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1 Glossary

Almost equicontinuous CA: a CA which has at least one equicontinuous
configuration.

Attraction basin: the set of configurations whose orbit is eventually attracted
by an attractor.

Attractor: a closed invariant set which attracts all orbits in some of its neigh-
bourhood.

Besicovitch pseudometrics: a pseudo-metric that quantifies the upper-density
of differences.

Blocking word: a word that interrupts the information flow. A configuration
containing an infinite number of blocking words both to the right and to
the left gives rise to an equicontinuous configuration.

Equicontinuous CA: a CA in which all configurations are equicontinuous.

Equicontinuous configuration: a configuration for which nearby configura-
tions remain close.

Expansive CA: two distinct configurations, no matter how close, eventually
separate during the evolution.

Generic space: the space of configurations for which upper-density and lower-
density coincide.

Sensitive CA: in any neighbourhood of any configuration there exists a con-
figuration such that the orbits of the two configurations eventually sepa-
rate.

Spreading set: a clopen invariant set propagating both to the left and to the
right.

Toeplitz space: the space of regular quasi-periodic configurations.

Weyl pseudometrics: a pseudo-metric that quantifies the upper density of
differences with respect to all possible cell indices.

2 Definition

In topological dynamics, the assumption of compactness is usually adopted as it
has far reaching consequences. Each compact dynamical system has an almost
periodic point, contains a minimal subsystem, and each trajectory has a limit
point. Nevertheless, there are important examples of non-compact dynamical
systems like linear systems on R

n and the theory should cover these examples
as well. The study of dynamics of cellular automata (CA) in the compact
Cantor space of symbolic sequences starts with Hedlund [7] and is by now a
firmly established discipline (see e.g., Kůrka [15]). The study of dynamics of
CA in non-compact spaces like Besicovitch or Weyl spaces is more recent and
provides an interesting alternative perspective.

The study of dynamics of cellular automata in non-compact spaces has at
least two distinct origins. The first concerns the study of dynamical properties
on peculiar countable dense sub-spaces of the Cantor space (the space of finite
configuration or the space of spatially periodic configurations, for instance).
The idea is that on those spaces, some properties are easier to prove than on
the full Cantor space. Once a property is proved on such a sub-space, one
can try to lift it to the original Cantor space by using denseness. Another
advantage is that the configurations on these spaces are easily representable
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on computers. Indeed, computer simulations and practical applications of CA
usually take place in these subspaces.

The second origin is connected to the question of suitability of the classical
Cantor topology for the study of chaotic behavior of CA and of symbolic sys-
tems in general. We briefly recall the motivations. Consider sensitivity to initial
conditions for a CA in the Cantor topology. The shift map σ, which is a very
simple CA, is sensitive to initial conditions since small perturbations far from
the central region are eventually brought to the central part. However, from
an algorithmic point of view, the shift map is very simple. We are inclined
to regard a system as chaotic if its behavior cannot easily be reconstructed.
This is not the case of the shift map whose chaoticity is more an artifact of the
Cantor metric, rather than an intrinsic property of the system. Therefore, one
may want to define another metric in which sensitive CA not only transport
information (like the shift map) but also build/destroy new information at each
time step.

This basic requirement stimulated the quest for alternative topologies to
the classical Cantor space. This lead first to the Besicovitch topology and then
to the Weyl topology in Cattaneo et al [4]. used to investigate almost periodic
real functions (see Besicovitch [1] or Iwanik [9]). Both these pseudometrics
can be defined starting from suitable semi-measures on the set Z of integers.
This way of construction had a Pandora effect opening the way to many new
interesting topological spaces. Some of them are reported in this paper; others
can be found in Cervelle and Formenti [5].

Each topology focuses on some peculiar aspects of the dynamics under study
but all of them have a common denominator, namely non-compactness.

3 Introduction

A given CA in alphabet A can be regarded as a dynamical system in several
topological spaces: Cantor configuration space CA, space MA of shift-invariant
Borel probability measures on AZ, the Weyl space WA, the Besicovitch space
BA, the generic space GA, the Toeplitz space TA and the periodic space PA. We
refer to various topological properties of these systems by prefixing the name of
space in question. Basic results correlate various dynamical properties of CA
in these spaces.

The Cantor topology corresponds to the point of view of an observer who
can distinguish only a finite central part of a configuration and sites outside
this central part of the configuration are not taken into account. The Besicov-
itch and Weyl topologies, on the other hand, correspond to a god-like position
of someone who sees whole configurations and can distinguish the frequency
of differences. In the Besicovitch topology, the centers of configurations still
play a distinguished role, as the frequencies of differences are computed from
the center. In the Weyl topology, on the other hand, no site has a privileged
position. Both Besicovitch and Weyl topologies are defined by pseudomet-
rics. Different configurations can have zero distance and the topological space
consists of equivalence classes of configurations which have zero distance.

The generic space GA is a subspace of the Besicovich space of those con-
figurations, in which each finite word has a well defined frequency. These
frequencies define a Borel probability measure on the Cantor space of config-
urations, so we have a projection from the generic space GA to the space MA

of Borel probability measures equipped with the weak∗ topology. This is a
natural space for investigating the dynamics of CA on random configurations.

The Toeplitz space TA consists of regular quasi-periodic configurations.
This means that each pattern repeats periodically but different patterns have
different periods. The Besicovitch and Weyl pseudometrics are actually metrics
on the Toeplitz space and moreover they coincide on TA.
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4 Dynamical systems

A dynamical system is a continuous map F : X → X of a nonempty metric
space X to itself. The n-th iteration Fn : X → X of F is defined by F 0(x) = x,
Fn+1(x) = F (Fn(x)). A point x ∈ X is fixed, if F (x) = x. It is periodic,
if Fn(x) = x for some n > 0. The least positive n with this property is called
the period of x. The orbit of x is the set O(x) = {Fn(x) : n > 0}. A
set Y ⊆ X is positively invariant, if F (Y ) ⊆ Y and strongly invariant if
F (Y ) = Y . A point x ∈ X is equicontinuous (x ∈ EF ) if the family of maps
Fn is equicontinuous at X, i.e. x ∈ EF iff

(∀ε > 0)(∃δ > 0)(∀y ∈ Bδ(x))(∀n > 0)(d(Fn(y), Fn(x)) < ε).

The system (X,F ) is almost equicontinuous if EF 6= ∅ and equicontinu-
ous, if

(∀ε > 0)(∃δ > 0)(∀x ∈ X)(∀y ∈ Bδ(x))(∀n > 0)(d(Fn(y), Fn(x)) < ε).

For an equicontinuous system EF = X. Conversely, if EF = X and if X is
compact, then F is equicontinuous; this needs not be true in the non-compact
case. A system (X,F ) is sensitive (to initial conditions), if

(∃ε > 0)(∀x ∈ X)(∀δ > 0)(∃y ∈ Bδ(x)) (∃n > 0)(d(fn(y), fn(x)) ≥ ε).

A sensitive system has no equicontinuous point. However, there exist systems
with no equicontinuity points which are not sensitive. A system (X,F ) is
positively expansive, if

(∃ε > 0)(∀x 6= y ∈ X)(∃n ≥ 0)(d(fn(x), fn(y)) ≥ ε).

A positively expansive system on a perfect space is sensitive. A system (X,F )
is (topologically) transitive, if for any nonempty open sets U, V ⊆ X there
exists n ≥ 0 such that F−n(U) ∩ V 6= ∅. If X is perfect and if the system
has a dense orbit, then it is transitive. Conversely, if (X,F ) is topologically
transitive and if X is compact, then (X,F ) has a dense orbit. A system (X,F )
is mixing, if for any nonempty open sets U, V ⊆ X there exists k > 0 such
that for every n ≥ k we have F−n(U)∩V 6= ∅. An ε-chain (from x0 to xn) is a
sequence of points x0, . . . , xn ∈ X such that d(F (xi), xi+1) < ε for 0 ≤ i < n.
A system (X,F ) is chain-transitive, if for any ε > 0 and any x, y ∈ X there
exists an ε-chain from x to y.

A strongly invariant closed set Y ⊆ X is stable, if

∀ε > 0,∃δ > 0,∀x ∈ X, (d(x, Y ) < δ =⇒ ∀n > 0, d(F (x), Y ) < ε).

A strongly invariant closed stable set Y ⊆ X is an attractor, if

∃δ > 0,∀x ∈ X, (d(x, Y ) < δ =⇒ lim
n→∞

d(F (x), Y ) < ε).

A set W ⊆ X is inward, if F (W ) ⊆ W ◦. In compact spaces, attractors are
exactly Ω-limits ΩF (W ) =

⋂
n>0 F (W ) of inward sets.

Theorem 1 (Knudsen [11]) Let (X,F ) be a DS and Y ⊆ X a dense, F -
invariant subset.

(1) (X,F ) is sensitive iff (Y, F ) is sensitive.

(2) (X,F ) is transitive iff (Y, F ) is transitive.

Recall that a space X is separable, if it has a countable dense set.

Theorem 2 (Blanchard, Formenti, and Kůrka [3]) Let (X,F ) be a dy-
namical system on a non-separable space. If (X,F ) is transitive, then it is
sensitive.
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5 Cellular automata

For a finite alphabet A, denote by |A| the number of its elements, by A∗ :=⋃
n≥0 An the set of words over A, and by A+ :=

⋃
n>0 An = A∗ \ {λ} the set of

nonempty words. The length of a word u ∈ An is denoted by |u| := n. We say
that u ∈ A∗ is a subword of v ∈ A∗ (u ⊑ v) if there exists k such that vk+i = ui

for all i < |u|. We denote by u[i,j) = ui . . . uj−1 and u[i,j] = ui . . . uj subwords

of u associated to intervals. We denote by AZ the set of A-configurations, or
doubly-infinite sequences of letters of A. For any u ∈ A+ we have a periodic
configuration u∞ ∈ AZ defined by (u∞)k|u|+i = ui for k ∈ Z and 0 ≤ i < |u|.

The cylinder of a word u ∈ A located at l ∈ Z is the set [u]l = {x ∈ AZ :
x[l,l+|u|) = u}. The cylinder set of a set of words U ⊆ A+ located at l ∈ Z is
the set [U ]l =

⋃
u∈U [u]l.

A subshift is a nonempty subset Σ ⊆ AZ such that there exists a set
D ⊆ A+ of forbidden words and Σ = ΣD := {x ∈ AZ : ∀u ⊑ x, u 6∈ D}.
A subshift ΣD is of finite type (SFT), if D is finite. A subshift is uniquely
determined by its language

L(Σ) :=
⋃

n≥0

Ln(Σ), where Ln(Σ) := {u ∈ An : ∃x ∈ Σ, u ⊑ x}.

A cellular automaton is a map F : AZ → AZ defined by F (x)i =
f(x[i−r,i+r]), where r ≥ 0 is a radius and f : A2r+1 → A is a local rule.

In particular the shift map σ : AZ → AZ is defined by σ(x)i := xi+1. A
local rule extends to the map f : A∗ → A∗ by f(u)i = f(u[i,i+2r]) so that
|f(u)| = max{|u| − 2r, 0}.

Definition 3 Let F : AZ → AZ be a CA.

(1) A word u ∈ A is m-blocking, if |u| ≥ m and there exists offset d ≤ |u| −m
such that ∀x, y ∈ [u]0,∀n > 0, Fn(x)[d,d+m) = Fn(y)[d,d+m).

(2) A set U ⊆ A+ is spreading, if [U ] is F -invariant and there exists n > 0
such that Fn([U ]) ⊆ σ−1([U ]) ∩ σ([U ]).

The following results will be useful in the sequel.

Proposition 4 (Formenti, Kůrka [6]) Let F : AZ → AZ be a CA and let
U ⊆ A+ be an invariant set. Then ΩF ([U ]) is a subshift iff U is spreading.

Theorem 5 (Hedlund [7]) Let F : AZ → AZ be a CA with local rule f :
A2r+1 → A. Then F is surjective iff f : A∗ → A∗ is surjective iff |f−1(u)| =
|A|2r for each u ∈ A+.

6 Submeasures

A pseudometric on a set X is a map d : X × X → [0,∞) which satisfies the
following conditions:
1. d(x, y) = d(y, x),
2. d(x, z) ≤ d(x, y) + d(y, z).
If moreover d(x, y) > 0 for x 6= y, then we say that d is a metric. There
is a standard method to create pseudometrics from submeasures. A bounded
submeasure (with bound M ∈ R

+) is a map ϕ : P(Z) → [0,M ] which satisfies
the following conditions:
1. ϕ(∅) = 0,
2. ϕ(U) ≤ ϕ(U ∪ V ) ≤ ϕ(U) + ϕ(V ) for U, V ⊆ Z.
A bounded submeasure ϕ on Z defines a pseudometric dϕ : AZ × AZ → [0,∞)
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by dϕ(x, y) := ϕ({i ∈ Z : xi 6= yi}). The Cantor, Besicovich and Weyl

pseudometrics on AZ are defined by the following submeasures:

ϕC(U) := 2−min{|i|: i∈U}

ϕB(U) := lim sup
l→∞

|U ∩ [−l, l)|

2l

ϕW(U) := lim sup
l→∞

sup
k∈Z

|U ∩ [k, k + l)|

l

7 The Cantor space

The Cantor metric on AZ is defined by

dC(x, y) = 2−k where k = min{|i| : xi 6= yi}

so dC(x, y) < 2−k iff x[−k,k] = y[−k,k]. We denote by CA = (AZ, dC) the metric
space of two-sided configurations with metric dC . The cylinders are clopen sets
in CA. All Cantor spaces (with different alphabets) are homeomorphic. The
Cantor space is compact, totally disconnected and perfect, and conversely, ev-
ery space with these properties is homeomorphic to a Cantor space. Literature
about CA dynamics in Cantor spaces is really huge. In this section, we just
recall some results and definitions which will be used later.

Theorem 6 (Kůrka [12]) Let (CA, F ) be a CA with radius r.

(1) (CA, F ) is almost equicontinuous iff there exists a r-blocking word for F

(2) (CA, F ) is equicontinuous iff all sufficiently long words are r-blocking.

Denote by EF the set of equicontinuous points of F . The sets of equicontin-
uous directions and almost equicontinuous directions of a CA (CA, F )
(see Sablik [18]) are defined by

E(F ) =

{
p

q
: p ∈ Z, q ∈ N

+,EF qσp = AZ

}
,

A(F ) =

{
p

q
: p ∈ Z, q ∈ N

+,EF qσp 6= ∅

}
.

8 The periodic space

Definition 7 The periodic space PA = {x ∈ AZ : ∃n > 0, σn(x) = x} over
an alphabet A consists of shift periodic configurations with Cantor metric dC.

All periodic spaces (with different alphabets) are homeomorphic. The peri-
odic space is not compact, but it is totally disconnected and perfect. It is dense
in CA. If (CA, F ) is a CA, Then F (PA) ⊆ PA. We denote by FP : PA → PA

the restriction of F to PA, so (PA, FP) is a (non-compact) dynamical system.
Every FP -orbit is finite, so every point x ∈ PA is FP -eventually periodic.

Theorem 8 Let F be a CA over alphabet A.

(1) (CA, F ) is surjective iff (PA, FP) is surjective.

(2) (CA, F ) is equicontinuous iff (PA, FP) is equicontinuous.

(3) (CA, F ) is almost equicontinuous iff (PA, FP) is almost equicontinuous.

(4) (CA, F ) is sensitive iff (PA, FP) is sensitive.

(5) (CA, F ) is transitive iff (PA, FP) is transitive.
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Proof: (1a) Let F be surjective, let y ∈ PA and σn(y) = y. There exists
z ∈ F−1(y) and integers i < j such that z[inr,inr+r) = z[jnr,jnr+r). Then
x = (z[inr,jnr))

∞ ∈ PA and FP(x) = y, so FP is surjective.
(1b) Let FP be surjective, and u ∈ A+. Then u∞ has FP -preimage and there-
fore u has preimage under the local rule. By Hedlund Theorem, (CA, F ) is
surjective.
(2a) Since PA ⊂ CA, the equicontinuity of F implies trivially the equicontinuity
of FP .
(2b) Let FP be equicontinuous. There exist m > r such that if x, y ∈ PA and
x[−m,m] = y[−m,m], then Fn(x)[−r,r] = Fn(y)[−r,r] for all n ≥ 0. We claim
that all words of length 2m + 1 are (2r + 1)-blocking with offset m− r. If not,
then for some x, y ∈ AZ with x[−m,m] = y[−m,m], there exists n > 0 such that
Fn(x)[−r,r] 6= Fn(y)[−r,r]. For periodic configurations x′ = (x[−m−nr,m+nr])

∞,
y′ = (y[−m−nr,m+nr])

∞ we get Fn(x′)[−r,r] 6= Fn(y′)[−r,r] contradicting the
assumption. By Theorem 6, F is C-equicontinuous.
(3a) If (CA, F ) is almost equicontinuous, then there exists a r-blocking word u
and u∞ ∈ PA is an equicontinuous configuration for (Pa, FP).
(3b) The proof is analogous as (2b).

(4) and (5) follow from the Theorem 1 of Knudsen.

9 The Toeplitz space

Definition 9 Let A be an alphabet

(1) The Besicovitch pseudometric on AZ is defined by

dB(x, y) = lim sup
l→∞

|{j ∈ [−l, l) : xj 6= yj}|

2l

(2) The Weyl pseudometric on AZ is defined by

dW(x, y) = lim sup
l→∞

max
k∈Z

|{j ∈ [k, k + l) : xj 6= yj}|

l

Clearly dB(x, y) ≤ dW(x, y) and

dB(x, y) < ε ⇐⇒ ∃l0 ∈ N,∀l ≥ l0, |{j ∈ [−l, l] : xj 6= yj}| < (2l + 1)ε.

dW(x, y) < ε ⇐⇒ ∃l0 ∈ N,∀l ≥ l0,∀k ∈ Z, |{j ∈ [k, k + l) : xj 6= yj}| < lε

Both dB and dW are symmetric and satisfy the triangle inequality, but they
are not metrics. Distinct configurations x, y ∈ AZ can have zero distance. We
construct a set of regular quasi-periodic configurations, on which dB and
dW coincide and are metrics.

Definition 10

(1) The period of k ∈ Z in x ∈ AZ is rk(x) := inf{p > 0 : ∀n ∈ Z, xk+np =
xk}. We set rk(x) = ∞ if the defining set is empty.

(2) x ∈ AZ is quasi-periodic, if rk(x) < ∞ for all k ∈ Z.

(3) A periodic structure for a quasi-periodic configuration x is a sequence
of positive integers p = (pi)i<|p|≤∞, such that pi|pi+1 (pi divides pi+1),
and for every k ∈ Z, rk(x)|pi for some i.

(3) A quasi-periodic configuration x ∈ AZ is regular, if for some periodic
structure p of x we have limi→∞ qi(x)/pi = 0, where qi(x) := |{k ∈
[0, pi)i : rk(x) 6 |pi}| (rk(x) does not divide pi).
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Clearly every σ-periodic configuration is quasi-periodic and has a finite periodic
structure.

Proposition 11

(1) If x, y are regular quasi-periodic configurations, then dW(x, y) = dB(x, y).

(2) If x 6= y are quasi-periodic configurations, then dW(x, y) ≥ dB(x, y) > 0.

Proof: (1) We must show dW(x, y) ≤ dB(x, y). Let p
x, p

y be the periodic
structures for x and y and let pi = kx

i px
i = ky

i py
i be the lowest common multiple

of px
i and py

i . Then p = (pi)i is a periodic structure for both x and y. For each
i > 0 and for each k ∈ Z we have

|{j ∈ [k − pi, k + pi) : xj 6= yj}| ≤ 2kx
i qx

i + 2ky
i qy

i + |{j ∈ [−pi, pi) : xj 6= yj}|

dW(x, y) ≤ lim
i→∞

max
k∈Z

|{j ∈ [k − pi, k + pi) : xj 6= yj}|

≤ lim
i→∞

(
2kx

i qx
i

2kx
i px

i

+
2ky

i qy
i

2ky
i py

i

+
|{j ∈ [−pi, pi) : xj 6= yj}|

2pi

)

= dB(x, y)

(2) Since x 6= y, there exists i such that for some k ∈ [0, pi) and for all n ∈ Z

we have xk+npi
= xk 6= yk = yk+npi

. It follows dB(x, y) ≥ 1/pi.

Definition 12 The Toeplitz space TA over A consists of all regular quasi-
periodic configurations with metric dB = dW .

Toeplitz sequences are constructed by filling in periodic parts successively.
For an alphabet A put Ã = A ∪ {∗}.

Definition 13

(1) The p-skeleton Sp(x) ∈ ÃZ of x ∈ AZ is defined by

Sp(x)k =

{
xk if ∀n ∈ Z, xk+np = xk

∗ otherwise

(2) The sequence of gaps of x ∈ ÃZ is the unique increasing integer sequence
(ti)a<i<b such that xti

= ∗, xk 6= ∗ for ti < k < ti+1 and t−1 < 0 ≤ t0.

(3) Let x, y ∈ ÃZ and let (ti) be the sequence of gaps of x. The amalgamation

T (x, y) ∈ ÃZ of x, y is

T (x, y)i =

{
xi if xi 6= ∗
yj if xi = ∗ & i = tj

The p-skeleton is p-periodic. If p is its smallest period, we say that p is an
essential period of x. The sequence of gaps may be two-way infinite (then
a = −∞, b = ∞), one-way infinite (a = −∞, b < ∞ or −∞ < a, b < ∞), finite
(−∞ < a < b < ∞) or even empty when x ∈ AZ. If it is nonempty then it
must be defined at least on −1 or 0.

Proposition 14 Let 2 := {0, 1} be the binary alphabet and [0, 1] the real unit
interval (with standard metric). There exists an isometry f : [0, 1] → T2 such
that f(0) = 0∞ and f(1) = 1∞.

Proof: Consider a map h : 2∗ → 2̃Z defined by h(λ) = ∗∞, h(0) = (0∗)∞,
h(1) = (∗1)∞, h(x0 . . . xn−1xn) = T (h(x0 . . . xn−1), h(xn)). Thus
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h(0) = 0*0*0*0*0*0*0*0*0*0*0*0*0*0*0*0*. . .
h(1) = *1*1*1*1*1*1*1*1*1*1*1*1*1*1*1*1. . .
h(01) = 0*010*010*010*010*010*010*010*01. . .
h(10) = 01*101*101*101*101*101*101*101*1. . .
h(011) = 0*0101010*0101010*0101010*010101. . .
h(100) = 010101*1010101*1010101*1010101*1. . .
h(0111) = 0*010101010101010*01010101010101. . .
h(1000) = 01010101010101*101010101010101*1. . .

For x ∈ 2N, the limit (in the Cantor topology) h(x) = limn→∞ h(x0, . . . xn)
exists. If no suffix of x is 1∞, then h(x) ∈ 2Z, otherwise h(x) contains exactly
one star and we replace it by 1. Thus for each x ∈ 2N, h(x) ∈ 2Z is a regular
quasi-periodic sequence. It can be verified directly that h(0111 . . .) = (01)∞ =
h(1000 . . .). Using an easily verifiable formula T (x, T (y, z)) = T (T (x, y), z), we
get

h(x0 . . . xn01∞) = T (h(x0 . . . xn), h(01∞) = T (h(x0 . . . xn), h(10∞))

= h(x0 . . . xn10∞)

For a real number x ∈ [0, 1] with binary expansion x =
∑∞

i=0 xi2
−i−1 put

f(x) = h(x0x1x2x3 . . .). If 2nx is an integer for some n, then x has two binary
expansions, and f(x) is the same for both expansions. If |x − y| ≤ 2−m, then
x[0,m) = y[0,m); therefore dW(f(x), f(y)) ≤ 2−m and f : [0, 1] → TA is contin-
uous. For dyadic numbers x, y of the form k/2m we verify dB(f(x), f(y)) =

|x − y|, so f is an isometry.

Proposition 15 The Toeplitz space TA of regular quasi-periodic sequences is
pathwise connected and infinite-dimensional.

Proof: Assume that the alphabet A contains letters 0, 1 and consider the map
f : [0, 1] → AZ from Proposition 14. For a ∈ A set a · 0 = 0, a · 1 = a. Given
u ∈ 2Z the map gu : [0, 1] → 2Z defined by gu(x)i = uif(x)i is continuous,
gu(0) = 0 and gu(1) = u. Thus TA is pathwise connected. To show that TA

is infinite-dimensional, construct for any n an embedding fn : [0, 1]n → XW of
an n-dimensional cube by

fn(x1, . . . , xn) = f(x1)0 . . . f(xn)0f(x1)1 . . . f(xn)1 . . .

Thus TA is at least n-dimensional and therefore infinite-dimensional.

Proposition 16 Let F : AZ → AZ be a CA with radius r.

(1) If x ∈ AZ is a quasi-periodic with periodic structure p, then F (x) is quasi-
periodic with periodic structure p.

(2) If x is regular quasi-periodic, then F (x) is regular.

Proof: (1) For k ∈ Z denote by m := min{i : ∀j ∈ [k − r, k + r], rj(x)|pi}.
Then pm is a period of F (x)k.
(2) We have

qi(F (x)) := |{k < pi : rk(F (x)) 6 | pi}|

≤ (2r + 1) · |{k < pi : rk(x) 6 | pi}|

= (2r + 1) · qi(x),

so

lim
i→∞

qi(F (x))

pi

≤ (2r + 1) · lim
i→∞

qi(x)

pi

= 0

For a CA F we denote by FT the restriction of F to TA.
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Theorem 17 Let F be a CA.

(1) (CA, F ) is surjective iff (TA, FT ) is surjective.

(2) If A(F ) 6= ∅, then (TA, FT ) is almost equicontinuous.

(3) if E(F ) 6= ∅, then (TA, FT ) is equicontinuous.

(4) If (CA, F ) is chain-transitive, then (TA, FT ) is chain-transitive.

(5) (TA, FT ) is injective iff it is surjective.

Proof: (1) The proof is the same as in Theorem 8(1)
(2) Assume first that F is almost equicontinuous, so there exists m > r and u ∈
A2m+1 such that for any x, y ∈ [u]−m, Fn(x)[−r,r] = Fn(y)[−r,r] for all n > 0.
We show that u∞ is T -equicontinuous. For a given ε > 0 set δ = ε/(4m−2r+1).
If dT (y, x) < δ, then there exists l0 such that for all l ≥ l0, |{i ∈ [−l, l] : xi 6=
yi}| < (2l + 1)δ. For k(2m + 1) ≤ j < (k + 1)(2m + 1), Fn(y)j can differ from
Fn(x)j only if y differs from x in some i ∈ [k(2m+1)−(m−r), (k+1)m+(m−r))
Thus a change xi 6= yi can cause at most 2m + 1 + 2(m − r) = 4m − 2r + 1
changes Fn(y)j 6= Fn(x)j . We get

|{i ∈ [−l, l) : Fn(x)i 6= Fn(y)i}| ≤ 2lδ(4m − 2r + 1) ≤ 2lε

This shows that FT is almost equicontinuous. In the general case that A(F ) 6=
∅, we get that F q

T σp is almost equicontinuous for some p ∈ Z, q ∈ N
+. Since

σ is T -equicontinuous, F q
T is almost equicontinuous and therefore (TA, FT ) is

almost equicontinuous.
(3) The proof is the same as in (2) with the only modification that all u ∈ Am

are (2r + 1)-blocking.
(4) The proof of Proposition 8 from [3] works in this case too.

(5) The proof of Proposition 12 of [2] works in this case also.

10 The Besicovitch space

On AZ we have an equivalence x ≈B y iff dB(x, y) = 0. Denote by BA the
set of equivalence classes of ≈B and by πB : AZ → BA the projection. The
factor of dB is a metric on BA. This is the Besicovitch space on alphabet
A. Using prefix codes, it can be shown that every two Besicovitch spaces (with
different alphabets) are homeomorphic. By Proposition 11 each equivalence
class contains at most one quasi-periodic sequence.

Proposition 18 TA is dense in BA

The proof of Proposition 9 of [2] works also for regular quasi-periodic sequences.

Theorem 19 (Blanchard, Formenti and Kůrka [3])
The Besicovitch space is pathwise connected, infinite-dimensional, homogenous
and complete. It is neither separable nor locally compact.

The properties of path-connectedness and infinite dimensionality is proved
analogously as in Proposition 15. To prove that BA is neither separable nor
locally compact, Sturmian configurations have been used in [3]. The complete-
ness of BA has been proved by Marcinkiewicz [16]. Every cellular automaton
F : AZ → AZ is uniformly continuous with respect to dB, so it preserves the
equivalence ≈B . If dB(x, y) = 0, then dB(F (x), F (y)) = 0. Thus a cellular
automaton F defines a uniformly continuous map FB : BA → BA.

Theorem 20 (Blanchard, Formenti and Kůrka [3]) Let F be a CA on A.
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(1) (CA, F ) is surjective iff (BA, FB) is surjective.

(2) If A(F ) 6= ∅ then (BA, FB) is almost equicontinuous.

(3) if E(F ) 6= ∅, then (BA, FB) is equicontinuous.

(4) If (BA, FB) is sensitive, then (CA, F ) is sensitive.

(5) No cellular automaton (BA, FB) is positively expansive.

(6) If (CA, F ) is chain-transitive, then (BA, FB) is chain-transitive.

Theorem 21 (Blanchard, Cervelle and Formenti [2])

(1) No CA (BA, FB) is transitive.

(2) A CA (BA, FB) has either a unique fixed point and no other periodic point,
or it has uncountably many periodic points.

(3) If a surjective CA has a blocking word, then the set of its FB-periodic points
is dense in BA.

11 The generic space

For a configuration x ∈ AZ and word v ∈ A+ set

Φv(x) = lim inf
n→∞

|{i ∈ [−n, n) : x[i,i+|v|) = v}|/2n,

Φv(x) = lim sup
n→∞

|{i ∈ [−n, n) : x[i,i+|v|) = v}|/2n.

For every v ∈ A∗, Φv,Φv : AZ → [0, 1] are continuous in the Besicovitch
topology. In fact we have

|Φv(x) − Φv(y)| ≤ dB(x, y) · |v|,

|Φv(x) − Φv(y)| ≤ dB(x, y) · |v|

Define the generic space (over the alphabet A) as

GA = {x ∈ AZ : ∀v ∈ A∗,Φv(x) = Φv(x)}

It is a closed subspace of BA. For v ∈ A∗ denote by Φv : GA → [0, 1] the
common value of Φ and Φ.

Using prefix codes, one can show that all generic spaces (with different al-
phabets) are homeomorhic. The generic space contains all uniquely ergodic sub-
shifts, in particular all Sturmian sequences and all regular Toeplitz sequences.
Thus the proofs in Blanchard Formenti and Kůrka [3] can be applied to the
generic space too. In particular the generic space is homogenous. If we re-
gard the alphabet A = {0, . . . ,m − 1} as the group Zm = Z/mZ, then for
every x ∈ GA there is an isometry Hx : GA → GA defined by Hx(y) = x + y.
Moreover, GA is pahtwise connected, infinite-dimensional and complete (as a
closed subspace the full Besicovitch space). It is neither separable nor locally
compact. If F : AZ → AZ is a cellular automaton, then F (GA) ⊆ GA. Thus,
the restriction of FB to GA defines a dynamical system (GA, FG).

Theorem 22 Let F : AZ → AZ be a CA.

(1) (CA, F ) is surjective iff (GA, FG) is surjective.

(2) If A(F ) 6= ∅, then (GA, FG) is almost equicontinuous.

(3) if E(F ) 6= ∅, then (GA, FG) is equicontinuous.

(4) If (GA, FG) is sensitive, then (CA, F ) is sensitive.

(5) If F is C-chain transitive, then F is G-chain transitive.

The proofs are the same as the proofs of corresponding properties in [3].

11



12 The space of measures

By a measure we mean a Borel shift-invariant probability measure on
the Cantor space AZ (see Pivato [17]). This is a countably additive function µ
on the Borel sets of AZ which assigns 1 to the full space and satisfies µ(U) =
µ(σ−1(U)). A measure on AZ is determined by its values on cylinders µ(u) :=
µ([u]n) which does not depend on n ∈ Z. Thus a measure can be identified
with a map µ : A∗ → [0, 1] subject to bilateral Kolmogorov compatibility
conditions ∑

a∈A

µ(ua) =
∑

a∈A

µ(au) = µ(u), µ(λ) = 1

Define the distance of two measures

dM(µ, ν) :=
∑

u∈A+

|µ(u) − ν(u)| · |A|−2|u|

This is a metric which yields the topology of weak∗ convergence on the compact
space MA := Mσ(AZ) of shift-invariant Borel probability measures. A CA
F : AZ → AZ with local rule f determines a continuous and affine map FM :
MA → MA by

(FM(µ))(u) =
∑

v∈f−1(u)

µ(v)

Moreover F and Fσ determine the same dynamical system on MA: FM =
(Fσ)M.

For x ∈ GA denote by Φx : A∗ → [0, 1] the function Φx(v) = Φv(x).
For every x ∈ GA, Φx is a shift-invariant Borel probability measure. The
map Φ : GA → MA is continuous with respect to the Besicovich and weak∗

topologies. In fact we have

dM(Φx,Φy) ≤ dB(x, y)
∑

u∈A+

|u| · |A|−2|u| = dB(x, y)
∑

n>0

n · |A|−n

= dB(x, y) · |A|/(|A| − 1)2

By a theorem of Kamae [10], Φ is surjective. Every shift-invariant Borel proba-
bility measure has a generic point. It follows from the Ergodic Theorem that if
µ is a σ-invariant measure, then µ(GA) = 1 and for every v ∈ A∗, the measure
of v is the integral of its density Φv,

µ(v) =

∫
Φv(x) dµ.

If F is a CA, we have a commutative diagram ΦFG = FMΦ.

GA

FG
//

Φ
��

GA

Φ
��

MA

FM
// MA

Theorem 23 Let F be a CA over A.

(1) (CA, F ) is surjective iff (MA, FM) is surjective.

(2) If (GA, FG) has dense set of periodic points, then (MA, FM) has dense set
of periodic points.

(3) If A(F ) 6= ∅, then (MA, FM) is almost equicontinuous.

(4) If E(F ) 6= ∅, then (MA, FM) is equicontinuous.
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Proof: (1) See Kůrka [14] for a proof.
(2) This holds since (MA, FM) is a factor of (GA, FG).
(3) It suffices to prove the claim for the case that F is almost equicontinuous.
In this case there exists a blocking word u ∈ A+ and the Dirac measure δu

defined by

δu(v) =

{
1/|u| if v ⊑ u
0 if v 6⊑ u

is equicontinuous for (MA, FM).
(4) If (CA, F ) is equicontinuous, then all sufficiently long words are blocking
and there exists d > 0 such that for all n > 0, and for all x, y ∈ AZ such that
x[−n−d,n+d] = y[−n−d,n+d] we have F k(x)[−n,n] = F k(y)[−n,n] for all k > 0.
Thus there are maps gk : A∗ → A∗ such that |gk(u)| = max{|u| − 2d, 0} and
for every x ∈ AZ we have F k(x)[−n,n] = Fk(x[−n−kd,n+kd]) = gk(x[−n−d,n+d]),
where f is the local rule for F . We get

dM(F k
M(µ), F k

M(ν)) =

∞∑

n=1

∑

u∈An

∣∣∣∣∣∣

∑

v∈f−k(u)

(µ(v) − ν(v))

∣∣∣∣∣∣
· |A|−2n

=
∞∑

n=1

∑

u∈An

∣∣∣∣∣∣

∑

v∈g−1

k
(u)

(µ(v) − ν(v))

∣∣∣∣∣∣
· |A|−2n

≤
∞∑

n=1

∑

v∈An+2d

|µ(v) − ν(v)| · |A|−2n

≤ |A|4d · dM(µ, ν)

13 The Weyl space

Define the following equivalence relation on AZ: x ≈W y iff dW(x, y) = 0.
Denote by WA the set of equivalence classes of ≈W and by πW : AZ → WA

the projection. The factor of dW is a metric on WA. This is the Weyl space on
alphabet A. Using prefix codes, it can be shown that every two Weyl spaces
(with different alphabets) are homeomorphic. The Toeplitz space is not dense
in the Weyl space (see Blanchard, Cervelle and Formenti [2]).

Theorem 24 (Blanchard, Formenti and Kůrka [3])
The Weyl space is pathwise connected, infinite-dimensional and homogenous.
It is neither separable nor locally compact. It is not complete.

Every cellular automaton F : AZ → AZ is continuous with respect to dW , so it
preserves the equivalence ≈W . If dW(x, y) = 0, then dW(F (x), F (y)) = 0. Thus
a cellular automaton F defines a continuous map FW : WA → WA. The shift
map σ : WA → WA is again an isometry, so in WA many topological properies
are preserved if F is composed with a power of the shift. This is true for example
for equicontinuity, almost continuity and sensitivity. If π : WA → BA is the
(continuous) projection and F a CA, then the following diagram commutes.

WA

FW
//

π
��

WA

π
��

BA

FB
// BA
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Theorem 25 (Blanchard, Formenti and Kůrka [3])
Let F be a CA on A.

(1) (CA, F ) is surjective iff (WA, FW) is surjective.

(2) If A(F ) 6= ∅, then (WA, FW) is almost equicontinuous.

(3) if E(F ) 6= ∅, then (WA, FW) is equicontinuous.

(4) If (CA, F ) is chain-transitive, then (WA, FW) is chain-transitive.

Theorem 26 (Blanchard, Cervelle and Formenti [2])
No CA is (WA, FW) is transitive.

Theorem 27 Let Σ be a subshift attractor of finite type for F (in the Can-
tor space). Then there exists δ > 0 such that for every x ∈ WA satisfying
dW(x,Σ) < δ, Fn(x) ∈ Σ for some n > 0.

Thus a subshift attractor of finite type is a W-attractor. Example 2 shows that
it need not be B-attractor. Example 3 shows that the assertion need not hold
if Σ is not of finite type.
Proof: Let U ⊆ AZ be a C-clopen set such that Σ = ΩF (U). Let U be a

union of cylinders of words of length q. Set Ω̃σ(U) =
⋂

n∈Z
σn(U). By a

generalization of a theorem of Hurd [8] (see Kůrka [15]), there exists m > 0

such that Σ = Fm(Ω̃σ). If dW(x,Σ) < 1/q then there exists l > 0 such that for
every k ∈ Z there exists a nonnegative j < l such that σk+j(x) ∈ U . It follows

that there exists n > 0 such that Fn(x) ∈ Ω̃σ(U) and therefore Fn+m(x) ∈ Σ.

14 Examples

Example 1 The Identity rule Id(x) = x.

(BA, IdB) and (WA, IdW) are chain-transitive (since both BA and WA are con-
nected). However, (CA, Id) is not chain-transitive. Thus the converse of Theo-
rem 20(6) and of Theorem 25(4) does not hold.

Figure 1: The product ECA184

Example 2 The product rule ECA128 F (x)i = xi−1 · xi · xi+1.

(CA, F ), (BA, FB) and (WA, FW) are almost equicontinous and the configu-
ration 0∞ is equicontinuous in all these versions. By Theorem 27, {0∞} is
a W-attractor. However, contrary to a mistaken Proposition 9 in [3], {0∞}
is not B-attractor. For a given 0 < ε < 1 define x ∈ AZ by xi = 1 iff
3n(1− ε) < |i| ≤ 3n for some n ≥ 0. Then dB(x, 0∞) = ε but x is a fixed point,
since dB(F (x), x) = limn→∞ 2n/3n = 0 (see Figure 1).

Example 3 The trafic ECA184 F (x)i = 1 iff x[i−1,i] = 10 or x[i,i+1] = 11.

No F qσp is C-almost equicontinuous, so A(F ) = ∅. However, if dW(x, 0∞) < δ,
then dW(Fn(x), 0∞) < δ for every n > 0, since F conserves the number of
letters 1 in a configuration. Thus 0∞ is a point of equicontinuity in (TA, FT ),
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Figure 2: The traffic ECA184

(BA, FB), and (WA, FW). This shows that item (2) of Theorems 17, 20 and
25 cannot be converted. The maximal C-attractor ΩF = {x ∈ AZ : ∀n >
0, 1(10)n0 6⊑ x} is not SFT. We show that it does not W-attracts points from
any of its neighbourhood. For a given even integer q > 2 define x ∈ AZ by

xi =





0 if ∃n ≥ 0, i = qn + 1
1 if ∃n < 0, i = qn
((01)∞)i otherwise

Then dW (F k(x),ΩF ) = 1/q for all k > 0 (see Figure 2, where q = 8).

Figure 3: The sum ECA90

Example 4 The sum ECA90 F (x)i = (xi−1 + xi+1) mod 2.

Both (BA, FB) and (WA, FW) are sensitive (Cattaneo et al. [4]). For a given
n > 0 define a configuration z by zi = 1 iff i = k2n for some k ∈ Z. Then
F 2n−1

(z) = (01)∞. For any x ∈ AZ, we have dW(x, x + z) = 2−n but

dW(F 2n−1

(x), F 2n−1

(x + z)) = 1/2. The same argument works for (BA, FB).

Example 5 The shift ECA170 F (x)i = xi+1.

Since the system has fixed points 0∞ and 1∞, it has uncountable number of
periodic points. However, the periodic points are not dense in BA ([2]).

15 Future directions

One of the promising research directions is the connection between the generic
space and the space of Borel probability measures which is based on the factor
map Φ. In particular Lyapunov functions based on particle weight functions
(see Kůrka [13]) work both for the measure space MA and the generic space GA.
The potential of Lyapunov functions for the classification of attractors has not
yet been fully explored. This holds also for the connections between attractors
in different topologies. While the theory of attractors is well established in
compact spaces, in noncompact spaces there are several possible approaches.
Finally, the comparison of entropy properties of CA in different topologies may
be revealing for classification of CA.

There is even a more general approach to different topologies for CA based
on the concept of submeasure on Z. Since each submeasure defines a pseu-
dometric, it would be interesting to know, whether CA are continuous with
respect to any of these pseudometrics, and whether some dynamical properties
of CA can be derived from the properties of defining submeasures.
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