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Abstract

An interval number system is given by an initial interval cover of the extended
real line and by a finite system of nonnegative Möbius transformations. Each
sequence of transformations applied to an initial interval determines a sequence
of nested intervals whose intersection contains a unique real number. We adapt
in this setting exact real algorithms which compute arithmetical operations to
arbitrary precision.
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1. Introduction

In an influential manuscript, Gosper [3] shows that arithmetical operations
can be performed with redundant continued fractions. Based on these ideas,
Vuillemin [11], Kornerup and Matula [4] or Potts [10] developped exact real
arithmetical algorithms which work with arbitrary precision. Using the
methods of symbolic dynamics, exact real arithmetic has been generalized in
the theory of Möbius number systems introduced in Kůrka [5] and devel-
oped in Kůrka and Kazda [7]. Möbius number systems represent real numbers
by infinite words from a one-sided expansion subshift. The letters of the
alphabet stand for real orientation-preserving Möbius transformations and the
concatenation of letters corresponds to the composition of transformations. A
finite word of the expansion subshift represents an interval of real numbers.
An infinite word represents a sequence of nested intervals of its prefixes, whose
intersection contains a unique real number.

In Kůrka [6] we have characterized Möbius number systems whose expansion
subshifts are of finite type or sofic. In these systems, the intervals of finite words
are obtained by a particularly simple procedure. Intervals are represented by
(2×2)-matrices, and the interval of a word is obtained by matrix multiplication
from the interval of its immediate prefix. In the present paper we generalize this
approach and develop a theory of interval number systems. They are given
by finite interval covers W = {Wb : b ∈ B} of the extended real line R and by
finite sets of nonnegative (2× 2)-matrices F = {Fa : a ∈ A}. Each finite word
u ∈ B × An determines an interval Wu = Wu0Fu1 · · ·Fun and an infinite word
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u ∈ B×AN determines a sequence of nested intervals Wu[0,n)
whose intersection

contains a unique real number assigned to u. We characterize transformations
which can form interval number systems and show that there exists a class of
uniform interval number systems, in which the length of intervals decreases
uniformly and geometrically with the length of the words.

We modify the exact real algorithms so that they work with intervals instead
of transformations. This is faciliated by a calculus of intervals which is based
on matrix multiplication and results in a particularly simple tests used by the
algorithms.
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Figure 1: The Stern-Brocot tree (left) and its uniformization(right).

2. The Stern-Brocot tree

A simple number system is based on the Stern-Brocot tree (see Niqui [9] or
Kůrka [6]). We start with the interval Wλ = (0,∞) = ( 01 ,

1
0 ). If u ∈ {0, 1}∗ is

a binary word and Wu = (a0

a1
, b0
b1
), then Wu0 = (a0

a1
, a0+b0
a1+b1

), Wu1 = (a0+b0
a1+b1

, b0
b1
),

so we have W0 = ( 01 ,
1
1 ), W1 = ( 11 ,

1
0 ), W00 = ( 01 ,

1
2 ), W000 = ( 01 ,

1
3 ), etc.

(see Figure 1 left). For an infinite binary word u ∈ {0, 1}N we get a sequence
of nested intervals Wu[0,n)

and the intersection of its closures contains a unique

point Φ(u) ∈ [0,∞]. We get a continuous mapping Φ : {0, 1}N → [0,∞] given by
{Φ(u)} =

∩
n>0 Wu[0,n)

. The map Φ can be described with the help of continued

fractions. Each u ∈ {0, 1}N can be written in a unique way as u = 1a00a11a2 . . .,
where a0 ≥ 0 and an > 0 for n > 0. Then u is the expansion of the continued
fraction [a0, a1, a2, . . .] (see Kůrka [6] for a proof), i.e.,

Φ(u) = [a0, a1, a2, . . .] = a0 + 1/(a1 + 1/(a2 + · · · .

If we regard intervals I = (a0

a1
, b0
b1
) as (2 × 2)-matrices, then the recursive

formula of the Stern-Brocot tree can be written as matrix multiplication Wu0 =
Wu · ( 10 ,

1
1 ), Wu1 = Wu · ( 11 ,

0
1 ). This approach can be generalized. We obtain

a faster convergence if we modify the recursive formula to Wu0 = Wu · ( 20 ,
1
1 ),

Wu1 = Wu · ( 11 ,
0
2 ). The resulting number system can be seen in Figure 1 right.

We get a continuous map Φ : {0, 1}N → [0,∞] given by Φ(u) = φ(u)
1−φ(u) , where

φ(u) =
∑∞

i=0 ui · 2−i−1.
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3. The projective line

The extended real line R = R ∪ {∞} can be conceived as the projec-
tive space PL(R, 1), i.e., the space of one-dimensional subspaces of the two-
dimensional vector space R2. A one-dimensional subspace of R2 is determined
by any its nonzero vector x = (x0, x1) ∈ R2\{(0, 0)}. If x1 ̸= 0 then x represents
the real number x0/x1 ∈ R and vectors (x0, 0) represent ∞. We say that x is a
homogeneous coordinate of x0/x1 or ∞. We regard x ∈ R2\{(0, 0)} as a col-
umn vector and write it usually as a fraction x = x0

x1
. Two points x, y ∈ R2\{ 0

0}
represent the same projective point if det(x, y) = x0y1 − x1y0 = 0.

The stereographic projection d : R → T maps R to the unit circle

T = {z ∈ R2 : z20 + z21 = 1}. For x ∈ R we have d(x) = ( 2x
x2+1 ,

x2−1
x2+1 ). In

homogenous coordinates we get

d

(
x0

x1

)
=

(
2x0x1

x2
0 + x2

1

,
x2
0 − x2

1

x2
0 + x2

1

)
, d−1(z0, z1) =

z0
1− z1

.

The angle 0 ≤ φ(x, y) ≤ π between two nonzero vectors x, y ∈ R2 can be
computed by the cosine rule as φ(x, y) = arccos x·y

||x||·||y|| , where x ·y =
∑

i xiyi is

the scalar product and ||x|| =
√
x · x is the Euclidean norm. The angle between

−x and y is then π − φ(x, y) = arccos −x·y
||x||·||y|| . Taking the smaller of these two

angles we define the angle metric in R by

da(x, y) = arccos
|x · y|

||x|| · ||y||
= arctan

|det(x, y)|
|x · y|

∈ [0, π
2 ].

For x, y ∈ R we get da(x, y) = arccos |xy+1|√
(x2+1)(y2+1)

= arctan |x−y|
|xy+1| .

Alternatively, we consider the chord metric in R which is the distance
sinφ(x, y) = sin(π − φ(x, y)) of d(x) from d(y) in R2:

dc(x, y) =

√
||x||2 · ||y||2 − (x · y)2

||x|| · ||y||
=

| det(x, y)|
||x|| · ||y||

.

For x, y ∈ R we get dc(x, y) = |x−y|/
√
(x2 + 1)(y2 + 1). These two metrics are

equivalent. We have dc(x, y) ≤ da(x, y) ≤ π
2 dc(x, y), and limy→x

dc(y,x)
da(y,x)

= 1.

A bijective linear transformation of the vector space R2 is determined by a
(2 × 2)-matrix M = (Mij)i,j=0,1 with det(M) = M00M11 − M01M10 ̸= 0 via

(Mx)i =
∑1

j=0 Mijxj . The M -image of a one-dimensional subspace of R2 is a

one-dimensional subspace of R2, so M determines a projective isomorphism of
the projective space PL(R, 1) = R called fractional linear or Möbius trans-
formation. For λ ̸= 0, λM determines the same transformation as M , so a
Möbius transformation is a point of the three-dimensional projective space
PL(R, 3) of one-dimensional linear subspaces of the vector space R4. A nonzero
matrix in such a one-dimensional subspace is a homogenous coordinate of the
transfomation.
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Definition 1. A (positively oriented Möbius) transformation is a self-map of

R of the form M
(

x0

x1

)
= ax0+bx1

cx0+dx1
where a, b, c, d ∈ R and det(M) = ad−bc > 0.

The space of transformations is M(R) = {M ∈ PL(R, 3) : det(M) > 0}.

We denote by M−0 the left column and by M−1 the right column of M , so
(M−j)i = Mij . Often we write M as a pair M = (M−0,M−1) = (M00

M10
, M01

M11
) =

(ac ,
b
d ). Each Möbius transformation is one-to-one and its inverse is a Möbius

transformation (ac ,
b
d )

−1 = ( d
−c ,

−b
a ). Möbius transformations form a group.

The trace of a transformation M = (ac ,
b
d ) is tr(M) = |a + d|/

√
ad− bc. If

tr(M) > 2 then M has an unstable fixed point u(M) and a stable fixed point
s(M) such that limn→∞ Fn(x) = s(M) for each x ∈ R \ {u(M)}. We say in
this case that M is hyperbolic. If tr(M) = 2 then M has a unique fixed point
s(M) such that limn→∞ Fn(x) = s(M) for each x ∈ R and we say that M is
parabolic. If tr(M) < 2 then M has no fixed point in R and we say that M is
elliptic.

4. Intervals

A set interval is a connected subset of R. A proper set interval is a
nonempty set interval properly included in R. For a, b ∈ R, the open inter-
val I◦ of (a, b) consists of inner points of the counterclockwise arc from its left
endpoint a to its right endpoint b. If a, b ∈ R then

(a, b)◦ =

{
{x ∈ R : a < x < b} if a < b
{x ∈ R : a < x or x < b} ∪ {∞} if b < a

For a = r sinα
r cosα ∈ R we get d(a) = (sin 2α,− cos 2α), so the stereographic pro-

jection doubles the angles. Matrices with columns a = r sinα
r cosα , b =

s sin β
s cos β where

0 ≤ α < 2π, α < β < α + π therefore represent all proper set intervals. Since
det(a, b) = rs sin(α − β) < 0, we define intervals as (2 × 2)-matrices with neg-
ative determinant and write them as pairs I = (a0

a1
, b0
b1
) of their left and right

endpoints. A nonzero multiple of I represents the same interval, so intervals are
conceived as points of the three-dimensional projective space PL(R, 3).

Definition 2. An interval is a (2× 2)-matrix with negative determinant. Two
intervals are equal if one is a nonzero multiple of the other. The space of inter-
vals is I(R) = {I ∈ PL(R, 3) : det(I) < 0},

The length of an interval I = (a, b) is the length of the counterclockwise arc
from d(a) to d(b) divided by 2π. This is the same as the length of the clockwise
arc from a/||a|| to b/||b|| divided by π. We normalize by π to obtain the unit
length of the full interval R. If |I| ≤ 1

2 then |I| = da(a, b)/π:

|I| = 1

π
arccos

a · b
||a|| · ||b||

=
1

2
+

1

π
arctan

a · b
det(a, b)

.
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We can regard an interval I = (a, b) as a basis of the projective space PL(R, 1) =
R. If y ∈ R and x = Iy = (y0a+ y1b), then y = I−1x is the coordinate of x in
the basis I. If y0, y1 ≥ 0 and y0 + y1 = 1, then x is a convex combination
of the endpoints of I so x belongs to the closure of I. If both y0 and y1 are
nonpositive (and y0 + y1 = −1), then x is another representation of −x0

−x1
so x

belongs to the closure of I as well. For x ∈ R2 define sgn(x) ∈ {−1, 0, 1} as the
sign of x0 · x1, so sgn(0) = sgn(∞) = 0.

Definition 3. The interior and closure of an interval I ∈ I(R) are defined by

I◦ = {x ∈ R : sgn(I−1x) > 0}, I = {x ∈ R : sgn(I−1x) ≥ 0}.

Sometimes we use more conventional notation like [0,∞] = ( 01 ,
1
0 ) or (−∞, 0) =

(−1
0 , 0

1 )
◦. If J ∈ I(R) is an interval and M ∈ M(R) is a transformation, then

both matrix products MJ and JM are intervals. The interval MJ is the image
of J by M . If I = JM , then M = J−1I can be regarded as the coordinate
of I in the basis J . If M is a nonnegative matrix, then the columns of I are
convex combinations of those of J , so I is a subset of J . The sign of a matrix
X ∈ PL(R, 3) is defined similarly as the sign of a point:

sgn(X) =

 1 if ∃λ ̸= 0, ∀i, j, λXij > 0
0 if ∃λ ̸= 0, ∀i, j, λXij ≥ 0 and ∃i, j,Xij = 0

−1 otherwise

Proposition 4. Let I, J ∈ I(R) be intervals and let M ∈ M(R) be a transfor-
mation. Then
1. I ⊆ J iff sgn(J−1I) ≥ 0.
2. M(I) = {Mx : x ∈ I} = MI.
3. If I ⊆ J then MI ⊆ MJ .

Proof: 1. If sgn(J−1I) ≥ 0 and x ∈ I, then sgn(J−1x) = sgn((J−1I)·(I−1x)) ≥
0, so x ∈ J . To prove the converse, assume by contradiction that I = (a, b), I ⊆
J and sgn(J−1I) < 0. Since a, b ∈ I ⊆ J , we have J−1I = (J−1a, J−1b) = (c, d)
with sgn(c) ≥ 0 and sgn(d) ≥ 0. Since sgn(J−1I) < 0, either c0, c1 ≥ 0 and
d0, d1 ≤ 0, or c0, c1 ≤ 0 and d0, d1 ≥ 0. In the former case for any y ∈ R we get

z =
(

c0
c1
, d0

d1

)
·
(

−d0

c0
, −d1

c1

)
· y0

y1
=

(
0
D , −D

0

)
· y0

y1
= −Dy1

Dy0
, where D = det(c, d) > 0.

If sgn(y) > 0, then for w = (−d0

c0
, −d1

c1
) · y we have sgn(w) ≥ 0, so Iw ∈ I.

However, sgn(J−1Iw) = sgn(z) < 0 so Iw ̸∈ J and this is a contradiction. If
c0, c1 ≤ 0 and d0, d1 ≥ 0, the proof is analogous.
2. We have y ∈ MI iff sgn(I−1M−1y) ≥ 0 iff M−1y ∈ I iff y ∈ M(I).
3. If I ⊆ J , then sgn((MJ)−1MI) = sgn(J−1I) ≥ 0, so MI ⊆ MJ . □

Sometimes, it is convenient to regard a matrix M = (a, b) ∈ M(R) with
positive determinant as the interval (b, a). Thus we define the interior and
closure of M ∈ M(R) by

M◦ = {x ∈ R : sgn(M−1x) > 0}, M = {x ∈ R : sgn(M−1x) ≥ 0}.
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Definition 5. A system of intervals {Wb ∈ I(R) : b ∈ B} is an almost-cover
of R if

∪
b∈B Wb = R. It is a cover of R, if

∪
b∈B W ◦

b = R. A system of
transformations {Fa ∈ M(R) : a ∈ A} is an almost-cover of an interval J if∪

a∈A Fa = J . It is a cover of J , if
∪

a∈A F ◦
a = J◦.
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Figure 2: Nonredundant interval number systems: Continued fractions with F =
(( 1

0
, 1
1
), ( 1

1
, 0
1
)), W = ((−1

0
, 0
1
), ( 0

1
, 1
0
)) (left), and 1

2
-uniform system with F = (( 2

0
, 1
1
), ( 1

1
, 0
2
)),

W = ((−1
0
, 0
1
), ( 0

1
, 1
0
)).

5. Interval number systems

Consider a system of intervals W = {Wb : b ∈ B} indexed by an alphabet
(finite set) B, and a system of nonnegative transformations F = {Fa : a ∈ A}
indexed by an alphabet A. For a finite word u = u0u1 · · ·un ∈ B×A∗ of length
|u| = n + 1 denote by Wu = Wu0Fu1 · · ·Fun (we have u0 ∈ B and ui ∈ A for
i > 0). If m < n then v = u[0,m] is a prefix of u, so Wu ⊆ Wv.

Definition 6. We say that (W,F) is an interval number system if W =
{Wb : b ∈ B} is an almost-cover of R by intervals Wb ∈ I(R), F = {Fa : a ∈ A}
is an almost-cover of [0,∞] by nonnegative transformations Fa ∈ M(R) and if
limn→∞ |Wu[0,n)

| = 0 for each infinite word u ∈ B × AN. If W is a cover of R
and F is a cover of (0,∞), we say that the system (W,F) is redundant. An
interval number system determines the symbolic map Φ : B×AN → R defined
by {Φ(u)} =

∩
n>0 Wu[0,n)

.

Example 1 (Continued fractions, Figures 1 and 2 left). B = A = {0, 1},
W = ((−1

0 , 0
1 ), (

0
1 ,

1
0 )), F = (( 10 ,

1
1 ), (

1
1 ,

0
1 )).

Example 2 (Uniform 1
2 -system, Figures 1 and 2 right). B = A = {0, 1},

W = ((−1
0 , 0

1 ), (
0
1 ,

1
0 )), F = (( 20 ,

1
1 ), (

1
1 ,

0
2 )).
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Example 3 (Uniform 2
3 -system, Figure 3 left). B = {0, 1, 2, 3}, A = {0, 1},

F = (( 30 ,
1
2 ), (

2
1 ,

0
3 )), W = ((−1

0 , 0
1 ), (

−1
1 , 1

1 ), (
0
1 ,

1
0 ), (

1
1 ,

1
−1 )).

Example 4 (Uniform 2
4 -system, Figure 3 right). B = {0, 1, 2, 3}, A = {0, 1, 2},

F = (( 20 ,
1
1 ), (

3
1 ,

1
3 ), (

1
1 ,

0
2 )), W = ((−1

0 , 0
1 ), (

−1
1 , 1

1 ), (
0
1 ,

1
0 ), (

1
1 ,

1
−1 )).

We now generalize these examples.

Definition 7. Given integers q ≥ 2, 1 ≤ p ≤ q − 1, the p
q -uniform interval

number system has alphabet A = {0, 1, . . . , q − p} and transformations Fi =(
q−i
i , q−p−i

p+i

)
, 0 ≤ i ≤ q − p. W is an arbitrary almost cover of R.

Observe that for each Fi = (ac ,
b
d ) we have det(Fi) = pq, a + c = b + d = q,

a − b = d − c = p, so u(Fi) = −1 and s(Fi) =
q−p−i

i . If p ≥ 2, and if W is a
cover, then the system is redundant.
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Figure 3: Redundant systems: the homogenous 2
3
-system F = (( 3

0
, 1
2
), ( 2

1
, 0
3
)) (left) and

the 2
4
-system F = (( 4

0
, 2
2
), ( 3

1
, 1
3
), ( 2

2
, 0
4
)) (right). The initial cover is in both cases W =

((−1
0
, 0
1
), (−1

1
, 1
1
), ( 0

1
, 1
0
), ( 1

1
, 1
−1

)).

Theorem 8. For each p
q -uniform interval number system there exist positive

numbers 0 < C0 < C1 such that C0 · (p/q)|u| ≤ |Wu| ≤ C1 · (p/q)|u| for each
u ∈ B ×A∗.

Proof: Normalize the matrices of the transformations to the unit sums of their
columns, so Fi =

(
(q−i)/q

i/q , (q−p−i)/q
(p+i)/q

)
. Thus we work with a fixed particular

representations of the transformations and also with some fixed representations
of the endpoints of the intervals Wb. For u ∈ B × AN denote by Wu[0,n]

=
(xn, yn). Then each xn and yn is a convex combination of x0 and y0, so it lies
on the line connecting x0 with y0 (see Figure 4 left). By a simple computation
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x

y x-y

x0

y0

xn yn

φ(x, y) φ(x, x− y)

α0
αn

αy

Figure 4: The endpoints of Wu (left), and the chord distance (right).

we get (yn−xn) = (y0−x0)(
p
q )

n, so limn→∞ ||yn−xn|| = limn→∞ |Wu[0,n)
| = 0.

This means that (W,F) is an interval number system. The chord distance
dc(x, y) of nonzero vectors x, y ∈ R2 can be expressed from the angle φ(x, y−x)
as dc(x, y) = sinφ(x, y) = ||x− y|| sinφ(x, y − x)/||y|| (see Figure 4 right). We
get

dc(xn, yn) =

(
p

q

)n ||x0 − y0||
||yn||

sinαn,

where αn = φ(xn, yn − xn). For αy = φ(y0, y0 − x0) we get 0 < αy ≤ αn ≤
α0 < π, so min{sinαy, sinα0} ≤ sinαn ≤ 1,

min{||x0||, ||y0||} cos
φ(x0, y0)

2
≤ ||yn|| ≤ max{||x0||, ||y0||}.

Since dc(xn, yn) ≤ |Wu[0,n)
| ≤ π

2 dc(xn, yn), we get the result. □
Before we prove a general theorem characterizing transformations of interval

number systems we need two lemmas.

Lemma 1. For t ∈ R denote by vt = (t, 1) ∈ R2. Let r > 0, 0 < q < 1, s < t,
t+ qr < s+ r. Then φ(vt, vt+qr) ≤ q · φ(vs, vs+r) (see Figure 5 left).

Proof: For a fixed r, the function f(s) = φ(vs, vs+r) = arctan(s+r)−arctan(s)
has maximum at s = −r/2 and is decreasing in the interval [−r/2,∞). As-
sume that ||vt|| ≤ ||vt+qr||, so t ≥ −qr/2 (see Figure 5). Then φ(vs, vs+r) ≥
φ(vt, vt+r), so

φ(vt, vt+qr)

φ(vs, vs+r)
≤ φ(vt, vt+qr)

φ(vt, vt+r)
.

If t < u then (see Figure 5 right)

φ(vu, vu+qr)− φ(vu, vu+r) = −φ(vu+qr, vu+r) ≥ −φ(vt+qr, vt+r)

≥ φ(vt, vt+qr)− φ(vt, vt+r)

Multiplying this inequality by φ(vt, vt+qr) ≥ φ(vu, vu+qr), we get

−φ(vt, vt+qr) · φ(vu, vu+r) ≥ −φ(vu, vu+qr) · φ(vt, vt+r)

φ(vt, vt+qr)

φ(vt, vt+r)
≤ φ(vu, vu+qr)

φ(vu, vu+r)
.
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Since lim
u→∞

φ(vu, vu+qr)

φ(vu, vu+r)
= lim

u→∞

arctan(u+ qr)− arctan(u)

arctan(u+ r)− arctan(u)
= q,

we get the result. □

s s+rt t+qr t t+qr t+r u u+qr u+r

Figure 5: The length of subintervals

Lemma 2. If F is a nonnegative hyperbolic transformation with u(F ) ∈ (−∞, 0),
then there exists 0 < q < 1 such that |IF | ≤ q|I| for every interval I.

Proof: Let u(F ) = u0

−u1
with u0, u1 > 0, and normalize F = (ac ,

b
d ) so that

a, b, c, d ≥ 0 and d + bu1/u0 = 1. Set q = d − cu0/u1. By the assumption we
have (au0 − bu1)u1 = (du1 − cu0)u0, so

a− bu1/u0 = d− cu0/u1 = q

a+ cu0/u1 = d+ bu1/u0 = 1

Subtracting these equations we get 1−q = bu1/cu0+cu0/u1 > 0 so q < 1. Since
0 < ad − bc = ad − (d − q)(a − q) = q(a + d − q), we get q > 0. Let I = (x, y)
and IF = (z, w) = (ax+ cy, bx+ dy). Then

u0z = a · u0x+ (cu0/u1) · u1y

u1w = (bu1/u0) · u0x+ d · u1y

u1w − u0z = (u1d− u0c)y − (u0a− u1b)x = q · (u1y − u0x)

Thus u0z, u1w are convex combinations of u0x, u1y, so we have a situation in
Figure 5 left with s = u0x, t = u0z, t + qr = u1w, s + r = u1y. By Lemma 1
we have |IF | = φ(u0z, u1w) ≤ q · φ(u0x, u1y) = q · |I|. □

Theorem 9. Let W be an almost cover of R by intervals, and let F be an
almost-cover of [0,∞] by nonnegative transformations. Then (W,F) is an inter-
val number system iff every Fa is either parabolic with fixed point s(Fa) ∈ { 0

1 ,
1
0},

or hyperbolic with unstable fixed point u(Fa) ∈ (−∞, 0).

Proof: Assume that limn→∞ |Wu[0,n)
| = 0 for every u ∈ B × AN. Since each

Fa is nonnegative, Fa([0,∞]) ⊆ [0,∞]. It follows that Fa has a fixed point in
[0,∞], so it cannot be elliptic. If Fa is parabolic, then its fixed point cannot be
in (0,∞), since [0,∞] would not be invariant. Thus s(Fa) =

0
1 or s(Fa) =

1
0 .

Let Fa be hyperbolic. Since [0,∞] is invariant, it must contain the stable fixed
point s(Fa), but (0,∞) cannot contain the unstable fixed point u(Fa). Assume
by contradiction that u(Fa) =

1
0 , so Fa(x) = (x + c)/q for some c ≥ 0, q > 1.

For I = ( 01 ,
1
0 ) we get IFn =

(
c(1+q+···+qn−1)

qn , 1
0

)
, so

∩
n IF

n = ( c
q−1 ,

1
0 ) which
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is not a singleton. If u(Fa) =
0
1 , the proof is analogous. Thus u(Fa) ∈ (−∞, 0).

Conversely assume that each Fa is either parabolic with fixed point 0
1 or 1

0 or
hyperbolic with unstable fixed point u(Fa) ∈ (−∞, 0) and let u ∈ B×AN. If Fui

is hyperbolic for an infinite number of i, then limn→∞ |Wu[0,n)
| = 0 by Lemma

2. The composition of two parabolic transformations with fixed points 0 and ∞
is ( 10 ,

a
1 ) · (

1
b ,

0
1 ) = ( 1+ab

b , a
1 ) which is a hyperbolic transformation with unstable

fixed point in (−∞, 0). If there exists an infinite number of n such that Fun

is parabolic with fixed point 0
1 and Fun+1 is parabolic with fixed point 1

0 , then
limn→∞ |Wu[0,n)

| = 0 by Lemma 2. Thus the only remaining case is that for

each n ≥ n0, Fun is parabolic with the same fixed point, say 1
0 , so Fun = ( 10 ,

a
1 ).

If I = (x, y) then IFn = (x, nax+ y), so
∩

n>0 IF
n = {x}. □

6. Expansion of rational numbers

Arithmetical algorithms can work with interval number systems whose inter-
vals and transformations have integer entries. Denote by Z the set of integers,
Q = {x = x0

x1
̸= 0

0 : x0, x1 ∈ Z} the extended set of rational numbers and

M(Z) = {(a0

a1
, b0
b1
) ∈ Z4 : a0b1 − a1b0 > 0},

I(Z) = {(a0

a1
, b0
b1
) ∈ Z4 : a0b1 − a1b0 < 0}.

A labelled graph over an alphabet A is a structure G = (V,E, s, t, ℓ), where
V is the set of vertices, E is the set of edges, s, t : E → V are the source and
target maps, and ℓ : E → A is a labeling function. A (finite or infinite) path is
a sequence of edges e = e0e1 · · · such that t(ei) = s(ei+1). The label of a path
is the concatenation of the labels of its edges.

Given an interval number system (W,F), we say that u ∈ B × AN is an
expansion of x ∈ R, if Φ(u) = x. For rational numbers we obtain a simple
expansion algorithm based on the search of a path in the expansion graph.

Definition 10. Given an interval number system (W,F) with integer matrices,
the vertices of the expansion graph are (x, n) where x ∈ Q and n ∈ {0, 1}.
The labelled edges are

(x, 0)
b→ (W−1

b x, 1) if sgn(W−1
b x) ≥ 0,

(x, 1)
a→ (F−1

a x, 1) if sgn(F−1
a x) ≥ 0.

Proposition 11. An infinite word u ∈ B×AN is the label of a path with source
(x, 0) iff Φ(u) = x.

Proof: For a finite word u ∈ B × A∗ we prove by induction that x ∈ Wu iff u
is the label of a path with source (x, 0). □
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7. The unary algorithm

Assume that we want to compute a transformation M ∈ M(Z) in an interval
number system (W,F) over B × A, whose transformations and intervals have
integer entries. Given an input u ∈ B×AN we construct an output v ∈ B×AN

with MWu[0,n)
⊆ Wv[0,m)

. Here u[0,n) is the part of the input read and v[0,m)

is the part of the output constructed at time n + m. The algorithm can be
described as a search of a path in the unary graph:

Definition 12. Given an interval number system (W,F) with integer matrices,
the vertices of the unary graph are (X,n,m), where X ∈ M(Z)∪ I(Z), n,m ∈
{0, 1}. The labelled edges are

(X, 0, 0)
b/λ−→ (XWb, 1, 0),

(X, 1,m)
a/λ−→ (XFa, 1,m),

(X, 1, 0)
λ/b−→ (W−1

b X, 1, 1) if sgn(W−1
b X) ≥ 0,

(X, 1, 1)
λ/a−→ (F−1

a X, 1, 1) if sgn(F−1
a X) ≥ 0.

Edges with labels b/λ or a/λ are called absorption edges and those with labels
λ/b or λ/a are called emission edges. The label of a path is the concatenation
of the labels of its edges. The following proposition is easily proved by induction.

Proposition 13. If (M, 0, 0)
u/v−→ (X, 1, 1) is a path in the unary graph, then

X = W−1
v MWu and MWu ⊆ Wv.

For each vertex of the unary graph there exists several outgoing absorption
edges. For some vertices there exist outgoing emission edges as well. To get a
deterministic algorithm, we consider selectors, which select one of the outgoing
edges.

Definition 14. The Euclidean norm of X ∈ I(Z)∪M(Z) is ||X|| =
√∑

ij X
2
ij.

Its admissible sets are defined by

A(X) = {a ∈ A : sgn(F−1
a X) ≥ 0},

B(X) = {b ∈ B : sgn(W−1
b X) ≥ 0}.

Selectors are functions sA : M(Z)∪I(Z) → A∪{λ}, sB : M(Z)∪I(Z) → B∪{λ},
such that if sA(X) ̸= λ then sA(X) ∈ A(X) and if sB(X) ̸= λ then sB(X) ∈
B(X). The value λ of a selector signifies that an absorption is selected. To
make the algorithm faster, we use a threshold parameter of a selector. The
Lebesgue number of an open cover W = {Wb : b ∈ B} is the largest value
L(W) such that each interval I with |I| < L(W) is included in some Wb. If
X ∈ M(R) ∪ I(R) and |X| < L(W) then B(X) ̸= 0. If |X| < L(F) then
A(X) ̸= 0. The least norm selector sA with parameter τ selects a ∈ A(X)

11



threshold parameter: τ < min{L(W),L(F)};
input: X ∈ I(Z) ∪M(Z); output: sA ∈ A ∪ {λ};
begin

if |X| > τ then begin sA := λ; exit; end
r := 0;
for a ∈ A(X) do

if r = 0 or ||F−1
a X|| ≤ r then begin sA := a; r := ||F−1

a X||; end;
end;

Table 1: The least norm selector sa for (W,F)

input: M ∈ M(Z), u ∈ B ×AN; output: v ∈ B ×AN;
variables X ∈ M(Z) ∪ I(Z), s ∈ A ∪B ∪ {λ}, n,m ∈ N;
begin

X := MWu0 ; n := 1; m := 0;
repeat

if m = 0 then s := sB(X) else s := sA(X);
if s = λ then begin X := XFun ; n := n+ 1; end;
else begin

vm := s
if m = 0 then X := W−1

v0 X else X := F−1
vm

X;
m := m+ 1; end;

end;
end;

Table 2: The unary algorithm with selectors sB , sA.

with the smallest norm of F−1
a X provided |X| < τ and λ otherwise (see Table

1). If τ is chosen sufficiently small, then the overlaps of W are used effectively.
An algorithm which computes a transformation with the use of selectors is in
Table 2.

Theorem 15. If (W,F) is redundant interval number system, then for each
M ∈ M(Z), u ∈ B × AN the unary algorithm computes (in infinite time) v ∈
B ×AN with Φ(v) = M(Φ(u)).

Proof: For each m there exists nm such that the algorithm computes a path
with source (M, 0, 0) and label u[0,nm]/v[0,m]. Since MWu[0,nm]

⊆ Wv[0,m)
and

both Φ(v) and MΦ(u) belong to Wv[0,m]
, we get Φ(v) = MΦ(u). □

8. Singular transformations and intervals

Besides orientation-preserving transformations with positive determinant,
we consider orientation-reversing transformations with negative determinant,
singular transformations with zero determinant but positive norm, and the
zero transformation M = ( 00 ,

0
0 ). If det(M) ̸= 0, then M is regular. Singular
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transformations {M ∈ PL(R, 3) : det(M) = 0} form a quadric in the three-
dimensional projective space. A singular transformation has an unstable point
u(M) ∈ R and a stable point s(M) ∈ R such that M(x) = s(M) for each
x ̸= u(M). If s(M) = s and u(M) = u, then M = ( s0u1

s1u1
, −s0u0

−s1u0
). For x = u(M)

we have Mx = 0
0 . We interpret this fact in the sense that M(x) is arbitrary.

Each transformation M = (ac ,
b
d ) defines a closed graph (relation)

M̃ = {(x, y) ∈ R2
: (ax0 + bx1)y1 = (cx0 + dx1)y0}.

If M is singular then M̃ = (R × {s(M)}) ∪ ({u(M)} × R). If M is zero, then

M̃ = R×R. The operation of inversion (ac ,
b
d )

−1 = ( d
−c ,

−b
a ) is used to singular

transformations as well. If M is singular, then s(M−1) = u(M), u(M−1) =
s(M), and MM−1 is the zero transformation. By a simple verification we get

Proposition 16. If M is a singular transformation and F is a regular trans-
formation, then both MF and FM are singular and

s(MF ) = s(M), s(FM) = F (s(M)), u(FM) = u(M), u(MF ) = F−1(u(M).

The image M(I) of a regular interval I is defined by M(I) = {y ∈ R : ∃x ∈
I : (x, y) ∈ M̃}. For I = (a, b) we get

M(I) =


(M(a),M(b)) if det(M) > 0

(M(b),M(a)) if det(M) < 0
{s(M)} if det(M) = 0, u(M) ̸∈ I
R if det(M) = 0, u(M) ∈ I
R if M = 0

For a singular interval I = (a, b) ∈ PL(R, 3) with det(a, b) = 0 we define I◦

and I by the same formulas which we have used for regular intervals, adopting
the convention sgn( 00 ) = 0.

Proposition 17. Let I be a singular interval.
1. If sgn(u(I)) < 0 then I◦ = ∅, I = {s(I)}, |I| = 0.
2. If sgn(u(I)) = 0 then I◦ = ∅, I = R, |I| is not defined.
3. If sgn(u(I)) > 0 then I◦ = R \ {s(I)}, I = R, |I| = 1.
4. If J is a regular interval, then I ⊆ J iff sgn(J−1I) ≥ 0.

Proof: 1,2,3: If I = (ab ,
λa
λb ), then sgn(u(I)) = −sgn(λ), I−1x = −λ(ax1−bx0)

ax1−bx0
,

and the statements follow. If I = ( λcλd ,
c
d ), the proof is similar.

4. I ⊆ J iff sgn(u(I)) < 0 and s(I) ∈ J iff sgn(J−1I) ≥ 0. □

Proposition 18. Let M be a transformation, let I be an interval and assume
that either M or I is regular. Then M(I) = MI.
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Proof: Let M be regular and I singular. If sgn(u(MI)) = sgn(u(I)) < 0, then
I = {s(I)} and M(I) = {M(s(I))} = {s(MI)} = MI. If sgn(u(I)) ≥ 0, then
M(I) = R = MI.
If M is singular and I is regular then MI = {s(MI)} iff sgn(I−1(u(M)))} =
sgn(u(MI))} < 0 iff u(M) ̸∈ I iff M(I) = {s(M)}. Since s(MI) = s(M), we
get M(I) = MI in this case. If sgn(u(MI)) ≥ 0, then M(I) = R = MI. □

9. Tensors

Binary arithmetical operations like addition or multiplication are obtained
from bilinear functions T : R2 × R2 → R2. While a linear function M :
R2 → R2 is a 1-contravariant and 1-covariant tensor, a bilinear function is a
1-contravariant and 2-covariant tensor given by T (x, y)k =

∑1
i=0

∑1
j=0 Tkijxiyj

(see e.g., Bishop and Goldberg [1]). Such a tensor determines a function T :
R× R → R ∪ { 0

0} defined by

T (x, y) =
T000x0y0 + T001x0y1 + T010x1y0 + T011x1y1
T100x0y0 + T101x0y1 + T110x1y0 + T111x1y1

.

A nonzero multiple of a tensor defines the same function on R × R, so tensors
are conceived as points of the projective space PL(R, 7). They are sometimes
written as (4 × 2)-matrices T = (T000

T100
, T001

T101
, T010

T110
, T011

T111
). For a tensor T and

vectors x, y, z ∈ R we have matrices zT , T⋆x, T
⋆y obtained from T by fixing a

variable:

(T⋆x)kj =
∑
i

Tkijxi, (T
⋆y)ki =

∑
j

Tkijyj , (zT )ij =
∑
k

zkTkij .

For matrices I, J,K we define tensors T∗I, T
∗J and KT by

(T∗I)kij =
∑
p

TkpjIpi, (T
∗J)kij =

∑
q

TkiqJqj , (KT )kij =
∑
r

KkrTrij .

Then (T∗I)⋆x = T⋆(Ix), (T
∗J)⋆y = T ⋆(Jy). The operations with the first and

second argument of a tensor commute, so we adopt notations

T (x, y) = (T⋆x)y = (T ⋆y)x,

T (x, J) = (T⋆x)J = (T ∗J)⋆x,

T (I, y) = (T ⋆y)I = (T∗I)
⋆y,

T (I, J) = (T∗I)
∗J = (T ∗J)∗I.

The multiplication from the left commutes with the multiplication from the
right, so e.g., K(T∗I) = (KT )∗I = KT∗I. For a matrix I denote its left and
right columns by I−0, I−1, so (I−j)i = Iij . Similarly for a tensor T we denote
by Tk−−, T−i−, T−−j the marginal matrices obtained from T by fixing a
coordinate, and T−ij , Tk−j , Tki− marginal vectors obtained by fixing two
coordinates. A simple algebra shows that the tensor T (I, J) consists of T -images
of the endpoints of I and J :
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Proposition 19. For a tensor T and matrices I, J we have

T (I, J)−i− = T (I−i, J), T (I, J)−−j = T (I, J−j), T (I, J)−ij = T (I−i, J−j).

The image of intervals I, J by a tensor T is defined by

T (I, J) = {z ∈ R : ∃x ∈ I, ∃y ∈ J, (x, y, z) ∈ T̃}, where

T̃ = {(x, y, z) ∈ R3
: T (x, y)0z1 = T (x, y)1z0}.

The sign of a tensor is defined similarly as the sign of a matrix: it is nonnegative
if there exists nonzero λ such that all λTkij are nonnegative.

Definition 20. We say that T is a regular tensor, if for each x, y, z ∈ R, the
matrices zT , T⋆x, T

⋆y are nonzero.

A tensor is regular iff its pairs of marginal matrices are linearly independent,
i.e., if T0−− ̸= T1−−, T−0− ̸= T−1− and T−−0 ̸= T−−1 are different points
of the projective space PL(R, 3). Examples of regular tensors are ( 10 ,

0
0 ,

0
0 ,

0
1 )

(multiplication), ( 00 ,
1
0 ,

1
0 ,

0
1 ) (addition), or (

0
0 ,

1
0 ,

0
1 ,

0
0 ) (division).

Proposition 21. If T is a regular tensor and M is a regular transformation or
interval, then MT , T∗M and T ∗M are regular tensors.

Proof: (T∗M)⋆x = T⋆(Mx). □

Theorem 22. For a regular tensor T and regular intervals I, J,K we have
T (I, J) ⊆ K iff sgn(K−1T (I, J)) ≥ 0.

Proof: Assume that sgn(K−1T (I, J)) ≥ 0, x ∈ I, y ∈ J , and x, y, z ∈ T̃ . For
u = I−1x we have sgn(u) ≥ 0 and x = Iu, so

(T⋆x)J = (T⋆(Iu))J = ((T∗I)⋆u)J = ((T∗I)
∗J)⋆u = T (I, J)⋆u.

Since y ∈ J , (y, z) ∈ T⋆x, and T⋆x is nonzero, we get by Proposition 18 z ∈
(T⋆x)(J) = (T⋆x)J ⊆ K, so z ∈ K.
Conversely if T (I, J) ⊆ K, then

(T⋆I−i)J = (T⋆I−i)(J) ⊆ K, (T ⋆J−j)I = (T ⋆J−j)(I) ⊆ K.

Since K is regular, we get by Proposition 17

sgn(K−1T (I, J)−i−) = sgn(K−1(T⋆I−i)J) ≥ 0,

sgn(K−1T (I, J)−−j) = sgn(K−1(T ⋆J−j)I) ≥ 0.

It follows sgn(K−1T (I, J)) ≥ 0. □
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Definition 23. Given an interval number system (W,F) we consider labelled
binary graph whose vertices are (X,n,m) where X ∈ PL(R, 7), n,m ∈ {0, 1}.
The labelled edges are

(X, 0, 0)
b/c/λ−→ (X(Wb,Wc), 1, 0),

(X, 1,m)
a/λ/λ−→ (X∗Fa, 1,m),

(X, 1,m)
λ/a/λ−→ (X∗Fa, 1,m),

(X, 1, 0)
λ/λ/b−→ (W−1

b X, 1, 1) if sgn(W−1
b X) ≥ 0,

(X, 1, 1)
λ/λ/a−→ (F−1

a X, 1, 1) if sgn(F−1
a X) ≥ 0.

Proposition 24. If (T, 0, 0)
u/v/w−→ (X, 1, 1) is a path in the binary graph, then

X = W−1
w T (Wu,Wv) and T (Wu,Wv) ⊆ Ww. If (u, v, w) ∈ (B × AN)3 is the

label of an infinite path with the source (T, 0, 0), then T (Φ(u),Φ(v)) = Φ(w).

Theorem 22 yields a simple algorithm for the computation of binary opera-
tions based on the search of a path in the binary graph. However, the algorithm
is not guaranteed to compute an infinite output w ∈ B×AN. This happens e.g.,
if we try to compute indefinite expressions like 0 · ∞.

10. Rational functions

A rational function F : R → R of degree q is a function of the form

F (x) =
F00x

q
0 + F01x

q−1
0 x1 + · · ·+ F0qx

q
1

F10x
q
0 + F11x

q−1
0 x1 + · · ·+ F1qx

q
1

,

where F00

F10
̸= 0

0 and
F0q

F1q
̸= 0

0 . Rational functions are obtained from tensors. A

tensor T is symmetric if Tijk = Tikj for each i, j, k. For a rational function
F of degree 2 there exists a symmetric tensor T such that F (x) = T (x, x). For
each interval I we have F (I) = {F (x) : x ∈ I} ⊆ T (I, I), so F (I) ⊆ J provided
sgn(J−1T (I, I)) ≥ 0. If T is symmetric, then T (I, I) is symmetric as well, so
the algorithm which computes F can be performed with symmetric tensors.

This procedure generalizes to rational functions of higher degrees. A rational
function of order q is obtained from a symmetric tensor Tk,i1,...,iq of order q+1.
If F is a rational function of order q and M is a transformation, then both
compositions F ◦M and M ◦ F are rational functions of order q as well. The
coefficients of F form a ((q + 1) × 2)-matrix and the composition MF is the
matrix of M ◦ F . We obtain a simple criterion for the inclusion:

Theorem 25. Let F : R → R be a rational function and I, J intervals. If
sgn(J−1F ◦ I) ≥ 0, then F (I) ⊆ J .

The algorithm for the computation of a rational function has the same form
as the unary algorithm in Table 2. The only difference is that the products
XWb, XFa should be replaced by the compositions X ◦Wb and X ◦ Fa.
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system: 1 2 3 4
linear: 0.02 0.50 1.29 0.51
quadratic: 0.10 0.99 2.02 0.99
cubic: 0.28 0.98 1.98 1.00

Table 3: The estimates of the quotient q = limk→∞ log2 ||Xk||/k during the computations of
fractional linear function (3x+ 1)/(x+ 2), quadratic function x2 and cubic function x3. The
number of the system refers to Examples 1,2,3,4.

11. Numerical results

The time complexity of the unary algorithm depends on the rate of growth
of the state matrix X. If its entries are expressed in the positional binary
system, then the length of this representation (the bit length of X) is of the
order log2 ||X||. The multiplication of X by a matrix M requires log2 ||X|| ·
log2 ||M || elementary operations on their binary representations. Thus there
exists a constant C > 0 such that each step of the algorithm requires at most
C · log2 ||X|| elementary operations. If Xk are states of a path computed by the
unary algorithm, then the time of the computation of n steps is of the order
C
∑n−1

k=0 log2 ||Xk||.
In Delacourt and Kůrka [2] we have shown that for modular Möbius number

systems, whose transformations have unit determinant, the norm of the state
matrix remains bounded during the computation, so the unary algorithm has
linear time complexity. This result applies to our Example 1 whose transforma-
tions have unit determinant as well. This system, however, has the disadvantage
of slow convergence and nonuniform length of its intervals.

In general we have ||XF || ≤ ||X|| · ||F ||, so log2 ||Xk|| ≤ qk, where X can
be a transformation, tensor or rational function, and q = max{||Fa|| : a ∈ A}.
It follows that the time complexity of the computation of path of length n is
bounded by Cqn2/2. In some systems, however, the quotient q can be smaller,
since the entries of X cancel by a common factor which divides det(Fa) (see
Kůrka and Delacourt [8]). The most effective systems seem to be those whose
determinant is a power of 2, like the nonredundant uniform 1

2 -system or redun-
dant uniform 2

4 -system. The results of some numerical experiments can be seen
in Table 3 which displays the estimates of the quotient q = limk→∞ log2 ||Xk||/k
for several interval number systems with the linear, quadratic and cubic func-
tions. We can see that for the systems whose transformations have determinant
two we get smaller quotient q.
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