k .

A6 (7%,7%) [1,-1,0,2] | (0,%) |o of the input paﬂpna—> Pnt1l: " Pntk — DPntk+1 in the

AT (=3,—5) [ [L,0,-1.2] | (=2,=1) | 8 form plnpps1 -+ P, i Prtk+1- The algorithm gives good

BO 1 (=30 [1,0,1,2] (—1570) A, B practical results. For input numbers of several thousands

gg 2778; Hglgg ((51’ 13) ;»i 5 letters, the norms of the state matrices remain most of the
a2 e : - time below 100. This suggests that the algorithm may have

TABLE III (at least statistically) linear time complexity.
THE SFTPARTITION OF THE REDUNDANT BIMODULAR SYSTEM Binary operations like addition, subtraction, multiplica

tion and division can be computed in MNS with the use of
bilinear fractional transformations of the form

axy+br+cy+d
evy + fr+gy +h’

which are MT in both variables: and y. If P(z,y) is
a biliner fractional transformation and/(z) is an MT,
then P(M(zx),y), P(x, M(y)), as well asM (P(zx,y)) are
again biliner fractional transformations. For redundanfics
subshifts, the least norm algorithm can be easily adapted
for bilinear fractional transformations. However, in the
redundant bimodular system, this binary algorithm does not
perform so efficiently as its unary version: the norm of
the state(2 x 4)-matrices steadily grows. Perhaps a more
sofisticated algorithm is necessary to keep the state vector
bounded. Other possibility is that the algorithm may work
in another sofic MNS with high redundancy.

Conjecture 1:There exists a redundant sofic okius
number system in which the multiplication and division
algorithms have average linear time complexity.

P(mvy) =
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of paths of a wordu € Lyy.
An example of the run of the least norm algorithm can be REFERENCES
seen in Table V The first column gives the input pointéo  [1] M. F. Barnsley.Fractals everywhereMorgan Kaufmann Pub., 1993.
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input matrix: M = [2,7,1, 5]

input numberu = 5246001601235234544434252253324646675353
input path:758 4001 B134664667555554635755468799 A86630

®(u) € (—2.6340791995200, —2.6340791995174)
M(®(u)) € (0.7319947483486,0.7319947483500)

n | m | out| state matrixXX | input path

o] o [2,7,1,5] 755283 A500001
51 0 [3,5,3,7] 0911 B%103142¢
501 1| 0 [3,5,0,1] 0911 B61031426
6 2| 3 [7,8,2,4] 11 B6193142636
6| 3| 3 [5,4,4,8] 11B%103142636
8| 4] 1 3,3,2,18] 103142636%426
8| 5] 1 [2,-6,1,9] 103142636%426
8| 6| 5 [1,-3,2,6] 1031426365426
10| 7| 6 [1,1,2,8] 4263654263647
12| 8 1| [-3,-3,6,5] | 6°42636%755%5
13| 9| 6 [1,-1,7,5] 4263647554545
1510 0 [1,0,9,6] 6475545454535
16 | 11 0| [2,-1,8,—1] | 7°5%5%54535%4
16| 12| 0 [2,-1,3,0] 7554545153544
18 | 13 1| [4,-3,6,-3] | 5*5%535%42653
19 (14| 0| [8,-7,2,—1] | 5*535%4265325
21 15| 3 [12,0,8,1] 5442653252755
21 |16 | 2 [6,0,2,1] 5442653252755
22 | 17| 2| [6,—-3,—2,2] | 4265325275535
25 | 18 | 4| [29,—1,-20,4] | 5275535342648
25| 19| 6| [19,1,-10,2] | 5275535342648
26 (20| 5 [39,1,3,5] 7553534264867
26 | 21 3| [18,-2,3,5] | 7553534264867
26 | 22| 2| [9,—1,-6,6] | 753534264867
28 | 23| 6| [10,6,—9,—3] | 5342648674959
29 | 24| 5| [5,4,—4,—2] | 426%867496964
29 | 25| 6| [3,3,—2,—1] | 426%867496964
31126 | 5| [9,-3,—1,1] | 8574969647856
32|27 | 4| [4,-6,—1,3] | 7495964785636
32128 5 [2,-3,1,0] 749696 4785636
34129 | 3| [1,-5,2,—4] | 95A785636°330
35 | 30 1| [0,-6,1,—5] | A78%6365330
35|31 2| [0,-3,1,-2] | A78%6365330
37132 2| [6,-3,4,—1] | 636330
38133 3 [2,0,8,3] 62330

40 | 34| o0 8,4,9,6] 0

40 | 35| 2 [4,2,5,4] 0

40 | 36 | 2 2,1,3,3] 0

40 | 37| 1 [1,-1,3,3] 0

40 | 38| © [1,-1,1,2] 0

40 | 39| 7 2, -2,2,1] 0

40| 40| 5 [1,-1,3,0] 0

40 | 41| 5| [1,-1,7,—-1] |0

output numbery = 03311561600010322465326565453122302210755
®(v) € (0.7319947483426, 0.7319947483451)

TABLE V
THE UNARY LEAST NORM ALGORITHM
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