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Abstract. We investigate iterative systems consisting of Möbius transforma-
tions on the extended real line. We characterize systems with unique attractor
and give some sufficient conditions for minimality.

1. Introduction. Iterative systems consisting of contractions have been used in
Barnsley [1] or Edgar [2] to generate self-similar fractal sets. Iterative systems can
be viewed as dynamical systems over a free semigroup and their theory can be
generalized beyond the assumption of contractivity. Many concepts of topological
dynamics can be generalized to this setting, for example attractors, minimality,
transitivity or chain-transitivity.

In [4] we have used iterative Möbius systems to construct some symbolic represen-
tations of real numbers. In the present paper we investigate topological properties
of iterative Möbius systems. We show that a Möbius system has a unique trivial
attractor whenever it contains a parabolic or an elliptic transformation. In the case
of hyperbolic Möbius systems, the existence of a nontrivial attractor depends on the
values of quotients. We give a necessary and sufficient condition that a system of
two hyperbolic transformations has only the trivial attractor. We show that some
of these systems are not transitive. Finally we give two sufficient conditions for
minimality.

2. Topological dynamics. Given a finite alphabet A, we denote by A+ = ∪n≥1A
n

the set of words with letters from A. With the binary operation of concatenation,
A+ is the free semigroup over A. An iterative system over A+ is a pair (X, F ),
where X is a compact metric space and F : A+ × X → X is a map such that
for each u ∈ A+, Fu : X → X is continuous, and Fuv(x) = Fu(Fv(x)). The
system is generated by continuous maps (Fa : X → X)a∈A. A special case is an
iterative system over N = {1, 2, 3, . . .}, which is the free semigroup over a one-
letter alphabet. In this case the system is generated by a map F1 : X → X . A
morphism Φ : (X, F ) → (Y, G) of two iterative systems over A+ is a continuous
map Φ : X → Y such that ΦFa = GaΦ for all a ∈ A. A factor is a surjective
morphism, a subsystem is an injective morphism, and a conjugacy is a bijective
morphism.
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Definition 1. Let (X, F ) be an iterative system over A+ and denote by d the
distance on X . The orbit relation O, the recurrence relation R, the nonwan-

dering relation N, and the chain relation C are defined on X by

(x, y) ∈ O ⇔ ∃u ∈ A+, y = Fu(x)

(x, y) ∈ R ⇔ ∀ε > 0, ∃u ∈ A+, d(y, Fu(x)) < ε

(x, y) ∈ N ⇔ ∀ε > 0, ∃u ∈ A+, ∃z, d(z, x) < ε, d(Fu(z), y) < ε

(x, y) ∈ C ⇔ ∀ε > 0, ∃u ∈ A+, ∃x0, . . . , x|u|, x = x0, x|u| = y, &

∀i < n, d(Fui
(xi), xi+1) < ε

A system (X, F ) is minimal if R = X × X , transitive if N = X × X and
chain-transitive if C = X ×X . The orbit of a point is O(x) = {Fu(x) : u ∈ A+}.
The set of periodic points is |O| = {x ∈ X : (x, x) ∈ O}. The set of transitive

points is T = {x ∈ X : O(x) = X}. It is easy to see that a system is minimal iff
it has no proper subsystems iff each its point is transitive (see Kůrka [3]).

A subset Y ⊆ X is invariant, if Fa(Y ) ⊆ Y for all a ∈ A. If Y is invariant and
closed, then (Y, F ) is a subsystem of (X, F ). A set Y ⊆ X is strongly invariant

if Y =
⋃

a∈A Fa(Y ). A closed set W ⊆ X is inward if
⋃

a∈A Fa(W ) ⊆ W ◦. A
set Y ⊆ X is an attractor, if there exists an inward set W such that Y = Ω(W )
is its omega-limit. A one-point attractor is called a stable fixed point. The
omega-limit of a set W ⊆ X is

Ω(W ) =
⋂

n≥0

⋃

m≥n

⋃

u∈Am

Fu(W ).

Example 1. Given an alphabet A, let AN be the symbolic space of infinite words
over A and define Sa : AN → AN by Sa(x) = ax. Then the shift iterative system

(AN, S) over A+ is minimal and has a dense set of periodic points.

Proposition 2. Assume that (X, F ) is an iterative system over A+ and B ⊂ A. If
(X, F ) is minimal over B+, then (X, F ) is minimal over A+. Analogous statements
hold for transitivity and chain-transitivity.

Proposition 3. Let (X, F ) be an iterative system over A+. The following condi-
tions are equivalent.

(1) (X, F ) is transitive.
(2) For nonempty open sets U, V ⊆ X there exists u ∈ A+ with Fu(U) ∩ V 6= ∅.
(3) The set of transitive points T is residual.
(4) The set of transitive points T is dense.

Proof. (1) ⇔ (2) is trivial.
(2) ⇒ (3): Assume that (X, F ) is transitive. Let (Un)n≥0 be a countable base of
X . For n ≥ 0 set Vn :=

⋃
u∈A+ F−1

u (Un). Then Vn are open and dense and their
intersection T =

⋂
n≥0 Vn is residual.

(3) ⇒ (4): By the Baire category theorem a residual set is dense.
(4) ⇒ (2): If U, V are nonempty open sets, then there exists x ∈ U∩T and therefore
Fu(x) ∈ V for some u ∈ A+.

Proposition 4. Let (X, F ) be an iterative system over A+.

(1) If Y ⊆ X is an attractor, then Y is strongly invariant and C-invariant, i.e., if
x ∈ Y and (x, y) ∈ C, then y ∈ Y .

(2) If (X, F ) is chain-transitive, then the only attractor is X.
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The proof is analogous to the proof of Theorem 2.69 in Kůrka [3].

3. Dynamics in the Hausdorff space. The Hausdorff space K(X) of a metric
space X is the space of compact subsets of X with metric

D(Y, Z) = inf{ε > 0 : Y ⊆ Bε(Z), Z ⊆ Bε(Y )}.
Here Bε(Y ) = {x ∈ X : d(x, Y ) < ε}, where d(x, Y ) = inf{d(x, y) : y ∈ Y }.
If X is compact then so is K(X). If (X, F ) is an iterative system over A+, then

F̃ : K(X) → K(X) defined by F̃ (Y ) =
⋃

a∈A Fa(Y ) is continuous, so (K(X), F̃ ) is
an iterative system over N. Recall that a map F : X → X is a contraction, if
there exists a positive q < 1 such that for all x0, x1 ∈ X we have d(F (x0), F (x1)) ≤
q · d(x0, x1).

Theorem 5 (Barnsley [1]). Let (X, F ) be an iterative system over A+ such that all
Fa are contractions. Then (X, F ) has a unique attractor Y which is the unique stable

fixed point of (K(X), F̃ ). Moreover there exists a factor map Φ : (AN, S) → (Y, F )
defined by

Φ(u) =
⋂

n>0

Fu1...un
(X).

Proposition 6. Let (X, F ) be an iterative system over A+.

(1) If Y is an attractor such that (Y, F ) is minimal, then Y is a stable fixed point

in (K(X), F̃ ).

(2) If Y is a stable fixed point in (K(X), F̃ ), then Y is an attractor in (X, F ).

The proof is straightforward. Next examples show that the assumption of mini-
mality in Proposition 6 can be relaxed, but transitivity is not strong enough.

Example 2. If (X, F ) is a disjoint union of finitely many minimal dynamical

systems, then X is a stable fixed point in (K(X), F̃ ).

Example 3. Let (X, F ) be a transitive system over N with a dense set of periodic

points. Then X is not a stable fixed point in (K(X), F̃ ).

Proof. For each ε > 0 there exists a finite invariant set Xε ⊂ X of periodic points

such that D(X, Xε) < ε and F̃ (Xε) = Xε.

4. Möbius systems. The extended real line R := R∪{∞} is homeomorphic to the
unit circle T := R/2πZ which we parametrize by T = (−π, π]. The stereographic
projection yields mutually inverse transformations x : T → R and t : R → T given
by x(t) = tan t

2 , t(x) = 2 arctanx. The circle distance on T yields a metric

d(x, y) := min{|t(x) − t(y)|, 2π − |t(x) − t(y)|}
on R. Given a, b ∈ R, define the interval (a, b) as

(a, b) =

{
{x ∈ R : a < x < b} if a < b

{x ∈ R : a < x or x < b} if b < a

Closed intervals are defined analogously. We write x1 ≺ x2 ≺ · · · ≺ xn provided
n ≥ 3 and (xi, xi+1), (xj , xj+1) are disjoint intervals for i 6= j. If either x1 ≺ x2 ≺
· · · ≺ xn or xn ≺ xn−1 ≺ · · · ≺ x1, then we say that (xn) is a monotone sequence.
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A real, orientation preserving Möbius transformation is a self-map of the ex-
tended real line of the form M(a,b,c,d)(x) = ax+b

cx+d
, where ad − bc > 0. For a Möbius

transformation M = M(a,b,c,d) we have

M•(x) := lim
y→x

d(M(x), M(y))

d(x, y)
=

(ad − bc)(x2 + 1)

(ax + b)2 + (cx + d)2
.

A Möbius transformation M is hyperbolic, if it has two fixed points in R, par-

abolic if it has a unique fixed point in R, and elliptic, if it has no fixed point in
R. These cases are determined by the trace tr(M(a,b,c,d)) := (a + d)/

√
ad − bc.

If |tr(M)| < 2 then M is elliptic, if |tr(M)| > 2 then M is hyperbolic and if
|tr(M)| = 2 then M is parabolic unless it is the identity. If s, r are fixed points of a
hyperbolic transformation, then M•(s) ·M•(r) = 1. If s is stable, then M•(s) < 1.
An elliptic transformation M(a,b,c,d) is conjugated to a self-map z 7→ z · eiα on the
unit complex circle, and α is called the rotation angle of M(a,b,c,d). If ad− bc = 1
then

cosα =
(a + d)2 − 2

2
, sin α =

(a + d)
√

4 − (a + d)2

−2 · sgn(c)

We say that an iterative system (R, F ) over A+ is a Möbius system, if all
Fa are Möbius transformations. We say that a Möbius system is hyperbolic, if
all Fa are hyperbolic. Since Möbius transformations are surjective, the maximal
(trivial) attractor of a Möbius system is R. In some Möbius systems, non-trivial

attractors exist as well.

Proposition 7. Let (R, F ) be an iterative Möbius system. If Fu is either parabolic
or elliptic for some u ∈ A+, then (R, F ) has only the trivial attractor.

Proof. Any Möbius system over N which consists of a parabolic or an elliptic trans-
formation is chain-transitive. By Proposition 2, any A+-system which contains a
parabolic or elliptic transformation is chain-transitive and therefore has only the
trivial attractor.

Proposition 8. Let (R, F ) be an iterative Möbius system. If for some u ∈ A+,
Fu is an elliptic transformation with rotation angle α such that α/2π is irrational,
then (R, F ) is minimal.

Proof. Any iterative system over N consisting of an elliptic transformation with
irrational rotation angle is minimal.

Proposition 9. Let (R, F ) be a hyperbolic Möbius system such that there exists a
closed interval W ⊂ R which contains in its interior stable fixed points of all Fa and
does not contain the unstable fixed point of any Fa. Then (R, F ) has a nontrivial
attractor Y which is a factor of (AN, S). Moreover, (Y, F ) is minimal and has a
dense set of periodic points.

Proof. If the condition is satisfied, then W is an inward set. There exists n such that
for any u ∈ An, Fu is a contraction on W . There exists a factor map Φ : (AN, S) →
(Ω(W ), F ) defined by {Φ(u)} =

⋂
n>0 Fu1...un

(W ). It follows that (Ω(W ), F ) is
minimal and has a dense set of periodic points.

A hyperbolic Möbius transformation Fa is determined by its stable fixed point
sa, its unstable fixed point ra and its quotient qa < 1, which satisfy

Fa(sa) = sa, Fa(ra) = ra, F •
a (sa) = qa, F •

a (ra) = 1/qa.
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Figure 1. Hyperbolic Möbius systems

We consider now a Möbius system (R, Fa, Fb) consistsing of two hyperbolic trans-
formations. If the system does not satisfy the condition of Proposition 9, then either
sa = rb or sb = ra or sa, ra, sb, rb is a monotone sequence. We are going to treat
now these cases.

Proposition 10. Let (R, Fa, Fb) be a hyperbolic Möbius system.

(1) If sa = rb and sb = ra, then (R, Fa, Fb) has only the trivial attractor and is not
transitive. Both intervals [sa, sb] and [sb, sa] are invariant (Figure 1 left).

(2) If sa = rb ≺ ra ≺ sb, then (R, Fa, Fb) has only the trivial attractor and is not
transitive. The interval [sb, sa] is invariant (Figure 1 center).

Proof. For each x, y ∈ R we have (x, sa) ∈ C, (rb, y) ∈ C. Since C is transitive,
(x, y) ∈ C and the system is chain-transitive.

qb=0.05 qb=0.50 qb=0.95

−π

π

Figure 2. Bifurcation diagrams of alternating Möbius systems

5. Alternating Möbius systems. We say that a Möbius system (R, Fa, Fb) is
alternating, if sa ≺ ra ≺ sb ≺ rb ≺ sa. In this case the existence of a nontrivial
attractor depends on the quotients qa, qb. For fixed sa, ra, sb, rb denote by ta the
unique parameter qa for which Fa(sb) = rb (Figure 1 right), and by tb the unique pa-
rameter qb for which Fb(sa) = ra. In the examples and figures we use the standard

alternating system given by

Fa(x) = qax + 1 − qa, sa = 1, ra = ∞, ta = 0.5,

Fb(x) =
x

−(1 − qb)x + qb

, sb = −1, rb = 0, tb = 0.5.
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In Figure 2 we show bifurcation diagrams of standard alternating Möbius systems
for fixed qb and variable qa ∈ (0, 1). For each parameter (qa, qb) a random orbit is
displayed.

tb

ta
√

ta

tb

√
tb

ta
√

ta

qb

qa

qb

qa

Figure 3. Parameter space of an alternating Möbius system

Denote by P = (0, 1) × (0, 1) the parameter space of an alternating Möbius
system. We exclude the parameters with qa = 1 or qb = 1 whose transformations
are identities. For u ∈ A+ denote by Uu := {(qa, qb) ∈ P : Fu is hyperbolic}. For
the standard alternating system we get

tr(Fab) = −(qaqb − 2qa − 2qb + 1)/
√

qaqb,

Uab = {(qa, qb) ∈ P : (qaqb − 2qa − 2qb + 1)2 > 4qaqb}.
The set Uab (Figure 3 left - thick line) consists of three connected components
separated by points (0, tb) and (ta, 0). The set Ua2b = {(qa, qb) ∈ P : (q2

a, qb) ∈ Uab}
(Figure 3 left - thin line) consists of three connected components which are separated
by points (0, tb) and (

√
ta, 0). The position of fixed points of Fab and Fba is different

in each component of Uab (see Figure 4). For (qa, qb) ∈ Uab we have

qa < ta & qb < tb ⇒ sa ≺ ra ≺ rba ≺ sba ≺ sb ≺ rb ≺ rab ≺ sab ≺ sa

qa > ta ⇒ sa ≺ ra ≺ sb ≺ sba ≺ rba ≺ sab ≺ rab ≺ rb ≺ sa

qb > tb ⇒ sa ≺ sab ≺ rab ≺ sba ≺ rba ≺ ra ≺ sb ≺ rb ≺ sa

Set

U :=
⋂

n≥1

(Uanb ∩ Uabn) =
⋃

n∈Z

Un

where Z is the set of integers, and the connected components Un of of U are

U0 = Uab ∩ ((0, ta) × (0, tb))

Un = Uanb ∩ Uan+1b ∩ (( n
√

ta, n+1
√

ta) × (0, tb)), n > 0

U−n = Uabn ∩ Uabn+1 ∩ ((0, ta) × ( n
√

tb,
n+1
√

tb)), n > 0

The boundary ∂U of U is shown in Figure 3 right (thick line).

Theorem 11. An alternating Möbius system (R, Fa, Fb) has a nontrivial attractor
if and only if (qa, qb) ∈ U .
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Figure 4. Fixed points of an alternating Möbius system

Proof. If (qa, qb) 6∈ U , then there exists u ∈ A+ such that Fu is not hyperbolic, so
(Fa, Fb) has a unique attractor by Proposition 7. Conversely assume that (qa, qb) ∈
U and let n be the number of the connected component Un of U to which (qa, qb)
belongs. If n = 0 and (qa, qb) ∈ U0, then sba ≺ sb ≺ sab ≺ sa ≺ sba (Figure 4 left).
Set V0 = [sba, sb], V1 = [sab, sa]. Since Fa(sba) = sab and Fb(sab) = sba, we get that
V0 ∪ V1 is an invariant set. Since the endpoints of Vi are stable periodic points, for
each ε > 0 there exist closed intervals Vi ⊂ Wi ⊂ Bε(Vi), such that W0 ∪ W1 is an
inward set, so there exists a nontrivial attractor. If n = 1 and (qa, qb) ∈ U1, then
sbaa ≺ sb ≺ sba ≺ saba ≺ sab ≺ saab ≺ sa (Figure 4 right). Set V0 = [sbaa, sba],
V1 = [saba, sab], V2 = [saab, sa]. Then Fa(Vi) ⊆ Vi+1 for i = 0, 1, Fa(V2) ⊆ V2, and
Fb(Vi) ⊆ V0 for i = 0, 1, 2, so V0 ∪ V1 ∪ V2 is an invariant set. Since the endpoints
of Vi are stable periodic points, there exist closed intervals Vi ⊂ Wi ⊂ Bε(Vi) such
that W0 ∪W1 ∪W2 is an inward set. If (qa, qb) ∈ U2, then we set V0 = [sbaaa, sbaa],
V1 = [sabaa, saba], V2 = [saaba, saab], V3 = [saaab, sa]. Anologously we proceed in
each connected component Un of U .

Theorem 12. Let (R, Fa, Fb) be an alternating Möbius system such that (qa, qb) ∈
∂U (the boundary of U). Then the system has a unique attractor but is not transi-
tive.

Proof. Since the system contains a parabolic transformation, it has a unique at-
tractor by Proposition 7. If (qa, qb) ∈ ∂U0, then sb ≺ rb ≺ rab = sab ≺ sa ≺ ra ≺
rba = sba. The set V0 ∪ V1 = [sba, sb] ∪ [sab, sa] is invariant, so the system is not
transitive. Similarly if (qa, qb) ∈ ∂U1, then the set V0 ∪ V1 ∪ V2 is invariant. An
analogous argument works in each connected component of ∂U .

Proposition 13. The set {(qa, qb) ∈ P : (R, Fa, Fb) is minimal} is dense in P \U .

Proof. The trace and the rotation angle of Fab are not constant in any open subset
of P \Uab. If W ⊂ P \U is a nonempty open set, then there exists n ≥ 1 such that
either W ∩ Uanb 6= ∅ or W ∩Uabn 6= ∅. In either case there exists (qa, qb) ∈ W such
that the rotation angle of Fanb or Fabn is irrational, so the system is minimal by
Proposition 8.
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Proposition 14. Let (R, Fa, Fb) be an alternating Möbius system and let there
exist u, v, w ∈ A+ such that Fu, Fv, Fw are hyperbolic, su ≺ Fv(su) ≺ Fu(sv) ≺ sv,
su ≺ rw ≺ sv, and both Fu and Fv are contractions on (su, sv). Then (R, Fa, Fb) is
a minimal system (Figure 5).

su rw sv

Fu Fv Fu Fv

Figure 5. Minimal alternating Möbius systems

Proof. We show that for any nonempty open interval V there exist words y, z ∈ A+

such that F−1
y (V ) ∪ F−1

z (V ) = R. We consider three cases.

1. If su ∈ V , then F−1
un (V ) converges to R \ {ru}, and for some n > 0 we get

F−1
un (V ) ∪ F−1

unv(V ) = R. An analogous argument works if sv ∈ V .
2. If V ⊆ Y = (su, sv), then since Fu, Fv are contractions on Y and Fu(Y )∪Fv(Y ) =
Y , there exists z ∈ {u, v}+ such that F−1

z (V ) ∩ {su, sv} 6= ∅, and we apply case 1.
3. If V is arbitrary, then for some n, F−1

wn (V ) ∩ Y 6= ∅, and we apply case 2.

The values of parameters which satisfy the condition of Proposition 14 (up to
the length 7 of words u, v and w) are shown in Figure 3 right. Note that the set of
such parameters is open.

Conjecture. For each (qa, qb) ∈ P \U , the alternating Möbius system is minimal.
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