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MINIMALITY IN ITERATIVE SYSTEMS

OF MÖBIUS TRANSFORMATIONS

Abstract. We study the parameter space of an iterative system consisting
of two hyperbolic disc Möbius transformations. We identify several classes of
parameters which yield discrete groups whose fundamental polygons have sides

at the Euclidean boundary. It follows that these system are not minimal.
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1. Introduction. Iterative systems consisiting of contractions have been used in
Barnsley [1] or Edgar [3] to generate self-similar fractal sets. In Kůrka [5] we
have investigated topological dynamics of iterative systems regarded as actions of
a free semigroup. In particular we have studied iterative systems consisting of real
Möbius transformations and we have characterized those which have non-trivial
attractors. We have studied in detail the parameter space of an alternating iterative
system consisting of two hyperbolic transformations whose stable fixed points are
separated by their unstable fixed points. The eliptical region consists of parameters
for which there exists an elliptic transformation. We have shown that outside of
the elliptic region the systems have nontrivial attractors (and therefore are not
minimal), while inside the elliptic region, the minimal systems are dense. In the
present paper we show that the elliptic region contains many non-minimal systems
as well. These systems are discrete groups whose fundamental polygons contain a
side at the Euclidean boundary of the hyperbolic space.

2. Topological dynamics. Given a finite alphabetA, we denote by A+ = ∪n≥1A
n

the set of words with letters from A. The length of a word u = u0 . . . un−1 ∈ An

is denoted by |u| := n. Its prefix of length m ≤ n is denoted by u[0,m). With

the binary operation of concatenation, A+ is the free semigroup over A. An
iterative system over A+ is a pair (X,F ), where X is a compact metric space
and F : A+ × X → X is a map such that for each u ∈ A+, Fu : X → X is
continuous, and Fuv(x) = Fu(Fv(x)). The system is generated by continuous maps
(Fa : X → X)a∈A. A morphism Φ : (X,F ) → (Y,G) of two iterative systems over
A+ is a continuous map Φ : X → Y such that ΦFa = GaΦ for each a ∈ A. A factor

is a surjective morphism, a subsystem is an injective morphism, and a conjugacy

is a bijective morphism. The orbit of x ∈ X is O(x) := {Fu(x) : u ∈ A+}. The
system (X,F ) is minimal if O(x) is dense in X for every x ∈ X. The system
(X,F ) is transitive if for each nonempty open sets U, V ⊆ X there exists u ∈ A+

with Fu(U)∩V 6= ∅. A subset Y ⊆ X is invariant, if Fa(Y ) ⊆ Y for all a ∈ A. If Y
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is invariant and closed, then (Y, F ) is a subsystem of (X,F ). A closed set W ⊆ X
is inward if Fa(W ) ⊆ int(W ) for each a ∈ A. A set Y ⊆ X is an attractor, if
there exists an inward set W such that Y is its omega-limit

Y = Ω(W ) =
⋂

n>0

⋃

m>n

⋃

u∈Am

Fu(W ).

3. Möbius transformations. A real orientation-preserving Möbius trans-

formation (MT) is a self-map of the extended real line R = R ∪ {∞} of the form

M̂(a,b,c,d)(x) = (ax + b)/(cx + d), where a, b, c, d ∈ R and ad − bc > 0. A real

MT acts also on the complex sphere C = C ∪ {∞} and on the upper half-plane

U = {z ∈ C : ℑ(z) > 0}: if z ∈ U then M̂(z) ∈ U. The map d(z) = (iz+ 1)/(z+ i)
maps U conformally to the unit disc D = {z ∈ C : |z| < 1} and R to the unit
circle ∂D = {z ∈ C : |z| = 1}. On the closed disc D := D∪∂D we get disc Möbius

transformations M : D → D defined by

M(α,β)(z) = d ◦ M̂(a,b,c,d) ◦ d
−1(z) =

αz + β

βz + α
,

where α = (a+d)+ (b− c)i, β = (b+ c)+ (a−d)i. Conversely, each transformation
M(α,β)(z) = (αz + β)/(βz + α) with |α| > |β| is d-conjugated to a real MT. Disc

MT preserve the hyperbolic metric ds = 2|dz|/(1 − |z|2). The geodesics are arcs
which are perpendicular to the unit circle.

Any disc MT can be expressed as a product of two reflections (see Beardon [2]).
Given w ∈ C, r > 0, the reflection in the circle S(w, r) = {z ∈ C : |z − w| = r}
is ϕ(z) = w + r2/ z − w. Given w ∈ C and α ∈ ∂D, the reflection in the line

P (w,α) = {w + tα : t ∈ R} is ϕ(z) = w + α2 · z − w. Define the contracting

region, expansing region and the isometric circle of a disc MT M by

U(M) = {z ∈ C : |M ′(z)| < 1}
V (M) = {z ∈ C : |(M−1)′(z)| > 1}
I(M) = {z ∈ C : |M ′(z)| = 1}

If M is a rotation, i.e., if M(z) = αz for some α ∈ ∂D, then U(M) and V (M) are
empty and I(M) = C. Otherwise I(M) is the circle S(−α/β, |α/β|2 − 1), U(M) is
its exterior, and V (M) is the interior of the circle S(α/β, |α/β|2 − 1). Moreover,

we have V (M−1) = C \ U(M), I(M) = U(M) ∩ V (M−1), M(U(M)) = V (M) and
M(I(M)) = I(M−1). For each disc MT M there exists a reflection ϕ(z) = α2 · z
in a diameter of the unit circle, such that ϕMϕ = M−1. If M is a rotation, then ϕ
can be the reflection in any diameter of the unit circle. Otherwise ϕ is the unique
reflection which maps the center α/β of V (M) to the center −α/β of V (M−1). In
particular, M(z) = ϕ(z) for any z ∈ I(M).

The square of the trace is defined by tr2(M̂(a,b,c,d)) := (a + d)2/(ad − bc),

tr2(Mα,β) := (α+α)2/(|α|2−|β|2). If tr2(M) < 4 then M is elliptic, if tr2(M) > 4
then M is hyperbolic and if tr2(M) = 4 then M is parabolic unless it is the
identity. A hyperbolic transformation has two fixed points sM , uM ∈ ∂D with
|M ′(sM )| < 1, |M ′(sM )| · |M ′(uM )| = 1. A parabolic transformation has a unique
fixed point sM ∈ ∂D with |M ′(sM )| = 1. An elliptic transformation has no fixed
point in ∂D but it has a unique fixed point sM ∈ D with M ′(sM ) = ei·rot(M), where
the rotation angle rot(M) ∈ (0, 2π) satisfies tr2(M) = 4 cos2(rot(M)/2). This
formula does not determine the rotation angle uniquely. Such a formula can be
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obtained for a real MT. The rotation Rα(z) = eiα · z is conjugated to the real MT

R̂α(x) = (x cos α
2 +sin α

2 )/(−x sin α
2 +cos α

2 ) whose matrix has positive upper-right

entry sin α
2 . For any real orientation-preserving matrix M̂ , the matrix M̂R̂αM̂

−1

has positive upper-right entry as well. Thus the rotation angle of a real elliptic
MT is

rot(M̂(a,b,c,d)) = 2 arccos
sgn(b) · (a+ d)

2
√
ad− bc

∈ (0, 2π)

The rotation angle of a disc MT is the rotation angle of the d-conjugated real MT.
We say that M has irrational rotation angle, if rot(M)/2π is an irrational number.
A disc MT M is elliptic iff I(M) ∩ I(M−1) 6= ∅.
Lemma 1. If F,G are disc MT and I(F )∩ I(G−1) = I(F−1)∩ I(G) = ∅, then FG
is not elliptic.

Proof. The condition implies V (F ) ∩ V (G−1) = V (F−1) ∩ V (G) = ∅. Assume by
contradiction that FG is elliptic and s ∈ D is its fixed point, so |F ′(G(s))·G′(s)| = 1.
We distinguish three cases. 1. If s ∈ V (G−1), then |G′(s))| > 1 and |F ′(G(s))| < 1.
Thus G(s) ∈ U(F ), and s = FG(s) ∈ V (F ) which is disjoint with V (G−1) and
this is a contradiction. 2. If s ∈ U(G), then G(s) ∈ V (G), so G(s) 6∈ V (F−1)
and |G′(s)| < 1, so |F ′(G(s))| < 1, which is a contradiction. 3. If s ∈ I(G)
then |G′(s)| = 1, G(s) ∈ I(G−1), so G(s) 6∈ I(F ) and |F ′(G(s))| 6= 1, which is a
contradiction.

Lemma 2. If F,G are disc MT with the same symmetry ϕ(z) = α2z (i.e., ϕFϕ =
F−1, ϕGϕ = G−1), and if I(F ) ∩ I(G−1) 6= ∅, then FG is elliptic.

Proof. If I(F )∩ I(G−1) is nonempty, then there exists s ∈ I(F )∩ I(G−1)∩D, and
t = F (s) = ϕ(s) = G−1(s) ∈ D, so s is a fixed point of GF , and GF is elliptic.
Since tr(FG) = tr(GF ), FG is elliptic as well.

Lemma 3. If M,F are disc MT, F is elliptic with rot(F ) = α ∈ (0, 2π) and
sF ∈ I(M), then sF ∈ I(MF ) and the angle between I(MF ) and I(M) at sF is
−α/2. It follows that the inner angle of U(M) ∩ U(MF ) at sF is either α/2 or
π − α/2.

Proof. Let L be the geodesic which passes through sF and whose angle with I(M) is
−α/2. Let σ1 be the reflection in L and let σ2 be the reflection in I(M). Then σ2σ1

turns L by α, so F = σ2σ1, and M = σ3σ2, where σ3 is the reflection in a diameter
of the unit circle. Since MF = σ3σ1 and σ3 is an isometry, we get I(MF ) = L,

4. Möbius iterative systems.

Definition 1. We say that F̂ : A+ × R → R, is a Möbius iterative system

(MIS), if all F̂a : R → R are real orientation-preserving Möbius transformations.

F̂ is conjugated to a disc MIS F : A+ × ∂D → ∂D by the stereographic projection
d. The limit set ΛF of F is defined by ΛF = {Fu(0) : u ∈ A+} ∩ ∂D.

If G(F ) = {Fu : u ∈ A∗} is a discrete group, then ΛF coincides with the classical
concept (see Beardon [2] or Katok [4]).

Theorem 2 (Kůrka and Kazda [6]). If {V (Fu) : u ∈ A+} is a cover of ∂D then
ΛF = ∂D.
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The proof is based on the expansion graph whose vertices are numbers x ∈ ∂D

and whose labelled edges are x
u→ F−1

u (x) where x ∈ V (Fu). If u ∈ AN is the label
of an infinite path with source x, then x = limn→∞ Fu[0,n)

(0). The limit set ΛF is

closed and F -invariant, so if ΛF 6= ∂D then (∂D, F ) is not minimal. Conversely we
have

Proposition 3. If ΛF = ∂D and if no x ∈ ∂D is fixed by all Fa, then (∂D, F ) is
minimal.

Proof. Given x, y ∈ ∂D, we show that y ∈ O(x). By the assumption there exists
a sequence u(n) ∈ A+ with limn→∞ Fu(n)(0) = y, so limn→∞ diam(V (F−1

u(n))) =
limn→∞ diam(V (Fu(n))) = 0. We have Fa(x) 6= x for some a ∈ A, so there exists
n0 such that for all n ≥ n0 either x ∈ U(Fu(n)) or Fa(x) ∈ U(Fu(n)). Set v(n) = u(n)

in the former case and v(n) = u(n)a in the latter case. Then Fv(n)(x) ∈ V (Fu(n)) for
each n ≥ n0, so limn→∞ Fv(n)(x) = y.

Example 1. There exists a MIS F with ΛF = ∂D which is not minimal.

Proof. Consider the alphabet A = {1, 0, 1, 0} and transformations F̂1(x) = x − 1,

F̂0(x) = x/2, F̂1(x) = x+ 1, F̂0(x) = 2x. All F̂a fix the point {∞}, so all Fa fix the
point i, but ΛF = ∂D since V (Fa) cover ∂D.

Proposition 4. Let (∂D, F ) be an iterative Möbius system. If some Fu is elliptic
with irrational rotation angle, then (∂D, F ) is minimal.

3,2

2,1

3,1

4,1

5,1

a

b

01

00
101

01
1

00
1

01
01
1

a

b

Figure 1. Parameter space of the standard alternating Möbius
system: E01, R01(n, n − 1), R01(n, 1) for n = 2, . . . , 5 (left), E01,
E001, E011 (right).

5. Alternating Möbius systems. In Kůrka[5] we have shown that if (∂D, F ) is
a Möbius iterative system with hyperbolic transformations Fa and if there exists
a closed interval W ⊂ ∂D which contains in its interior stable fixed points of all
Fa and does not contain the unstable fixed point of any Fa, then (∂D, F ) has a
nontrivial attractor and therefore is not minimal. We have then considered alter-
nating Möbius iterative system (∂D, F0, F1), whose fixed points s0, r0, s1, r1, s0 are
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arranged counterclockwise on the circle. In this case the existence of a nontrivial
attractor depends on the quotients of F0, F1.

Definition 5. The standard alternating system with parameters 0 < a, b < 1
is defined by

F̂0(x) = ax+ 1 − a, F̂1(x) =
x

−(1 − b)x+ b

We have s(F0) = 1, r(F0) = i, s(F1) = −1, r(F1) = −i. Both F0 and F1 have
the same symmetry ϕ(z) = iz with ϕFiϕ = F−1

i , so (∂D, F0, F1) is conjugated to

(∂D, F−1
0 , F−1

1 ) by ϕ. If a = b, we have additional symmetry ψ(z) = −iz with
ψF0ψ = F−1

1 , ψF1ψ = F−1
0 , so (∂D, F0, F1) is conjugated to (∂D, F−1

1 , F−1
0 ) by ψ

and to (∂D, F0, F1) by the rotation ϕψ(z) = −z.
Denote by P = {(a, b) : 0 < a, b < 1} the parameter space of the standard

alternating system. We have tr(F̂01) = (a + b − (1 − a)(1 − b))/
√
ab, and the

upper-right entry (1 − b) of F̂01 is positive. For u ∈ A+ denote by

Eu = {(a, b) ∈ P : |tr(Fu)| < 2}
E =

⋃

n>0

(E0n1 ∪ E01n)

Ru(n, k) = {(a, b) ∈ Eu : rot(Fu) =
2kπ

n
}

R01(n, k) = {(a, b) : a+ b− (1 − a)(1 − b) = 2
√
ab cos

kπ

n
}

We call E the elliptic set (see Figure 1 and Figure 5). In [5] we have proved that
each system in P \E has a non-trivial attractor and the systems at the boundary of
E are not transitive. It follows that E =

⋃
u∈A+ Eu and that each minimal system is

in the elliptic set. If there exists an irrational rotation Fu, then (∂D, F ) is minimal,
so minimal systems are dense in E. We show that there exist non-minimal systems
in E as well, disproving a conjecture in [5].

6. Rational rotation angle. We investigate alternating systems in which F01 is
elliptic with rotation angle rot(F01) = ±2π/m. Then F(01)m = Id and G(F ) =
{Fu : u ∈ A∗} is a group. G(F ) is a discrete group if Id is its isolated element. For
a discrete group acting on D there exists a fundamental region, which is an open
connected set P , such that {Fu(P ) : u ∈ A+} tesselate D. If G(F ) is discrete and
0 is not fixed by any Fu, then the Ford region defined by P =

⋂
u∈A+ U(Fu) is a

fundamental region. For u ∈ A+ denote by Iu = I(Fu) and I−1
u = I(F−1

u ). In
Figures 2, 3 we show the Ford fundamental polygons of various alternating systems
whose locations in the parameter space are indicated in Figure 5 right. We write
words u in the images Fu(P ) of the fundamental polygon around the fixed points
s01 and s10. The words u of the isometric circles Iu are written at their intersections
with the unit circle.

Proposition 6. If G(F ) is a discrete group and there exits a fundamental polygon
with a side at the Euclidean boundary (i.e., at the unit circle), then (∂D, F ) is not
transitive.

Proof. If U, V ⊂ ∂D are disjoint open intervals both at the Euclidean boundary of
a fundamental polygon P , then Fu(U) ∩ V = ∅ for every u ∈ A+.
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Figure 2. Isometric circles and Ford regions. 1(top left):
rot(F01) = π, 2(top right): rot(F01) = 2π · 2/3, 3(bottom left):
rot(F01) = 2π/3, 4(bottom right): rot(F01) = 2π/3, rot(F010) =
2π · 4/5.

Proposition 7. If rot(F01) = 2π(m − 1)/m for some m ≥ 2, then G(F ) is a
discrete group whose fundamental region has a side at the Euclidean boundary, so
(∂D, F ) is not minimal (see Figure 2(1,2) and Figure 3(7)).

Proof. The isometric circles I0, I010, . . . , I(01)m−10 = I−1
1 all pas through the fixed

point s10 of F10. By Lemma 3, the angle between I(01)k0 and I(01)k+10 is −2π(m−
1)/2m = π/m, so the inner angle of U(F(01)k0) ∩ U(F(01)k+10) at s10 is either π/m
or π − π/m. Consider first the case with a = b, when we have the symmetry

ψ(z) = −iz with ψFiψ = F1−i (see Figure 2(1) with m = 2 and a = b = 2 −
√

3).
Then ψ(U(F0)) = U(F−1

1 ) and this implies that the inner angle of U(F0)∩U(F−1
1 ) is

π/m. As the system moves along the curve {(a, b) ∈ P : rot(F01) = 2π(m−1)/m},
this angle cannot change, because both F0 and F−1

1 are hyperbolic, so I0, I
−1
1 cannot

cross 0. Thus for all parameters a, b with rot(F01) = 2π(m− 1)/m the inner angle
of U(F0)∩U(F−1

1 ) is π/m. Denote by P = U(F0)∩U(F−1
0 )∩U(F1)∩U(F−1

1 ) and
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Figure 3. Isometric circles and Ford regions. 5(top left):
rot(F01) = 2π/3, rot(F010) = 2π · 2/3, 6(top right): rot(F01) =
2π/3, rot(F010) = π, 7(bottom left): rot(F01) = 2π ·3/4, 8(bottom
right): rot(F01) = 2π/4, rot(F101) = 2π · 3/4.

by P its Euclidean closure. Then P is a hexagon with two sides at the Euclidean
boundary. We have fixed points s01 ∈ I−1

0 ∩ I1, s10 ∈ I−1
1 ∩ I0 with s10 = ϕ(s01) =

F1(s01) = F−1
0 (s01), which are the only vertices of P and form a cycle of length 2

and order m. We get

P ∩ F0(P ) ⊆ I−1
0 , P ∩ F1(P ) ⊆ I−1

1 ,
F0(P ) ∩ F01(P ) ⊆ F0(I

−1
1 )), F1(P ) ∩ F10(P ) ⊆ F1(I

−1
0 ),

F01(P ) ∩ F010(P ) ⊆ F01(I
−1
0 ), F10(P ) ∩ F101(P ) ⊆ F10(I

−1
1 ),

...
...

F(01)m−10(P ) ∩ P ⊆ F(01)m−10(I
−1
1 ), F(10)m−11(P ) ∩ P ⊆ F(10)m−11(I

−1
0 ).

Since the inner angles of P , F0(P ), F01(P ), F010(P ), . . . , F(01)m−10(P ) at s01 are
π/m, these sets are arranged clockwise around s01 without intersections and their
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closures fill out a neighborhood of s01. Similarly, P , F1(P ), F10(P ), F101(P ), . . .,
F(10)m−11(P ) are arranged clockwise around s10 without intersections and their
closures fill out a neighborhood of s10. Thus the conditions of Poincaré theorem
(see Beardon [2]) are met, so G(F ) is a discrete group with a side at the Euclidean
boundary.
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Figure 4. Rotation of isometric circles

Proposition 8. If rot(F01) = 2π/m for some m ≥ 3 and F01, F10 are the only
elliptic transformations, then G(F ) is a discrete group whose fundamental region
has a side at the Euclidean boundary, and (∂D, F ) is not minimal (see Figure 2(3)).

Proof. Assume a > b. The isometric circles I0, I010, . . . , I(01)m−10 = I−1
1 all pas

through the fixed point s10 of F10. The angle between I(01)k0 and I(01)k+10 is
−2π/2m = −π/m, so the inner angle of U(F(01)k0) ∩ U(F(01)k+10) is either π/m
or π − π/m. Consider a path in the parameter space with small constant b and
increasing a passing from rot(F01) = 2π(m−1)/m to rot(F01) = 2π/m (see Figure
4). The angle of I010 with I0 goes from π/m through π/2 to −π/m and the inner
angle of U(F0) ∩ U(F010) goes from π − π/m through π/2 to π/m. From the
symmetry ϕ we get that the inner angle of U(F−1

0 ) ∩ U(F−1
010) is π/m as well. We

show that P = U(F0) ∩ U(F−1
0 ) ∩ U(F010) ∩ U(F−1

010) is a fundamental region. For
m = 3 and a > b we have F−1

010 = F101 and we get

P ∩ F0(P ) ⊆ I−1
0 , P ∩ F101(P ) ⊆ I010,

F0(P ) ∩ F0101(P ) ⊆ F0(I010), F101(P ) ∩ F1010(P ) ⊆ F101(I
−1
0 ),

F0101(P ) ∩ F01010(P ) ⊆ F0101(I
−1
0 ), F1010(P ) ∩ F1(P ) ⊆ F1010(I010),

F01010(P ) ∩ F01(P ) ⊆ F01010(I010), F1(P ) ∩ F10(P ) ⊆ F1(I
−1
0 ),

F01(P ) ∩ F010(P ) ⊆ F01(I
−1
0 ), F10(P ) ∩ F10101(P ) ⊆ F10(I010),

F010(P ) ∩ P ⊆ F010(I010), F10101(P ) ∩ P ⊆ F10101(I
−1
0 ).

For m ≥ 3 and a > b we have F−1
010 = F(10)m−21 and we get

P ∩ F0(P ) ⊆ I−1
0 ,

P ∩ F(10)m−21(P ) ⊆ I010,
F0(P ) ∩ F(01)m−1(P ) ⊆ F0(I010),

F(10)m−21(P ) ∩ F(10)m−1(P ) ⊆ F(10)m−2(I−1
0 ),

F(01)m−1(P ) ∩ F(01)m−10(P ) ⊆ F(01)m−20(I
−1
0 ),

F(10)m−1(P ) ∩ F(10)m−31(P ) ⊆ F(10)m−21(I010),
...

F010(P ) ∩ P ⊆ F010(I010),
F(10)m−11(P ) ∩ P ⊆ F(10)m−11(I

−1
0 ),
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Thus G(F ) is a discrete group with a side at the Euclidean boundary.

a

b

1

2 3
4
5

6

7

8

a

b

Figure 5. Parameter space: Minimal systems are in the white
region (left), Curves |tr(F0n1)| = 2 and |tr(F01n)| = 2 for n =
1, 2, 3 (thick), curves rot(Fu) = ±2π/m (thin), positions of the
systems 1, 2, . . . , 8 from Figures 2, 3 (right).

Proposition 9. If rot(F01) = 2π/m for some m ≥ 3, and rot(F001) = 2π(n−1)/n
for some n ≥ 3, then G(F ) is a discrete group with a side at the Euclidean boundary
and (∂D, F ) is not minimal (see Figure 2(4) and Figure 3(5,8)).

Proof. Assume a > b. The inner angles of both U(F0) ∩ U(F010) and U(F−1
010) ∩

U(F−1
0 ) are again π/m, but F010 is now elliptic with rot(F010) = 2π(n− 1)/n and

F−1
010 = F(010)n−1 = F(10)m−21. The fundamental polygon P = U(F0) ∩ U(F−1

0 ) ∩
U(F010)∩U(F−1

010) has one more vertex s010 ∈ U(F010)∩U(F−1
010) which forms a cycle

of order n. The angle between I(010)k and I(010)k+1 is π/n, so the angle between
I010 and I(010)n−1 is π(n− 2)/n. The inner angle of U(F010)∩U(F(010)n−1) is 2π/n.
We have

P ∩ F010(P ) ⊆ I−1
010,

F010(P ) ∩ F(010)2(P ) ⊆ F010(I
−1
010),

...
F(010)n−1(P ) ∩ P ⊆ F(010)n−1(I−1

010)

Thus P , F010(P ), . . . , Fn−1
010 (P ) are arranged clockwise around s010, so P is a fun-

damental domain with a side at the Euclidean boundary.

Proposition 10. If rot(F01) = 2π/3 and a = b, then G(F ) is a discrete group
whose fundamental polygon has a side at the Euclidean boundary and (∂D, F ) is not
minimal (see Figure 3(6)).
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Proof. The condition tr(F01) = (2a− (1−a)2)/2a = cos(π/3) yields a2−3a+1 = 0

with the solution a = (3 −
√

5)/2. Moreover we get

rot(F001) = rot(F011) = 2 arccos
a2 + a− (1 − a2)(1 − a)

2a
√
a

= π

rot(F0001) = rot(F0111) = 2 arccos
a3 + a− (1 − a3)(1 − a)

2a2
= 4π/3

Since s010 = s101 = 0, the Ford fundamental region cannot be constructed. Never-
theless we get a fundamental region P = U(F0)∩U(F−1

0 )∩Q, where Q = {a+ bi :

a+b > 0} is one of the half-planes of the line joining s01 with s10. The vertices of P
are s01, s10, s010. The point s010 forms a cycle of order 2 and P with F010(P ) fill a
neighbourhood of s010 without overlapping. Similarly, the closures of P , F10101(P ),
F10(P ), F1(P ), F1010(P ), F101(P ) fill the neighbourhood of s10 in counter-clockwise
order and the closures of P , F010(P ), F01(P ), F01010(P ), F0101(P ), F0(P ) fill the
neighbourhood of s01 in counter-clockwise order, so G(F ) is a discrete group with
a side at the Euclidean boundary.

For other rational angles, minimality depends on parameters in a more compli-
cated way. For example if rot(F01) = 2π · 4/7 and 0.17 < a < 0.3, then V (F0101),
V (F01010), V (F1010) and V (F10101) cover ∂D, so ΛF = ∂D and (∂D, F ) is minimal.
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[5] P. Kůrka. Iterative systems of real Möbius transformations. Discrete and Continuous Dynam-

ical Systems, 25(2):567–574, 2009.
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