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Jilská 1, CZ-11000 Praha 1, Czechia

kurka@cts.cuni.cz

Abstract—We analyze the time complexity of exact real
arithmetical algorithms in M öbius number systems. Using
the methods of Ergodic theory, we associate to any M̈obius
number system its transaction quotientT and show that the
norm of the state matrix after n transactions is of the order
T

n. We argue that the Bimodular Möbius number system
introduced in K ůrka [10] has transaction quotient less than
1.1, so that it computes the arithmetical operations faster than
the standard positional r-ary systems.

Index Terms—expansion subshifts; exact real arithmetical
algorithms; emissions; absorptions; transactions.

I. I NTRODUCTION

While the floating-point system is still dominant in com-
puter arithmetic, alternative systems which allow arbitrary
precision and on-line algorithms have been considered as
well. The classical ones are based on redundant positional
systems (see e.g., Knuth [5]). In an unpublished but influen-
tial manuscript, Gosper [2] shows that continued fractions
can be used for arithmetical algorithms, provided they are
redundant. Based on these ideas,exact real arithmetical
algorithms have been developped in Vuillemin [17], Kor-
nerup and Matula [6], Potts [15], or Potts et al [16]. These
algorithms perform a sequence ofinput absorptions and
output emissionsand update their inner state, which may
be a(2×2)-matrix in the case of a M̈obius transformation,
a (2 × 4)-matrix in the case of binary operations like
addition, multiplication or division, or an expression tree
in the case of a transcendental function. Both emissions
and absorptions are referred to astransactions.

Using the concepts and methods of symbolic dynamics,
exact real arithmetic has been generalized in the theory of
Möbius number systems(MNS) introduced in K̊urka [8]
and [9]. Möbius number systems represent real numbers
by infinite words from a one-sided subshift. The letters of
the alphabet stand for real orientation-preserving Möbius
transformations and the concatenation of letters corresponds
to the composition of transformations. In Kůrka and Kazda
[12] we have investigated interval MNS whose subshifts are
determined by an interval cover or almost-cover indexed
by the alphabet. Given a numberx, we find an interval
to which x belongs, take the inverse image ofx by the
corresponding transformation and repeat the procedure. The
expansion subshiftconsists of all infinite words obtained.

Using the concept of expansion quotient, we have given
conditions which ensure that the extended real line is a
factor of the expansion subshift. In Kůrka [10] we have
investigated MNS in which rational numbers have periodic
or preperiodic expansions. In Kůrka [11] we have charac-
terized MNS whose expansion subshifts are of finite type
or sofic and we have generalized the computation of the
endpoints of cylinders by the Stern-Brocot graph.

The time complexity of exact real algorithms depends
on the growth of their inner state matrices during compu-
tations. Heckmann [3] analyzes this process in positional
number systems and proves theLaw of big numbers,
saying that the norm of the state matrix aftern transactions
is at least of the orderrn/2 for r-ary systems. This
implies that the bit size of the state matrix grows at least
linearly, and arithmetical operations have quadratic time
complexity. In the present paper we show that the Law of
big numbers does not apply to all M̈obius number systems.
Using methods of Ergodic theory we define thetransaction
quotient T of a MNS and argue that the average norm of
the state matrix aftern transactions isTn. We show that
theNonredundant bimodular systemconsidered in K̊urka
[10] has transaction quotientT <

√
2 and outperforms

the standardr-ary positional systems. In fact, numerical
experiments suggest that the transaction quotient of the
Nonredundant bimodular system is much closer to1, at
leastT < 1.1.

In redundant systems with sofic expansion subshift we
consider theLeast norm algorithm which minimizes the
norm of the state matrices during the computation. In
the Redundant bimodular system introduced in K̊urka
[11], the algorithm gives good practical results. For the
input length of several thousands, the norms of the state
matrices remain most of the time bounded by 100, although
fluctuations to much larger values occur sporadically. This
suggests that the transaction quotient of the Bimodular
system may be even equal to one, which would imply
the existence of arithmetical algorithms with average linear
time complexity.

II. M ÖBIUS TRANSFORMATIONS

Theextended real lineR = R∪{∞} can be regarded as
a projective space, i.e., the space of one-dimensional sub-
spaces of the two-dimensional vector space. OnR we have



homogenous coordinatesx = (x0, x1) ∈ R2 \ {(0, 0)}
with equality x = y iff det(x, y) = x0y1 − x1y0 = 0.
The norm of a vectorx ∈ R2 is ||x|| =

√
x2

0 + x2
1. We

regardx ∈ R as a column vector, and write it usually as
x = x0

x1
= x0/x1, for example∞ = 1/0. Thestereograhic

projection h(z) = (iz + 1)/(z + i) mapsR to the unit
circle ∂D = {z ∈ C : |z| = 1} in the complex plane, and
the upper half-planeU = {z ∈ C : ℑ(z) > 0} conformally
to the unit discD = {z ∈ C : |z| < 1}. Define thecircle
distanceon R by

̺(x, y) =
1

π
arcsin

|x − y|√
x2 + 1 ·

√
y2 + 1

=
1

π
arcsin

|x0y1 − y0x1|√
(x2

0 + x2
1)(y

2
0 + y2

1)

=
1

π
arcsin

|det(x, y)|
||x|| · ||y|| ,

which is the length of the shortest arc in∂D which joins
h(x) andh(y) divided by2π.

A real orientation-preserving Möbius transformation
(MT) is a self-map ofR of the form

M(a,b,c,d)(x) =
ax + b

cx + d
=

ax0 + bx1

cx0 + dx1
,

wherea, b, c, d ∈ R and det(M(a,b,c,d)) = ad − bc > 0.
MT acts also on the upper half-planeU: If z ∈ U then
M(z) ∈ U as well. OnD := D ∪ ∂D we getdisc Möbius
transformations defined by

M̂(a,b,c,d)(z) = h ◦ M(a,b,c,d) ◦ h
−1(z)

= (αz + β)/(βz + α),

whereα = (a + d) + (b − c)i, β = (b + c) + (a− d)i. We
have

|M̂(0)|2 =
||M ||2 − det(M)

||M ||2 + det(M)
,

where ||M(a,b,c,d)|| =
√

a2 + b2 + c2 + d2 is the norm of
the matrix M (see K̊urka [9]). The circle derivation of
M = M(a,b,c,d) is defined by

M•(x) = lim
y→x

̺(M(y),M(x))

̺(y, x)

=
(ad − bc) · (x2

0 + x2
1)

(ax0 + bx1)2 + (cx0 + dx1)2
,

=
det(M) · ||x||2

||M(x)||2 .

The expansion interval of M = M(a,b,c,d) is

V(M) = {x ∈ R : (M−1)•(x) > 1}.

If M = Rα = M(cos α
2 ,sin α

2 ,− sin α
2 ,cos α

2 ) is a rotation, then
M•(x) = 1 and V(M) is empty. OtherwiseV(M) is a
proper set interval, i.e., a nonempty open connected subset
of R.

III. I NTERVALS

A set interval is an open connected subset ofR. A
proper interval is a nonempty set interval properly in-
cluded in R. We represent proper intervals by(2 × 2)-
matrices whose columns are their left and right endpoints.
The stereographic projection applied tox = r sin α

r cos α ∈ R

givesh(x) = sin 2α− i cos 2α = ei(2α−π
2 ), so it duplicates

the angles. Intervals with endpointsx = r sin α
r cos α , y = s sin β

s cos β
where0 ≤ α < 2π, α < β < α+π can therefore represent
any proper interval. Sincedet(x, y) = rs sin(α − β) < 0,
we define matrix intervals as(2×2)-matrices with negative
determinant, which we write as pairsI = (x0

x1
, y0

y1
) of their

left and right endpointsl(I) = x0

x1
, r(I) = y0

y1
. The set of

matrix intervals is therefore

I(R) = {(x0

x1
, y0

y1
) ∈ GL(R, 2) : x0y1 − x1y0 < 0}

The length of an interval is defined by

|(x, y)| =
1

2
+

1

π
arctan

x0y0 + x1y1

x0y1 − x1y0

=
1

2
+

1

π
arctan

x · y
det(x, y)

Then we get|( r sin α
r cos α , s sin β

s cos β )| = (β − α)/π, provided0 <
β − α < π. A matrix interval defines an open and closed
set interval by

z ∈ I ⇔ det(l(I), z) · det(z, r(I)) > 0,

z ∈ I ⇔ det(l(I), z) · det(z, r(I)) ≥ 0.

If I = ( r sin α
r cos α , s sin β

s cos β ), thenz = t sin γ
t cos γ ∈ I iff either α <

γ < β or α + π < γ < β + π. If x, y ∈ R, then

(x, y) =

{
{z ∈ R : x < z < y} if x < y,
{z ∈ R : x < z or z < y} ∪ {∞} if x > y.

When we transform intervals, we work with the matrix
representations of MT rather than with the transformations
themselves. M̈obius transformations are represented by
matrices

M(R) = {M(a,b,c,d) ∈ GL(R, 2) : ad − bc > 0}
which act on vectorsx ∈ R2 by multiplication x 7→ Mx.
Two matrices represent the same MT if one is a nonzero
multiple of the other and the matrix multiplication cor-
responds to the composition of MT. IfM ∈ M(R) and
I ∈ I(R), then bothMI and IM are intervals. While
MI = M(I) represents theM -image of the set interval
of I, IM is the interval cut fromI by M . This operation
is used to obtain the Stern-Brocot graph of a MNS with
expansion subshift of finite type (see Kůrka [11]).

IV. SUBSHIFTS

For a finite alphabetA denote byA∗ :=
⋃

m≥0 Am the
set of finite words. The length of a wordu = u0 . . . um−1 ∈
Am is |u| = m. We denote byAN the Cantor space of
infinite words with the metricd(u, v) = 2−k, wherek =
min{i ≥ 0 : ui 6= vi}. We say thatv ∈ A∗ is a subword of
u ∈ A∗ ∪ AN and writev ⊑ u, if v = u[i,j) = ui . . . uj−1

for some0 ≤ i ≤ j ≤ |u|. The cylinder ofu ∈ An is the set

2



[u] = {v ∈ AN : v[0,n) = u}. Theshift map σ : AN → AN

is defined byσ(u)i = ui+1. A subshift is a nonempty set
Σ ⊆ AN which is closed andσ-invariant, i.e.,σ(Σ) ⊆ Σ.
If D ⊆ A∗ then ΣD = {x ∈ AN : ∀u ⊑ x, u 6∈ D} is
the subshift (provided it is nonempty) withforbidden set
D. Any subshift can be obtained in this way. A subshift is
uniquely determined by itslanguage

L(Σ) = {u ∈ A∗ : ∃x ∈ Σ, u ⊑ x}.
Denote byLn(Σ) = L(Σ) ∩ An.

A labelled graph over an alphabetA is a structureG =
(V,E, s, t, ℓ), whereV = |G| is the set of vertices,E is
the set of edges,s, t : E → V are the source and target
maps, andℓ : E → A is a labelling function. The subshift
ΣG ⊆ AN of G consists of all labels of paths ofG. A
subshift is sofic, if it is the subshift of a finite labelled
graph. A subshift is offinite type (SFT) of orderp, if its
forbidden words have length at mostp. In this caseu ∈ AN

belongs toΣ iff all subwords ofu of length p belong to
L(Σ) (see Lind and Marcus [13] or K̊urka [7]).

V. M ÖBIUS NUMBER SYSTEMS

Definition 1: A Möbius iterative systemover an alpha-
betA is a mapF : A∗×R → R or a family of orientation-
preserving M̈obius transformations(Fu : R → R)u∈A∗

satisfying Fuv = Fu ◦ Fv and Fλ = Id, whereλ is the
empty word. Theconvergence spaceXF ⊆ AN and the
symbolic representationΦ : XF → R are defined by

XF := {u ∈ AN : lim
n→∞

Fu[0,n)
(i) ∈ R},

Φ(u) := lim
n→∞

Fu[0,n)
(i),

wherei ∈ U is the imaginary unit. IfΣ ⊆ XF is a subshift
such thatΦ : Σ → R is continuous and surjective, then
we say that(F,Σ) is a Möbius number system(MNS).
We say that a MNS(F,Σ) is redundant, if for every
continuous mapg : R → R there exists a continuous map
f : Σ → Σ such thatΦf = gΦ.

Redundancy is necessary for the existence of exact arith-
metical algorithms (see Weihrauch [18], Vuillemin [17],
Kornerup and Matula [6], Potts [15] or Potts et al. [16]). If
u ∈ XF then Φ(u) = limn→∞ Fu[0,n)

(z) for every z ∈ U

(see Kazda [4]).
Definition 2: An open almost-coverfor a Möbius iter-

ative systemF : A∗×R → R is a family of open intervals
W = {Wa : a ∈ A} such that

⋃
a∈A

Wa = R. We
denote byE(W) = {l(Wa), r(Wa) : a ∈ A} the set
of endpoints of W. If Wa ∩Wb = ∅ for a 6= b, thenW is
an open partition. If

⋃
a∈A

Wa = R thenW is a cover.
The interval cylinder of u ∈ An+1 is

Wu = Wu0
∩ Fu0

Wu1
∩ · · · ∩ Fu[0,n)

Wun
.

The expansion subshiftSW is defined by

SW = {u ∈ AN : ∀k > 0,Wu[0,k)
6= ∅}.

We denote byLW = L(SW) the language ofSW and by
Ln
W = Ln(SW).

For uv ∈ LW we haveWuv = Wu ∩ FuWv. Given a
coverW, we construct nondeterministically the expansion
u ∈ SW of x = x0 ∈ R as follows: Chooseu0 with
x ∈ Wu0

, chooseu1 with x1 = F−1
u0

(x0) ∈ Wu1
, choose

u2 with x2 = F−1
u1

(x1) ∈ Wu2
, etc. Thenx ∈ Wu[0,n)

for
eachn, so Wu is the set of points which have expansion
u.

Theorem 3 (K̊urka and Kazda [12]):Let F : A∗×R →
R be a M̈obius iterative system and assume thatW is an
almost-cover ofR such thatWa ⊆ V(Fa) for eacha ∈ A.
Then(F,SW) is a Möbius number system. It is redundant
providedW is a cover. For eachu ∈ SW andv ∈ LW ,

{Φ(u)} =
⋂

n≥0

Wu[0,n)
, Φ([v] ∩ SW) = Wv.

A stronger theorem which uses the concept of expansion
quotient has been proved in Kůrka and Kazda [12]. Nev-
ertheless our examples satisfy the condition of Theorem 3,
so we adopt it as a definition.

Definition 4: An interval M öbius number systemover
an alphabetA is a pair(F,W), whereF : A∗ ×R → R is
a Möbius iterative system andW = {Wa : a ∈ A} is an
almost-cover ofR such thatWa ⊆ V(Fa) for eacha ∈ A.

If (F,W) is an interval MNS then

lim
n→∞

max{|Wu| : u ∈ Ln
W} = 0.

This is an immediate consequence of the uniform continuity
of Φ : SW → R. Interval Möbius number systems
whose expansion subshifts are of finite type have been
characterized in K̊urka [11]:

Theorem 5 (K̊urka [11]): Assume that(F,W) is an in-
terval MNS. ThenSW is a SFT of order2 iff

∀a, b ∈ A, (Fa(Wb) ∩ Wa 6= ∅ ⇒ Fa(Wb) ⊆ Wa).

In this caseWu = Fu[0,n)
Wun

for eachu ∈ Ln+1
W .

VI. RATIONAL M ÖBIUS NUMBER SYSTEMS

We say that an interval M̈obius number system(F,W) is
rational , if its transformations have integer entries and its
intervals have rational endpoints. We consider arithmetical
algorithms in rational interval M̈obius number systems. To
analyze the cancellations which occur during transactions,
we work with the matrices which represent the transfor-
mations, rather than with the transformations themselves.
Denote byZ the set of integers. Forx ∈ R2\{ 0

0} denote by
gcd(x) the greatest common divisor ofx0 andx1. Denote
by

Q = {x ∈ Z2 \ { 0
0} : gcd(x) = 1}

the set of (homogenous coordinates of) rational numbers
which we understand as a subset ofR. We have a mapd :
Z2 \ { 0

0} → Q given byd(x) = x0/g
x1/g , whereg = gcd(x).

Denote by

M(Z) = {M ∈ GL+(Z, 2) : gcd(M) = 1},
where GL+(Z, 2) is the set of(2×2)-matrices with integers
entries and positive determinant. ForM = M(a,b,c,d) ∈
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GL+(Z, 2) denote byd(M) = M(a/g,b/g,c/g,d/g), where
g = gcd(M), so we have a mappingd : GL+(Z, 2) →
M(Z). In M(Z) we have multiplicationMN = d(M ·N),
where M · N is the matrix multiplication and a pseudo-
inverseM−1

(a,b,c,d) = M(d,−b,−c,a). Matrices ofM(Z) act

on Q by Mx = d(M · x).
We consider now the computation of an MTM ∈ M(Z)

in an MNS. This means that we search for an algorithm
which would compute a continuous functionΨM : SW →
SW such thatΦΨM (u) = MΦ(u) for each u ∈ SW .
Such a mappingΨM can exist only in redundant MNS.
We consider first nonredundant systems in whichΨM is
a partial mapping. If a MNS has the expansion subshift
of finite type of order2, then Wua = FuWa for each
ua ∈ LW (see Theorem 5), which simplifies the algorithm
considerably.

Definition 6: Let (F,W) be a rational interval MNS
with an open partitionW, whose expansion subshift is an
SFT of order2. The unary graph of (F,W) is defined
as follows: Its vertices are(X, a), whereX ∈ M(Z) and
a ∈ A ∪ {λ}. The labelled edges are

absorption: (X, a)
b/λ−→ (XFa, b) if ab ∈ L2

W

emission: (X, a)
λ/c−→ (F−1

c X, a) if XWa ⊆ Wc.

For the empty wordλ we setWλ = R. The labels of paths
are concatenations of the labels of their edges. They have
the formu/v, whereu ∈ LW is the input word andv ∈ LW

is the output word. GivenM ∈ M(Z) andu ∈ SW , the lazy
algorithm which computesv ∈ SW with Φ(v) = MΦ(u)
starts at the vertex(M,λ), applies the emission action
whenever possible and the absorption action otherwise.
SinceW is assumed to be an open partition, the algorithm
is deterministic but partial. On some infinite input words
the algorithms may give only a finite output word.

Proposition 7: If u/v is the label of an infinite path in
the unary graph with source(M,λ), u ∈ SW , andw ∈ AN,
then w ∈ SW and Φ(w) = M(Φ(u)). If u/v is the label
of a finite path with source(M,λ), and u ∈ LW , then
w ∈ LW andM(Φ([u])) ⊆ Φ([w]).

Proof: We show by induction that when there is a
path with source(M,λ) and labelua/w ∈ LW ×A∗, then
MWua ⊆ Ww and the target of the path is(F−1

w MFu, a).
Since Wλ = R, the first edge(M,λ) → (M,a) has
label a/λ, so MWa ⊆ Wλ is satisfied. Suppose that
the assumption holds forua/w, and consider an edge
(F−1

w MFu, a) → (F−1
w MFua, b) with label b/λ. Then

MWuab ⊆ MWua ⊆ Ww, so the statement holds for
the path labeluab/w. Consider an edge(F−1

w MFu, a) →
(F−1

wc MFu, a), with label λ/c, so F−1
w MFuWa ⊆ Wc.

ThenMWua = MFuWa ⊆ FwWc. SinceMWua ⊆ Ww,
we getMWua ⊆ Ww ∩ FwWc = Wwc, so the statement
holds for the path labelua/wc. By Theorem 3 we get
M(Φ([ua])) ⊆ Φ([w]). If u, v are infinite words, then for
eachn there existskn such thatMWu[0,kn)

⊆ Ww[0,n]
,

so M(Φ(u)) ∈ M(Wu[0,kn)
) ⊆ Ww[0,n]

. It follows
M(Φ(u)) = Φ(w).

nonredundant unary procedure;
input matrixM ∈ M(Z);
input numberu ∈ LW ∪ SW ;
output numberv ∈ LW ∪ SW ;
variablesX ∈ M(Z) (state matrix),n, m ∈ N (input and output pointers)
begin

X := M ; n := 0; m := 0;
while n < |u| repeat

if ∀b ∈ A, XWun 6⊆ Wb then begin
X := XFun ;
n := n + 1;
end;

else begin
vm := b; whereXWun ⊆ Wb

X := F−1

b
X;

m := m + 1;
end;

end;
end;

TABLE I
THE NONREDUNDANT UNARY ALGORITHM

Assume that(F,W) is an integer MNS such thatW is
an open partition andSW is a SFT of order2. We consider
the Nonredundant unary algorithm (see Table I) which
computesM on symbolic representations of real numbers
with the use of the unary graph. The input for the algorithm
is either a finite wordu ∈ LW or an infinite wordu ∈ SW .
SinceW is an open partition, there exists at each step at
most oneb ∈ A with MWun

⊆ Wb, so the algorithm
is deterministic. If the inputu ∈ LW is finite then the
algorithm halts in a finite time, its outputv ∈ LW is finite,
its length is stored in the variablem andΦ(Wu) ⊆ Wv. If
the inputu ∈ SW is infinite, the algorithm never stops and
during infinite time produces either infinite or finite output
v. The latter possibility occurs (with probability zero) if
M(Φ(u[n,∞))) ∈ E(W) is an endpoint ofW for somen.

If the entries of the state matrixX are represented in
a positional binary system, then the length of this repre-
sentation (the bit length ofX) is of the orderlog2 ||X||.
A multiplication of X with a matrix Fa then requires
log2 ||X|| · log2 ||Fa|| elementary operations on their bi-
nary representations. The comparisonI ⊆ Wb requires
log2 ||I|| · log2 ||Wb|| elementary operations. Thus there
exists a constantc > 0 such that each step of the algorithm
requires at mostc · log2 ||X|| elementary operations. We
argue in next sections that the norm of the state matricesXn

at timen is of the orderTn, whereT ≥ 1 is a transaction
quotient. For the bit size we getlog2 ||Xn|| ≈ n log2 T. It
follows that the time complexity of the algorithm (number
of elementary operations with the bit representations of the
matrices) is quadratic of the orderlog2 T ·n2/2. If T = 1,
then the matrices remain bounded and the time complexity
of the algorithm is linear in the input lengthu.

VII. S INGULAR TRANSFORMATIONS

Besides orientation-preserving MT with positive determi-
nant, we consider orientation-reversing MT with negative
determinant,singular MT with det(M) = 0 and||M || > 0,
and thezero MT M(0,0,0,0) = 0. Each MT defines a closed
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graph (relation)

M̃ = {(x, y) ∈ R
2

: (ax0 + bx1)y1 = (cx0 + dx1)y0}.

An MT M = M(a,b,c,d) is singular iff ∀z ∈ U,M(z) ∈ R

iff M(i) ∈ R where i ∈ U is the imaginary unit. In this
case we calls(M) = M(i) the stable point ofM . If a

c 6= 0
0

then M(i) = a
c , and if b

d 6= 0
0 then M(i) = b

d . Thus
s(M) ∈ {a

c , b
d} ∩ R. Similarly the unstable point ofM is

defined byu(M) = M−1(i) ∈ {− b
a ,−d

c} ∩ R. A singular
MT yields the graphM̃ = (R × {sM}) ∪ ({uM} × R),
and the zero MT yields the full graph̃M = R

2
. The space

of all nonzero MT can be identified with the projective
linear space PL(R, 4) of one-dimensional subspaces of the
Euclidean spaceR4 with metric

d4(X,Y ) = min

{∣∣∣∣
∣∣∣∣

X

||X|| −
Y

||Y ||

∣∣∣∣
∣∣∣∣ ,
∣∣∣∣
∣∣∣∣

X

||X|| +
Y

||Y ||

∣∣∣∣
∣∣∣∣
}

.

Assume that (F,W) is a MNS such thatSW is a
SFT of order2. If X is an orientation preserving MT
and u ∈ SW then limn→∞ XFu[0,n)

(0) ∈ R and
limn→∞ |XFu[0,n)

Wun
| = 0. This means that the sequence

MFu[0,n)
of MT converges to the subspace of singular

MT: There exists a sequenceHn of singular MT such that
limn→∞ d4(XFu[0,n)

,Hn) = 0.
We modify the unary algorithm from Table I so that the

absorption step is performed whenever the length of the
intervalXWa is greater than some small fixedε > 0. Then
the state matrices remain in vicinity of singular matrices.
The growth of the norm of the state matrices during the
computation can then be approximated by the growth of the
norm of singular matrices subjected to the unary algorithm.
To test the length of an intervalI = (x, y) we need not
evaluate its actual length. Instead we perform the test

x · y
det(x, y)

< δ = tan(πε − π/2),

where we choose a rationalδ ∈ (−∞,+∞).
Next proposition shows that the absorption and emission

actions on singular matrices are independent. Emission acts
on the columns of singular matrices while absorption acts
on the rows of the singular matrices. Thus the absorption
and emission processes can be studied separately.

Proposition 8: If X is a singular matrix, then for each
matrix F with positive determinant we have

s(XF ) = s(X), s(FX) = F (s(X)),

u(FX) = u(X), u(XF ) = F−1(u(X))

This follows fromXF (i) = X(i).

VIII. I NVARIANT EMISSION MEASURE

Denote byM(X) the space of Borel probability mea-
sures on a compact metric spaceX with the Hutchinson
metric (see Barnsley [1]). A continuous mappingF : X →
Y between compact metric spaces can be extended to a
continuous mappingF : M(X) → M(Y ) by (Fµ)(U) =

µ(F−1(U)). For an integrable functionϕ : Y → R we
have ∫

Y

ϕd(Fµ) =

∫

X

ϕ ◦ F dµ

The circle length of intervals determines the Cauchy mea-
sure γ ∈ M(R) by γ(I) = |I| for each intervalI. If
µ ∈ M(R) is absolutely continuous with respect toγ then
it has a densityhµ : R → [0,∞) given by

hµ(x) = lim
ε→0

µ(Bε(x))

|Bε(x)| ,

whereBε(x) = {y ∈ R : ̺(y, x) < ε}. Thus dµ(x) =
hµ(x) dγ(x) and

µ(I) =

∫

I

hµ(x) dγ(x) =

∫

I

hµ(x) dx

π(1 + x2)

for each intervalI. If M is a MT andµ has a density, then

hMµ(x) = hµ(M−1(x)) · (M−1)•(x),

in particular hMγ(x) = (M−1)•(x). For an integrable
function ϕ and an intervalI, the substitutiony = M(x)
gives

∫

M(I)

ϕ(y) dγ(y) =

∫

I

ϕ(M(x)) · M•(x) · dγ(x).

Given an interval MNS(F,W), denote by W̄ a =
Wa∪{l(Wa)} the semiclosed interval with its left endpoint.
Denote byC(W) the set of all functionsh : R → [0,∞)
which are continuous on each̄W a and have limits from the
left at eachr(Wa). With the supremum distanced(h, g) =
supx∈R

|h(x)− g(x)|, C(W) is a compact metric space. A
partition of unity for a MNS (F,W) over an alphabetA
is a system of nonnegative functionswa ∈ C(W) indexed
by the alphabetA such that

∑
a∈A wa(x) = 1 for each

x ∈ R and supp(wa) = {x ∈ R : wa(x) > 0} ⊆ W̄ a. A
partition of unity determines the emission Markov process
(Xn)n≥0 over R with transition probabilities

P[Xn+1 = F−1
a (x)|Xn = x] = wa(x) :

The emissionx
a→ F−1

a (x) happens with probability
wa(x). The path with sourcex ∈ R and labelu ∈ Lk+1

W

has probability

wu(x) = wu0
(x) · wu1

(F−1
u0

(x)) · · ·wuk
(F−1

u[0,k)
(x)).

We havewuv(x) = wu(x)·wv(F−1
u (x)) for eachuv ∈ LW .

The processX determines the emission mapE : M(R) →
M(R) given by

d(Eµ)(x) =
∑

a∈A

wa(Fa(x)) · d(F−1
a µ)(x).

This means that
∫

ϕ(x) d(Eµ)(x) =
∑

a∈A

∫
ϕ(Fa(y)) · wa(y) dµ(y)
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for each continuous functionϕ : R → R. If µ has density
hµ, thenEµ has density

hEµ(x) = lim
ε→0

∑

a∈A

µ(Fa(Bε(x))) · wa(Fa(x))

|Bε(x)|

= lim
ε→0

∑

a∈A

|Fa(Bε(x))| · hµ(Fa(x)) · wa(Fa(x))

|Bε(x)|

=
∑

a∈A

F •
a (x) · hµ(Fa(x)) · wa(Fa(x))

We say thatµ ∈ M(R) is an (F,w)-invariant emission
measure ifEµ = µ. In this case

dµ(x) =
∑

u∈Ln
W

wu(Fu(x)) · d(F−1
u µ)(x)

for eachn > 0. If W is a partition, thenwa(x) = 1 iff
x ∈ W̄ a andwa(x) = 0 otherwise. The emission process
is then a deterministic functionE : R → R defined by
E(x) = F−1

a (x) for x ∈ W̄ a. We say thatE is expanding,
if there existsr > 1 such that(F−1

a )•(x) ≥ r for each
x ∈ Wa. We say thatE is transitive, if for each nonempty
open setsU, V ⊆ R there existsn such thatEn(U)∩V 6= ∅.

Theorem 9:Assume that(F,W) is an interval MNS
such thatW is an open partition,SW is a SFT of order
2, E is transitive andWa ⊂ V(Fa) for eacha ∈ A. Then
there exists a uniqueE-invariant ergodic Borel probability
measureµ onR which is absolutely continuous with respect
to the Cauchy measure.

Proof: SinceWa ⊂ V(Fa), E is expanding, and the
theorem is a consequence of Theorem 1.2 in Mañé [14], p.
168. The existence and unicity of the density can be also
proved directly. The map

(Eh)(x) =
∑

a∈A

F •
a (x) · h(Fa(x)) · wa(Fa(x))

is a contraction onC(W), so it has a unique fixed point.
Since||M(x)||/||x|| =

√
det(M)/M•(x), we define the

n-th emission quotienten by

en =
∑

u∈Ln
W

∫
ln

√
det(Fu)

(F−1
u )•(x)

· wu(x) dµ(x).

Proposition 10: en+m ≤ en + em for eachn,m > 0.
Proof: SinceFuv = d(Fu · Fv), we havedet(Fuv) ≤

det(Fu) · det(Fv) for eachuv ∈ Ln+m
W . For u ∈ LW and

x ∈ R setgu(x) = 1
2 ln(det(Fu)/(F−1

u )•(x)). Then

guv(x) ≤ 1

2
ln

det(Fu) · det(Fv)

(F−1
v )•(F−1

u (x)) · (F−1
u )•(x)

= gu(x) + gv((F−1
u (x)).

Using the substitutionx = Fu(y) we get

en+m ≤
∑

uv∈L
n+m
W

∫
gu(x) · wuv(x) dµ(x) +

∑

uv∈L
n+m
W

∫
gv(y) · wu(Fu(y)) · wv(y) d(F−1

u µ)(y)

en+m ≤ en +
∑

v∈Lm
W

∫
gv(y) · wv(y) dµ(y)

anden+m ≤ en + em

Thus there exists the limite = limn→∞ en/n, ande ≤
en for eachn. We callEn = exp(en/n) andE = exp(e)
the emission quotients. If W is a partition then

E = lim
n→∞

1

n

∑

u∈Ln
W

ln

√
det(Fu)

(F−1
u )•(l(Wu))

· µ(Wu)

Since the invariant measure is ergodic, the norm of the state
matrices in the emission process grows asE

n:
Theorem 11:Assume that(F,W) is a MNS such that

W is a partition,SW is a SFT of order2, E is transitive
andWa ⊂ V(Fa) for eacha ∈ A. Then

lim
n→∞

||F−1
Φ−1(x)[0,n)

(x)||
||x|| · En

= 1 almost surely.

IX. I NVARIANT SYMBOLIC MEASURE

If µ is an (F,w)-invariant measure onR, then the
probability that the expansion ofx ∈ R is u ∈ LW is

Pu =

∫
wu(x) dµ(x).

This formula gives a measureP ∈ M(SW) which we de-
note byP = Φ−1

w µ. If W is a partition thenPu = µ( W̄u).
Proposition 12: If µ is an (F,w)-invariant measure,

then the measureP = Φ−1
w µ is σ-invariant andΦP = µ.

Proof: For an intervalI ⊂ R we have

(ΦP )(I) = P (Φ−1(I))

= lim
n→∞

∑
{Pu : u ∈ Ln

W ,Wu ∩ I 6= ∅}

= lim
n→∞

∑

u∈Ln
W

∫

I

wu(x) dµ(x)

=

∫

I

dµ(x) = µ(I),

so ΦP = µ. We show thatP is σ-invariant. Using
substitutionsx = Fa(y) we get

(σP )u =
∑

a∈A

∫
wa(x) · wu(F−1

a (x)) · hµ(x) dγ(x)

=

∫ (∑

a∈A

wa(Fa(y)) · hµ(Fa(y)) · F •
a (y)

)

·wu(y) dγ(y)

=

∫
hµ(y) · wu(y) dγ(y) = Pu

X. I NVARIANT ABSORPTION MEASURE

We assume that the input for the absorption process are
words u ∈ SW distributed according to the measureP =
Φ−1

w µ, whereµ is the invariant emission measure. Given
a matrix M = M(a,b,c,d), denote bytM = M(a,c,b,d) its
transposed matrix and bytM−1

= M(d,−c,−b,a) the inverse
of its transposed matrix. A matrixM acts on the rows
of matrices (by multiplication from the right) in the same
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way as the transposed matrixtM acts on the columns of
matrices or on homogenous coordinates of real numbers.
The absorbtion process is a mappingA on the spaceR×SW

given byA(x, u) = (tFu0
(x), σ(u)). The map extends to

a self-mapA of M(R × SW) by

(Aν)(I, u) =
∑

a∈A

ν(tF
−1
a (I), au).

If ν(R, u) = Pu then (Aν)(R, u) = Pu as well. In this
case we say thatP is the SW -projection ofν. Eachu ∈
LW determines the conditional measureνu ∈ M(R) by
νu(I) = ν(I, u)/Pu. Note that

∑
v∈Lm

W

νuv ·Puv = νu ·Pu

for eachu ∈ LW andm > 0. For the densities we get

h(Aν)u
(x) = lim

ε→0

(Aν)(Bε(x), u)

|Bε(x)| · Pu

= lim
ε→0

∑

a∈A

(Aν)au(tF
−1
a (Bε(x)) · Pau

|Bε(x)| · Pu

=
∑

a∈A

hνau
(tF

−1
a (x)) · (tF

−1
a )•(x) · Pau/Pu

and

h(Akν)u
(x) =

∑

v∈Ak

hνvu
(tF

−1
v (x)) · (tF

−1
v )•(x) · Pvu/Pu

We can prove the existence of an invariant absorption
measure for a class of MNS:

Definition 13: We say that (F,W) is a MNS with
transpositions, if for each a ∈ A there existst(a) ∈ A

with Ft(a) = tF a and

u ∈ Ln
W iff t(u) = t(un−1) · · · t(u1)t(u0) ∈ Ln

W .

Theorem 14:Assume that(F,W) is a MNS with trans-
positions such thatW is an open partition,SW is a SFT of
order2, E is transitive andWa ⊂ V(Fa) for eacha ∈ A.
Then there exists a stableA-invariant absorption measure
ν whoseSW -projection isP = Φ−1

w µ.
Proof: Denote byVa = F−1

t(a)(Wt(a)). The mappings

Ft(a) : Va → Wt(a) are contractions sinceWa ⊆ V(Fa).
If ab ∈ L2

W then t(b)t(a) ∈ L2
W , Wt(a) ⊆ Vb. Denote by

X =
⋃

a∈A

(Va × [a]) ⊂ R × SW

If (x, u) ∈ X, then Ft(u0)(x) ∈ Wt(u0) ⊆ Vu1
, so

A(x, u) ∈ X. Thus X is A-invariant. SinceFt(a) are
contractions also on a sufficiently small neighbourhood of
Va, the setX is actually an attractor ofA. Consider the
space

X = {ν ∈ M(X) : supp(νu) ⊆ Vu0
, ν(R, u) = Pu}

Then A : X → X is a contraction and therefore has a
unique fixed pointν ∈ X ⊆ M(R × SW).

If there exists anA-invariant measure ofν, then we
define then-th absorption quotient by

an =

∫

R×SW

ln

√
det(Fu[0,n)

)

(tFu[0,n)
)•(x)

dν(x, u)

=
∑

u∈Ln
W

Pu

∫
ln

√
det(Fu)

(tFu)•(x)
dνu(x)

Proposition 15:an+m ≤ an + am

Proof: For (x, u) ∈ R × SW set

gn(x, u) =
1

2
ln

det(Fu[0,n)
)

(tFu[0,n)
)•(x)

.

We getgn+m(x, u) ≤ gn(x, u) + gm(An(x, u)) and

en+m =

∫
gn+m(x, u) dν(x, u)

≤
∫

gn dν(x, u) +

∫
gm ◦ An dν(x, u)

= en +

∫
gm d(Anν),

so en+m ≤ en + em.
The invariant absorption measure need not be absolutely

continuous with respect to the Cauchy measure, so we can-
not always compute with densities. The absorption quotient
si defined as limita = limn→∞ an/n, An = exp(an/n),
A = exp(a). If the absorption process is ergodic, andM is
a singular matrix, then the norm ofMFu[0,n)

grows asAn.
If emissions alternate with absorption so that the ratio of
their numbers converges to1 then the normF−1

v[0,n)
MFu[0,n)

grows asEn
A

n. Thus we define the transaction quotients
by

tn = an + en, t = a + e, Tn = An · En, T = A · E.

We haveT ≥ 1, since the norm of the state matrices cannot
be smaller than1.

XI. B INARY SYSTEM

The essential feature of positional number systems is that
they consist of linear transformations of the formM(x) =
ax + b which have fixed point∞.

Example 1:The nonredundant binary system in the al-
phabetA = {2, 1, 1, 2} is given by the following transfor-
mations and open intervals:

a Fa Wa F−1
a (Wa)

2 [2,−1, 0, 1] (∞,−1) (∞, 0)
1 [1,−1, 0, 2] (−1, 0) (−1, 1)
1 [1, 1, 0, 2] (0, 1) (−1, 1)
2 [2, 1, 0, 1] (1,∞) (0,∞)

The values of the disc M̈obius transformationŝFu(0) ∈ D

are shown in Figure 1 top. The curves between the values
F̂u(0) are constructed as follows. For each MTM there
exists a family (Mr)r∈R of MT such that M0 = Id,
M1 = M , andMr+s = MrMs. Each valueF̂u(0) in the
diagram is joined tôFua(0) by the curve(F̂uF̂ r

a (0))0≤r≤1.
The labelsu ∈ A∗ at F̂u(0) are written in the direction
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Fig. 1. A nonredundant binary system: MeansF̂u(0) (top), expansion
intervalsWa and the circle derivations(F−1

a )•(x) (bottom)

of the tangent vectorŝF ′
u(0). Figure 1 bottom shows the

intervalsWa and the circle derivations(F−1
a )•(x). We can

see thatWa ⊆ V(Fa) and that all these circle derivations
have the same shape.

The expansion subshiftSW is a SFT of order 2 with
forbidden words21, 22, 12, 12, 12, 12, 21, 21. Each word
u ∈ SW can be written asu = anv, wherea ∈ {2, 2},
0 ≤ n ≤ ∞ and v ∈ {1, 1}N. The emision transformation
has the attractor[−1, 1] where it is transitive and has
the unique absolutely continuous invariant measureµ with
Lebesgue densityh(x) = 1/2, so hµ(x) = π(1 + x2)/2.
Since(F−1

a )•(x) = 2(x2+1)
(2x−a)2+1 for a ∈ {1, 1} = {−1, 1},

we get

e1 =
1

4

∫ 0

−1

ln
(2x + 1)2 + 1

x2 + 1
dx +

1

4

∫ 1

0

ln
(2x − 1)2 + 1

x2 + 1
dx = 0.

Since both the transformationstF 1(x) = x
−x+2 , tF 1(x) =

x
x+2 have the stable fixed point0, the unique invariant
measure of the absorption process is the point measure
concentrated at0. Since (tF 1)

•(0) = tF
•
1(0) = 1/2 and

Pab = 1/4 for a, b ∈ {1, 1}, we get

a1 =
1

4

(
ln

det(F0)

(tF 0)•(0)
+ ln

det(F3)

(tF 3)•(0)

)
= ln 2.

ThusE1 = 1, A1 = 2 and the first transaction quotient is
T1 = 2. For u ∈ {1, 1}n we get

Fu =

[
1 2n−1u0 + · · · + 2un−2 + un−1

0 2n

]

so det(Fu) = 2n, and det(Fuv) = det(Fu) · det(Fv) for
eachuv ∈ {1, 1}∗. In the proofs of Proposition 10 and
Proposition 15 we have equalities in this case, soen = ne1,
an = na1, andTn = T1 = 2 for eachn. This corresponds
with the results of Heckmann [3], whose Law of big
numbers can be interpreted in our setting asT ≥

√
2 for

binary positional systems. Note however, that Heckmann
uses the norm||M(a,b,c,d)|| = max{|a|, |b|, |c|, |d|} which
is smaller than our Euclidean norm.

XII. A NONREDUNDANT BIMODULAR SYSTEM

Bimodular systems have been studied in Kůrka [10]
and [11] because of their high symmetry and nice prop-
erties. The rational numbers have preperiodic expansions
in these systems, and there exist several almost-covers
whose expansion subshifts are of finite type or sofic. The
system consists of the only eight transformations with norm√

6, the trace (the sum of the entries on the diagonal)3
and the determinant2. Its transformations generate whole
bimodular group which consists of all MT with integer
entries whose determinant is a power of2.

Example 2:A nonredundant bimodular system in alpha-
bet A = {0, 1, 2, 3, 4, 5, 6, 7} is given by the following
transformations and open intervals:

a Fa Wa F−1
a (Wa) t(a) : Va

0 [1, 0, 1, 2] (0, 1
2 ) (0, 2) 1 : [0, 1]

1 [1, 1, 0, 2] ( 1
2 , 1) (0, 1) 0 : [0, 2]

2 [2, 0, 1, 1] (1, 2) (1,∞) 3 : [12 ,∞]
3 [2, 1, 0, 1] (2,∞) ( 1

2 ,∞) 2 : [1,∞]
4 [2,−1, 0, 1] (∞,−2) (∞,− 1

2 ) 5 : [∞,−1]
5 [2, 0,−1, 1] (−2,−1) (∞,−1) 4 : [∞,− 1

2 ]
6 [1,−1, 0, 2] (−1,− 1

2 ) (−1, 0) 7 : [−2, 0]
7 [1, 0,−1, 2] (− 1

2 , 0) (−2, 0) 6 : [−1, 0]

Means, circle derivations and intervals of the system
can be seen in Figure 2. The expansion subshift is an
SFT of order2 with transitions00, 01, 02, 10, 11, 22,
23, 31, 32, 33, 44, 45, 46, 54, 55, 66, 67, 75, 76, 77.
The emission process is not transitive, but it has two
transitive subsystems.F0, F1, F2, F3 are transitive on[0,∞]
andF4, F5, F6, F7 are transitive on[∞, 0]. On each interval
[0,∞] and [∞, 0] there exists a unique invariant absolutely
continuous measure and any convex combination of these
two measures is invariant onR. The density of the( 1

2 , 1
2 )-

convex combination can be seen in Figure 3. The system
has transpositions (see Definition 13) and the assumptions
of Theorem 14 are satisfied, so there exists a unique
invariant absorbtion measureν.
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Fig. 2. Means, circle derivations and intervals of the nonredundant
bimodular system,
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Fig. 3. The density of the invariant emission measure of the nonredundant
bimodular system.

Numerical approximations suggest that the conditional
measuresνu do not have densities. Figure 4 shows the
densities of the fifth iterationAP (γ, P ) of the uniform
Cauchy measure. For the computation of the absorption
quotients we therefore approximateνu by the uniform
measures on the intervalsVa = F−1

t(a)(Wt(a)). We get:

n 1 2 3 · · · 7 8 9
An 2.20 1.90 1.88 · · · 1.77 1.76 1.76
En 0.91 0.79 0.78 · · · 0.74 0.73 0.73
Tn 2.00 1.50 1.47 · · · 1.31 1.30 1.29

In contrast to the binary system the higher transaction
quotients steadily decrease. We see thatT <

√
2, so

V0

V1

V2

V3

V4

V5

V6

V7

(A5γ)0

(A5γ)1

(A5γ)2

(A5γ)3

(A5γ)4

(A5γ)5

(A5γ)6

(A5γ)7

Fig. 4. Approximations of the invariant absorption measures of the
nonredundant bimodular system: densities of(A5γ)a.

arithmetical algorithms are faster than in the binary system.
Numerical simulations suggest that the transaction quotient
is less than1.2.

XIII. S OFIC REDUNDANT SYSTEMS

Recall that an interval MNS(F,W) is redundant if
its expansion intervals overlap, i.e., ifW is a cover (see
Theorem 3). In nonredundant systems, the computations
of the unary algorithm is not guaranteed to produce an
infinite output. Unfortunately, as shown in Kůrka [11], an
MNS whose interval cylinders form a cover cannot have the
expansion subshift of finite type. A more general class are
sofic subshifts which are factors of subshifts of finite type.
A MNS with sofic expansion subshift has a presentation
whose vertices are intervals of an open partition which
refinesW:

Definition 16: Let (F,W) be an interval MNS over an
alphabetA. An open interval partitionV = {Vp : p ∈ B} is
an SFT refinement of W, if the following two conditions
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are satisfied for eacha ∈ A, p, q ∈ B:
1. If Vp ∩ Wa 6= ∅ thenVp ⊆ Wa,
2. If Vp ⊆ Wa and Vq ∩ F−1

a Vp 6= ∅ then Vq ⊆ F−1
a Vp.

The labelled graphG of (F,W,V) has vertices|G| = B

and labelled edges

p
a−→ q if Vp ⊆ Wa and Vq ⊆ F−1

a Vp

For u ∈ LW ∪ SW denote byP(u) ⊆ B∗ ∪ BN the set of
paths with labelu.

Theorem 17 (K̊urka [11]): Assume that(F,W) is an
interval MNS over an alphabetA. Then SW is a sofic
subshift iff there exists an SFT refinementV of W.

Theorem 18:Assume that(F,W) is an interval MNS
over A with an SFT refinementV = {Vp : p ∈ B} and
let G be the labelled graph of(F,W,V). ThenSW is the
language ofG. For each infinite wordu ∈ SW there exist
at most two paths inG with label u. There existsr > 0
such that the set{p[0,n−r) : p ∈ P(u)} has at most two
elements for each finite wordu ∈ Ln

W . There existss > 0
such thatP(u) has at mosts elements for eachu ∈ LW .

Proof: Assume thatp0
u0−→ p1

u1−→ · · · un−1−→ pn is a
labelled path, soVpi

⊆ Wui
andFui

Vpi+1
⊆ Vpi

. Then

Fu[0,n)
Vpn

⊆ Fu[0,n−1)
Vpn−1

⊆ · · · ⊆ Fu0
Vp1

⊆ Vp0
,

Fu[0,n)
Vpn

⊆ Fu[0,n−1)
Wun−1

∩ · · · ∩ Fu0
Wu1

∩ Wu0

⊆ Wu[0,n)
,

so Wu[0,n)
6= ∅ and u[0,n) ∈ LW . Conversely assume that

u ∈ Ln
W so Wu 6= ∅. There existsp0 ∈ B such that

∅ 6= Vp0
∩ Wu ⊆ Vp0

∩ Wu0
,

so Vp0
⊆ Wu0

. There existsp1 such that

∅ 6= Vp1
∩ F−1

u0
(Vp0

∩ Wu)

⊆ Vp1
∩ F−1

u0
Vp0

∩ Wu1

so Vp1
⊆ Wu1

, Vp1
⊆ F−1

u0
Vp0

, and Vp1
∩ F−1

u0
Wu 6= ∅.

We continue by induction. If we have constructedpk with
Vpk

∩ F−1
u[0,k)

Wu 6= ∅, there existspk+1 with

∅ 6= Vpk+1
∩ F−1

uk
(Vpk

∩ F−1
u[0,k)

Wu)

⊆ Vpk+1
∩ F−1

uk
Vpk

∩ Wuk+1

so Vpk+1
⊆ Wuk+1

, Vpk+1
⊆ F−1

uk
Vpk

, and Vpk+1
∩

F−1
u[0,k+1)

Wu 6= ∅. In this way we construct the whole path
p for u. Thus u ∈ LW iff it is the label of a path inG.
Let r be the smallest integer such that for allu ∈ Lr

W and
for all p ∈ B we have|Wu| < |Vp|. Let u ∈ Ln

W with
|u| = n > r and letp ∈ Bn+1 be a path with labelu. Then

Fu[0,n)
Vpn

⊆ Fu[0,n−r)
Vpn−r

∩ Wu

⊆ Fu[0,n−r)
(Vpn−r

∩ Wu[n−r,n)
)

Thus Vpn−r
∩ Wu[n−r,n)

6= ∅ and there exist at most two
letters pn−r with this property. SinceFun−r−1

Vpn−r
⊆

Vpn−r−1
, the letterpn−r−1 is uniquely determined bypn−r.

Similarly, all letters pi with i < n − r are uniquely
determined bypn−r−1, so the set{p[0,n−r) : p ∈ P(u)}
has at most two elements. It follows that for each infinite

u ∈ SW there exist at most two infinite paths with label
u and that there exists an integers such thatP(u) has at
mosts elements for eachu ∈ LW .

The algorithm for computingP(u) of u ∈ SW is based
on a simple recursive fromula

P(ua) = {pb ∈ Bn+1 : p ∈ P(u) & un−1
a→ b}

Since the size ofP(u) is bounded, the algorithm has linear
time complexity. The number of elementary operations to
computeP(u) is bounded by a linear function of the length
u. Given a wordu ∈ SW and its pathp ∈ P(u), we can
computev ∈ SW with M(Φ(u)) = Φ(v) for any MT M :

Definition 19: Let (F,W,V) be an integer MNS with
sofic expansion subshift and the refinement partitionV. The
redundant unary graph has vertices(X, p) whereX ∈
M(Z) andp ∈ B. Its labelled edges are

(X, p)
a/λ−→ (XFa, q) if Vp ⊆ Wa, FaVq ⊆ Vp

(X, p)
λ/b−→ (F−1

b X, p) if XVp ⊆ Wb

Theorem 20:Let (F,W,V) be an integer MNS such that
W is a cover with sofic expansion subshiftSW andV is
an SFT refinement partitionV.
1. If u/v ∈ AN × AN is the label of an inifinite path with
source(M,p0), thenu, v ∈ SW andM(Φ(u)) = Φ(v).
2. If u ∈ SW then there existsv ∈ SW and an infinite path
with label u/v.

Proof: First note that if

(M,p)
λ/b→ (F−1

b M,p)
a/λ→ (F−1

b MFa, q)

is a path in the graph, thenMFaVq ⊆ MVp ⊆ Wb, so

(M,p)
a/λ→ (MFa, q)

λ/b→ (F−1
b MFa, q)

is a path as well. Ifu/v ∈ An ×Am is the label of a finite
path, then it is the label of a path

(M,p0)
u0/λ−→ (MFu0

, p1)
u1/λ−→ · · ·

un−1/λ−→ (MFu, pn)
λ/v0−→ (F−1

v0
MFu, pn)

λ/v1−→ · · ·
λ/vm−1−→ (F−1

v MFu, pn)

We getVpi
⊆ Wui

, Fui
Vpi+1

⊆ Vpi
and

FuVpn
⊆ · · · ⊆ Fu01

Vp2
⊆ Fu0

Vp1
⊆ Vp0

.

SinceFuVpn
⊆ Fu[0,i)

Vpi
⊆ Fu[0,i)

Wui
for eachi < n, we

get FuVpn
⊆ Wu. SinceMFuVpn

⊆ Fv[0,j)
Wvj

for each
j < m, we getMFuVpn

⊆ Wv. If u/v ∈ AN × AN is
the label of an infinite path, then for eachm there existsn
such thatu[0,n)/v[0,m) is the label of a finite path and

∅ 6= Fu[0,n)
Ppn

⊆ Wu[0,n)

∅ 6= MFu[0,n)
Ppn

⊆ Wv[0,m)

so u, v ∈ SW . The intersection
⋂

n

Fu[0,n)
Vpn

⊆
⋂

n

Wu[0,n)
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redundant unary procedure;
input matrix:M ∈ M(Z);
input number:u ∈ LW ∪ SW ;
input path:p ∈ B∗ ∪ BN with label u;
input threshold0 < ε < L(W);
output number:v ∈ SW ;
variablesX ∈ M(Z) (state),n, m ∈ N (input and output pointers)
begin

X := M ; n := 0; m := 0;
while n < |u| repeat

if |XVpn | ≥ ε then begin
X := XFun ;
n := n + 1;
end;

else begin
vm := b, whereXVpn ⊆ Wb and

||F−1
c X|| ≥ ||F−1

b
X|| for eachc with XVpn ⊆ Wc

X := F−1

b
X;

m := m + 1;
end;

end;

TABLE II
REDUNDANT UNARY LEAST NORM ALGORITHM

is nonempty by compactness and has zero diameter, so it
contains the unique pointΦ(u). The intersection

⋂

n

MFu[0,n)
Vpn

⊆
⋂

m

Wv[0,m)

is a nonempty singleton which contains bothM(Φ(u)) and
Φ(v), soM(Φ(u)) = Φ(v). If u ∈ SW then the diameter of
Fu[0,n)

Vpn
converges to zero asn goes to infinity. SinceW

is a cover, there exists its Lebesgue numberL(W) > 0 (the
length of overlaps) such that for each intervalI with length
|I| < L(W) there existsa ∈ A with I ⊆ Wa. Thus for each
m there existsv ∈ Am and n such that(u[0,n), v) is the
label of a path. It follows that there existsv ∈ AN such that
u/v is the label of a path and thereforeMΦ(u) = Φ(v).

Assume that(F,W,V) is an integer MNS such thatW
is a cover,SW is sofic andV is its SFT refinement. Given
a constantε > 0 smaller than the Lebesgue numberL(W),
we consider theRedundant unary least norm algorithm
with input matrix M ∈ M(Z), input wordu ∈ LW ∪ SW

and input pathp with labelu (see Table II). The algorithm
performs an absorption whenever the length of the interval
XVp is greater thanε. If |XVp| < ε then at least one letter
b with XVp ⊆ Wb exists and the algorithm chooses the
letter with the smallest norm ofF−1

b X. If the inputp0
u0−→

p1 · · · pn−1
un−1−→ pn is finite then the outputv ∈ LW is

finite too andMFu(Vp) ⊆ M(Wu) ⊆ Wv. If the input
pathp ∈ BN with label u ∈ SW is infinite, then the output
v ∈ SW is infinite andM(Φ(u)) = Φ(v).

The time complexity of the Least norm algorithm de-
pends on the norm of the state matricesX. There exists
a constantc > 0 such that then-th step of the Least
norm algorithm requires at mostc · ln ||Xn|| elementary
operations. If the state matrices remain bounded during the
computation, then the algorithm would have linear time
complexity in the length of the input numberu.
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Fig. 5. Means, circle derivations and intervals of the redundant bimodular
system.

XIV. R EDUNDANT BIMODULAR SYSTEM

Example 3:The redundant bimodular system in the al-
phabetA = {0, 1, 2, 3, 4, 5, 6, 7} is given by the following
transformations and expansion intervals:

a Fa Wa F−1
a (Wa)

0 [1, 0, 1, 2] (− 1
3 , 1) (− 1

2 ,∞)
1 [1, 1, 0, 2] (0, 2) (−1, 3)
2 [2, 0, 1, 1] ( 1

2 ,∞) ( 1
3 ,−1)

3 [2, 1, 0, 1] (1,−3) (0,−2)
4 [2,−1, 0, 1] (3,−1) (2, 0)
5 [2, 0,−1, 1] (∞,− 1

2 ) (1,− 1
3 )

6 [1,−1, 0, 2] (−2, 0) (−3, 1)
7 [1, 0,−1, 2] (−1, 1

3 ) (∞, 1
2 )

Means, circle derivations and intervals of the system can
be seen in Figure 5. The coverW has been obtained by

Wa = V(Fa) = {x ∈ R : (F−1
a )•(x) > 1}.

The system is sofic and its SFT-refinement partition over
alphabetB = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A,B} has endpoints
0, 1

3 , 1
2 , 1, 2, 3,∞,−3,−2,−1,− 1

2 ,− 1
3 . Table III shows for

each (p, a) ∈ B × A with Vp ⊆ Wa the intervalsVp,
transformationsFa, preimagesF−1

a (Vp) and the followers
of p with label a. Figure 6 shows the labelled graphG of
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pa Vp Fa F−1
a (Vp) followers

00 (0, 1

3
) [1, 0, 1, 2] (0, 1) 0, 1, 2

01 (0, 1

3
) [1, 1, 0, 2] (−1,− 1

3
) 9, A

07 (0, 1

3
) [1, 0,−1, 2] (0, 1

2
) 0, 1

10 ( 1

3
, 1

2
) [1, 0, 1, 2] (1, 2) 3

11 ( 1

3
, 1

2
) [1, 1, 0, 2] (− 1

3
, 0) B

20 ( 1

2
, 1) [1, 0, 1, 2] (2,∞) 4, 5

21 ( 1

2
, 1) [1, 1, 0, 2] (0, 1) 0, 1, 2

22 ( 1

2
, 1) [2, 0, 1, 1] ( 1

3
, 1) 1, 2

31 (1, 2) [1, 1, 0, 2] (1, 3) 3, 4
32 (1, 2) [2, 0, 1, 1] (1,∞) 3, 4, 5
33 (1, 2) [2, 1, 0, 1] (0, 1

2
) 0, 1

42 (2, 3) [2, 0, 1, 1] (∞,−3) 6
43 (2, 3) [2, 1, 0, 1] ( 1

2
, 1) 2

52 (3,∞) [2, 0, 1, 1] (−3,−1) 7, 8
53 (3,∞) [2, 1, 0, 1] (1,∞) 3, 4, 5
54 (3,∞) [2,−1, 0, 1] (2,∞) 4, 5
63 (∞,−3) [2, 1, 0, 1] (∞,−2) 6, 7
64 (∞,−3) [2,−1, 0, 1] (∞,−1) 6, 7, 8
65 (∞,−3) [2, 0,−1, 1] (1, 3) 3, 4
74 (−3,−2) [2,−1, 0, 1] (−1,− 1

2
) 9

75 (−3,−2) [2, 0,−1, 1] (3,∞) 5,

84 (−2,−1) [2,−1, 0, 1] (− 1

2
, 0) A, B

85 (−2,−1) [2, 0,−1, 1] (∞,−1) 6, 7, 8
86 (−2,−1) [1,−1, 0, 2] (−3,−1) 7, 8
95 (−1,− 1

2
) [2, 0,−1, 1] (−1,− 1

3
) 9, A

96 (−1,− 1

2
) [1,−1, 0, 2] (−1, 0) 9, A, B

97 (−1,− 1

2
) [1, 0,−1, 2] (∞,−2) 6, 7

A6 (− 1

2
,− 1

3
) [1,−1, 0, 2] (0, 1

3
) 0

A7 (− 1

2
,− 1

3
) [1, 0,−1, 2] (−2,−1) 8

B0 (− 1

3
, 0) [1, 0, 1, 2] (− 1

2
, 0) A, B

B6 (− 1

3
, 0) [1,−1, 0, 2] ( 1

3
, 1) 1, 2

B7 (− 1

3
, 0) [1, 0,−1, 2] (−1, 0) 9, A, B

TABLE III
THE SFT PARTITION OF THE REDUNDANT BIMODULAR SYSTEM
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Fig. 6. The labelled graph of the redundant bimodular system

(F,W,V). Table IV shows a computation of the setP(u)
of paths of a wordu ∈ LW .

An example of the run of the least norm algorithm can be
seen in Table V The first column gives the input pointern to

input number:u = 524600160
0: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B
1: 63, 64, 75, 86, 87, 88, 99, 9A
2: 633, 634, 635, 646, 757, 758
3: 6354, 6355, 6466, 6467, 6468, 7579, 758A, 758B
4: 64687, 64688, 75799, 7579A, 7579B, 758A0, 758B1, 758B2
5: 7579BA, 7579BB, 758A00, 758A01, 758A02, 758B13,

758B24, 758B25
6: 7579BBA, 7579BBB, 758A000, 758A001, 758A002,

758A013, 758A024, 758A025
7: 758A0009, 758A000A, 758A001B, 758A0020, 758A0021,

758A0022, 758A0133, 758A0134
8: 758A00099, 758A0009A, 758A0009B, 758A000A0,

758A001B1, 758A001B2
9: 758A0009BA, 758A0009BB, 758A000A00, 758A000A01,

758A000A02, 758A001B13, 758A001B24, 758A001B25

TABLE IV
PATHS WITH A GIVEN LABEL

the input vertexpn and input letterun. The second column
gives the output pointerm to the output lettervm whixh is
in the third column, so that the whole outputv can be read
in the third column from top to bottom. The fourth column
gives the state matrixX and the last column gives a part
of the input pathpn

an−→ pn+1 · · · pn+k
an+k−→ pn+k+1 in the

form pan
n pn+1 · · · pan+k

n+k pn+k+1. The algorithm gives good
practical results. For input numbers of several thousands
letters, the norms of the state matrices remain most of the
time below 100. This suggests that the algorithm may have
(at least statistically) linear time complexity.

Binary operations like addition, subtraction, multiplica-
tion and division can be computed in MNS with the use of
bilinear fractional transformations of the form

P (x, y) =
axy + bx + cy + d

exy + fx + gy + h
,

which are MT in both variablesx and y. If P (x, y) is
a biliner fractional transformation andM(x) is an MT,
thenP (M(x), y), P (x,M(y)), as well asM(P (x, y)) are
again biliner fractional transformations. For redundant sofic
subshifts, the least norm algorithm can be easily adapted
for bilinear fractional transformations. However, in the
redundant bimodular system, this binary algorithm does not
perform so efficiently as its unary version: the norm of
the state(2 × 4)-matrices steadily grows. Perhaps a more
sofisticated algorithm is necessary to keep the state vector
bounded. Other possibility is that the algorithm may work
in another sofic MNS with high redundancy.

Conjecture 1:There exists a redundant sofic Möbius
number system in which the multiplication and division
algorithms have average linear time complexity.
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input matrix:M = [2, 7, 1, 5]
input number:u = 5246001601235234544434252253324646675353
input path:758A001B134664667555554635755468799A86630
Φ(u) ∈ (−2.6340791995200,−2.6340791995174)
M(Φ(u)) ∈ (0.7319947483486, 0.7319947483500)

n m out state matrixX input path
0 0 [2, 7, 1, 5] 755284A600001
5 0 [3, 5, 3, 7] 0011B61031426
5 1 0 [3, 5, 0, 1] 0011B61031426
6 2 3 [7, 8, 2, 4] 11B6103142636
6 3 3 [5, 4, 4, 8] 11B6103142636
8 4 1 [3, 3, 2, 18] 1031426365426
8 5 1 [2,−6, 1, 9] 1031426365426
8 6 5 [1,−3, 2, 6] 1031426365426

10 7 6 [1, 1, 2, 8] 4263654263647
12 8 1 [−3,−3, 6, 5] 6542636475545
13 9 6 [1,−1, 7, 5] 4263647554545
15 10 0 [1, 0, 9, 6] 6475545454535
16 11 0 [2,−1, 8,−1] 7554545453544
16 12 0 [2,−1, 3, 0] 7554545453544
18 13 1 [4,−3, 6,−3] 5454535442653
19 14 0 [8,−7, 2,−1] 5453544265325
21 15 3 [12, 0, 8, 1] 5442653252755
21 16 2 [6, 0, 2, 1] 5442653252755
22 17 2 [6,−3,−2, 2] 4265325275535
25 18 4 [29,−1,−20, 4] 5275535342648
25 19 6 [19, 1,−10, 2] 5275535342648
26 20 5 [39, 1, 3, 5] 7553534264867
26 21 3 [18,−2, 3, 5] 7553534264867
26 22 2 [9,−1,−6, 6] 7553534264867
28 23 6 [10, 6,−9,−3] 5342648674969
29 24 5 [5, 4,−4,−2] 426486749696A

29 25 6 [3, 3,−2,−1] 426486749696A

31 26 5 [9,−3,−1, 1] 86749696A7856
32 27 4 [4,−6,−1, 3] 749696A785636
32 28 5 [2,−3, 1, 0] 749696A785636
34 29 3 [1,−5, 2,−4] 96A7856365330
35 30 1 [0,−6, 1,−5] A7856365330
35 31 2 [0,−3, 1,−2] A7856365330
37 32 2 [6,−3, 4,−1] 6365330
38 33 3 [2, 0, 8, 3] 65330
40 34 0 [8, 4, 9, 6] 0
40 35 2 [4, 2, 5, 4] 0
40 36 2 [2, 1, 3, 3] 0
40 37 1 [1,−1, 3, 3] 0
40 38 0 [1,−1, 1, 2] 0
40 39 7 [2,−2, 2, 1] 0
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