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Abstract

A Möbius iterative system is a system of real Möbius transformations indexed by a finite

alphabet A. A Möbius number system is given by a subshift with alphabet A, such that

each its word represents a real number, and this representation is continuous and surjective.

We give some sufficient conditions on a subshift to form a Möbius number system. We show

several examples based on continued fractions. We consider polygonal Möbius number systems

whose transformations tesselate the hyperbolic space by regular polygons. We introduce the

Biternary system which is based on a Fuchsian group whose fundamental domain is a rectangle

with ideal vertices.

1 Introduction

The positional q-ary number system for the unit real interval [0, 1] is the attractor of the iterative
system of contractive linear mappings x 7→ (x + a)/q, where a ∈ {0, 1, . . . , q − 1}. An iterative
system (Fa : X → X)a∈A consists of continuous self-maps of a compact metric space X indexed
by a finite alphabet A. In contractive iterative systems, each infinite word u ∈ AN determines a
unique point x = Φ(u) which is contained in all images Fu0

Fu1
· · ·Fun−1

(X) of the state space X
by the prefixes of u. The range of the symbolic representation Φ is a compact subset of X called
the attractor of the system (see Barnsley [1]).

In Kůrka [7] and [8] we have studied number systems for the extended real line R = R ∪ {∞}
based on iterative systems of real Möbius transformations. Since Möbius transformations are not
contractive on R, the Barnsley theorem does not work for them. Instead of convergence of sets, we
use the convergence of measures. An infinite word of digits represents a real number x, if the images
of the Cauchy measure by the prefixes of the word converge to the point measure concentrated on
x. A Möbius number system is given by a subshift, on which the symbolic representation map is
continuous and surjective. In [8] we have developed the theory of Möbius number systems with sofic
subshifts. In the present paper we use subshifts which are obtained when we expand real numbers
according to some interval cover. While these subshifts are in general not sofic, the arithmetical
algorithms are simpler than in the sofic case.

We show that binary signed system and the continued fraction system are special cases of a
Möbius number system and combine them into the Binary continued fractions system. We con-
sider polygonal number systems whose transformations generate discrete Fuchsian groups, which
tesselate the hyperbolic space by regular polygons. Finally we introduce the Biternary Möbius
number system which is based on a Fuchsian group whose fundamental domain is a rectangle with
ideal vertices.

2 Möbius transformations

The extended real line R = R ∪ {∞} can be regarded as a projective space, i.e., the space
of one-dimensional subspaces of the two-dimensional vector space. On R we have homogenous
coordinates x = (x0, x1) ∈ R2 \ {(0, 0)} with equality x = y iff x0y1 = x1y0. We regard x ∈ R as
a column vector, and write it usually as x = x0/x1, for example ∞ = 1/0. For distinct a, b ∈ R,
the open interval (a, b) is the set {x ∈ R : a < x < b} if a < b, and {x ∈ R : a < x or x < b}∪{∞}
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if a > b. We define closed intervals by [a, b] := (a, b) ∪ {a, b} if a 6= b, and [a, b] = R if a = b. For
x ∈ R we have x ∈ (a, b) iff (a−x)(x− b)(b− a) > 0. In homogenous coordinates we get a formula
which works for all a, b ∈ R:

(a, b) = {x ∈ R : (a0x1 − a1x0)(x0b1 − x1b0)(b0a1 − b1a0) > 0}

A real orientation-preserving Möbius transformation (MT) is a self-map of R of the form

M(a,b,c,d)(x) =
ax + b

cx + d
=

ax0 + bx1

cx0 + dx1

where a, b, c, d ∈ R and ad − bc > 0. We can also regard R as a subspace of the extended complex
plane C = C ∪ {∞}. MT act on the upper half-plane U = {z ∈ C : ℑ(z) > 0}. If z ∈ U, then
M(z) ∈ U as well (see Katok [4]). The map d(z) = (iz + 1)/(z + i) maps U conformally to the
unit disc D = {z ∈ C : |z| < 1} and R to the unit circle ∂D = {z ∈ C : |z| = 1}. Define the
circle distance on R by

̺(x, y) = 2 arcsin
|x − y|√

(x2 + 1)(y2 + 1)
= 2 arcsin

|x0y1 − x1y0|√
(x2

0 + x2
1)(y

2
0 + y2

1)

which is the length of the shortest arc joining d(x) and d(y) in ∂D. The length of a closed interval
Br(a) = {x ∈ R : ̺(x, a) ≤ r} is ||Br(a)|| = min{2r, 2π}. The length ||J || of a set J ⊆ R

is the length of the shortest interval which contains J . On D := D ∪ ∂D we get disc Möbius
transformations M̂ defined by

M̂(a,b,c,d)(z) = d ◦ M(a,b,c,d) ◦ d
−1(z) =

αz + β

βz + α
,

where α = (a + d) + (b − c)i, β = (b + c) + (a − d)i. The disc MT preserve the hyperbolic metric

ds = |dz|/(1 − |z|2) =
√

dx2 + dy2/(1 − x2 − y2 and the hyperbolic distance

d(z, w) =
1

2
ln

|1 − zw| + |z − w|
|1 − zw| − |z − w|

Denote by Cq(x) = x/q, Rα(x) = (x cos α
2 + sin α

2 )/(−x sin α
2 + cos α

2 ) the contraction with the

coefficient q > 0, and the rotation by the angle α. We have R̂α(z) = αz. Define the norm of a
Möbius transformation M = M(a,b,c,d) by ||M || := (a2 + b2 + c2 +d2)/(ad− bc). We have ||M || ≥ 2
for each M , and ||M || = 2 iff M is a rotation, i.e., if M = Rα for some α. The circle derivation,
the expansion quotient and the expansion interval of M are defined by

M•(x) := lim
y→x

̺(M(y),M(x))

̺(y, x)
= |M̂ ′(d(x))| =

(ad − bc)(x2
0 + x2

1)

(ax0 + bx1)2 + (cx0 + dx1)2
,

q(M) := min{M•(x) : x ∈ R}.

We have (MN)•(x) = M•(N(x)) · N•(x), q(M) ≤ 1, q(MN) ≥ q(M) · q(N), and (see Kůrka [8])

q(M) = 1
2 (||M || −

√
||M ||2 − 4) =

1 − |M̂(0)|
1 + |M̂(0)|

,

1/q(M) = 1
2 (||M || +

√
||M ||2 − 4) = max{M•(x) : x ∈ R}.

3 Möbius number systems

For a finite alphabet A denote by A∗ :=
⋃

m≥0 Am the set of finite words and by A+ := A∗ \ {λ}
the set of finite non-empty words. The length of a word u = u0 . . . um−1 ∈ Am is |u| := m.
We denote by AN the Cantor space of infinite words equipped with metric d(u, v) := 2−k, where
k = min{i ≥ 0 : ui 6= vi}. We denote by u[i,j) = ui . . . uj−1 and u[i,j] = ui . . . uj subwords of

u associated to intervals. We say that v ∈ A∗ is a subword of u ∈ A∗ ∪ AN and write v ⊑ u, if
v = u[i,j) for some 0 ≤ i ≤ j ≤ |u|. Given u ∈ An, v ∈ Am, denote by u.v ∈ AN the preperiodic
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word with preperiod u and period v defined by (u.v)i = ui for i < n and (u.v)n+km+i = vi for
i < m.

The shift map σ : AN → AN is defined by σ(u)i = ui+1. A subshift is a nonempty set Σ ⊆ AN

which is closed and σ-invariant, i.e., σ(Σ) ⊆ Σ. For a subshift Σ there exists a set D ⊆ A+ of
forbidden words such that Σ = SD := {x ∈ AN : ∀u ⊑ x, u 6∈ D}. A subshift is uniquely
determined by its language L(Σ) := {u ∈ A∗ : ∃x ∈ Σ, u ⊑ x}. Denote by [u] := {v ∈ Σ :
v[0,|u|) = u} the cylinder of u ∈ L(Σ). A subshift is of finite type (SFT), if the set D of
forbidden words is finite. A subshift is sofic, if its language is regular. An iterative system is a
continuous map F : A∗ × X → X, or a family of continuous maps (Fu : X → X)u∈A∗ satisfying
Fuv = Fu ◦ Fv, and Fλ = Id. It is determined by generators (Fa : X → X)a∈A.

Definition 1 We say that F : A∗ × R → R, is a Möbius iterative system, if all Fa : R → R

are orientation-preserving Möbius transformations. The convergence space XF ⊆ AN and the
symbolic representation Φ : XF → R are defined by

XF := {u ∈ AN : lim
n→∞

Fu[0,n)
(i) ∈ R},

Φ(u) := lim
n→∞

Fu[0,n)
(i),

where i ∈ U is the imaginary unit. If Σ ⊆ XF is a subshift such that Φ : Σ → R is continuous
and surjective, then we say that (F,Σ) is a Möbius number system. We say that a Möbius
number system is redundant, if for every continuous map g : R → R there exists a continuous
map f : Σ → Σ such that Φf = gΦ.

The continuity of function f : Σ → Σ is necessary for its computability (see e.g. Weihrauch [11]).
We show that the system is redundant iff its cylinders overlap (Theorem 10(4)). The condition
of convergence in Definition 1 has probabilistic meaning. Denote by µ the uniform measure on
∂D and by µn = F̂u[0,n)

µ its image. Define the mean of a measure by E(µn) =
∫

∂D
z dµn. Then

E(µn) = F̂u[0,n)
(0) (see Kůrka [7]). These means can be seen in Figure 1. The condition Φ(u) = x is

equivalent to limn→∞ µn = δ(d(x)), where δ(d(x)) is the point measure concentrated at d(x) ∈ ∂D.

This is in turn equivalent to limn→∞ F̂u[0,n)
(0) = d(x) and limn→∞ Fu[0,n)

(i) = x, where i is the
imaginary unit. Another equivalent condition is established in Kůrka [8]:

Lemma 2 Let u ∈ AN and x ∈ R. Then Φ(u) = x iff there exists c > 0 and a sequence of intervals
Im ∋ x such that lim infn→∞ ||F−1

u[0,n)
(Im)|| > c for each m, and limm→∞ ||Im|| = 0.

Theorem 3 (Kůrka [8]) Let F : A∗ × R → R be a Möbius iterative system and define the
expanding intervals of u ∈ A∗ by

Vu := {x ∈ R : (F−1
u )•(x) > 1}

If {Vu : u ∈ A∗} is a cover of R then Φ(XF ) = R and there exists a subshift Σ ⊆ AN such that
(F,Σ) is a Möbius number system.

If Fu is a rotation, then Vu = ∅, otherwise Vu is a nonempty interval.

Definition 4 We say that W = {Wa : a ∈ A} is an interval cover for a Möbius iterative system
F : A∗ × R → R, if each Wa is an open interval, and the union of all Wa is R.

The diameter of W is ||W|| := max{||Wa|| : a ∈ A}. The Lebesgue number ℓ(W) of W is the
supremum of all l ≥ 0 such that for each interval I of length at most l there exists a ∈ A such that
I ⊆ Wa (this is the overlap of neighbouring intervals). For u ∈ An+1 set

Wu := Wu0
∩ Fu0

(Wu1
) ∩ Fu[0,2)

(Wu2
) ∩ · · · ∩ Fu[0,n)

(Wun
)

q(u) := inf{(F−1
u )•(x) : x ∈ Wu}

By definition, Wλ := R and q(λ) := 1. The sets Wu are not necessarily intervals, since the
intersection of two intervals can be a union of two intervals. However, if ||F−1

a (Wa)||+ ||Wb|| < 2π
for each a, b ∈ A, then each Wu is an interval. If Fu is a rotation, then q(u) = 1, otherwise
q(u) < 1. We have Wu ⊆ Vu iff q(u) ≥ 1.
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Proposition 5 If W is an interval cover for F , and u, v ∈ A∗, then Wuv = Wu ∩ Fu(Wv) and
q(uv) ≥ q(u) · q(v).

Proof: For x ∈ Wuv we have (F−1
uv )•(x) = (F−1

u )•(x) ·(F−1
v )•(F−1

u (x)) ≥ q(u) ·q(v), and therefore
q(uv) ≥ q(u) · q(v).

Definition 6 Let W = {Wa : a ∈ A} be an interval cover for F : A∗ × R → R. Define

LW := {u ∈ A∗ : Wu 6= ∅},
ΣW := {u ∈ AN : ∀n,Wu[0,n)

6= ∅},
Wn := {Wu : u ∈ LW ∩ An},

Qn(W) := min{q(u) : u ∈ Wn},
Rn(W) := ||Wn||/2π

By definition W0 = {R}, W1 = W and LW is the language of ΣW . Denote by Ln
W := LW ∩ An.

Proposition 7 Let W be an interval cover for a Möbius iterative system F : A∗ × R → R, and
n,m ≥ 0.

(1) Each Wn = {Wu : u ∈ Ln
W} is a cover of R.

(2) Qn+m(W) ≥ Qn(W) · Qm(W).

(3) ||Wn+m|| ≤ ||Wm||/Qn(W).

(4) Rn(W) · Qn(W) ≤ 1.

Proof: (1) Given x ∈ R there exists u ∈ An such that for each k < n we have (F−1
u[0,k)

(x), yk) ⊆ Wuk

for some yk 6= F−1
u[0,k)

(x). It follows (x, y) ⊆ Wu for some y 6= x, so u ∈ LW , x ∈ Wu, and Wn is a
cover.
(2) follows from q(uv) ≥ q(u) · q(v).
(3) For u ∈ An, v ∈ Am we have Wuv ⊆ Wu and F−1

u (Wuv) ⊆ Wv, so q(u) · ||Wuv|| ≤
||F−1

u (Wuv)|| ≤ ||Wv||. It follows Qn(W) · ||Wuv|| ≤ ||Wv|| ≤ ||Wm|| and therefore ||Wm+n|| ≤
||Wm||/Qn(W).
(4) By (3) we have Qn(W) ≤ 2π/||Wn|| = 1/Rn(W).

Proposition 8 Assume that for each u ∈ Am, a ∈ A we have

Wa ∩ Fa(Wu) 6= ∅ ⇒ Fa(Wu) ⊆ Wa

Then ΣW is a SFT of order m + 1.

Proof: Assume that u ∈ An, and for all v ⊑ u with |v| = m + 1 we have Wv 6= ∅. Then

Wu = Fu0
(Wu[1,n)

) = · · · = Fu[0,n−m)
(Wu[n−m,n)

)

and Wu[n−m,n)
6= ∅, so Wu 6= ∅.

Definition 9 The expansion quotient and the interval quotient of an interval cover W for
a Möbius iterative system F are defined by

Q(W) := lim
n→∞

n
√

Qn(W),

R(W) := lim sup
n→∞

n
√

Rn(W).

Since Qn+m(W) ≥ Qn(W) · Qm(W), the limit Q(W) exists and Q(W) ≥ n
√

Qn(W) for each n.
Since Rn(W) · Qn(W) ≤ 1, we have R(W) · Q(W) ≤ 1.

Theorem 10 Let F : A∗ × R → R be a Möbius iterative system and W an interval cover for F
such that Q(W) > 1. Then
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(1) ΣW ⊆ XF .

(2) Φ([u]) = Wu for each u ∈ LW .

(3) Φ : ΣW → R is continuous and surjective.

(4) (F,ΣW) is redundant iff ℓ(W) > 0.

Proof: (1) There exists q > 1 such that for all sufficiently large n we have Qn(W) > qn. Given
u ∈ ΣW , we have ||Wu[0,n)

|| < 2π/qn, so the intersection
⋂

n Wu[0,n)
= {x} is a singleton. Since

(F−1
u[0,n)

)•(x) > qn, we get x = Φ(u) by Lemma 2, so ΣW ⊆ XF .

(2) For u ∈ LW and uv ∈ ΣW we have Φ(uv) ∈ Wu, so Φ([u]) ⊆ Wu. If x ∈ Wu, then there exists
v with Φ(uv) = x, so x ∈ Φ([u]).
(3) Since limn→∞ ||Wn|| = 0, and Φ([u]) = Wu, Φ is continuous. Since each Wn is a cover of R, Φ
is surjective.
(4) If g : R → R is continuous, then gΦ : Σ → R is uniformly continuous. Given u ∈ Σ, we construct
v = f(u) ∈ ΣW by induction so that for each n there exists kn such that gΦ([u[0,kn)]) ⊆ Wv[0,n)

.
If the condition holds for n, then there exists kn+1 > kn such that ||gΦ([u[0,kn+1)])|| ≤ ||Wn+1||
so there exists vn such that gΦ([u[0,kn+1)]) ⊆ Wv[0,n+1)

. Thus f : ΣW → ΣW is continuous and

Φf = gΦ. Conversely, if ℓ(W) = 0, there exists y ∈ R and a, b ∈ A such that y ∈ Wa ∩ Wb and
Wa ∩ Wb = ∅. Since the set of the endpoints of Wu is countable, there exists x ∈ R such that
whenever x ∈ Wu then x ∈ Wu. Let g be a Möbius transformation which maps x to g(x) = y. If
f : ΣW → ΣW is such that Φf = gΦ, and Φ(u) = x, then f cannot be continuous at u.

Theorem 11 Let F : A∗ × R → R be a Möbius iterative system and W an interval cover for F
such that Qn(W) = 1 for some n, and no Fu with u ∈ Ln

W is a rotation. Then the claims of
Theorem 10 hold.

Proof: The assumptions imply that for each u ∈ LW ∩ An we have Wu ⊆ Vu. The claims then
follow by a theorem of Kazda [5].

The quantities ||Wn|| and R(W) express the speed of convergence in the system. On the other
hand, high redundancy expressed by ℓ(W) means less delay in arithmetical algorithms. Thus
optimal number systems have small interval quotient R(W) and large Lebesgue number ℓ(W).
There is, however, a tradeoff between these two characteristics.

4 Arithmetical algorithms

In arithmetical algorithms we work with the extended rational numbers Q = Q ∪ {∞} with ho-
mogenous integer coordinates x = x0/x1 ∈ Z2 \ {(0, 0)}. Denote by I the set of open intervals
I = (a, b) with endpoints in Q, together with the full interval R. Denote by M1 the set of MT
M = M(a,b,c,d) whose coefficients a, b, c, d ∈ Z are integers with ad − bc > 0. We assume that

F : A∗×R → R is a Möbius iterative system and W = {Wa : a ∈ A} is an interval cover such that
Fa ∈ M1 and Wa ∈ I for each a ∈ A. We also assume that Q(W) > 1 and ℓ(W) > 0, so (F,ΣW)
is a redundant Möbius number system. Denote by A := A ∪ {λ} and A∗ := A∗ ∪AN. Under these
assumptions there exist algorithms for computing rational functions of one or more variables.

Definition 12 A (m,n)-labelled graph over A (with n ≥ 0 inputs and m ≥ 0 outputs) is a
structure G = (V,E, s, t, l), where V is a countable set of vertices, E is a countable set of edges,

s, t : E → V are computable source and target maps, and l : E → A
m+n

, is a computable map
such that for each q ∈ V , the set s−1(q) of edges with source q is finite, and the map q 7→ s−1(q)
is computable.

A path in G is a word u ∈ E∗ ∪ EN of edges such that t(ui) = s(ui+1). The label of a path is the
concatenation of labels of its edges. The graph G determines a many-valued (nondeterministic)
function Ψ : V × A∗n → A∗m

such that w = Ψ(q, u) iff (w, u) is a label of a path with source q.
The graph yields a machine consisting of a control unit (head) whose inner states are elements of
V . The head is attached to n input tapes and m output tapes. At each time step, the head chooses
one of the edges which leads from its state, updates its inner state, reads letters from input tapes
and/or writes letters to output states.
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Definition 13 The (1, 0)-number expansion graph (no inputs and 1 output) is a graph whose

vertices are pairs (x, d), where x ∈ Q and d ∈ {l, r} (left, right). We have a labelled edge (x, l)
a→

(F−1
a (x), l) if (x, x′) ⊆ Wa for some x′ 6= x and a ∈ A. We have a labelled edge (x, r)

a→ (F−1
a (x), r)

if (x′, x) ⊆ Wa for some x′ 6= x and a ∈ A. The (1, 0)-interval expansion graph (no inputs and

1 output) is a graph whose vertices are intervals I ∈ I. There is an edge I
a→ F−1

a (I) whenever
I ⊆ Wa.

The condition x ∈ Wa alone in the number expansion graph is not sufficient to ensure the nonempty
interior of Wu (see the proof of Proposition 7).

Proposition 14 For each x ∈ Q there exists an infinite path with source (x, l), and an infinite
path with source (x, r). If u ∈ AN is its label, then u ∈ ΣW and Φ(u) = x. If u ∈ A∗ is the label of
a path with source I, then u ∈ LW , and I ⊆ Φ([u]).

Proof: We have (x, x′) ⊆ Wu0
, (F−1

u0
(x), x′′) ⊆ Wu1

, so Wu[0,1]
6= ∅, and x ∈ Wu[0,1]

. By induction

x ∈ Wu[0,k)
and Wu[0,k)

6= ∅ for each k > 0, so x = Φ(u). Similar argument works for the interval

expansion graph.

Definition 15 The (0, 1)-checking graph (1 input and no output) is a graph whose vertices are

intervals I ∈ I. We have a labelled edge I
a→ F−1

a (I) ∩ Wa whenever F−1
a (I) ∩ Wa 6= ∅ is an

interval.

Proposition 16 There exists a path with source R and label u ∈ A∗ iff u ∈ LW ∪ ΣW .

Definition 17 The (1, 1)-linear graph (1 input and 1 output) has vertices (M,a), where M ∈
M1 and a ∈ A. The labelled edges are

(M,a)
(c,λ)−→ (F−1

c M,a) if M(Wa) ⊆ Wc,

(M,a)
(λ,b)−→ (MFa, b) if ¬∃c,M(Wa) ⊆ Wc.

Proposition 18 If (w, u) is the label of a path with source (M,λ) and u ∈ ΣW , then w ∈ ΣW and
Φ(w) = M(Φ(u)). If u ∈ LW , then w ∈ LW and M(Φ([u])) ⊆ Φ([w]).

Proof: We show by induction that when there is a path with source (M,λ) and label (w, u) ∈
A∗×LW , then M(Wu) ⊆ Ww and its target is (F−1

w MFu, a), where a = u|u|−1 is the last letter of u.

Since Wλ = R, the first edge (M,λ) → (M,a) has label (λ, a), so M(Wu) = M(Wa) ⊆ Wλ = Ww

is satisfied. Suppose that the assumption holds for (w, u), and consider an edge (F−1
w MFu, a) →

(F−1
w MFua, b) with label (λ, b). Then M(Wub) ⊆ M(Wu) ⊆ Ww, so the statement holds for

the path label (w, ub). Consider an edge (F−1
w MFu, a) → (F−1

wc MFu, a), with label (c, λ), so
F−1

w MFu(Wa) ⊆ Wc. Then M(Wua) ⊆ MFu(Wa) ⊆ Fw(Wc). Since M(Wua) ⊆ M(Wu) ⊆ Ww,
we get M(Wua) ⊆ Ww ∩ Fw(Wc) = Wwc, so the statement holds for the path label (wc, u).

Similar algorithms work for bilinear functions

P (x, y) =
axy + bx + cy + d

exy + fx + gy + h
=

ax0y0 + bx0y1 + cx1y0 + dx1y1

ex0y0 + fx0y1 + gx1y0 + hx1y1

These algorithms are based on the fact that for a bilinear function P (x, y) and a MT M , the
functions M(P (x, y)), P (M(x), y), and P (x,M(y)) are bilinear. Similarly, if

P (x) =
a0 + a1x + · · · + anxn

b0 + b1x + · · · + bnxn
=

a0x
n
1 + a1x0x

n−1
1 + · · · + anxn

0

b0xn
1 + b1x0x

n−1
1 + · · · + bnxn

0

is a rational function of degree n and M is a MT, then both P ◦M and M◦P are rational functions of
degree n. This yields algorithms for expansions of algebraic numbers and for evaluations of rational
functions (see Gosper [3], Vuillemin [10], or Kornerup and Matula [6]).
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Figure 1: Means of the binary signed system (BSS, top left), semi-regular continued fractions
(SRCF, top right) and binary continued fractions (BCF bottom)

5 Binary continued fractions

The binary signed number system for the interval [−1, 1] is based on iterations of mappings (x −
1)/2, x/2, (x + 1)/2. In fact [−1, 1] is the attractor of this system and Φ(u) =

∑
n≥0 2−i−1ui is its

symbolic representation. We use simpler transformations x− 1, x/2, x + 1 and take also 2x to get
the whole R. We use the alphabet A = {1, 0, 1, 0} which represents numbers −1, 0, 1,∞.

Example 1 The Möbius binary signed system (BSS - Figure 1 top left) consists of the alphabet
A = {1, 0, 1, 0}, transformations F1(x) = −1 + x, F0(x) = x/2, F1(x) = 1 + x, F0(x) = 2x, and
the interval cover W1 = (−2,− 1

2 ), W0 = (− 3
4 , 3

4 ), W1 = (1
2 , 2), W0 = (3

2 ,− 3
2 ).

The intervals Wa are chosen with regard to the expansion intervals V1 = (∞,− 1
2 ), V0 = (−

√
2

2 ,
√

2
2 ),

V1 = (1
2 ,∞), V0 = (

√
2,−

√
2). We have ℓ(W)

.
= 0.249, and Q(W) > 1.36, so (F,ΣW) is

a Möbius number system. Since 10, 00, 10 are forbidden words in ΣW , the letter 0 can oc-
cur only at the beginning of a word and each u ∈ LW can be written as u = 0

n
v, where

v ∈ {1, 0, 1}∗ and n ≥ 0. Since 111, 111 are forbidden words, Fu can be written as Fu(x) =
2n

(
s0 + 1

2

(
s1 + 1

2

(
s2 + · · · + 1

2

(
sk−1 + x

2

)
· · ·

)))
, where k ≥ 0 and si ∈ {−2,−1, 0, 1, 2}, s0 6= 0.

The means F̂u(0) of words u ∈ LW can be seen in Figure 1. The curves between these means
are constructed as follows. For each MT M there exists a family of MT (M t)t∈R such that

M0 = Id, M1 = M , and M t+s = M tMs. In Figure 1, each mean F̂ua(0) is joined to F̂u(0) by

the curve (F̂uF̂ t
a(0))0≤t≤1. The labels u ∈ A+ at F̂u(0) are written in the direction of the tangent
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vectors F̂ ′
u(0). In fact the mean F̂ (0) and the unit tangent vextor F̂ ′(0)/|F̂ ′(0)| determine the

transformation F uniquely.
Regular continued fractions are based on iterations of transformations 1 + x and 1/x. Since

1/x is orientation-reversing, we use rather the orientation preserving transformation F0(x) = −1/x

which corresponds to the rotation F̂0(z) = −z of the unit circle by π. It follows that F̂u0(0) = F̂u(0),
but the tangent vectors of u and ua differ by π (see Figure 1 top right).

Example 2 The Möbius system of regular continued fraction (RCF see [8]) consists of the
alphabet A = {1, 0, 1}, transformations F1(x) = −1 + x, F0(x) = −1/x, F1(x) = 1 + x, and the
interval cover W1 = (∞,−1), W0 = (−1, 1), W1 = (1,∞).

The subshift ΣW = Σ{00,11,11,101,101} is of finite type. For each u ∈ L(ΣD), the transformation Fu

can be written as Fu(x) = F a0
1 F0F

a1
1 · · ·F0F

an

1 (x) where ai ∈ Z, aiai+1 ≤ 0 and ai 6= 0 for i > 0.
Thus we obtain a continued fraction whose partial quotients (−1)iai are either all positive or all
negative and such continued fractions converge by the standard theory. Alternatively, we can use
Theorem 11. We have Qn(W) = 1 and Rn(W) = ||(n,∞)||/2π ≈ 1/πn, so Q(W) = R(W) = 1.
Since ℓ(W) = 0, (F,ΣW) is a non-redundant Möbius number system (see Kůrka [8]). Each rational
number has two preperiodic expansions with period length 1 of the form u.1 or u.1.

Example 3 The Möbius system of semi-regular continued fraction (SRCF - Figure 1
top right) consists of the alphabet A = {1, 0, 1}, transformations F1(x) = −1 + x, F0(x) =
−1/x, F1(x) = 1 + x, and the interval cover W1 = (∞,− 1

2 ), W0 = (−1, 1), W1 = (1
2 ,∞).

Semi-regular continued fractions converge by a theory exposed in Perron [9]. The subshift

ΣW = S{00,11,11,1010,1010,0101,0101,101101,101101} ⊆ XF

is of finite type. We have again ℓ(W) = 0 and Q(W) = R(W) = 1, so the system is not redundant
and the convergence is slow. We add the transformation F2(x) = 2x to make it faster.

Example 4 The Möbius system of binary continued fraction (BCF - Figure 1 bottom)
consists of the alphabet A = {1, 0, 1, 0}, transformations F1(x) = −1 + x, F0(x) = −1/x, F1(x) =
1 + x, F0(x) = 2x, and the interval cover W1 = (∞,− 1

2 ), W0 = (−1, 1), W1 = (1
2 ,∞), W0 =

(2,−2).

We get ΣW = S{00,00,1010,1010,10
∗

1,10
∗

1,0100
∗

1,0100
∗

1,101100
∗

1,101100
∗

1,0100
∗

1,0102∗1}, which is a sofic

subshift. Since F •
1 (∞) = 1, we have Qn(ΣW) = 1 for each n, and the system converges by

Theorem 11. The Lebesgue number is ℓ(W) = ̺( 1
2 , 1)

.
= 0.644, so (F,ΣW) is a redundant system.

Each rational number has an eventually periodic expansion with period length 1 of the form u.0 (see
Kůrka [7]). To obtain shorter expansions of rational numbers, we test the parity of the numerator
and denominator:

Definition 19 The arithmetical expansion graph (Figure 2 top) for the BCF system has vertices
x = (x0, x1) ∈ Q, with x1 ≥ 0 and labeled edges

x
0→ (x0/2, x1) if |x0| ≥ 2|x1| & 2|x0

x
0→ (x0, 2x1) if |x0| ≥ 2|x1| & 2|x1

x
1→ (x0 + x1, x1) if x0 ≤ −x1 ∨ (2x0 < −x1 & 2|x1)

x
1→ (x0 − x1, x1) if x0 ≥ x1 ∨ (2x0 > x1 & 2|x1)

x
0→ (−x1 · sgn(x0), |x0|) otherwise

In the expansion procedure of Definition 19, the first applicable rule is used, so each vertex has
outdegree 1 and we get a deterministic expansion function E : Q → ΣW , such that E(x) is the label
of the unique infinite path with source x. It follows Φ(E(x)) = x for each x ∈ Q. Each rational
number has expansion of the form u.0 and integers have the same expansions as in the classical
binary system. An integer can be written as x = x0 + 2x1 + · · · + 2kxk, where xi ∈ {−1, 0, 1} are
either all non-negative, or all non-positive. Then E(x) = s00s10 . . . 0sk−10sk0.0, where si is empty
if xi = 0, si = 1 if xi = −1, and si = 1 if xi = 1 (see Figure 2 bottom).
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1/1 10.0 5/4 100010.0 4/3 101010.0 7/5 100100010.0
3/2 10010.0 8/5 101010010.0 5/3 1010010.0 7/4 1100010.0
2/1 010.0 7/3 1101010.0 5/2 0100010.0 8/3 0101010.0
3/1 1010.0 7/2 01100010.0 4/1 0010.0 5/1 10010.0

Figure 2: Arithmetical expansions of rational numbers in BCF

6 Fuchsian groups

Given a Möbius iterative system F , denote by G(F ) the group generated by the transformations
(Fa)a∈A. Discrete groups of MT are called Fuchsian groups (see Katok [4] or Beardon [2]). For
example, the iterative system of the regular or semiregular continued fractions with transformations
F1(x) = −1 + x, F0(x) = −1/x, F1(x) = 1 + x generates the modular group G(F ) = {M(a,b,c,d) :
a, b, c, d ∈ Z, ad−bc = 1}. We consider Möbius number systems, whose groups generate tesselation
of the hyperbolic space by regular polygons.

Definition 20 The (2n, 2m)-polygonal system, where 1
n + 1

m < 1, has alphabet A = {0, 1, . . . , 2n−
1} and transformations Fj = RjCqR

−j, where R = Rπ/n and

q = q(2n,2m) =
1 +

√
1 − sin2 π

2n/ cos2 π
2m

1 −
√

1 − sin2 π
2n/ cos2 π

2m

Denote by G(2n, 2m) the group generated by F0, . . . , F2n−1. Here 2m can be an odd integer, but 2n
must be even.

Proposition 21 G(2n, 2m) is a discrete group which satisfies identities FiFi+n = Id, RiFj =
Fi+jR

i, F0F(n−1)F2(n−1) · · ·F(2m−1)(n−1) = R−2m, F0F(n+1)F2(n+1) · · ·F(2m−1)(n+1) = R2m, (the
addition is modulo 2n).

Proof: Denote by Ai = F̂0F̂n−1 · · · F̂i(n−1)(0). We search for the condition on q which implies
A2m−1 = 0 and therefore A2m = A0. In this case the points A0, A1, . . . , A2m−1, form a regular

2m-gon whose inner angles at vertices Ai are π/n. Denote by a = ̺(0, F̂0(0)) the hyperbolic length
of the side of this polygon, by S its center and by B0 the middle of the hyperbolic line A0A1. The
hyperbolic triangle SA0B0 has angles π/2m, π/2n, π/2 and the side of length a/2 opposite to S.
By the Cosine rule II we get

1√
1 − |F̂0(0)|2

= cosh
a

2
=

cos π
2n cos π

2 + cos π
2m

sin π
2n sin π

2

=
cos π

2m

sin π
2n
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Figure 3: Polygonal (4, 5)-system with F0F1F0F1F0 = R−1, and (4, 6)-system with
F0F1F0F1F0F1 = R2

Since F̂0(0) = −i(q − 1)/(q + 1), we get

q =
1 + |F̂0(0)|
1 − |F̂0(0)|

=
1 +

√
1 − 1/ cosh2(a/2)

1 −
√

1 − 1/ cosh2(a/2)
= ea

and the formula for q follows. The angle between the hyperbolic geodetic A0A1 and the euclidean
geodetic (straight line) A0A1 is π

2 − π
2n − π

2m , therefore the rotation angles of F̂0 · · · F̂i(n−1) and

F̂0 · · · F̂i(n−1)F̂(i+1)(n−1) differ by 2(π
2 − π

2n − π
2m ). Since R2n = Id, we get

F0 · · ·F(2m−1)(n+1) = R4m( π
2 − π

2n
− π

2m
) = R−2πm/n = R−2m

For a (2n, 2m) polygonal system and a > 0 consider an interval cover Wa = {Wk : k ∈ A},
where Wk = (Rkπ/n(−a), Rkπ/n(a)). We can find a > 0 such that Wa satisfies Proposition 8 and
Σ(2n,2m) := ΣWa

is a Möbius number system. For 2n = 4 and 2m = 5, 6, we get

Σ(4,5) = S{11,00,11,00,101,101,010,010,101,101,010,010}
Σ(4,6) = S{11,00,11,00,1010,1010,0101,0101,1010,1010,0101,0101}

The means of these systems can be seen in Figure 3. We use again the alphabet {0, 1, 0, 1}
instead of {0, 1, 2, 3}. The quotients of polygonal systems are not rational, but they are algebraic.
The algorithms of Section 4 work if we use the countable field Q[q] instead of Q. However, the
arithmetics in Q[q] is slower and needs more memory. Moreover, rational numbers do not have
preperiodic expansions in these systems. In the next section we construct another system based
on a Fuchsian group in which rational numbers do have preperiodic expansions.

7 Biternary system

Consider rectangle systems with 2n = 4, R(x) = Rπ/2(x) = (x0 + x1)/(x0 − x1) but different
quotients q0, q1 > 1 in vertical and horizontal directions. With the alphabet A = {1, 0, 1, 0} we get
transformations

F1(x) =
(q1 + 1)x + (1 − q1)

(1 − q1)x + (q1 + 1)
, F0(x) =

x

q0
, F1(x) =

(q1 + 1)x + (q1 − 1)

(q1 − 1)x + (q1 + 1)
, F0(x) = q0x

For q0 = 4, q1 = 9 the group G(F ) is Fuchsian. Its tessellation is in Figure 4 left. Here C is the
Ford fundamental region bounded by geodesics joining ideal points d( 1

2 ), d(2), d(−2), d(− 1
2 ) at
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Figure 4: The tesselation and means of the quadrononary system

the boundary ∂D. The images Fu(C) tesselate the hyperbolic plane. The expanding intervals are
V1 = (−2,− 1

2 ), V0 = (− 1
2 , 1

2 ), V1 = (1
2 , 2), V0 = (2,−2). The Möbius quadrononary number

system with interval cover Wa = Va has forbidden words 11, 00, 11, 00. It is convergent but not
redundant (Figure 4 right). The biternary system with quotients q0 = 2, q1 = 3 is the ”square
root” of the quadrononary system. Its transformations are

F1(x) =
2x0 − x1

2x1 − x0
, F0(x) =

x0

2x1
, F1(x) =

2x0 + x1

x0 + 2x1
, F0(x) =

2x0

x1
(1)

The expansion intervals are V1 = (−2−
√

3,−2+
√

3), V0 = (−
√

2
2 ,

√
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2 ), V1 = (2−
√
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√
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2). Consider interval covers
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W1 : W1 = (∞, 0), W0 = (−1, 1), W1 = (0,∞), W0 = (1,−1)

1
/
0

-
8

-
4

-5
/2

-2

-3/
2

-5/4

-14/13
-1
-13/14

-4/5

-2/3

-1/2

-2/5

-
1
/
4 -
1
/
8

0 1
/
8

1
/
4

2/5

1/2

2/3

4/5

13/14
1
14/13

5/4

3/2

2

5/
2

4

8

1 -

0  

1  

0 -

1
1

-
-

1
0 - 

1
0

-
-

0
1

 
-

0
0
 
 

0
1   

1
0

 
 

1
1

 
 

1
0  -

0
1 -- 0
1

-
 

0
0
-
-

1
/
0

-
8

-
4

-5
/2

-2

-3/
2

-5/4

-14/13
-1
-13/14

-4/5

-2/3

-1/2

-2/5

-
1
/
4 -
1
/
8

0 1
/
8

1
/
4

2/5

1/2

2/3

4/5

13/14
1
14/13

5/4

3/2

2

5/
2

4

8

1 -

0  

1  

0 -

1
1

-
-

1
0 - 

1
0

-
-

0
1

 
-

0
0
 
 

0
1   

1
0

 
 

1
1

 
 

1
0  -

0
1 -- 0
1

-
 

0
0
-
-

1
1
1

-
-
- 110
-- 10

1
-
 
-
100
-  

101 -  

1
0
1

-
-
-

101
-- 100

---

011
 -- 0

1
0

 
-
 

010
 --

001
  - 0

0
0

 
 
 

001
   

0
1
0

 
 
 

011
   

010
  -

101
  -

100
   

1
0
1

 
 
 

110
   

1
1
1

 
 
 

101  --

1
0
1

 
-
 

100
 --

011
---

010
-- 

0
1
0

-
-
-

010
-  

011
-  

0
1
0

-
 
-

001
---

001
-- 

0
0
0

-
-
-

Figure 5: The small and large biternary systems

Definition 22 The small biternary system (BTS0 - Figure 5 left) and large biternary system
(BTS1 Figure 5 right) have alphabet A = {1, 0, 1, 0}, transformations (1) and sofic subshifts

Σ0 = ΣW0
= {1, 0}N ∪ {0, 1}N ∪ {1, 0}N ∪ {0, 1}N
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Figure 6: Expansion graph of BTS1 (top), expansions of rationals in BTS0(center) and arithmetical
expansions in BTS1 (bottom)

The quotient of BTS0 is greater than one, so the system converges, but it is not redundant. In
BTS1, Qn(Σ) = 1 for each n divisible by four, so (F,Σ1) is a redundant Möbius number system
by Theorem 11. Alternatively we can use the sofic subshift

Σ2 = S{11,00,11,00} ∩ ({1, 0, 1}N ∪ {0, 1, 0}N ∪ {1, 0, 1}N ∪ {0, 1, 0}N)

which satisfies Σ0 ⊂ Σ2 ⊂ Σ1 and is redundant as well.
We conjecture that rational numbers have in BTS0 preperiodic expansions with period length

1 of the form u.a (see Figure 6). In BTS1 we get short preperiodic expansions if we test divisibility
by 2 and 3. Define the extended rationals and rationals modulo n > 0 by

Q = {p
q : p, q ∈ Z, q ≥ 0, |p| + |q| > 0}

Q0 = {p
q ∈ Q : q ≥ 0, gcd(p, q) = 1},

Qn = {p
q : p, q ∈ Zn, gcd(p, q) = 1},

Qn =
⋃

m|n
Qm ∪ {0

0},

12



where we write p
q for the pair (p, q), and Zn = {0, 1, . . . , n − 1}. For x ∈ Q we write p|x if

p| gcd(x0, x1). We have a homomorphism m : Q → Q0 defined by m(p
q ) = p/ gcd(p,q)

q/ gcd(p,q) . For each

n > 0 we have a homomorphism mn : Q → Qn defined by mn(x0

x1
) = modn(x0)

modn(x1)
. An integer MT acts

on Q and its composition with m acts on Q0. We write x
a→ y if y = F−1

a (x). In Q2 = { 0
1 , 1

0 , 1
1}

we have 1
0

1→ 0
1

1→ 1
0 , 1

1

1→ 1
1 , 1

0

1→ 0
1

1→ 1
0 , 1

1

1→ 1
1 . In Q3 = { 0

1 , 0
2 , 1

0 , 1
1 , 1

2 , 2
0 , 2

1 , 2
2} we have

{ 0
1 , 1

0}
1→ 2

2

1→ 2
2 , { 0

2 , 2
0}

1→ 1
1

1→ 1
1 , { 1

2 , 2
1}

1→ 0
0 , { 0

1 , 2
0}

1→ 1
2

1→ 1
2 , { 0

2 , 1
0}

1→ 2
1

1→ 2
1 , { 1

1 , 2
2}

1→ 0
0 .

Definition 23 The arithmetical expansion algorithm for BTS1 is defined by the following rules.
For each x ∈ Q0, the first applicable rule is chosen.

1a : x
1→ mF1(x) if x ∈ [−2,− 1

2 ] & 3|F1(x)

1b : x
0→ mF0(x) if x ∈ [−2,−1) & (2|F0(x) ∨ 3|F1(x))

1c : x
0→ mF0(x) if x ∈ (−1,− 1

2 ] & (2|F0(x) ∨ 3|F1(x))

1d : x
1→ mF1(x) if x ∈ [−2,− 1

2 ]

0a : x
0→ mF0(x) if x ∈ (− 1

2 , 1
2 ) & 2|F0(x)

0b : x
1→ mF1(x) if x ∈ (− 1

2 , 0) & (3|F1(x) ∨ 2|F0(x))

0c : x
1→ mF1(x) if x ∈ (0, 1

2 ) & (3|F1(x) ∨ 2|F0(x))

0d : x
0→ mF0(x) if x ∈ (− 1

2 , 1
2 )

1a : x
1→ mF1(x) if x ∈ [ 12 , 2] & 3|F1(x)

1b : x
0→ mF0(x) if x ∈ [ 12 , 1) & (2|F0(x) ∨ 3|F1(x))

1c : x
0→ mF0(x) if x ∈ (1, 2] & (2|F0(x) ∨ 3|F1(x))

1d : x
1→ mF1(x) if x ∈ [ 12 , 2]

0a : x
0→ mF0(x) if x ∈ (2,−2) & 2|F0(x)

0b : x
1→ mF1(x) if x ∈ (2,∞) & (3|F1(x) ∨ 2|F0(x))

0c : x
1→ mF1(x) if x ∈ (∞,−2) & (3|F1(x) ∨ 2|F0(x))

0d : x
0→ mF0(x) if x ∈ (2,−2)

The conditions in the arithmetical expansion algorithm can be tested by simple rules. We have

3|F1(x) ⇔ 3|R(x)0 ⇔ 3|(x0 + x1), 2|F0(x) ⇔ 2|x0,
3|F1(x) ⇔ 3|R(x)1 ⇔ 3|(x0 − x1), 2|F0(x) ⇔ 2|x1.

Proposition 24 Each rational number has a preperiodic arithmetical expansion with period length
1.

Proof: We show that the norm of x ∈ Q0 defined by ||x|| := |x0| + |x1| is a Lyapunov function
for the arithmetical expansion algorithm in the following sense. If x ∈ Q0 \ {−1, 0, 1,∞}, then
||y|| < ||x|| for some y on the path with source x. Note that if both x, F1(x) ∈ (0,∞) are
positive, then ||F1(x)|| = ||x|| and if moreover 3|(x0 + x1), then ||mF1(x)|| = ||x||/3. Similarly,
if both x, F1(x) ∈ (∞, 0) are negative, then ||F1(x)|| = ||x|| and if moreover 3|(x0 − x1), then
||mF1(x)|| = ||x||/3. The proof of the claim distinguishes 45 cases which are summarized in
Table 1. These cases depend on modulo classes m6(x). For example, the first item means that if

x ∈ (∞,−6) and m6(x) ∈ {1
3 , 3

1 , 3
5 , 5

3}, then x
01001−→ mF10010(x) and

||mF10010(x)|| =

∣∣∣∣

∣∣∣∣
12x1

−6x0 − 30x1

∣∣∣∣

∣∣∣∣ /6 = 2x1 − x0 − 5x1 < −x0 + x1 = ||x||
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Science Foundation research project GAČR 201/09/0854. A part of this paper has been written
during my stay at the Max Planck Institute for Mathematics in Bonn.

13



mod6(x) interval norm mod6(x) interval norm
1
3 , 3

1 , 3
5 , 5

3 (− 1
0 ,− 6

1 ) ||F10010||/6 1
0 , 1

2 , 3
2 , 3

4 , 5
0 , 5

4 (− 1
0 ,− 7

2 ) ||F1001||/6
2
5 , 4

1 (− 1
0 ,− 2

1 ) ||F0||/2 1
5 , 5

1 (− 1
0 ,− 1

1 ) ||F10||/3
0
1 , 0

5 , 2
1 , 2

3 , 4
3 , 4

5 (− 1
0 ,− 1

1 ) ||F0||/2 1
4 , 5

2 (− 1
0 ,− 1

2 ) ||F1||/3
1
1 , 5

5 (− 1
0 , 0

1 ) ||F1||/3 1
3 , 3

1 , 3
5 , 5

3 (− 6
1 ,− 2

1 ) ||F010||/2
1
2 , 5

4 (− 7
2 ,− 2

1 ) ||F01||/2 1
0 , 3

2 , 3
4 , 5

0 (− 7
2 ,− 1

1 ) ||F01||/2
1
3 , 3

1 , 3
5 , 5

3 (− 2
1 ,− 1

1 ) ||F101||/3 1
2 , 5

4 (− 2
1 ,− 1

1 ) ||F10||/3
2
5 , 4

1 (− 2
1 , 0

1 ) ||F1||/3 1
3 , 3

1 , 3
5 , 5

3 (− 1
1 ,− 1

2 ) ||F101||/3
2
1 , 4

5 (− 1
1 ,− 1

2 ) ||F10||/3 0
1 , 0

5 , 2
3 , 4

3 (− 1
1 ,− 2

7 ) ||F01||/2
1
5 , 5

1 (− 1
1 , 0

1 ) ||F10||/3 1
2 , 5

4 (− 1
1 , 1

2 ) ||F0||/2
1
0 , 3

2 , 3
4 , 5

0 (− 1
1 , 1

1 ) ||F0||/2 2
1 , 4

5 (− 1
2 ,− 2

7 ) ||F01||/2
1
3 , 3

1 , 3
5 , 5

3 (− 1
2 ,− 1

6 ) ||F010||/2 1
4 , 5

2 (− 1
2 , 1

1 ) ||F0||/2
0
1 , 0

5 , 2
1 , 2

3 , 4
3 , 4

5 (− 2
7 , 0

1 ) ||F1001||/6 1
3 , 3

1 , 3
5 , 5

3 (− 1
6 , 0

1 ) ||F10010||/6
1
3 , 3

1 , 3
5 , 5

3 ( 0
1 , 1

6 ) ||F10010||/6 0
1 , 0

5 , 2
3 , 2

5 , 4
1 , 4

3 ( 0
1 , 2

7 ) ||F1001||/6
1
1 , 5

5 ( 0
1 , 1

1 ) ||F10||/3 2
1 , 4

5 ( 0
1 , 2

1 ) ||F1||/3
1
5 , 5

1 ( 0
1 , 1

0 ) ||F1||/3 1
3 , 3

1 , 3
5 , 5

3 ( 1
6 , 1

2 ) ||F010||/2
2
5 , 4

1 ( 2
7 , 1

2 ) ||F01||/2 0
1 , 0

5 , 2
3 , 4

3 ( 2
7 , 1

1 ) ||F01||/2
1
3 , 3

1 , 3
5 , 5

3 ( 1
2 , 1

1 ) ||F101||/3 2
5 , 4

1 ( 1
2 , 1

1 ) ||F10||/3
1
2 , 5

4 ( 1
2 , 1

0 ) ||F1||/3 1
3 , 3

1 , 3
5 , 5

3 ( 1
1 , 2

1 ) ||F101||/3
1
4 , 5

2 ( 1
1 , 2

1 ) ||F10||/3 1
0 , 3

2 , 3
4 , 5

0 ( 1
1 , 7

2 ) ||F01||/2
1
1 , 5

5 ( 1
1 , 1

0 ) ||F10||/3 0
1 , 0

5 , 2
3 , 2

5 , 4
1 , 4

3 ( 1
1 , 1

0 ) ||F0||/2
1
4 , 5

2 ( 2
1 , 7

2 ) ||F01||/2 1
3 , 3

1 , 3
5 , 5

3 ( 2
1 , 6

1 ) ||F010||/2
2
1 , 4

5 ( 2
1 , 1

0 ) ||F0||/2 1
0 , 1

4 , 3
2 , 3

4 , 5
0 , 5

2 ( 7
2 , 1

0 ) ||F1001||/6
1
3 , 3

1 , 3
5 , 5

3 ( 6
1 , 1

0 ) ||F10010||/6

Table 1: Norm in arithmetical expansion algorithm
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2008.
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