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Preface

Current computers work with real numbers in the floating point format and the numbers are
rounded up after each arithmetical operation. This usually works quite well but there are cases
in which the successive roundings yield wrong results. Exact arithmetical algorithms, on the
other hand, work with real numbers specified to an arbitrary precision. The precision of the
result depends on the precision of the operands. The theory of exact real computation is based
on the concept of on-line algorithms whose inputs and outputs are infinite expansions of real
numbers. The algorithms work in a loop in infinite time but each finite prefix of the output is
computed in finite time from finite prefixes of the inputs.

The theory of on-line algorithms has been developped by Weihrauch [68]. The idea of
on-line arithmetical algorithms has been suggested in an unpublished manuscript of Gosper
[21] and developped by Kornerup and Matula [34] and Vuillemin [66]. On-line arithmetical
algorithms are treated in the PhD thesis of Potts [55] and in the last chapter of the monograph
of Kornerup and Matula [33]. The on-line algorithms do not work in the standard decadic
or binary systems but they do work in redundant systems, for example in positional number
systems whose number of digits is larger than the base.

The present book is a theoretical treatment of arbitrary precision on-line arithmetical algo-
rithms in general Möbius number systems. To specify a Möbius number system, we start with
a finite alphabet A of digits and to each digit we associate a Möbius transformation. This is
a mapping of the form M(x) = ax+b

cx+d
. For example in a positional number system with base

β > 1, the linear transformation Fa(x) =
x+a
β

is associated to the digit a. Then we specify a

subshift Σ ⊆ Aω of admissible infinite sequences of digits and the value mapping Φ : Σ → R,
where R = R ∪ {∞} is the extended real line. The value mapping Φ should be surjective and
continuous. This means that each number x ∈ R should have its symbolic representation (an
infinite sequence of digits) u ∈ Σ such that Φ(u) = x. Continuity means that the prefixes u[0,n)
of u of length n give with increasing n ever better approximations to Φ(u) = x.

The first chapter is introductory and treats classical positional number systems and number
systems based on continued fractions. On these examples it is shown how the Möbius trans-
formations are assocoated to the digits, how the value mapping Φ : Σ→ R is constructed and
how symbolic representations of real numbers are obtained.

The second chapter treats redundancy as a topological concept and shows that for every
compact metric spaceX (in particular for the spaceX = R) there exists a redundant continuous
surjective mapping Φ : Σ → X, where Σ is a symbolic space. The property of redundancy
implies that each continuous mapping G : X → X has a symbolic representation, which is a
continuous mapping F : Σ → Σ such that Φ ◦ F = G ◦ Φ. In arithmetical algorithms, the
symbolic space Σ is supposed to be a sofic subshift recognizable by a finite automaton, so the
rest of the chapter deals with sofic subshifts.

The third chapter explains basic ideas of projective geometry which gives insight into the
spaces connected with a number system. The extended real line R is identified with the one-
dimensional projective space P(R2) and the space of Möbius transformations M(R) is identified
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6 CONTENTS

with the three-dimensional space of projective matrices P(R2×2). The geometrical properties
of Möbius transformations are exposed with the use of hyperbolic geometry. Then we explain
the concept of representation of real numbers by a sequence of transformations: A sequence
Mn of real Möbius transformations represents a real number x iff x = limn→∞Mn(z) for every
complex number z with a nonzero imaginary part. In particular, if Φ : Σ → R is the value
mapping of a number system and u = u0u1 · · · ∈ Σ, then Φ(u) is represented by a sequence of
transformations Fu[0,n)

= Fu0 ◦ · · · ◦ Fun−1 .
The fourth chapter exposes the theory of Möbius number systems and shows several methods

how to construct suitable subshifts Σ ⊆ Aω and suitable value mappings Φ : Σ→ R. A special
treatment is given to sofic Möbius number systems for which arithmetical algorithms work.
Several examples of sofic number systems are given.

The fifth chapter develops the calculus of bilinear tensors which represent binary arithmeti-
cal operations. Intervals are represented by projective matrices and operations with tensors and
intervals are based on matrix calculus. Based on this calculus we describe the unary algorithm
which computes a Möbius transformation and the binary algorithm which computes a bilinear
tensor.

The sixth chapter treats number systems whose matrices have integer entries. In particular,
modular systems have transformations with unit determinant. We show that if the unary
algorithm computes a transformation with integer entries in a modular number system, then
the norm of the state matrices is bounded, so the computation can be carried out by a finite
state transducer. On the other hand, Möbius transformations are the only rational functions
which can be computed by a finite state transducer.

The seventh chapter treats number systems with matrices whose entries are algebraic num-
bers. We review the theory of algebraic extension fields, algebraic integers and integral bases
and give classical results of Parry and Schmidt on positional number systems with algebraic
base β > 1 (so called β-systems introduced by Rényi [58]). Then we treat the algorithms of
parallel addition in positional number systems.

The eigth chapter treats algorithms which compute transcendent functions like ex, ln x, tan x
or arctan x. We review the theory of Padé approximants and the representation of transcendent
functions by general continued fractions. We introduce the concept of algebraic tensor T (x, y),
which for a fixed y is a rational function of x and for a fixed x is a Möbius transformation of y.
We define the transcendent algorithm which works with these algebraic tensors and we show
that it computes transcendent functions which can be expressed by general continued fractions.
Finally we treat algorithms which compute arithmetical expressions and iterative algorithms
which compute stable fixed points of real functions.

The treatment is elementary and self-contained. The basic prerequisite is linear algebra and
matrix calculus.



Chapter 1

Basic number systems

Real numbers are defined as cuts of rational numbers or as limits of Cauchy sequences of
rational numbers. Alternatively, the space of real numbers is characterized axiomatically by
the property of completeness: it is the smallest complete metric space which contains rational
numbers. A real number is usually given by its expansion in the decadic number system. But
a number should be distiguished from its representation in any number system. The concept of
number is geometrical or analytical, the representation of a number is a combinatorial concept.
A real number can have many representations in a number system.

1.1 The decadic system

In the decadic number system, a real number is represented by an infinite word (a string
of letters or characters) u = sunun+1 · · ·u−1.u0u1u2 · · · , where s is either the sign − or empty,
n ≤ 0 is an integer, ui ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} are digits and . is the positional decimal point.
Such a word u represents the number

x = ±
∞∑
i=n

ui · 10−i−1.

We say that x is the value of u or that u is an expansion of x and we write Φ(u) = x. We
admit as expansions also finite words u = sunun+1 · · ·u−1.u0u1 · · ·uk, which represent the same
numbers as infinite words with trailing zeros: Φ(u) = ±

∑k
i=n ui · 10−i−1, e.g., Φ(.2) = 1

5
or

Φ(−1.5) = −3
2
. A finite prefix u|k = sunun+1 · · ·u−1.u0u1 · · ·uk−1 of an expansion u of x with k

decimal places gives an approximation of x:

|Φ(u)− Φ(u|k)| ≤
∞∑
i=k

9 · 10−i−1 =
9

10k+1(1− 1
10
)
= 10−k.

This is essential, since neither people nor computers can handle infinite expansions but only
their finite prefixes. To determine a real number, we have to give a rule or an algorithm which
generates arbitrarily long prefixes of its expansion. Accordingly, we say that a real number
is an algorithmic number if there exists an algorithm which computes its expansion to an
arbitrary number of decimal places. Algorithmic numbers include all rational numbers, all
algebraic numbers, which are solutions of algebraic equations with rational coefficients, and
many transcendent numbers like π or e, which can be computed by power series.

The expansions are infinite words in the alphabet A = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, .,−}, which
contains besides the decimal digits also the positional point . and the negative sign −. We
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8 CHAPTER 1. BASIC NUMBER SYSTEMS

denote by A∗ the set of finite words (sequences) of letters of A and by Aω the set of infinite
words. Not every infinite word of Aω represents a real number: the sign − can appear only
at the beginning and the decimal point . must occur exactly once. Thus the expansions must
satisfy certain syntactic rules, which may be expressed by a set of forbidden words

D = {a− : a ∈ A} ∪ {.u. : u ∈ A∗}.

This means that an expansion cannot contain as a subword any letter a ∈ A followed by the
minus sign − and it cannot contain two positional points. Denote by ΣD the set of infinite
words which do not contain as a subword any forbidden word. We say that ΣD is the subshift
with the forbidden set D. In the subshift ΣD there are also words which do not contain any
positional point at all. We cannot forbid them, since we cannot detect this property in finite
prefixes. We assign the value infinity to such words provided they contain at least one nonzero
digit, and the value zero otherwise. We therefore extend the real line R by a point∞ at infinity
and obtain the extended real line R = R ∪ {∞}. Then the value mapping Φ : ΣD → R is
defined on the whole ΣD. Some arithmetical operations are extended to R. We have a

0
= ∞

for a ̸= 0 and a±∞ =∞, a
∞ = 0 for a ̸=∞. On the other hand, 0

0
, ∞

∞ , ∞±∞ are undefined
(indeterminate) expressions.

The value mapping Φ is surjective, i.e., each x ∈ R has an expansion u ∈ ΣD with Φ(u) = x,
but it is not one-to-one. There are infinitely many expansions of ∞ and some finite numbers
have two different expansions, for example 0.999 · · · = 1.000 · · · . In fact a real number has two
infinite expansions iff it has a finite expansion:

un · · ·u−1.u0 · · ·um−1um = un · · ·u−1.u0 · · ·um−1um000 · · ·
= un · · ·u−1.u0 · · ·um−1(um−1)999 · · ·

This duplicity can be felt as an inconvenience but cannot be detected in finite prefixes and
cannot be avoided by forbidding finite words. In fact, such a duplicity or redundancy is
necessary to perform arithmetical operations on the expansions. If we are able to determine
real numbers x and y to an arbitrary precision, we would like to determine to an arbitrary
precision also their sum x + y or the results of other algebraic operations. This means that
the prefix of a length k of (the expansion of) x+ y should depend only on the prefixes of some
length nk of (the expansions of) the operands x and y. In the standard decadic system this
is not possible since the system is not redundant enough: the carries to the left propagate
through arbitrarily long intervals. Imagine that we try to add numbers 1

3
= 0.33333 . . . and

2
3
= 0.66666 . . ., but we do not know in advance their exact values. We can only inspect

arbitrarily long prefixes of their expansions. Then we are unable to determine the first digit of
the sum. The first digit would be zero if ui + vi < 9 for some i or 1 if ui + vi > 9 for some i.
In our case neither alternative ever happens so we are never able to determine the first digit of
the result.

1.2 Redundancy

To perform arithmetic operations on the expansions of real numbers, we need redundant po-
sitional systems, in which the number of digits is greater than the base. For example, the
decadic system can be extended with a digit which represents 10. Another possibility is the
decadic signed system with digits A = {5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5}, where n stands for −n.
This system has 11 digits - one more than the base 10, and it has an additional advantage that
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x = .001022222011110012102222 . . .
y = .022112221111200022221122 . . .
u = .023134443122310034323344 . . .
v = .11123221121111013121232 . . .
z = .1121210120111102120212 . . .

Table 1.1: Addition in the extended binary system

the negative numbers can be expressed without the − sign. Many numbers have an infinite
number of expansions, e.g.,

4

9
= 0.5555 · · · = 0.55

ω
= 0.455

ω
= 0.4455

ω
= 0.44455

ω
= · · ·

In computer arithmetic, positional system with other bases than 10 are frequently used.
The standard binary system has base β = 2 and digits A = {0, 1}. Because the number
of digits is the same as the base, there is no properly working addition algorithm either. The
extended binary system has digits {0, 1, 2} and the binary signed system has digits
A = {1, 0, 1} representing −1, 0, 1. In both these systems arithmetic operations are algorithmic.
The result can be evaluated to an arbitrary precision provided we know with sufficient precision
the operands.

Denote by ⌊a⌋ ∈ Z the integer part of a real number a ∈ R, so a − 1 < ⌊a⌋ ≤ a. Denote
by mod2(n) ∈ {0, 1} the parity of an integer n ∈ Z, so mod2(n) = 0 iff n is even. We have
n = 2⌊n

2
⌋+mod2(n) for each n ∈ Z. To add two numbers x =

∑∞
i=n xi2

−i−1, y =
∑∞

i=n yi2
−i−1

in the extended binary system, we first add them componentwise, so we obtain ui = xi + yi ∈
{0, 1, 2, 3, 4} for i ≥ n and ui = 0 for i < n. Then we perform the carries to the left and
determine v by

vi =
⌊ui+1

2

⌋
+mod2(ui),

so vi ∈ {0, 1, 2, 3} and v ∈ {0, 1, 2, 3}ω represents the same number as u:

∞∑
i=n−1

vi · 2−i−1 =
∞∑

i=n−1

⌊ui+1

2
⌋ · 2−i−1 +

∞∑
i=n

mod2(ui) · 2−i−1

=
∞∑
i=n

(
2 · ⌊ui

2
⌋+mod2(ui)

)
2−i−1 =

∞∑
i=n

ui · 2−i−1.

We perform the carry operation once more and obtain zi = ⌊vi+1

2
⌋+mod2(vi) ∈ {0, 1, 2}. Thus∑∞

i=n−2 zi · 2−i−1 =
∑∞

i=n(xi + yi) · 2−i−1 and zi depends only on x[i,i+2] = xixi+1xi+2 and
y[i,i+2] = yiyi+1yi+2. The algorithm has an additional advantage that it may be performed in
parallel in all positions i simultaneously. This may be much faster than the serial addition. An
example can be seen in Table 1.1. Parallel addition is treated in more detail in Section 7.7.

1.3 Symbolic spaces

The principle that finite prefixes of the expansions approximate the expanded numbers can be
expressed by the concept of continuity. We regard the set of infinite expansions as a symbolic
metric space. An alphabet A is a finite set with at least two elements, which are referred to
as lettres. Words of A are finite or infinite sequences u = u0u1 . . . of letters of A. We denote by

An = {u = u0 · · ·un−1 : ui ∈ A}
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the set of words of length n. In particular, A0 = {λ} consists only of the empty word λ. Denote
by A∗ =

∪
n≥0A

n the set of finite words, by A+ =
∪

n>0A
n the set of nonempty finite words,

and by
Aω = {u = u0u1 · · · : ui ∈ A}

the set of infinite words. The length of a word u = u0 . . . un−1 ∈ An is denoted by |u| = n
and |u| = ∞ for u ∈ Aω. We say that v ∈ A∗ is a subword of u ∈ A∗ ∪ Aω and write v ⊑ u,
if v = u[i,j) = ui · · ·uj−1 for some 0 ≤ i ≤ j ≤ |u|. The concatenation of words u, v ∈ A∗ is
written as uv, so (uv)i = ui for i < |u| and (uv)|u|+i = vi for i < |v|. The concatenation of
u ∈ A+ with itself n times is written as un and the infinite concatenation of u with itself as
uω ∈ Aω. We say that u ∈ Aω is a periodic word if u = vwω for some preperiod v ∈ A∗ and
period w ∈ A+. Given a set of forbidden words D ⊆ A+, we denote by

ΣD = {u ∈ Aω : ∀v ⊑ u, v ̸∈ D}
LD = {u ∈ A∗ : ∀v ⊑ u, v ̸∈ D}

the subshift and language of D, and by Ln
D = LD ∩ An. The distance of words u, v ∈ Aω

is defined by
d(u, v) = 2−n, where n = min{k ≥ 0 : uk ̸= vk}.

Then d is a metric on Aω. For example, in the binary alphabet we have d(0100 . . . , 0110 . . .) =
2−2 = 1

4
and d(0 . . . , 1 . . .) = 2−0 = 1. Thus u, v ∈ Aω are close, if they have a long common

prefix:
d(u, v) ≤ 2−n ⇔ u[0,n) = v[0,n) ⇔ d(u, v) < 2−n+1

-3
/1

-2
/1

-1/1

-1/2

0
/
1

1/2

1/1

2/
1

3/
11
/
0

-3_
1

-2_
1

-1_
1

-1_
2

0_
1

1_
2

1_
1

2_
1

3_
1

Figure 1.1: The stereographic projection

With the metric d, Aω and its subspaces ΣD are turned into metric spaces. A mapping
Φ : ΣD → R is continuous at u ∈ ΣD, if for every ε > 0 there exists δ = 2−k such that for
every v ∈ ΣD with d(u, v) ≤ δ we have |Φ(u) − Φ(v)| ≤ ε. If the range of Φ is the extended
real line R = R ∪ {∞}, then the Euclidean metric de(x, y) = |x − y| does not work. Since
the extended real line does not distinguish positive and negative infinity, it is topologically
equivalent to a circle. Consider the unit circle

S = {z = x+ iy ∈ C : |z| =
√
x2 + y2 = 1}

in the complex plane C and project the point z ∈ R on the real line to S by the ray from the
imaginary unit i (see Figure 1.1). This mapping is called the one-dimensional stereographic
projection. The line which joins z ∈ R with i has parametric equation x(t) = tz+(1−t)i. The
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equation 1 = |x(t)|2 = t2z2 + (1− t)2 gives t = 0 and t = 2
z2+1

, so the stereographic projection

d : R→ S is given by

d(z) =
2z + (z2 − 1)i

z2 + 1
,

and d(∞) = i. Zero is projected to d(0) = −i, and 1,−1 remain fixed: d(1) = 1, d(−1) = −1.
The inverse stereographic projection is given by d−1(x+ iy) = x

1−y
, d−1(i) =∞.

In the extended real line we have more intervals than in R. Besides standard closed intervals
[a, b] = {x ∈ R : a ≤ x ≤ b} ⊂ R, where a < b, we consider infinite intervals

[a,∞] = {x ∈ R : a ≤ x} ∪ {∞}
[∞, b] = {x ∈ R : x ≤ b} ∪ {∞}
[a, b] = {x ∈ R : a ≤ x or x ≤ b} ∪ {∞},

where b < a are real numbers. We define the angle length of these intervals as the length of
the counterclockwise arc from d(a) to d(b), which is the argument of d(b)/d(a). Recall that
the argument of a nonzero complex number z = x + iy = r(cosφ + i sinφ) is arg(x + iy) =
φ ∈ [0, 2π). We have a formula

arg(x+ iy) =

{
0 if x > 0, y = 0,
2arccotg y√

x2+y2−x
otherwise

Since |d(b)/d(a)| = |d(b)|/|d(a)| = 1, the formula simplifies. If |x+ iy| = 1, then arg(x+ iy) =
2arccotg y

1−x
. We have

d(b)

d(a)
=

2b+ i(b2 − 1)

b2 + 1
· a2 + 1

2a+ i(a2 − 1)

=
a2 + 1

b2 + 1
· (2b+ i(b2 − 1))(2a− i(b2 − 1))

4a2 + (a2 − 1)2

=
4ab+ (a2 − 1)(b2 − 1) + 2i(a(b2 − 1)− b(a2 − 1))

(a2 + 1)(b2 + 1)

=
(a2 + 1)(b2 + 1)− 2(b− a)2 + 2i(b− a)(ab+ 1)

(a2 + 1)(b2 + 1)

We define the length |[a, b]| of [a, b] ⊆ R by

|[a, b]| =
1

2π
arg

d(b)

d(a)
=

1

π
arccotg

2(b− a)(ab+ 1)

2(b− a)2

=
1

π
arccotg

ab+ 1

b− a

If one of the endpoints is ∞ we get from the limit

|[a,∞]| =
1

π
arccotg(a),

|[∞, b]| =
1

π
arccotg(−b).

Thus for example |[0, 1]| = 1
4
, |[0,∞]| = 1

2
and |[0,−1]| = 3

4
(see Figure 1.2).
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0
/
1

1/1

1
/
0

0
/
1

1/1

1
/
0

0
/
1

1/1

1
/
0

0
/
1

1/1

1
/
0

Figure 1.2: Intervals and their length (from left to right): |[0, 1]| = 1
4
, |[1,∞]| = 1

4
, |[0,∞]| = 1

2
,

|[1, 0]| = 3
4
.

We define the angle distance da(a, b) of a, b ∈ R as the length of the shorter of the two
intervals with endpoints a, b:

da(a, b) = min{|[a, b]|, |[b, a]|} = 1

π
arccotg

|ab+ 1|
|b− a|

.

A mapping Φ : ΣD → R is continuous at u ∈ ΣD, if for every ε > 0 there exists δ = 2−k such
that for every v ∈ ΣD we have da(Φ(u),Φ(v)) ≤ ε whenever d(u, v) ≤ δ.

1.4 Positional systems for bounded intervals

We consider a positional system with base β > 1 and a finite set of digits which form a
contiguous interval A = [r, s] = {r, r + 1, . . . , s − 1, s} ⊂ Z of integers. First we consider
number systems for bounded intervals. In this case, the positional point is not needed. Thus
we have the value mapping Φ : Aω → R defined by

Φ(u) =
∞∑
i=0

uiβ
−i−1 =

u0
β

+
u1
β2

+
u2
β3

+ · · ·

The value mapping is defined also for nonempty finite words by

Φ(u) =

|u|−1∑
i=0

uiβ
−i−1, u ∈ A+

If u, v ∈ Aω and ui ≤ vi for all i, then Φ(u) ≤ Φ(v), and the inequality is strict if ui < vi for
some i. Thus the value map is increasing. Define the cylinder

[u] = {v ∈ Aω : v[0,|u|) = u}

of a finite word u ∈ A∗ as the set of infinite words whose prefix is u. The minimum and
maximum of the set Φ([u]) is Φ(urω) and Φ(usω) respectively. Define the closed cylinder
interval Wu by

Wu = [Φ(urω),Φ(usω)] = [Φ(u) + r
βn(β−1)

,Φ(u) + s
βn(β−1)

], u ∈ An

In particular for the empty word we have Wλ = [Φ(rω),Φ(sω)] = [ r
β−1

, s
β−1

]. We show that the
mapping Φ : Aω →Wλ is surjective provided s− r ≥ β − 1:

Lemma 1.1 If r − s ≥ β − 1 then Wu =
∪

a∈AWua for each u ∈ A∗.
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Proof: The condition Wu =
∪

a∈AWua is satisfied if the neighbouring intervals Wua, Wu,a+1

overlap, i.e., if the left endpoint of Wu,a+1 is smaller or equal than the right endpoint of Wua.
Since Φ(ua) = Φ(u) + aβ−n−1 for |u| = n, this means

Φ(u) +
a+ 1

βn+1
+

r

βn+1(β − 1)
≤ Φ(u) +

a

βn+1
+

s

βn+1(β − 1)
,

which is equivalent to s− r ≥ β − 1.

Proposition 1.2 Let β > 1 be a real number, r < s integers, and A = {a ∈ Z : r ≤ a ≤ s}.
Then Φ : Aω → R defined by Φ(u) =

∑∞
i=0 uiβ

−i−1 is continuous and

Φ([u]) ⊆ Wu = [Φ(u) + r
βn(β−1)

,Φ(u) + s
βn(β−1)

]

for any u ∈ An. If s − r ≥ β − 1, then Φ([u]) = Wu and Φ : Aω → Wλ = [ r
β−1

, s
β−1

] is

surjective, i.e., any x ∈ Wλ has an expansion u ∈ Aω with Φ(u) = x.

Proof: If u ∈ A∗ then Φ([u]) ⊆ Wu and the Euclidean length of Wu is Φ(uqω) − Φ(upω) =
r−s

β|u|(1−β)
, which converges to 0 as |u| → ∞. This shows that Φ is continuous:

d(u, v) ≤ 2−n ⇒ |Φ(u)− Φ(v)| ≤ s− r
βn(β − 1)

.

Given x ∈ Wλ = [ r
β−1

, s
β−1

], we construct its expansion u by induction using Lemma 1.1. Since

Wλ =
∪

a∈AWa, there exists u0 with x ∈ Wu0 . If u[0,n) has been constructed and x ∈ Wu[0,n)
,

then there exists un such that x ∈ Wu[0,n+1)
. Since x ∈ Wu[0,n)

implies |x− Φ(u[0,n))| ≤ s−r
βn(β−1)

,

we get x = Φ(u).

If s− r > β − 1 then the system is redundant and a number may have many expansions. If
s− r < β − 1, then Φ(Aω) is a Cantor set included in [ r

β−1
, s
β−1

], and Φ is one-to-one. If β = 3

and A = {0, 2}, then Φ(λ) is the Cantor middle third set (see Figure 1.3) obtained from
the unit interval [0, 1] by deleting successively the middle thirds of remaining intervals:

Φ(Aω) = [0, 1] \ (1
3
, 2
3
) \ (1

9
, 2
9
) \ (7

9
, 8
9
) \ · · ·

The digits in the alphabet A = {0, 2} are not contiguous. With contiguous digits A = {0, 1}
we get Φ([λ]) ⊆ [0, 1

2
], Φ([0]) ⊆ [0, 1

6
], Φ([1]) ⊆ [1

3
, 1
2
], etc., so

Φ(Aω) = [0, 1
2
] \ (1

6
, 1
3
) \ ( 1

18
, 2
18
) \ ( 7

18
, 8
18
) \ · · ·

0 1
9

2
9

1
3

2
3

7
9

8
9

1

Figure 1.3: The Cantor middle third set

An expansion of an number x ∈ Wλ can be found by an algorithm which is implicit in
Proposition 1.2. There is, however a better algorithm based on an iterative method. For
u ∈ Aω and a ∈ A we have

Φ(au) =
a

β
+

1

β

∞∑
i=0

uiβ
−i−1 =

a+ Φ(u)

β
= Fa(Φ(u)),



14 CHAPTER 1. BASIC NUMBER SYSTEMS

2
7
∈ [0, 1

2
] = W0 ⇒ u0 = 0 ⇐ 2

7
∈ [0, 1

2
] = W0

2
7
∈ [1

4
, 1
2
] = W01 ⇒ u1 = 1 ⇐ F−1

0 (2
7
) = 4

7
∈ [1

2
, 1] = W1

2
7
∈ [2

8
, 3
8
] = W010 ⇒ u2 = 0 ⇐ F−1

1 (4
7
) = 1

7
∈ [0, 1

2
] = W0

2
7
∈ [ 4

16
, 5
16
] = W0100 ⇒ u3 = 0 ⇐ F−1

0 (1
7
) = 2

7
∈ [0, 1

2
] = W0

Table 1.2: The expansion of 2
7
in the binary system according to Proposition 1.2 (left) and

according to Proposition 1.4 (right).

where Fa(x) = x+a
β
. The value mapping Φ can be derived from the system of real functions

{Fa : R → R : a ∈ A}. For a finite word u ∈ An we denote by Fu = Fu0 ◦ · · · ◦ Fun−1 the
composition of mappings Fui

, and Fλ = Id is the identity mapping. Then Fuv = Fu ◦ Fv for
each u, v ∈ A∗.

Proposition 1.3 For A = [r, s], β > 1, Fa(x) =
x+a
β

we have

1. Φ(uv) = Fu(Φ(v)) for u ∈ A∗, v ∈ A∗ ∪ Aω

2. Wuv = Fu(Wv) for u, v ∈ A∗

3. Fu(x) = Φ(u) + x
β|u| for u ∈ A∗, x ∈ R,

4. Φ(u) = limn→∞ Fu[0,n)
(z) for u ∈ Aω, z ∈ R

5. {Φ(u)} =
∩

n>0Wu[0,n)
for u ∈ Aω

Proof: 1. The statement holds trivially for u = λ. If it holds for u, then Φ(auv) = Fa(Φ(uv)) =
FaFu(Φ(v)) = Fau(Φ(v)).
2. Wuv = [Φ(uvrω),Φ(uvsω)] = [FuΦ(vr

ω), FuΦ(vs
ω)] = Fu(Wv).

3. The statement holds trivially for |u| ≤ 1. For |u| > 1 we use Fa(x + y) = Fa(x) +
y
β
to get

Fau(x) = Fa(Fu(x)) = Fa(Φ(u)) +
x

β|u|+1 = Φ(au) + x
β|au| .

4. follows from 3.
5. We have Φ(u) ∈ [Φ(u[0,n))] ⊆ Wu[0,n)

. Since the length of these intervals converges to zero,
the intersection contains a unique point Φ(u).

The mappings Fa are contracting, i.e., they contract the Euclidean distance by the factor
β: |Fa(x)− Fa(y)| = |x− y|/β. The inverse mappings F−1

a (x) = βx− a are expanding, they
expand the distances by the factor β.

Proposition 1.4 Assume that r − s ≥ β − 1 > 0. A word u ∈ Aω is an expansion of
x = x0 ∈ Wλ iff there exists a sequence of numbers xi ∈ Wui

such that xi+1 = F−1
ui

(xi).

Proof: If x = Φ(u), then x ∈ Wu[0,n]
for each n. If x = x0 ∈ Wu[0,n]

, then x1 = F−1
u0

(x0) ∈
F−1
u0

(Wu[0,n]
) = Wu[1,n]

, so by induction xi ∈ Wu[i,n]
⊆ Wui

for every i ≤ n. Conversely, if
xn ∈ Wun , then xn−1 = Fun(xn) ∈ Fun(Wun) = Wu[n−1,n]

and by induction xi ∈ Wu[i,n]
for every

i ≤ n, in particular x = x0 ∈ Wu[0,n]
. It follows x = Φ(u).

An example of an expansion process according to both methods of Propositions 1.2 and 1.4
is in Table 1.2. The iterative algorithm of Proposition 1.4 is better, since the inequalities involve
rational numbers with smaller numerators and denominators. Moreover, we see immediately
that the expansion process is periodic so the expansion of 2

7
is the periodic word (010)ω. The

iterative expansion process is illustrated in Figure 1.4 which shows the graphs of mappings
F−1
a . Given x0, we draw the vertical line from (x0, 0) to (x0, x1) = (x0, F

−1
u0

(x0)), the horizontal



1.5. POSITIONAL SYSTEMS FOR THE EXTENDED REAL LINE 15

line to (x1, x1) on the diagonal y = x, the vertical line to (x1, x2), etc. In the standard binary
systems, the intervalsWa intersect only in their endpoints, so most of the times, the expansions
are unique: we have two possibilities only if xn = 1

2
. In the binary signed system, on the other

hand, the neighbouring intervals Wa overlap, so the expansion algorithm is nondeterministic.
When xn ∈ [−1

2
, 1
2
], then we have two or three choices for xn+1. It follows that each number

(except 0 and 1) has an infinite number of expansions. There exist also deterministic expansion
algorithms with smaller expansion intervals. For example, the greedy expansion algorithm
takes always the largest possible letter. This is accomplished with the iterative algorithm which
uses semi-closed expansion intervals W1 = [−1,−1

2
), W0 = [−1

2
, 0), W1 = [0, 1]. Since these

intervals Wa are pairwise disjoint and their union is the whole Wλ, each x ∈ Wλ has a unique
expansion E(x) ∈ Aω with Φ(E(x)) = x. However, the mapping E : Wλ → Aω is not continuous.

x0 x1x2

x1

x2

0 1
0

1

W0 W1

x0 x1 x2x2

x1

x2

x2

-1 1
-1

1

W1W- W0 W1

F−1
0 F−1

1 F−1
1

F−1
0 F−1

1

Figure 1.4: Expansions of real numbers in the standard binary system (left) and in the binary
signed system (right)

1.5 Positional systems for the extended real line

To obtain number system for the whole extended real line R, we extend the alphabet with a
digit 0 (which stands for ∞) and associate to 0 the real function F0(x) = βx. For a word
u ∈ [r, s]n and m ≥ 0 we define

Φ(0
m
u) = F0

m(Φ(u)) =
n−1∑
i=0

uiβ
m−i−1

and W0
m
u = F0

m(Wu). For an infinite word u ∈ {r, . . . , s}ω we get

Φ(0
m
u) = lim

n→∞
Φ(0

m
u[0,n)) =

∑
i≥0

uiβ
m−i−1.

Thus the value of 0
m
u is the same as the value of the word u0 · · ·um−1.umum+1 . . . with the

positional point before um. With the extended alphabet A = {r, . . . , s, 0}, every real number
has an expansion provided s− r ≥ β − 1 and r < 0 < s. The mapping Φ, however, cannot be
defined on all words of Aω but only on the words of the form 0

m
u, where u ∈ [r, s]ω. These

words form the subshift ΣD with the set of forbidden words D = {a0 : a ∈ [r, s]}.
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Proposition 1.5 Let s− r ≥ β − 1 > 0, r < 0 < s, A = {r, . . . , s, 0}, D = {a0 : r ≤ a ≤ s},
F0(x) = βx and Fa(x) = (x + a)/β for r ≤ a ≤ s. Define Φ : ΣD → R by Φ(0

m
u) =∑

i≥0 uiβ
m−i−1, Φ(0

ω
) =∞. Then Φ : ΣD → R is surjective.

Proof: From Proposition 1.2 we get

Φ({0mu : u ∈ {r, . . . , s}ω}) = Fm
0 ([Φ(rω),Φ(sω)]) = [ rβ

m

β−1
, sβ

m

β−1
]

and these intervals cover whole R. Since Φ(0
ω
) =∞, the mapping Φ : ΣD → R is surjective.

The mapping Φ from Proposition 1.5 is not a reasonable number system, since it is not
continuous. The words 0

n
0ω converge in Aω to 0

ω
with value Φ(0

ω
) =∞, but Φ(0

n
0ω) = 0. To

make Φ continuous, we must forbid words which contain 00, and possibly some other words as
well. Suitable subshifts depend on β.

-
1
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/
1
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/
6
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-5/18

-
1
/
6

-
1
/
1
8

5/6

7/6

9
/
2

-
9
/
2

-7/6

-5/6

0 
1 

0-

1-

0 00  0 01 
 1 11 
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-
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-
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-
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0
1
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-
-
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1

-
-
 

-1_
0

-1_
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1_
6
1_
2

1_
0

-1/0

-1/2
-1/6
1/6
1/2

1/0

0 1 0- 0-1-

Figure 1.5: The ternary signed system: the cylinder intervals (left), the graphs of the inverse
mappings F−1

a (right) and the intervals Wa (bottom right).

Proposition 1.6 For the ternary signed system (Figure 1.5) with base β = 3, alphabet
A = {1, 0, 1, 0} and forbidden words D = {10, 00, 10, 00}, the map Φ : ΣD → R is surjective
and continuous.

Proof: By Proposition 1.2, Φ([1]) = [−1
2
,−1

6
], Φ([0]) = [−1

6
, 1
6
], Φ([1]) = [1

6
, 1
2
], so

Φ([0
m
1]) = [−3m

2
,−3m−1

2
],Φ([0

m
1]) = [3

m−1

2
, 3

m

2
].

Since Φ(0
ω
) =∞, we get

Φ([0
m
]) =

∪
n≥m

Φ([0
n
1]) ∪ {Φ(0ω)} ∪

∪
n≥m

Φ([0
n
1])

= [3
m

6
, 3

m

2
] ∪ [3

m+1

6
, 3

m+1

2
] ∪ · · · ∪ [−3m+1

2
,−3m+1

6
] ∪ [−3m

2
,−3m

6
] ∪ {∞}

= [3
m−1

2
,−3m−1

2
]

The Euclidean length of Φ([0
m
]) is infinite but its angle length is |Φ([0m])| = 1

π
arccotg 32m−2−1

4·3m−1 ,

which converges to zero as m→∞. This shows that Φ is continuous at 0
ω
. At any other point,

Φ is continuous by Proposition 1.2. To show that Φ : ΣD → R is surjective, set

W1 = [−1
2
,−1

6
], W0 = [−1

6
, 1
6
], W1 = [1

6
, 1
2
], W0 = [1

2
,−1

2
]
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Then

F−1
a (Wa) = W1 ∪W0 ∪W1, a ∈ {1, 0, 1}
F−1
0

(W0) = W1 ∪W0 ∪W1

Thus for each a ∈ A we have F−1
a (Wa) = ∪{Wb : ab ∈ LD}, and R = ∪{Wa : a ∈ A}.

The expansion algorithm of Proposition 1.4 works with a small modification. At each step we
check, whether the constructed word belongs to ΣD. Given x = x0 ∈ R we construct a sequence
xn ∈ R and un ∈ A as follows. Find u0 with x0 ∈ Wu0 and set x1 = F−1

u0
(x0). If ui−1, xi have

been already constructed, find ui with ui−1ui ∈ LD, xi ∈ Wui
and set xi+1 = F−1

ui
(xi). Then

u ∈ ΣD and x = Fu[0,n)
(xn) ∈ Fu[0,n)

(Wun) = Wu[0,n]
and the diameter of these sets converges to

zero, so Φ(u) = x.

In Figure 1.5 we see the cylinder intervals Φ[u] (left) and the graphs of mappings F−1
a of

the ternary signed system. We now generalize Proposition 1.6.

Proposition 1.7 Let A be a finite alphabet and D ⊂ A2 a set of forbidden words. For each
a ∈ A, let Fa : R → R be a one-to-one continuous mappings and Wa ⊂ R a closed interval.
Assume that

∪
a∈AWa = R, F−1

a (Wa) =
∪
{Wb : ab ∈ LD} and that the angle length of intervals

Fu(Wa) converges to zero as the length of words ua ∈ LD converges to infinity. Then there exists
a continuous surjective function Φ : ΣD → R such that {Φ(u)} =

∩
n>0 Fu[0,n)

(Wun).

Proof: If ab ∈ LD then Wb ⊆ F−1
a (Wa), so Fa(Wb) ⊆ Wa. For any u ∈ ΣD we get by induction

· · · ⊆ Fu[0,3)
(Wu3) ⊆ Fu[0,2)

(Wu2) ⊆ Fu0(Wu1) ⊆ Wu0

Since the length of these intervals converges to zero, they have a nonempty intersection which
contains a unique point Φ(u), and the mapping Φ : ΣD → R is continuous. We show that it
is surjective. For x = x0 ∈ R there exists u0 with x0 ∈ Wu0 . If un with xn ∈ Wun has been
constructed, there exists un+1 such that unun+1 ∈ LD and xn+1 = F−1

un
(xn) ∈ Wun+1 . Thus

x0 ∈ Fu[0,n)
(Wun) for each n and therefore Φ(u) = x.

In the binary signed system with β = 2, r = 1 = −1, s = 1, the subshift ΣD of Proposition
1.6 does not work, since Φ(0

n
11

ω
) = 0 while 0

n
11

ω
converge to 0

ω
with value Φ(0

ω
) =∞. This

means that Φ is not continuous at 0
ω
. To make Φ continuous, we forbid words 011

ω
and 011ω.

One possibility is to forbid 011 and 011. To get a subshift with forbidden words of length 2,
we forbid 11 and 11.

Proposition 1.8 In the binary signed system with alphabet A = {1, 0, 1, 0} and forbidden
words D = {10, 00, 10, 00, 11, 11}, the map Φ : ΣD → R is continuous and surjective.

Proof: The smallest number in Φ([1]) is Φ(1
ω
) = −1

2
+ −1

4
+ · · · = −1, and the largest is

Φ(101ω) = −1
2
+ 1

8
+ 1

16
+ · · · = −1

4
. We set W1 = [−1,−1

4
] and similarly define other intervals

Wa with Φ([a]) ⊆ Wa:

W1 = [Φ(1
ω
),Φ(101ω)] = [−1, −1

4
]

W0 = [Φ(01
ω
),Φ(01ω)] = [−1

2
, 1
2
]

W1 = [Φ(101
ω
),Φ(1ω)] = [1

4
, 1]

W0 = [Φ(0101
ω
),Φ(0101ω)] = [1

2
, 1
−2

]
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-1_
0

-1_
1

-1_
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-1_
4

1_
4
1_
2
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1_
0

-1/0

-1/1
-1/2
-1/4

1/4
1/2
1/1

1/0

0 1 0- 0-1-

-1_
0

1_
0

-1/0

1/0

0 1 0- 0-1-

β−2

β−2

2−β

2−β

Figure 1.6: The binary signed system (left) and the system with an algeraic base β =
√
5+3
2

.
=

2.618 (right).

We have Φ[0
n
] ⊆ W0

n = [2n−2,−2n−2], and the angle length of this interval converges to zero
as n→∞. To show that Φ : ΣD → R is surjective, consider the inverse images of intervals Wa:

F−1
1

(W1) = [−1, 1
2
] = W1 ∪W0

F−1
0 (W0) = [−1, 1] = W1 ∪W0 ∪W1

F−1
1 (W1) = [−1

2
, 1] = W0 ∪W1

F−1
0

(W0) = [1
4
,−1

4
] = W1 ∪W0 ∪W1

Thus Φ : ΣD → R continuous and surjective by Proposition 1.7.

The base of a positional system need not be an integer, it may be any real number β > 1.
Taking β =

√
5+3
2

.
= 2.618 · · · , we get a redundant system with alphabet A = {1, 0, 1, 0} and

forbidden words D = {10, 00, 10, 00}, so we get the same subshift ΣD as in the case of the
ternary signed system. Using the equation β2 = 3β− 1 we can evaluate intervals Wa according
to Proposition 1.2:

W1 = [2− β, 3β − 8]
.
= [−0.618,−0.146],

W0 = [5− 2β, 2β − 5]
.
= [−0.236, 0.236],

W1 = [8− 3β, β − 2]
.
= [0.146, 0.618],

W0 = [3− β, β − 3]
.
= [0.382,−0.382],

F−1
a (Wa) = [−β + 2, β − 2] = W1 ∪W0 ∪W1, a ∈ {1, 0, 1}
F−1
0

(W0) = [−3β + 8, 3β − 8] = W1 ∪W0 ∪W1.

Thus Φ : ΣD → R is continuous and surjective by Proposition 1.7.
Positional number systems can have also negative base β < −1. Let r < s and A = [r, s] ⊂ Z

be an alphabet, and consider a number system without positional point with value mapping
Φ(u) =

∑
i≥0 uiβ

−i−1. If u, v ∈ Aω are such that u2i ≥ v2i and u2i+1 ≤ v2i+1 for all i, then
Φ(u) ≤ Φ(v). It follows that the minimum of Φ(Aω) is

Φ((sr)ω) =

(
s

β
+

r

β2

)
·
(
1 +

1

β2
+

1

β4
+ · · ·

)
=
sβ + r

β2 − 1
.
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Figure 1.7: The negative binary system with β = −2, A = {0, 1, 0}

Similarly we compute the maximum of Φ(Aω), so Φ(Aω) ⊆ Wλ = [ sβ+r
β2−1

, rβ+s
β2−1

]. For a ∈ A we

get Wa = FaWλ = [ rβ+s
β(β2−1)

+ a
β
, sβ+r
β(β2−1)

+ a
β
]. Then Wλ is covered by Wa if the left endpoint of

Wa is smaller than the right endpoint of Wa+1, i.e., if

rβ + s

β(β2 − 1)
+
a

β
≤ sβ + r

β(β2 − 1)
+
a+ 1

β
,

which holds provided s− r ≥ −β − 1.

Proposition 1.9 If s− r ≥ −β − 1 > 0 and A = {r, . . . , s}, then Φ : Aω → Wλ is continuous
and surjective.

To obtain a number system for R, we add digit 0 with mapping F0(x) = βx. Negative base
allows to express negative real numbers with nonnegative digits.

Proposition 1.10 For the negative binary system with base β = −2, alphabet A = {0, 1, 0}
and forbidden set D = {00, 10, 00}, the value mapping Φ : ΣD → R is continuous and surjective.

Proof: We get Φ([0]) = W0 = [−1
6
, 1
3
], Φ([1]) = W1 = [−2

3
,−1

6
]. Using Φ([0

n
1]) = F0

n(W1) =

W0
n
1 we get W01 = [1

3
, 4
3
], W001 = [−8

3
,−2

3
], W

0
2n

1
= [−22n+1

3
,−22n−1

3
], W

0
2n−1

1
= [2

2n−2

3
, 2n

3
].

It follows W0 =
∪

n>0W0
n
1 = [1

3
,−2

3
], W00 = [4

3
,−2

3
], so W

0
2n =

[
22n

3
,−22n−1

3

]
, W

0
2n+1 =[

22n

3
,−22n+1

3

]
. The angle length of W0

n converges to zero as n → ∞, so Φ : ΣD → R is

continuous. To prove surjectivity, we consider inverse images:

F−1
0 (W0) = F−1

1 (W1) = [−2
3
, 1
3
] = W0 ∪W1

F−1
0

(W0) = [1
3
,−1

6
] = W0 ∪W1

so F−1
a (Wa) = ∪{Wb : ab ∈ LD}, and R = ∪{Wa : a ∈ A}. Thus Φ : ΣD → R is continuous

and surjective and Φ([u]) = Wu for each u ∈ LD.
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1.6 Continued fractions

A quite different number system is based on continued fractions. A finite simple continued
fraction is an expression

u0 +
1

u1+

1

u2+ · · ·+
1

un
= u0 +

1

u1 +
1

u2+...+
1

un

where un ∈ Z and un > 0 for n > 0. Infinite simple continued fractions are limits of finite
simple continued fractions. We can conceive simple continued fractions as a number system
with the infinite alphabet A = Z = {. . . ,−2,−1, 0, 1, 2, . . .} of all integers. Denote by

Z = {u ∈ Zω : ∀n > 0, un > 0}
L(Z) = {u ∈ Z∗ : ∀n > 0, un > 0}
Ln(Z) = L(Z) ∩ Zn

the sets of infinite and finite words of Z with all but the first element positive. For a ∈ Z take
the mapping Fa(x) = a+ 1

x
. For u ∈ Ln(Z) we get

Fu(x) = Fu0 ◦ · · · ◦ Fun−1(x) = u0 +
1

u1+

1

u2+ · · ·+
1

un−1+

1

x

so u0 +
1
u1+

1
u2+ · · ·+

1
un−1

= Fu(∞). Define the convergents pn = pn(u), qn = qn(u) of an

infinite sequence u ∈ Z by u0 +
1
u1+

1
u2+ · · ·+

1
un−1

= pn(u)
qn(u)

. Then

p0 = u0, p1 = 1 + u1u0, . . . pn = pn−2 + unpn−1

q0 = 1, q1 = u1, . . . qn = qn−2 + unqn−1

We extend this definition with p−1 = 1, q−1 = 0 to get the recurrent formula for all n > 0.

Proposition 1.11 Let u ∈ Z be an infinite word and pn = pn(u), qn = qn(u) its convergents.
Then for n > 0 we have
1. pn−1qn−2 − pn−2qn−1 = (−1)n.
2. pnqn−2 − pn−2qn = (−1)nun.
3. Fu[0,n)

(x) = (pn−1x+ pn−2)/(qn−1x+ qn−2).

In particular Fu[0,n)
(∞) = pn−1

qn−1
, Fu[0,n)

(0) = pn−2

qn−2
.

Proof: For n = 1 we have p0q−1−p−1q0 = −1, p1q−1−p−1q1 = −u1, Fu0(x) =
u0x+1

x
= p0x+p−1

q0x+q−1
.

Assume that the statement holds for n. Then

pnqn−1 − pn−1qn = (pn−2 + unpn−1)qn−1 − pn−1(qn−2 + unqn−1)

= −(pn−1qn−2 − pn−2qn−1) = (−1)n+1

pn+1qn−1 − pn−1qn+1 = (pn−1 + un+1pn)qn−1 − pn−1(qn−1 + un+1qn)

= un+1(pnqn−1 − pn−1qn) = (−1)n+1un+1

Fu[0,n+1)
(x) = Fu[0,n)

(un +
1
x
) =

pn−1(un+
1
x
)+pn−2

qn−1(un+
1
x
)+qn−2

= (unpn−1+pn−2)x+pn−1

(unqn−1+qn−2)x+qn−1

=
pnx+ pn−1

qnx+ qn−1
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Proposition 1.12 If u ∈ Z, then for every nonnegative real number z ≥ 0 there exist the
limits

Φ(u) = lim
n→∞

Fu[0,n)
(z) = lim

n→∞

pn(u)

qn(u)
.

If a ∈ Z and u0 > 0 then Fa(Φ(u)) = Φ(au).

Proof: We have pn−1

qn−1
− pn−2

qn−2
= (−1)n

qn−1qn−2
, pn

qn
− pn−2

qn−2
= (−1)n+1un

qnqn−2
, so

p0
q0
<
p2
q2
<
p4
q4
< . . . <

p5
q5
<
p3
q3
<
p1
q1
.

Since qn →∞ as n→∞, pn/qn is a converging sequence. For each z ≥ 0 we have∣∣∣∣Fu[0,n+1)
(z)− pn

qn

∣∣∣∣ = 1

qn(qnz + qn−1)

which converges to zero as n→∞.

To expand a real number into a simple continued fraction, consider intervals Wa = [a, a+1]
for a ∈ Z. Then

F−1
a (Wa) = [1,∞] = W1 ∪W2 ∪ · · · ∪ {∞}

Given x ∈ R we find its expansion as follows. Set x0 = x and construct sequences un, xn by
induction: un = ⌊xn⌋, xn+1 = F−1

un
(xn) = 1/(xn − un). If xn > 0 for all n > 0, then we get an

infinite u ∈ Z. If xn = 0 for some n, then we get a finite u ∈ L(Z). This happens iff x is a
rational number.
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Figure 1.8: The number system of simple continued fractions with A = {1, 0, 1}, F1(x) = x−1,
F0(x) = 1/x, F1(x) = x+ 1, D = {11, 01, 00, 11}.

To get a number system with a finite alphabet, we decompose the expansion process into
elementary steps. To subtract the integer part, we add or subtract repeatedly one till the result
is in the unit interval (0, 1). Thus we consider the alphabet A = {1, 0, 1}, mappings Fa and
intervals Wa given by

F1(x) = x− 1, F0(x) = 1/x, F1(x) = x+ 1,
W1 = [∞, 0], W0 = [0, 1], W1 = [1,∞].
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Then F−1
1

(W1) = W1 ∪W0, F
−1
0 (W0) = W1, F

−1
1 (W1) = W0 ∪W1. If we take forbidden words

D = {11, 01, 00, 11} then F−1
a (Wa) = ∪{Wb : ab ∈ LD}, and R = ∪{Wa : a ∈ A}, so we can

apply Proposition 1.7.

Definition 1.13 The number system of simple continued fractions has the alphabet A =
{1, 0, 1}, transformations F1(x) = x − 1, F0(x) = 1/x, F1(x) = x + 1, forbidden words D =
{11, 01, 00, 11} and the value mapping Φ : ΣD → R given by

Φ(1a001a101a20 · · · ) = a0 +
1

a1+

1

a2+ · · ·

Φ(1a001a101a20 · · · 01an−101ω) = a0 +
1

a1+

1

a2+ · · ·+
1

an−1

Φ(1
ω
) = Φ(1ω) = ∞

Then Φ(uv) = Fu(Φ(v)) for each uv ∈ ΣD. The letter 1 can appear only at the begining of
a word u ∈ ΣD and any such word can be written as u = 1a001a101a20 · · · , where a0 ∈ Z and
an > 0 for n > 0. If a0 < 0 then 1a0 stands for 1

−a0 . The sequence of ai may be finite with last
element an = ∞. Thus the sequences u ∈ ΣD are in one-to-one correspondence with elements
of Z ∪ L(Z). Since F0(x) = 1/x is a decreasing function, a continued fraction is increasing in
its even entries and decreasing in its odd entries. If a2i ≤ b2i and a2i+1 ≥ b2i+1 for all i, then
Φ(1a001a101a20 · · · ) ≤ Φ(1a001a101a20 · · · ) Using this fact we obtain the images of the value
function on cylinders (see Figure 1.8).

Φ([0]) = [0, 1],

Φ([1a0 ]) = [a0,∞], for a0 > 0

Φ([1a0 ]) = [∞, a0 + 1], for a0 < 0

Φ([1a00]) = [a0, a0 + 1]

Φ([1a00 · · · 1an−101an ]) = [pn−1

qn−1
, pn
qn
], for n odd

Φ([1a00 · · · 1an−101an ]) = [pn
qn
, pn−1

qn−1
], for n even

Φ([1a00 · · · 1an−101an0]) = Φ([1a00 · · · 1an−101an01])

Since the angle length of these intervals converges to zero with the increasing length of words,
the value mapping Φ : ΣD → R is continuous.

There is another number system based on continued fractions. Using the fact that F00 is
the identity, we replace a word u = 1a001a101a2 · · · of ΣD by v = 1a0(010)a11a2(010)a3 · · · . We
replace now F0 by F010(x) = x/(x + 1), which maps the unit interval [0, 1] to [0,∞]. To make
the system symmetric, we take also F010(x) = x/(−x+ 1) and apply it to the interval [−1, 0].

Definition 1.14 The number system of symmetric continued fractions has alphabet A =
{1, 0, 0, 1}, transformations and intervals

F1(x) = x− 1, F0(x) = x
−x+1

, F0(x) = x
x+1

, F1(x) = x+ 1,

W0 = [∞,−1], W0 = [−1, 0], W0 = [0, 1], W1 = [1,∞],

and forbidden words D = {00, 01, 10, 11, 01, 00, 11, 10}.
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Figure 1.9: The number system of symmetric continued fractions with A = {1, 0, 0, 1}, F1(x) =
x− 1, F0(x) =

x
1−x

, F0(x) =
x

x+1
, F1(x) = x+ 1, D = {00, 01, 10, 11, 01, 00, 11, 10}.

Then ΣD = {1, 0}ω ∪ {0, 1}ω,

F−1
1

(W1) = F−1
0

(W0) = [−∞, 0] = W1 ∪W0,

F−1
0 (W0) = F−1

1 (W1) = [0,∞] = W0 ∪W1.

Thus F−1
a (Wa) = ∪{Wb : ab ∈ LD}, and R = ∪{Wa : a ∈ A}. A word u ∈ {0, 1}ω can be

written as u = 1a00a11a2 · · · , where a0 ≥ 0 and ai > 0 for i > 0. The sequence of ai may be
finite if its last element an is infinite.

Proposition 1.15 The value mapping Φ : ΣD → R of the system of symmetric continued
fractions defined by

Φ(1a00a11a2 · · · ) = a0 +
1

a1+

1

a2+ · · ·

Φ(1
a00

a11
a2 · · · ) = −a0 −

1

a1−
1

a2− · · ·

= −
(
a0 +

1

a1+

1

a2+ · · ·

)
is continuous and surjective.

Proof: For the cylinder intervals we get (see Figure 1.9)

Fu(x) = a0 +
1

a1+ · · ·+
1

a2n + x
, u = 1a00a1 · · · 1a2n

Fu(x) = a0 +
1

a1+ · · ·+
1

a2n+1+

1

x
, u = 1a01a1 · · · 0a2n+1

Φ[u] = [Φ(u0ω),Φ(u1ω)] = [p2n
q2n
, p2n−1

q2n−1
], u = 1a00a1 · · · 1a2n

Φ[u] = [Φ(u0ω),Φ(u1ω)] = [p2n
q2n
, p2n+1

q2n+1
], u = 1a01a1 · · · 0a2n+1

Thus Φ : ΣD → R is continuous and surjective by Proposition 1.7.
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Chapter 2

Symbolic dynamics

A number system consists of a continuous value mapping whose domain is a symbolic space
of infinite words and whose range is the extended real line. We say that the value mapping is
a symbolic extension of R. The properties of symbolic spaces and symbolic extensions are
treated in symbolic dynamics, which is based on the theory of compact metric spaces. See e.g.,
Hocking and Young [24] for an introduction to the theory of metric spaces.

2.1 Metric spaces

Definition 2.1 A metric space (X, d) consists of a set X and a metric d : X ×X → [0,∞)
which gives the distance d(x, y) of points x, y ∈ X. The following properties are assumed:

1. d(x, y) = 0⇔ x = y,

2. d(x, y) = d(y, x) : symmetry,

3. d(x, z) ≤ d(x, y) + d(y, z) : triangle inequality.

We refer to elements of X as points. A classical example of a metric space is the n-dimensional
Euclidean space Rn = {x = (x1, . . . , xn) : xi ∈ R} with metric

de(x, y) =
√
(x1 − y1)2 + · · ·+ (xn − yn)2.

In particular, the set R of real numbers is a metric space with metric de(x, y) = |x − y|. The
extended real line R = R ∪ {∞} is a metric space with the angle metric (see Section 1.3)

da(x, y) =
1

π
arccotg

|xy + 1|
|y − x|

, da(x,∞) =
1

π
arccotg|x|.

If (X, d) is a metric space and Y ⊆ X, then d restricted to Y × Y is a metric on Y and we say
that (Y, d) is a subspace of (X, d). The ball with center x ∈ X and radius r > 0 is the set

Br(x) = {y ∈ X : d(y, x) < r}.

In R, balls are open intervals Br(x) = (x− r, x+ r). The interior Y ◦ and closure Y of a set
Y ⊆ X are defined by

Y ◦ = {x ∈ X : ∃r > 0, Br(x) ⊆ Y },
Y = {x ∈ X : ∀r > 0, Br(x) ∩ Y ̸= ∅},

25
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so Y ◦ ⊆ Y ⊆ Y , X \ Y = X \ Y ◦, and (X \ Y )◦ = X \ Y , where X \ Y = {x ∈ X : x ̸∈ Y } is
the set difference of Y from X. For example, if Y = [0, 1) ⊂ R is a semiclosed interval, then
Y ◦ = (0, 1) and Y = [0, 1]. If Y, Z ⊆ X, then

(Y ∩ Z)◦ = Y ◦ ∩ Z◦,

(Y ∪ Z)◦ ⊇ Y ◦ ∪ Z◦,

Y ∩ Z ⊆ Y ∩ Z,
Y ∪ Z = Y ∪ Z.

A set Y ⊆ X is open, if Y = Y ◦, and closed if Y = Y . It follows that Y ⊆ X is closed iff
X \ Y is open. The interior of a set Y is the largest open set included in Y and the closure of
Y is the smallest closed set which includes Y . It follows from the triangle inequality that every
ball Br(x) is an open set. A semi-open (or semi-closed) interval [a, b) = {x ∈ R : a ≤ x < b}
is neither closed nor open in R. A set is clopen if it is both closed and open. The sets ∅
and X are clopen in any metric space. If they are the only clopen sets, then we say that X
is a connected space. The Euclidean space Rn is connected. The union of two intervals
[0, 1] ∪ [2, 3] is not connected, since [0, 1] and [2, 3] are its clopen sets.

A sequence {xn ∈ X : n ≥ 0} of points of X converges to a point x ∈ X if for every ε > 0
there exists n0 such that d(xn, x) < ε for every n ≥ n0. A sequence cannot converge to two
distinct points, so we write limn→∞ xn = x if xn converge to x and say that {xn : n ≥ 0} is a
convergent sequence. A subsequence of {xn : n ≥ 0} is any sequence {xni

: i ≥ 0}, where
{ni : i ≥ 0} is an increasing sequence of indices.

Definition 2.2 A metric space is compact if any its sequence has a converging subsequence.
A subset of a metric space is compact, if it is compact as a subspace.

The real line R is not compact, since the sequence xn = n has no converging subsequence.
The open interval (0, 1) is not compact either since the sequence xn = 1/n has in (0, 1) no
converging subsequence: all its subsequences converge to zero, which is not in the space (0, 1).
A closed bounded interval [a, b] is compact in R. We show that a set Y ⊆ Rn is compact iff it
is closed and bounded. We say that a set Y ⊆ X is bounded, if Y ⊆ Br(x) for some x ∈ X
and r > 0. This happens iff the set has a finite diameter diam(Y ) = sup{d(y, y′) : y, y′ ∈ Y }.

Proposition 2.3

1. A compact subset of a metric space is closed and bounded.

2. A closed subset of a compact space is compact.

3. A subset of an Euclidean space Rn is compact iff it is closed and bounded.

Proof: 1. Let Y ⊆ X be compact and assume by contradiction that it is not closed, so
there exists y ∈ Y \ Y . For each n > 0 there exists yn ∈ Y such that d(yn, y) < 1/n, so
limn→∞ yn = y ∈ X \ Y . Each subsequence of {Yn : n ≥ 0} has the same limit y. This
means that no its subsequence has a limit in Y . This is a contradiction. Assume that Y is
not bounded. Take any y0 ∈ Y . There exist points yn ∈ Y such that d(yn, y0) > n, and the
sequence {yn : n ≥ 0} has no converging subsequence. This is a contradiction.
2. Let X be compact and let Y ⊆ X be closed. A sequence {yn ∈ Y : n ≥ 0} has a subsequence
which converges to some y ∈ X. Since X is closed, y ∈ Y , so Y is compact.
3. Let Y ⊆ R be closed and bounded and xn ∈ Y . There exists an interval [a0, b0] ⊇ Y . Denote
by c0 = a0+b0

2
. An infinite number of xn belong either to [a0, c0] or to [c0, b0]. In the former

case set [a1, b1] = [a0, c0] and in the latter case set [a1, b1] = [c0, b0]. Let n1 be the first index
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with xn1 ∈ [a1, b1]. We continue by induction. At each step k the interval [ak, bk] is one half of
the interval [ak−1, bk−1] and contains an infinite number of xn. Let nk be the smallest integer
greater than nk−1 such that xnk

∈ [ak, bk]. Then {xnk
: k ≥ 1} converges to the common

limit of ak and bk. Since Y is closed, this limit belongs to Y , so Y is compact. If Y ⊆ Rn

is closed and bounded, and {xm = (xm,1, . . . , xm,n) : m ≥ 0} is a sequence in Y , then for
each coordinate i ≤ n, {xm,i : m ≥ 0} is a bounded sequence. There exists a subsequence
whose first coordinate converges, a subsequence of this subsequence whose second coordinate
converges, etc. Thus there exists a subsequence of {xm : m ≥ 0} which converges in each
coordinate. Since Y is closed, the limit belongs to Y .

A cover of a space X is any collection U = {Ui : i ∈ I} of sets Ui ⊆ X whose union is
X. The index set I may be finite or infinite with arbitrary cardinality. If all Ui are open, we
say that U is an open cover. If J ⊆ I and

∪
i∈J Ui = X, then we say that {Ui : i ∈ J} is a

subcover of U . The diameter of a cover is the supremum of the diameters of its elements.

Proposition 2.4 Let X be a metric space. The following three conditions are equivalent.
1. X is compact.
2. Every open cover of X has a finite subcover.
3. If {Vn ⊆ X : n ≥ 0} is a sequence of closed nonempty sets such that Vn+1 ⊆ Vn, then the

intersection
∩

n≥0 Vn is nonempy.

Proof: 1 ⇒ 2: Assume that U = {Un ⊆ X : n ≥ 0} is a countable cover which does not
have a finite subcover. Then there exist points xn ∈ Un \ (U0 ∪ · · · ∪ Un−1). The sequence
{xn : n ≥ 0} has a converging subsequence limk→∞ xnk

= x. Since U is a cover, x ∈ Un for
some n. Since Un is open, xnk

∈ Un for each sufficiently large nk and this is a contradiction. If
U is an uncountable cover, then its countable cover shoud be first found using the concept of
countable open basis (see e.g., Hocking and Young [24]).
2 ⇒ 3: Let ∅ ̸= Vn+1 ⊆ Vn ⊆ X be nonempty closed sets and assume that their intersection is
empty. Then {Un = X \ Vn : n ≥ 0} is an open cover of X and has a finite subcover, so there
exists n such that X = U0 ∪ · · · ∪ Un = X \ Vn. This implies Vn = ∅ which is a contradiction.
3 ⇒ 1. Let {xn ∈ X : n ≥ 0} be any sequence of points and set Vn = {xi : i ≥ n}.
Then Vn+1 ⊆ Vn are nonempty and closed, so there exists x ∈

∩
n Vn. Since V1 is closed,

B1(x) ∩ V1 ̸= ∅, so there exists n1 such that xn0 ∈ B1(x). In a similar way we show that there
exists n2 > n1 such that xn2 ∈ B1/2(x). By induction we get a subsequence {xnk

: k ≥ 0} with
xnk
∈ B1/k(x), so limk→∞ xnk

= x.

A mapping F : X → Y from a set X to a set Y assigns to elements x ∈ X elements
F (x) ∈ Y . If G : Y → Z is another mapping, then the composition G ◦ F : X → Z is
defined by (G ◦ F )(x) = G(F (x)). A mapping F : X → Y is injective, if x ̸= x′ ∈ X
implies F (x) ̸= F (x′). It is surjective, if for each y ∈ Y there exists x ∈ X with y = F (x).
It is bijective, if it is one-to-one and surjective. A bijective mapping F : X → Y has the
inverse mapping F−1 : Y → X such that F−1(F (x)) = x for every x ∈ X, so the compositions
F−1 ◦ F = IdX , F ◦ F−1 = IdY are the identity mappings on X and Y . If (X, dX) and (Y, dY )
are metric spaces, then we say that F : X → Y is continuous at x ∈ X, if

∀ε > 0, ∃δ > 0, ∀x′ ∈ X, (dX(x, x′) < δ ⇒ dY (F (x), F (x
′)) < ε).

We say that F is continuous, if it is continuous at every point x ∈ X. We say that F is a
homeomorphism if it is bijective and both F and F−1 are continuous. Metric spaces X, Y
are homeomorphic, if there exists a homeomorphism from X to Y . For example, the function
F (x) = 1/x is a homeomorphism between the intervals X = (0, 1) and Y = (0,∞).
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Proposition 2.5 A mapping F : X → Y beween metric spaces is continuous iff for every open
set U ⊆ Y , the preimage F−1(U) = {x ∈ X : F (x) ∈ U} is an open set in X iff the preimage
F−1(V ) of every closed set V ⊆ Y is a closed set.

Proof: Assume that F is continuous and let U ⊆ Y be an open set. If x ∈ F−1(U), then
F (x) ∈ U , so there exists ε > 0 such that Bε(F (x)) ⊆ U . By the continuity of F in x
there exists δ > 0 such that if y ∈ Bδ(x) then F (y) ∈ Bε(F (x)) ⊆ U . This means that
Bδ(x) ⊆ F−1(U), so F−1(U) is open in X. Conversely assume that the preimage of any open
set is open. Given x ∈ X and ε > 0, the ball U = Bε(F (x)) is an open set, so its preimage
F−1(U) is open in X. Since x ∈ F−1(U) there exists δ > 0 such that Bδ(x) ⊆ F−1(U) and this
is just the condition of continuity. If V ⊆ Y is a closed set, then F−1(Y \ V ) = X \ F−1(V ) is
an open set so F−1(V ) is a closed set.

Proposition 2.6 If X is a compact space and F : X → Y is continuous and surjective, then
Y is compact. If F is also injective (and therefore bijective), then F−1 : Y → X is continuous,
so F is a homeomorphism.

Proof: Let {Ui : i ∈ I} be an open cover of Y . Then {F−1(Ui) : i ∈ I} is an open cover
of X so it has a finite subcover {F−1(Ui) : i ∈ K}, and {Ui : i ∈ K} is an open cover of
Y . Thus Y is compact. Assume that F is bijective. We show that for each closed set V ⊆ X,
(F−1)−1(V ) ⊆ Y is a closed. Since V is a closed subset of a compact space, it is compact, so
by the preceding proof, (F−1)−1(V ) = F (V ) is a compact set and therefore closed.

The stereographic projection d(x) = 2x+i(x2−1)
x2+1

is a bijective mapping d : R→ S. With the

angle metric on R and the Euclidean metric on S ⊂ C, d is a homeomorphism. Since S is a
closed and bounded subset of C ≈ R2, it is compact and R is compact too.

1 2 3 4 5 6 7
0

1

2

Figure 2.1: The function f(x) = sup{r > 0 : ∃a ∈ A,Br(x) ⊆ Ua} for the cover U =
{[0, 2), (1, 5), (3, 6), (5, 7]} of X = [0, 7].

Theorem 2.7 Any open cover U = {Ua : a ∈ A} of a compact space X has a Lebesgue
number L > 0 such that ∀x ∈ X, ∃a ∈ A,BL(x) ⊆ Ua.

Proof: Let U = {Ua : a ∈ A} be an open cover of X. If Ua = X for some a ∈ A, then any
L > 0 is a Lebesgue number of U . Assume therefore that Ua ̸= X for each a ∈ A. Define a
function f : X → (0,∞) by

f(x) = sup{r > 0 : ∃a ∈ A,Br(x) ⊆ Ua} <∞
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We show that f is continuous: If d(x, y) < δ and 0 < r < f(x), then there exists a ∈ A such
that Br(x) ⊆ Ua, Br−δ(y) ⊆ Ua, so f(y) > r − δ. Since this holds for any r < f(x), we get
f(y) ≥ f(x) − δ. Interchanging x and y we get f(x) ≥ f(y) − δ, so |f(x) − f(y)| ≤ δ and
this proves the continuity of f (see Figure 2.1). By Proposition 2.6, a continuous image of a
compact space is compact, so f(X) ⊆ (0,∞) is compact and therefore closed. Since f(X) does
not contain zero, its minimum L0 = min f(X) is positive. If 0 < L < L0, then L is a Lebesgue
number of U .

We say that a mapping F : X → Y is uniformly continuous if

∀ε > 0, ∃δ > 0, ∀x, x′ ∈ X(d(x, x′) < δ ⇒ d(F (x), F (x′)) < ε)

A uniformly continuous map is continuous. The map f : (0, 1)→ (0,∞) defined by f(x) = 1/x
is continuous but not uniformly continuous.

Proposition 2.8 If F : X → Y is a continuous map and X is compact, then F is uniformly
continuous.

Proof: Pick ε > 0. For each x ∈ X there exists δx > 0 such that if dX(y, x) < δx, then
dY (F (x), F (y)) <

ε
2
. Let δ > 0 be a Lebesgue number of an open cover U = {Bδx(x) : x ∈ X}.

If y, z ∈ X and dX(y, z) < δ, then there exists x ∈ X such that Bδ(y) ⊆ Bδx(x), so both y, z
belong to Bδx(x) and therefore dY (F (y), F (z)) ≤ dY (F (y), F (x)) + dY (F (x), F (z)) < ε.

2.2 The Cantor space

Recall that if A is an alphabet (a finite set with at least two elements), then the power space
Aω is a metric space with metric

d(u, v) = 2−n, where n = min{k ≥ 0 : uk ̸= vk}

Clearly d is symmetric, d(u, v) = d(v, u) and d(u, v) = 0 iff u = v. To show that d satisfies the
triangle inequality, let d(u, v) = 2−n, d(v, w) = 2−m and p = min{m,n}. Then u[0,p) = v[0,p) =
w[0,p), so d(u,w) ≤ 2−p ≤ max{d(u, v), d(v, w)} ≤ d(u, v) + d(v, w).

To get insight to the topology of the power spaces Aω, we show that these spaces are
homeomorphic to the Cantor middle third set

C = [0, 1] \ (1
3
, 2
3
) \ (1

9
, 2
9
) \ (7

9
, 8
9
) \ ( 1

27
, 2
27
) \ · · ·

The set C is obtained from the closed unit interval [0, 1] by deleting the open middle third
interval (1

3
, 2
3
) and repeating this deleting procedure indefinitely with the remaining closed

intervals (see Figure 1.3). If we express the numbers x ∈ [0, 1] in the ternary system x =∑
n≥0 un3

−n−1, where un ∈ {0, 1, 2}, then the interval (1
3
, 2
3
) consists of points whose first digit is

u0 = 1. The endpoints of this intervals have two expansions: 1
3
= .10ω = .02ω, 2

3
= .20ω = .12ω,

so [0, 1] \ (1
3
, 2
3
) consists of points which have ternary expansions with u0 ̸= 1. By induction, we

show that C consists of points which have ternary expansions with digits ui ∈ {0, 2}.

Proposition 2.9 The Cantor middle third set C = [0, 1] \ (1
3
, 2
3
) \ (1

9
, 2
9
) \ (7

9
, 8
9
) · · · is homeo-

morphic to {0, 1}ω
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Proof: Define Φ3 : {0, 1}ω → C by Φ3(u) =
∑

i≥0 2ui · 3−i−1. If d(u, v) = 2−n, then u[0,n) =
v[0,n), un ̸= vn, so

|Φ3(u)− Φ3(v)| =

∣∣∣∣∣
∞∑
i=n

2(ui − vi)3−i−1

∣∣∣∣∣ ≤ 2
∞∑
i=n

3−i−1 =
2 · 3−n−1

1− 1
3

= 3−n

|Φ3(u)− Φ3(v)| ≥ 2 · 3−n−1 − 2
∞∑

i=n+1

3−i−1 = 3−n−1

This shows that Φ3 is bijective. If d(u, v) < 2−n+1 then |Φ3(u)− Φ3(v)| ≤ 3−n and if |x− y| <
3−n−1 then d(Φ−1

3 (x),Φ−1
3 (y)) < 2−n. This means that Φ3 is a homeomorphism.

While the Cantor middle third set C is obtained from the closed unit interval by deleting
the middle thirds, the unit interval is obtained from the Cantor middle third set by gluing the
endpoints of its cylinders. This is done by the mapping Φ2 ◦ Φ−1

3 : C → [0, 1] (see Figure 2.2
left), where Φ3 : {0, 1}ω → C is the homeomorphism from the proof of Proposition 2.9 and
Φ2 : {0, 1}ω → [0, 1] is defined by Φ2(u) =

∑∞
i=0 ui · 2−i−1, The mapping Φ2 ◦Φ−1

3 defined on C
can be extended to a continuous mapping f : [0, 1] → [0, 1] which is constant on the intervals
deleted from the Cantor middle third set. This mapping is known as the Devil’s staircase (see
Figure 2.2 right).
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Figure 2.2: The mapping Φ2 ◦ Φ−1
3 : C → [0, 1] (left) and the Devil’s staircase (right)

Proposition 2.10 If A is an alphabet, then Aω is homeomorphic to {0, 1}ω.

Proof: For A = {0, 1, . . . , k}, k > 2 define a bijective map ψ : Aω → {0, 1}ω by ψ(a) = 1a0 for
a < k and ψ(k) = 1k. If d(x, y) ≤ 2−n then d(ψ(x), ψ(y)) ≤ 2−n since the length of each ψ(a)
is at least 1. If d(ψ(x), ψ(y)) ≤ 2−kn then d(x, y) ≤ 2−n since the length if each ψ(a) is at most
k. Thus both ψ and ψ−1 are continuous.

Proposition 2.11 If A is an alphabet and u ∈ A∗, then the cylinder

[u] = {w ∈ Aω : w[0,n) = u}

of u is a clopen (closed and open) set.

Proof: If w ∈ [u] then [u] = B2−n+1(w) is an open ball (whose center is any its element), so [u]
is an open set. The complement Aω \ [u] =

∪
{[v] : v ∈ An \ {u}} is a union of open sets so it

is open and therefore [u] is closed.

We characterize the power spaces Aω by three topological properties.
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Definition 2.12

1. A metric space X is perfect if it has no isolated points, i.e., if

∀x ∈ X, ∀ε > 0, ∃y ∈ X, 0 < d(y, x) < ε

2. A metric space X is totally disconnected if points can be separated by clopen sets, i.e., if

x ̸= y ⇒ ∃W clopen, x ∈ W, y ∈ X \W

3. A metric space is a Cantor space if it is compact, perfect, and totally disconnected.

Theorem 2.13 A metric space is a Cantor space iff it is homeomorphic to a power space Aω.

Proof: 1. We show that Aω is compact. Let wn ∈ Aω be a sequence of points and denote by
wn,k ∈ A the k-th letter of wn. There exists z0 ∈ A such that the set N0 = {n ∈ N : wn,0 = z0}
is infinite. Choose n0 ∈ N0. There exists z1 ∈ A such that the set N1 = {n ∈ N0 : wn,1 = z1}
is infinite. Choose n1 ∈ N1 with n1 > n0 and continue by induction. If nk ∈ Nk has been
already constructed then there exists zk+1 such that the set Nk+1 = {n ∈ Nk : wn,k+1 = zk+1}
is infinite and we take nk+1 ∈ Nk+1 with nk+1 > nk. Then (wnk

)[0,k] = z[0,k], so limk→∞wnk
= z.

2. We show that Aω is perfect: For w ∈ Aω there exists z ∈ Aω with z[0,n) = w[0,n), zn ̸= wn, so
d(w, z) = 2−n

3. We show that Aω is totally disconnected: For w ̸= z there exists n such that wn ̸= zn,
w ∈ W = [w[0,n]], z ∈ Aω \W . The converse proof that each Cantor space is homeomorphic to
{0, 1}ω can be found e.g., in Hockinkg and Young [24] or Kůrka [35].

We say that a metric space X is a symbolic space if it is homeomorphic to a closed
subspace of Aω. Symbolic spaces are compact and totally disconnected but not necessarily
perfect. For example, every finite metric space is a symbolic space. Continuous mappings
between symbolic spaces can be characterized combinatorially:

Proposition 2.14 A mapping F : Aω → B∗ between symbolic spaces is continuous iff there
exists a sequence of mappings {fn : Akn → A such that F (u)n = fn(u0,kn).

Proof: By definition, F is continuous iff for every ε = 2−n there exists δ = 2−kn such that

d(u, v) < δ ⇒ d(F (u), F (v)) < ε

u0,kn = v0,kn ⇒ F (u)[0,n) = F (v)[0,n)

Thus F (u)n depends only on u[0,n) and this dependence defines fn.

2.3 Redundant symbolic extensions

If we have a symbolic extension Φ : X → R, we want to perform arithmetical operations on
symbolic representations of real numbers. A unary arithmetical operation like a linear function
g(x) = ax + b is a continuous mapping on R (with g(∞) = ∞). Its symbolic extension is
a mapping f : X → X such that g(Φ(x)) = Φ(f(x)) for each x ∈ X. Symbolic extensions
of continuous mappings exist provided Φ is redundant, i.e., if the images Φ([u]) of cylinders
overlap in R. The redundancy encountered in Section 1.2 is thus a topological concept.
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Definition 2.15 We say that a continuous surjective mapping Φ : X → Y is a symbolic
extension, if X is a symbolic space. We say that a continuous mapping Φ : X → Y is
redundant, if for each continuous mapping Ψ : X → Y there exists a continuous mapping
F : X → X such that Φ ◦ F = Ψ.

X

Ψ   A
AA

AA
AA

A

F
// X

Φ
��

Y

X
F

//

Φ
��

X

Φ
��

Y
G

// Y

Xn
F

//

Φn

��

X

Φ
��

Y n
G

// Y

If Φ : X → Y is a redundant symbolic extension, then continuous self maps of Y can be
lifted to X. If G : Y → Y is a continuous mapping, then for G ◦ Φ : X → Y there exists a
continuous mapping F : X → X such that Φ ◦ F = G ◦ Φ. We say that F is an extension of
G by Φ. This can be generalized to mappings of several variables:

Proposition 2.16 Let Φ : X → Y be a redundant symbolic extension. Then for each con-
tinuous mapping G : Y n → Y there exists a continuous mapping F : Xn → X such that
Φ ◦ F = G ◦ Φn (see the diagram).

Proof: If X is a Cantor space, then Xn is also a Cantor space and therefore it is homeomorphic
toX. LetH : Xn → X be the homeomorphism. ForG : Y n → Y we have a continuous mapping
g = G ◦ Φn ◦H−1 : X → Y , so there exists a continuous mapping f : X → X with Φ ◦ f = g.
For F = f ◦H : Xn → X we get Φ ◦ F = Φ ◦ f ◦H = g ◦H = G ◦ Φn ◦H−1 ◦H = G ◦ Φn.

The redundancy implies surjectivity: If Φ : X → Y is redundant and y ∈ Y , then for the
constant mapping Ψ : X → Y given by Ψ(x) = y there exists a mapping F : X → X with
Φ ◦ F = Ψ, so for any x ∈ X, Φ(F (x)) = Ψ(x) = y. Since the continuous image of a compact
space is compact, only compact spaces can have symbolic extensions. In particular, the real
line R has no symbolic extension.

Example 2.17 1. The binary value map Φ2 : {0, 1}ω → [0, 1] defined by Φ2(u) =
∑

i≥0 ui·2−i−1

is a symbolic extension which is not redundant.

Proof: The mapping Φ2 is clearly continuous and surjective. We show that it is not redundant.
Let c ∈ (0, 1) be an irrational number and consider the mapping g(x) = x

2c
. Since c is irrational,

there exists a unique u ∈ {0, 1}ω with Φ2(u) = c. Assume that f : {0, 1}ω → {0, 1}ω is an
extension of g by Φ2 and denote by a = f(u)0 ∈ {0, 1}. Since f is continuous at u, there exists
n > 0 such that f([u[0,n)]) ⊆ [a], so gΦ2([u[0,n)]) = Φ2f([u[0,n)]) ⊆ Φ2([a]). However, c is an
inner point of Φ2([u[0,n)]) and g(c) =

1
2
, so gΦ2([u[0,n)]) is included neither in Φ2([0]) = [0, 1

2
] nor

in Φ2([1]) = [1
2
, 1]. This is a contradiction.

Theorem 2.18 If X is a Cantor space and Y is compact metric space, then there exists a
symbolic redundant extension Φ : X → Y .

Proof: We can assume X = {0, 1}ω. There exists a finite open cover of Y of diameter at most
20 = 1. Repeating some of the sets if necessary, we can assume that its number of elements
is a power of 2. Thus there exists n0 > 0, and an open cover V0 = {Vu : u ∈ {0, 1}n0} of
X of diameter at most 1. Let λ0 > 0 be its Lebesgue number. We continue by induction.
Assume that we have constructed an open cover Vk = {Vu : u ∈ {0, 1}nk} of diameter at most
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2−k and Lebesgue number λk > 0. There exists nk+1 > nk, such that for each u ∈ {0, 1}nk

there exists an open cover W(u) = {Wuv : v ∈ {0, 1}nk+1−nk} of Vu with diameter at most
2−k−1. There exists λk+1 < λk which is a Lebesgue number of each W(u). Set Vuv = Vu ∩Wuv.
Then Vk+1 = {Vuv : uv ∈ {0, 1}nk+1} is an open cover of Y with diameter at most 2−k−1

and Lebesgue number λk+1 > 0. If u ∈ {0, 1}nk and v ∈ {0, 1}nk+1−nk , then Vuv ⊆ Vu. For
u ∈ {0, 1}ω,

∩
k≥0 Vu[0,nk)

̸= ∅ has zero diameter and therefore contains a unique element

Φ(u) ∈
∩
k≥0

Vu[0,nk)
.

Then Φ : {0, 1}ω → Y is continuous and surjective. We show that Φ is redundant. Let
Ψ : {0, 1}ω → Y be a continuous mapping. Then Ψ is uniformly continuous and there exists
an increasing integer sequence {mk : k ≥ 0} such that

d(x, y) < 2−mk ⇒ d(Ψ(x),Ψ(y)) < λk.

We construct a sequence of mappings fk : {0, 1}mk → {0, 1}nk such that Ψ([u]) ⊆ Vfk(u) for
u ∈ {0, 1}mk . For u ∈ {0, 1}m0 choose a point x ∈ [u]. Then Ψ([u]) ⊆ Bλ0(Ψ(x)) by uniform
continuity of Ψ. Since V0 has Lebesgue number λ0, there exists f0(u) ∈ {0, 1}n0 such that
Bλ0(Ψ(x)) ⊆ Vf0(u). Thus Ψ([u]) ⊆ Vf0(u). Assume we have constructed fk : {0, 1}mk →
{0, 1}nk . For u ∈ {0, 1}mk , v ∈ {0, 1}mk+1−mk we have Ψ([uv]) ⊆ Ψ([u]) ⊆ Vfk(u). Choose
x ∈ [uv]. There exists w ∈ {0, 1}nk+1−nk such that Ψ([uv]) ⊆ Bλk+1

(Ψ(x)) ⊆ Vfk(u)w and we
set fk+1(uv) = fk(u)w. Define F : {0, 1}ω → {0, 1}ω by F (u)[0,nk) = fk(u[0,mk)). Then F is
continuous. For each u ∈ {0, 1}ω we have Ψ(u) ∈ Ψ([u[0,mk)]) ⊆ Vfk(u[0,mk)) = VF (u)[0,nk)

. Since

ΦF (u) ∈ VF (u)[0,nk)
, we get Ψ(u) = ΦF (u).

If X is a metric space and Y ⊆ X, then Y is a metric space with the metric of X restricted
to Y . The closure and interior of a set V ⊆ Y in Y usually differs from its closure and interior
in X. The closure of V in Y is {y ∈ Y : ∀r > 0, Br(y) ∩ V ̸= 0} = V ∩ Y , where V is the
closure of V in X. For the interior of V in Y we get

intY (V ) = {y ∈ Y : ∃r > 0, Br(y) ∩ Y ⊆ V } = Y \ Y \ V

For example, int[0,2]([0, 1]) = [0, 1): the point 0 is an inner point of [0, 1] regarded as a subspace
of [0, 2].

Proposition 2.19 Let Φ : Aω → Y be a symbolic extension and assume that for every u ∈ A∗,
{intΦ([u])(Φ([ua])) : a ∈ A} is a cover of Φ([u]). Then Φ : Aω → Y is redundant.

Proof: For each integer k there exists λk > 0 such that for each u ∈ Ak, the open cover
{intΦ([u])(Φ([ua])) : a ∈ A} of Φ([u]) has a Lebesgue number λk. We can assume that λk+1 < λk.
If Ψ : Aω → Y is continuous, then it is uniformly continuous and there exists nk such that if
d(u, v) < 2−nk then d(Ψ(u),Ψ(v)) < λk. We can assume that nk+1 > nk. Similarly as in the
proof of Theorem 2.18 we construct a continuous F : Aω → Aω with Φ ◦ F = Ψ.

Positional number systems for bounded intervals studied in Section 1.4 can be obtained
from contractive iterative systems. Recall that the diameter of a set Y ⊆ X is diam(Y ) =
sup{d(x, y) : x, y ∈ Y }.

Definition 2.20 Let X be a metric space.
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1. We say that a mapping F : X → X is a contraction if there exists an increasing continuous
function ψ : [0,∞) → [0,∞) such that ψ(0) = 0, ψ(t) < t for t > 0 and diam(F (V )) ≤
ψ(diam(V )) for every set V ⊆ X.

2. A contractive iterative system over an alphabet A is a pair (X,F ), where X is a compact
metric space and F = {Fa : X → X : a ∈ A} is a system of contractions indexed by the
letters of A.

3. For a finite word u ∈ An set Fu = Fu0 ◦ · · · ◦ Fun−1. For the empty word set Fλ = IdX ,

Any contraction is continuous. We have Fuv = Fu ◦ Fv for any u, v ∈ A∗.

Theorem 2.21 Let (X,F ) be a contractive iterative system over A. There exists a continuous
value mapping Φ : Aω → X such that

1. {Φ(u)} =
∩

n>0 Fu[0,n)
(X) for u ∈ Aω.

2. Fu(Φ(v)) = Φ(uv) for u ∈ A∗, v ∈ Aω.

3. If u ∈ A∗ then Φ([u]) ⊆ Fu(X).

4. Φ(u) = limn→∞ Fu[0,n)
(z) for any z ∈ X.

5. Φ : Aω → X is surjective iff
∪

a∈A Fa(X) = X.

6. If Φ : Aω → X is surjective, then Φ([u]) = Fu(X) for each u ∈ A∗.

7. If every Fa is injective and X =
∪

a∈A Fa(X)◦, then Φ : Aω → X is redundant.

Proof: 1. Since Fu[0,n+1)
(X) ⊆ Fu[0,n)

(X) are nonempty closed sets, their intersection is
nonempty. We have

diam(Fu[0,n)
(X)) ≤ ψ(diam(Fu[1,n)

(X))) ≤ ψ2(diam(Fu[2,n)
(X))) ≤ · · · ≤ ψn(diam(X)).

Since limn→∞ ψn(diam(X)) = 0, the intersection
∩

n>0 Fu[0,n)
(X) has zero diameter and contains

a unique point which is by definition Φ(u).
2. Both Fu(Φ(v)) and Φ(uv) belong to all Fuv[0,n)

(X), so they are equal.
3. If uv ∈ [u] then Φ(uv) = Fu(Φ(v)) ∈ Fu(X), so Φ([u]) ⊆ Fu(X). Since diam(Φ([u])) ≤
diam(Fu(X)) ≤ ψ|u|(diam(X)), Φ : Aω → X is continuous.
4. Since Φ(u), Fu[0,n)

(z) ∈ Fu[0,n)
(X), we get d(Φ(u), Fu[0,n)

(z)) ≤ ψn(diam(X)). It follows
limn→∞ Fu[0,n)

(z) = Φ(u).
5. For each u ∈ Aω we have Φ(u) ∈ Fu0(X), so Φ(Aω) ⊆

∪
a∈A Fa(X). If

∪
a∈A Fa(X) ̸= X,

then Φ is not surjective. Conversely, assume that
∪

a∈A Fa(X) = X. Then for every u ∈ A∗

we have
∪

a∈A Fua(X) = Fu

(∪
a∈A Fa(X)

)
= Fu(X). Given x ∈ X, there exists u0 such that

x ∈ Fu0(X), there exists u1 such that x ∈ Fu[0,1]
(X) and by induction we construct u ∈ Aω such

that x ∈ Fu[0,n)
(X) for each n, so x = Φ(u).

6. If x ∈ Fu(X) then x = Fu(y) for some y ∈ X and there exists v ∈ Aω with y = Φ(v), so
x = Φ(uv) and x ∈ Φ([u]).
7. Since Φ([u]) = Fu(X), by Theorem 2.19 it suffices to show that {intFu(X)(Fua(X)) : a ∈ A}
is a cover of Fu(X) for each u ∈ A∗. Let x ∈ Fu(X), so x = Fu(y) for some y ∈ X. By the
assumption there exists a ∈ A and ε > 0 such that Bε(y) ⊆ Fa(X). Since F−1

u : Fu(X)→ X is a
homeomorphism, there exists δ > 0 such that F−1

u (Bδ(x)) ⊆ Bε(y) ⊆ Fa(X), soBδ(x) ⊆ Fua(X)
and x ∈ intFu(X)(Fua(X)).

Thus for example Φ2 : {0, 1}ω → [0, 1] is the value mapping of the contractive iterative
system Fa(x) =

x+a
2

on alphabet A = {0, 1} while the mapping Φ : {0, 1, 2} → [0, 2] defined by
Φ(u) =

∑
i ui2

−i−1 is the value mapping of Fa(x) =
x+a
2

on the alphabet A = {0, 1, 2}.
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2.4 Subshifts

The value mappings of number systems for the whole R are usually not defined on a whole
symbolic space Aω but on some its subshift. Subshifts are treated in symbolic dynamic (see
e.g., Lind and Marcus [46] or Kůrka [35]).

Definition 2.22 For an alphabet A and a set D ⊆ A∗ of forbidden words, denote by

ΣD = {u ∈ Aω : ∀v ∈ D : v ̸⊑ u}.

We say that a nonempty set Σ ⊆ Aω is a subshift, if Σ = ΣD for some D ⊆ A∗. If D ⊂ A∗ is
a finite set then we say that ΣD is a subshift of finite type (SFT). The order of a SFT Σ
is the smallest p ≥ 2 such that there exists D ⊆ Ap with Σ = ΣD.

To forbid a word u ∈ A∗ is equivalent to forbidding words ua for all a ∈ A. Thus any SFT
has an order. For example the SFT Σ{00,111} = Σ{000,001,111} in A = {0, 1} has order 3. Some
examples of SFT of order 2 in the alphabet A = {0, 1} are

Σ{00,11} = {(01)ω, (10)ω},
Σ{10} = {0n1ω : n ≥ 0} ∪ {0ω}
Σ{11} = {0, 10}ω

The subshift Σ{00,11} is finite, Σ{10} is countable and Σ{11} is uncountable: any concatenation of
10 with 0 belongs to Σ{11}. An example of a subshift which is not SFT is the occurrence one
subshift of words which contain at most one occurrence of 1. Its forbidden set is D = {10n1 :
n ≥ 0}. The shift map σ : Aω → Aω is defined by σ(u)i = ui+1. Thus σ(u) is obtained form
u by forgeting the first letter u0. The shift map is continuous since d(σ(u), σ(v)) ≤ 2d(u, v).

Proposition 2.23 A nonempty set Σ ⊆ Aω is a subshift iff it is closed and shift-invariant,
i.e., if σ(w) ∈ Σ whenever w ∈ Σ.

Proof: If forbidden words do not occur in w then they do not occur in σ(w), so ΣD is shift-
invariant. To show that ΣD is closed, we show that its complement is open. If u ∈ Aω\ΣD, then
for some i < j, u[i,j) ∈ D, and no w ∈ Aω with w[0,j) = u[0,j) belongs to ΣD, so [u[0,j)] ⊆ Aω \ΣD.
This means that Aω \ ΣD is open and therefore ΣD is closed. Conversely assume that Σ ⊆ Aω

is closed and shift-invariant and set

D = {v ∈ A∗ : ∀u ∈ Σ, v ̸⊑ u}.

If u ∈ Σ and v ∈ D then v ̸⊑ u, so u ∈ ΣD. Thus we have proved Σ ⊆ ΣD. If u ∈ Aω \Σ, then,
since Aω \ Σ is open, there exists v = u[0,n) such that [v] ⊆ Aω \ Σ. Assume by contradiction
that v occurrs in some w ∈ Σ, so v = w[i,i+n). Then σ

i(w) ∈ Σ, but σi(w) ∈ [v] ⊆ Aω \ Σ and
this is a contradiction. It follows that v ∈ D and therefore u ∈ Aω \ ΣD. Thus we have shown
Aω \ Σ ⊆ Aω \ ΣD, so Σ = ΣD.

Definition 2.24 The language of a subshift Σ ⊆ Aω is the set of finite words which occurr
as subwords of infinite words of Σ:

L(Σ) = {u ∈ A∗ : ∃x ∈ Σ, u ⊑ x}.

We denote by Ln(Σ) = L(Σ)∩An. If Σ = ΣD then we denote by LD = L(ΣD), Ln
D = LD ∩An.
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Some examples are

L{00,11} = {λ, 0, 1, 01, 10, 010, 101, 0101, 1010, . . .},
L{10} = {λ, 0, 1, 00, 01, 11, 000, 001, 011, 111, . . .},
L{11} = {λ, 0, 1, 00, 01, 10, 000, 001, 010, 100, 101, . . .}.

Definition 2.25 A nonempty language L ⊆ A∗ is an extendable language, if

1. v ∈ L for any v ⊑ u ∈ L,
2. for any u ∈ L there exists a ∈ A such that ua ∈ L.
The subshift of an extendable language L ⊆ A∗ is

S(L) = {x ∈ Aω : ∀n ≥ 0, x[0,n) ∈ L}.

Proposition 2.26

1. If L ⊆ A∗ is an extendable language, then S(L) is a subshift and L(S(L)) = L.

2. If Σ ⊆ Aω is a subshift, then L(Σ) is an extendable language and S(L(Σ)) = Σ.

Proof: 1. Let L ⊆ A∗ be an extendable language. For n > 0 set Xn = {x ∈ Aω : x[0,n) ∈ L},
so S(L) =

∩
n>0Xn. Since L contains words of any length, Xn is nonempty. Since Xn is a

finite union of cylinders, it is closed. Since Xn+1 ⊆ Xn, their intersection S(L) is nonempty
and closed. Clearly, S(L) is invariant, so it is a subshift. We show L(S(L)) = L. If u ∈ L,
|u| = n, then there exists un ∈ A such that u[0,n] ∈ L. Repeating this infinitely many times we
extend u to a point x ∈ Aω such that for any m, x[0,m) ∈ L. Thus x ∈ S(L) and u ∈ L(S(L)),
so L ⊆ L(S(L)). If u ∈ L(S(L)), then there exists x ∈ S(L) with u = x[i,j) for some i < j.
Since x[0,j) ∈ L and u is its subword, u ∈ L. Thus L(S(L)) ⊆ L.
2. Let Σ ⊆ Aω be a subshift. If v ⊑ u ∈ L(Σ), then u ⊑ x for some x ∈ Σ and therefore
v ⊑ x. If u = x[i,i+|u|), then uxi+|u| ⊑ x, so uxi+|u| ∈ L(x). Thus we have proved that L(Σ) is
extendable. We show S(L(Σ)) = Σ. If x ∈ Σ, then for any n, x[0,n) ∈ L(Σ), so x ∈ S(L(Σ)).
Thus Σ ⊆ S(L(Σ)). Suppose that x ∈ S(L(Σ)) and x ̸∈ Σ. Since Aω \Σ is open, there exists n
such that [x[0,n)] ⊆ Aω \ Σ. Since x ∈ S(L(Σ)), x[0,n) ∈ L(Σ) and there exists y ∈ Σ such that
y[j,j+n) = x[0,n). Thus σ

j(y) ∈ [x[0,n)] and this is a contradiction. Thus S(L(Σ)) ⊆ Σ.

If Σ is a subshift and u ∈ L(Σ) then we denote by

[u]Σ = [u] ∩ Σ = {w ∈ Σ : w[0,|u|) = u}

For a fixed subshift Σ we often drop the index and write [u] instead of [u]Σ. We often consider
symbolic extensions Φ : Σ → R and in this case we have a generalization of the redundancy
test, whose proof is the same as that of Theorem 2.19.

Theorem 2.27 Let Σ ⊆ Aω be a subshift and Φ : Σ → Y a surjective continuous map such
that for each u ∈ L(Σ), {intΦ([u])(Φ([ua])) : a ∈ A, ua ∈ L(Σ)} is a cover of Φ([u]). Then Φ is
redundant.
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2.5 Sofic subshifts

When we work with a subshift, we want to know whether an infinite word belongs to the
subshift or not. Since we can work only with finite prefixes of infinite words, we need a device
which reads successively letters of a word and stops (or signals an error) if the word read does
not belong to the language of the subshift. In the case of an SFT (and in a more general class
of sofic subshifts) such a test can be performed by a finite automaton. A finite automaton
is a device with a finite set B of inner states. When the automaton reads a letter a ∈ A, it
changes its inner state according to a mapping δa : B → B. The change of state upon reading
a word u ∈ A2 is δu(p) = δu1(δu0(q)), so δu0u1 = δu1 ◦ δu0 . For u ∈ An we get analogously
δu = δun−1 ◦ · · · ◦ δu0 . If we set δλ = IdB, then δuv = δv ◦ δu. Thus δa : B → B form an iterative
systems, but in contrast to iterative systems of Section 2.3, the mappings are composed in the
reverse order. We asuume that the automaton has an initial state i ∈ B and a set of final
(accepting) states F ⊆ B. A word u ∈ A∗ is accepted if δu(i) ∈ F . We say that L ⊆ A∗ is a
regular language, if there exists a finite automaton (B, δ, i, F ) such that u ∈ L iff δu(i) ∈ F .

If L is an extendable language and δu(i) ∈ F , then δv(i) ∈ F for each prefix v of u: A
word can be accepted only if all its prefixes have been accepted. This property leads to a
simplification of the automaton since the rejecting states in B \ F are not needed. We can
remove them and leave δa(p) undefined whenever δa(p) ∈ B \F . Thus we get partial mappings
δa : B → B and we write ∃δa(p) when δa is defined at p. The compositions δu : B → B are also
partial mappings which are defined on p ∈ B provided all δui

are defined on δu[0,i)
(p).

Definition 2.28 An accepting automaton over an alphabet A is a triple A = (B, δ, i), where
B is a finite set of states, δa : B → B are partial mappings and i ∈ B is an initial state. The
language accepted by A is LA = {u ∈ A∗ : ∃δu(i)}. A subshift Σ ⊆ Aω is sofic iff L(Σ) is a
regular language iff there exists an accepting automaton A such that L(Σ) = LA.

0 λ 1
1 1 0

0 1
1

0

1

λ

Figure 2.3: Accepting automata for SFT

We represent accepting automata by oriented labelled graphs whose vertices are states of B
and whose edges are labelled by letters of A. The initial state is enclosed in a circle. There is
an edge p a−→ q from p to q with label a, if δa(p) = q. The SFT Σ{10} = {0n1ω : n ≥ 0} ∪ {0ω}
has an accepting automaton with B = {λ, 1}, δ0(λ) = λ, δ1(λ) = 1, δ1(1) = 1 and initial
state λ (Figure 2.3 left). The SFT Σ{00,11} = {(01)ω, (10)ω} has an accepting automaton with
B = {λ, 0, 1}, initial state i = λ, and transition function δa(λ) = a, δa(a) = 1− a for a ∈ {0, 1}
(Figure 2.3 right).

0 λ 1
1 0 0

1

1

0

0
1 10λ

Figure 2.4: Accepting automata for sofic subshifts
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We give examples of sofic subshifts which are not SFT. The occurrence one subshift
in the binary alphabet A = {0, 1} consists of words which contain at most one occurrence of
the letter 1, so its forbidden set is D = {10n1 : n ≥ 0}. Its language is accepted by the
automaton with states B = {λ, 1}, initial state λ and transition function δ0(λ) = λ, δ1(λ) = 1,
δ0(1) = 1 (see Figure 2.4 left). The even subshift in the binary alphabet A = {0, 1} consists
of words which do not contain an odd number of zeros between two ones, so its forbidden set is
D = {102n+11 : n ≥ 0}. Its language is accepted by the automaton with states B = {λ, 1, 10},
initial state λ and transition function δ0(λ) = λ, δ1(λ) = 1, δ1(1) = 1, δ0(1) = 10, δ0(10) = 1
(see Figure 2.4 right).

Definition 2.29 Given a subshift Σ ⊆ Aω, the follower set of u ∈ A∗ is

Fu = {v ∈ Aω : uv ∈ Σ}.

Given an accepting automaton A = (B, δ, i), the follower set of p ∈ B is

Fp = {v ∈ Aω : ∀n,∃δv[0,n)
(p)}.

Clearly Fu ̸= ∅ iff u ∈ L(Σ). For the empty word we have Fλ = Σ. For the subshift Σ{11}
there are just two follower sets: for each word u ∈ {0, 1}∗ we get Fu0 = Σ, Fu1 = {0u : u ∈ Σ}.
For the occurrence one subshift we have also two follower sets: Fu = Σ provided 1 ̸⊑ u and
Fu = {0ω} otherwise.

Proposition 2.30 If u, v ∈ A∗, a ∈ A and Fu = Fv, then Fua = Fva.

Proof: Assume If w ∈ Fua then uaw ∈ L(Σ), so aw ∈ Fu, aw ∈ Fv, and w ∈ Fva.

Theorem 2.31 Σ is a sofic subshift iff the set {Fu : u ∈ A∗} of its follower sets is finite.

Proof: If Σ = ΣA with A = (B, δ, i) and u ∈ L(Σ), then Fu = Fp where p = δu(i) ∈ B. Since
B is a finite set, {Fu : u ∈ L(Σ)} is finite too. Conversely assume that B = {Fu : u ∈ L(Σ)} is
a finite set. We construct an accepting automaton A = (B, δ,Fλ) with initial state i = Fλ = Σ.
Define the transition function by δa(Fu) = Fua provided ua ∈ L(Σ), otherwise δa(Fu) is
undefined. By Proposition 2.30, this definition is correct. If u ∈ Σ then δu[0,n)

(Fλ) = Fu[0,n)
, so

u ∈ ΣA. Conversely, if ∃δu[0,n)
(Fλ) for each n, then u[0,n) ∈ L(Σ), so u ∈ Σ.

The construction of an accepting automaton is particularly simple for subshifts of finite
type. If Σ ⊆ Aω is a SFT of order p ≥ 2, then an infinite word u ∈ Aω belongs to Σ iff
u[n,n+p) ∈ L(Σ) for each n. It follows that for u, v ∈ A∗ with |v| ≥ p − 1 we have Fuv = Fv,
so {Fv : |v| ≤ p− 1} is the set of all follower sets. Some of these sets, however, may coincide.
This can be tested by a simple criterion: Fu = Fv iff for all w ∈ A∗ with |w| < p, uw ∈ L(Σ)
iff vw ∈ L(Σ).

2.6 Labelled graphs

Let A = (B, δ, i) be an accepting automaton. We say that a state p ∈ B is reachable, if
δu(i) = p for some u. In an accepting computation, only the reachable states appear, so we can
remove all nonreachable states without changing the accepted language:
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Proposition 2.32 Let A = (B, δ, i) be an accepting automaton whose every state is reachable.
Then for each u ∈ A∗ we have ∃δu(i) iff ∃p ∈ B, ∃δu(p).

Proof: If δu(p) = q, and δv(i) = p, then δvu(i) = q so vu ∈ L(Σ) and u ∈ L(Σ).

In an accepting automaton whose only states are reachable, the initial state state need
not be distinguished, since an accepting process can start at any state of B. The automaton
is thus reduced to a partial iterative system δa : B → B. The accepted language of δ is
Lδ = {u ∈ A∗ : ∃p, ∃δu(p)}. Since the computation may start at any state, we say that such an
automaton is nondeterministic. A nondeterministic automaton may have fewer states that
the deterministic one. For example if we remove from the accepting deterministic automaton
of the even shift the initial state λ, we get a nondeterminsitic automaton which accepts the
same language. Its states are B = {1, 10}, and transition function is given by δ1(1) = 1,
δ0(1) = 10, δ0(10) = 1 (see Figure 2.4 right). We show that conversely, a language accepted by
a nondeterministic finite automaton is accepted also by a deterministic automaton (Theorem
2.35), but its number of states may be much (exponentially) larger. A nondeterministic finite
automaton can be equivalently described by a finite labelled graph.

Definition 2.33

1. A labelled graph over an alphabet A is a pair G = (B,E), where B is a finite set of
vertices and E ⊆ B × A×B is a set of labelled edges.

2. The source and target maps s, t : E → B are the projections s(p, a, q) = p, t(p, a, q) = q.
We assume that ∀p ∈ B, ∃e ∈ E, s(e) = p. The labelling map ℓ : E → A is the projection
ℓ(p, a, q) = a.

3. The edge subshift Σ|G| of G is Σ|G| = {u ∈ Eω : ∀i ≥ 0, t(ui) = s(ui+1)} ⊆ Eω.

3. The subshift of G is ΣG = {ℓ(u) : u ∈ Σ|G|} ⊆ Aω.

4. The language of G is LG = L(ΣG).

Note that Σ|G| is a SFT of order 2. A path is a finite or infinite word u ∈ E∗ ∪ Eω such
that t(ui) = s(ui+1). A finite path is equivalently described by a pair (p, u) ∈ B∗ × A∗

such that |p| = |u| + 1 and (pi, ui, pi+1) ∈ E for all i < |u|. An infinite path is a pair
(p, u) ∈ Bω × Aω ≈ (B × A)ω such that (pi, ui, pi+1) ∈ E for all i. Thus the edge subshift
may be equivalently defined as a subset of (B × A)ω. The labelling map ℓ can be extended to
the continuous mapping ℓ : Eω → Aω defined by ℓ(u)i = ℓ(ui). It follows that ΣG = ℓ(Σ|G|)
is compact and therefore it is a closed subset of Aω. Since ΣG is also shift-invariant, it is a
subshift. Thus we have

Proposition 2.34 If Σ ⊆ Aω is a sofic subshift, then there exists a labelled graph G such that
Σ = ΣG.

Proof: Given an accepting automaton A = (B, δ, i), we construct the labelled graph G =
(B0, E), where B0 = {δu(i) : u ∈ A∗} is the set of reachable states and E = {(p, a, q) ∈
B0 × A×B0 : δa(p) = q}.

Proposition 2.35 Any subshift of any labelled graph is sofic.
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Proof: Let G = (B,E) be a labelled graph, let Q = P(B)\{∅} be the set of nonempty subsets
of B. Define transition functions δa : Q→ Q by

δa(M) = {q ∈ Q : ∃e ∈ E, s(e) ∈M, t(e) = q, ℓ(e) = a},

provided δa(M) is not empty, otherwise δa(M) is undefined. The initial state is B ∈ Q. We show

that (Q, δ,B) accepts L(ΣG). If q0
u0−→ q1 · · ·

un−2−→ qn−1
un−1−→ qn is a path in G, then qn ∈ δu(V ),

so δu(V ) ̸= ∅ and u is accepted. Conversely, if δu(V ) ̸= ∅, then pick some qn ∈ δu(V ). There

exists qn−1 ∈ δu[0,n−2]
(V ) such that qn−1

un−1−→ qn is a labelled edge in G. Continuing backwards,
we obtain a path in G with label u.

Definition 2.36 A morphism from a subshift Σ ⊆ Aω to a subshift Θ ⊆ Bω is a continuous
mapping F : Σ→ Θ such that for every u ∈ Σ, σ(F (u)) = F (σ(u)). If F is surjective, we say
that Θ is a factor of Σ.

Σ
σ

//

F
��

Σ

F
��

Θ
σ

// Θ

Proposition 2.37 Any morphism F : Σ → Θ ⊆ Bω is a sliding block code. This means
that there exists r ≥ 0 and a local rule f : Lr(Σ)→ B such that F (x)i = f(x[i,i+r)) for every
x ∈ Σ.

Proof: Since F is uniformly continuous, for ε = 1 there exists δ > 0 such that if d(x, y) < δ,
then d(F (x), F (y)) < 1. Take r > 0 with 2−r < δ. Then

x[0,r) = y[0,r) ⇒ d(x, y) ≤ 2−r < δ ⇒ d(F (x), F (y)) < 1

⇒ F (x)0 = F (y)0.

Thus F (x)0 depends only on the first r letters of x, and there exists a local rule f : Lr(Σ)→ B
such that f(x[0,r)) = F (x)0. Since F is a morphism, we get

F (x)n = σn(F (x))0 = F (σn(x))0 = f(σn(x)[0,r)) = f(x[n,n+r)).

Theorem 2.38 (Weiss [69]) A subshift is sofic iff it is a factor of an SFT.

Proof: If Σ is sofic, then Σ = ΣG for some labelled graph G and ℓ : (Σ|G|, σ) → (ΣG, σ) is a
factor map with SFT Σ|G|. Conversely, let F : (Σ, σ) → (Θ, σ) be a factor map, Σ ⊆ Aω an
SFT and Θ ⊆ BN. Let p be the order of Σ, so u ∈ Σ iff u[i,i+p) ∈ L(Σ) for all i. By Proposition
2.37, there exists a local rule f : Lr(Σ) → B such that F (x)i = f(x[i,i+r)). We can assume
r ≥ p. Define a labelled graph G = (V,E), where V = Lr−1(Σ),

E = {(au, f(aub), ub) ∈ V ×B × V : a, b ∈ A, aub ∈ Lr(Σ)}

We show that ΣG = Θ. If v = F (u) ∈ Θ then we have a path

u[0,r−1)
f(u[0,r))

−→ u[1,r)
f(u[1,r+1))

−→ u[2,r+1) · · ·

with label v. Conversely, if we have such a path in (V,E) with label v, then u[i,i+r−1) ∈ L(Σ),
so u ∈ Σ and v = F (u).
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Definition 2.39 Let G = (B,E) be a labelled graph over A.

1. We say that G is initialized, if there exists i ∈ B such that Fi = ΣG, there is no edge with
target i and for each p ∈ B \ {i} there exists a path i u−→ p.

2. We say that G is right-resolving if (p, a, q), (p, b, r) ∈ E and a = b implies q = r, i.e., if
the edges with the same source carry different labels.

3. We say that G is deterministic, if it is initialized and right-resolving.

For any graph G there exists an initialized graph with the same language. We just add
to G a new vertex i and for any edge p a−→ q we add a new edge i a−→ q. Alternatively, if we
allow edges with label λ, we may add edges i λ−→ p for each vertex p of G. The deterministic
graphs are exactly graphs of deterministic finite automata, so each sofic subshift is a subshift
of a deterministic graph. If G is an deterministic graph then there exists a continuous mapping
ν : ΣG → Σ|G| such that ℓ(ν(u)) = u for each u ∈ ΣG. For u ∈ ΣG, ν(u) is the unique path
with source i and label u. Note that ν is continuous but does not commute with the shift map,
so it is not a morphism.



42 CHAPTER 2. SYMBOLIC DYNAMICS



Chapter 3

Matrices and transformations

As we have seen in Chapter 1, an essential ingredient of a number system are its transformations
Fa : R → R. These transformations are in all cases Möbius transformations of the form
M(x) = ax+b

cx+d
. Their geometrical structure can be understood in the context of projective

geometry. The extended real line R = R ∪ {∞} can be regarded as the one-dimensional
projective space. Möbius transformations are projective transformations of R and form a
three-dimensional projective space.

3.1 Projective geometry

Projective geometry (see e.g., Coxeter [9]) studies transformations which map lines to lines but
do not necessarily preserve distances or angles. While the Euclidean geometry studies geomet-
rical constructions with the compass and ruler, the projective geometry studies constructions
with the ruler alone.

p’

p

q’

q

r’

r

S A

s

X X’ A B C=C’ D
p

A’

E’

D’

p’

S

Figure 3.1: Perspectivities between planes(left) and lines (right).

A paradigmatic example is a central perspectivity (see Figure 3.1 left). We have two
planes r and r′ in a three-dimensional space and a center of perspectivity S which lies neither
in r nor in r′. A point X of r is mapped to the intersection X ′ of the ray SX with the
plane r′. A line q of r is mapped to the intersection of the plane Sq with the plane r′. This
correspondence, however, is not defined everywhere. Some points in one plane do not have any
image in the other plane. For example the lines p and q which intersect at A map to paralel
lines p′, q′ which have no intersection in r′. The point A of r has no image in r′. To make the
correspondence one-to-one, projective geometry extends the Euclidean plane by ideal points
at infinity. The parallel lines p′ and q′ intersect at an ideal point A′ of r′. Moreover, every

43
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line parallel to p′ intersects it at A′ since every such line is mapped to a line which passes
through A. The projective plane is obtained from the Euclidean plane by adding an ideal
point in every direction (determined by a set of mutually parallel lines). Each (ordinary) line
is extended by an ideal point. There is also an ideal line which consists of all ideal points. The
line s of the plane r is mapped to the ideal line of r′, since the plane Ss is parallel with r′.
Thus any two different lines (ordinary or ideal) intersect in a unique point and any two different
points determine a unique line on which these two points lie. The axiomatic of the projective
geometry is thus simpler and more symmetric than the axiomatic of the Euclidean geometry,
in which parallel lines do not intersect.

In a similar way we obtain the projective line - the projective space of dimension one.
Consider a plane with two distinct lines p and p′ and a point S of the plane, which lies neither
on p nor on p′ (Figure 3.1 right). The projectivity with the center S maps a point X of p to
the intersection X ′ of p′ with the line SX. To make the correspondence one-to-one, both lines
p and p′ are extended by a single ideal point at infinity. The point B of p projects to the ideal
point B′ of p′ and the ideal point E of p projects to the point E ′ of p′.

There is another way to conceive a projective space without the cumbersome distinction
between the ordinary and ideal points. Each point of a projective line (ordinary or ideal) is
determined by a unique ray passing through S. If the ambient two-dimensional space is the
Euclidean vector space R2, we can assume that the center of perspectivity is the zero point
S = 0 = (0, 0). A ray passing through 0 is then just a one-dimensional subspace of R2.
Similarly, points of a projective plane can be conceived as rays passing through a point S of
a three-dimensional Euclidean space, or as one-dimensional subspaces of the three-dimensional
vector space R3. The concept readily generalizes to any dimension.

Definition 3.1 The projective space P(Rn+1) of dimension n consists of all one-dimensional
subspaces of the vector space Rn+1. The elements of P(Rn+1) are called projective points.
A projective line in P(Rn+1) (for n ≥ 2) is a linear subspace of Rn+1 of dimension 2. The
one-dimensional projective space is called the extended real line P(R2) = R = R ∪ {∞}.

3.2 The extended real line

A one-dimensional subspace of R2 is determined by any its nonzero point z = (z0, z1) ̸= (0, 0).
We say that z is a homogeneous coordinate of the subspace {λz : λ ∈ R}. Two nonzero
points z, w determine the same subspace, if one is a nonzero multiple of the other iff the matrix
with columns z, w has zero determinant. We obtain an equivalence ∼ on R2 \ {(0, 0)} given by
z ∼ w iff ∃λ ̸= 0, z = λw iff det(z, w) = z0w1 − z1w0 = 0. Thus we may conceive P(R2) = R as
the factor space R = (R2 \ {(0, 0)})/ ∼. If we represent R by the line z1 = 1 parallel to the z0
axis, then the ray through a point z = (z0, z1) with z1 ̸= 0 intersects the real line at ( z0

z1
, 1), so

it represents the number z0
z1
∈ R. We write conventionally the homogeneous coordinate (z0, z1)

as z0
z1
, so the ideal point∞ at infinity has homogeneous coordinate z0

0
, where z0 ̸= 0 (see Figure

3.2 top).
Of all homogeneous coordinates of a point z = z0

z1
∈ R there are two which lie at the unit

circle
S = {z ∈ R2 : z20 + z21 = 1}.

They are ( z0
||z|| ,

z1
||z||), and (−z0

||z|| ,
−z1
||z|| ), where ||z|| =

√
z20 + z21 is the norm of z. The projective line

is thus obtained from the unit circle by the identification of its opposite points. If z ̸=∞, then
z has a unique homogeneous coordinate which lies at the upper semi-circle {z ∈ S : z1 ≥ 0}.
Both its endpoints (−1, 0) and (1, 0) represent ∞ (see Figure 3.2 bottom). If we stretch the



3.2. THE EXTENDED REAL LINE 45

t/
2

(z0, z1)

( z0
z1
, 1)

( z0
||z|| ,

z1
||z||)

(−z0
||z|| ,

−z1
||z|| )

(−z0,−z1)

-3_
2

-3_
2

-1_
1

-1_
1

-1_
2

-1_
2

0_
1
0_
1

1_
2

1_
2

1_
1

1_
1

3_
2

3_
2

-1_
0

1_
0

-3_
2

-3_
2

-1_
1
-1_
1

-1_
2

-1_
2

0_
1

0_
1

1_
2

1_
2

1_
1
1_
1

3_
2

3_
2

1_
0

Figure 3.2: The homogeneous coordinates (top). The stereographic projection (bottom) doubles
the angles and reverses the orientation.

upper semicircle twice and glue its two endpoints, we get the full unit circle. This stretching
and gluing operation is realized by the stereographic projection introduced in Section 1.3.
We look now into geometrical properties of this transformation. The transformation takes a
point at the upper semicircle, projects it to the real line as in Figure 3.2 bottom left and then
to the unit circle as in Figure 3.2 bottom right. In this way we get a projection which doubles
the angles, reverses the orientation and maps the upper semicircle to the full circle.
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t
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2

t
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2
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Figure 3.3: The stereographic projection in the Cartesian plane

We consider the stereographic projection in the plane with the cartesian coordinates (x0, x1).
The real line is now identified with the x0-axis with equation x1 = 0. A point Z = (z, 0) on
the x0-axis is projected to the intersection d(z) = X = (x0, x1) of the unit circle with the line
SZ. Here S = (0, 1) is the north pole (see Figure 3.3). If t ∈ [−π, π] is the angle ∠TOX, then
X = (cos(t− π

2
), sin(t− π

2
)) = (sin t,− cos t). The triangle OSX is equilateral with angle π− t

at O and angles t
2
at S and X. The triangle STZ is also equilateral with angles t

2
at S and

T . In fact, ∠OTZ = t
2
∈ [−π

2
, π
2
] is just the angle of the homogeneous coordinate z0

z1
with the
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z1-axis (see Figure 3.2 top), so tan t
2
= z, sin t

2
= z√

z2+1
, cos t

2
= 1√

z2+1
. It follows sin t = 2z

z2+1
,

cos t = 1−z2

z2+1
, so d(z) = (sin t,− cos t) = ( 2z

z2+1
, z

2−1
z2+1

), and d(∞) = (0, 1). In homogeneous
coordinates we get

d

(
z0
z1

)
=

(
2z0z1
z20 + z21

,
z20 − z21
z20 + z21

)
.

From the similarity of triangles we get z : 1 = x : (1−y), so the inverse stereographic projection
is given by d−1(x, y) = x

1−y
. The parametrization of the unit circle by the variable t is the map

t 7→ ei(t−
π
2
) = (sin t,− cos t). This yields the parametrization t : R→ R of R given by

t(t) = d
−1(sin t,− cos t) =

sin t

1 + cos t
= tan

t

2
=

sin t
2

cos t
2

Here
sin t

2

cos t
2

should be regarded as a homogeneous coordinate of t(t). The projection t is bijective

on every semiclosed interval [t, t + 2π). In particular, t has the inverse t−1(x) = 2 arctanx on
the semiclosed interval [−π, π).

An interval is a connected subset of R. We say that I ⊆ R is a proper interval, if it has
two distinct endpoints a, b ∈ I \ I◦. If a, b ∈ I then I is closed and if a, b ∈ R \ I then I is open.
Improper intervals are the empty set, singletons, their complements and the full interval R.
Given two distinct points a, b ∈ R, there exist two proper open intervals I, J with endpoints
a, b ∈ R which satisfy I ∩ J = ∅, I ∪ J = R. We distinguish these intervals by the order of a, b
and write them conventionally as I = (a, b), J = (b, a). A point x ∈ R belongs to (a, b), if the
triple a, x, b is positively oriented, i.e., if det(a, x) · det(x, b) · det(b, a) > 0. This means that
d(x) belongs to the counterclockwise arc from d(a) to d(b).

Definition 3.2 The open interval and the closed interval with distinct endpoints a, b ∈ R
are

(a, b) = {x ∈ R : det(a, x) · det(x, b) · det(b, a) > 0},
[a, b] = {x ∈ R : det(a, x) · det(x, b) · det(b, a) ≥ 0}.

The size of an interval I = [a, b] or I = (a, b) is defined by

sz(I) =
a · b

det(b, a)
=
a0b0 + a1b1
a1b0 − a0b1

.

Note that the property x ∈ (a, b) does not depend on the representation of a, x, b by homoge-
neous coordinates. For example we have 1

1
∈ (0

1
, 1
0
), 1

1
∈ (0

1
, −1

0
), or −1

−1
∈ (0

1
, 1
0
). Definition 3.2

is compatible with the usage of Section 1.3. We have x
1
∈ [a

1
, b
1
] iff (a− x)(x− b)(b− a) ≥ 0. If

a < b, this is equivalent to a ≤ x ≤ b. If b < a, this is equivalent to a ≤ x or x ≤ b. The length
of an interval I = [a, b] defined in Section 1.3 can be written in homogeneous coordinates as

|I| = 1

π
arccotg

a0b0 + a1b1
a1b0 − a0b1

=
1

π
arccotg sz(I).

The length of small intervals can be estimated by their size.

Proposition 3.3 The length of an interval I ⊆ R is |I| = 1
2
− 1

π
arctan sz(I). We have sz(I) ≥ 1

iff |I| ≤ 1
4
and in this case

1

4 · sz(I)
≤ |I| ≤ 1

π · sz(I)
.
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Proof: We have arccotg x = π
2
− arctanx for each x ∈ R, so |I| = 1

2
− 1

π
arctan sz(I). For

0 ≤ y ≤ 1 we have 0 ≤ arctan(y) ≤ π
4
, arctan′(y) = 1

y2+1
≤ 1, so πy

4
≤ arctan y ≤ y and

therefore y
4
≤ 1

π
arctan y ≤ y

π
. For x = 1

y
we have x ≥ 1 and arctan y = arccotg x, so

1
4x
≤ 1

π
arccotg x ≤ 1

πx
. This implies the estimate for |I|.

Alternatively we obtain the length of an interval from the parametrization t : R→ R of R.

Proposition 3.4 If I = [a, b] ⊆ R is a proper interval, a = t(t), b = t(s) and 0 < s− t < 2π,
then |I| = s−t

2π
.

The proof is a simple verification.

3.3 Projective metrics

The angle 0 ≤ φ(x, y) ≤ π between two nonzero vectors x, y ∈ Rn+1 can be obtained by
the cosine rule as φ(x, y) = arccos x·y

||x||·||y|| , where x · y =
∑

i xiyi is the scalar product and

||x|| =
√
x · x is the Euclidean norm. The angle between −x and y is π−φ(x, y) = arccos −x·y

||x||·||y|| .
Taking the smaller of these two angles we define the angle metric in the projective space
P(Rn+1) by

da(x, y) =
1

π
min{φ(x, y), π − φ(x, y)} = 1

π
arccos

|x · y|
||x|| · ||y||

∈ [0, 1
2
]

The formula does not depend on the choice of representing vectors: da(λx, µy) = da(x, y) for
every nonzero λ, µ. In P(R2) = R we use the formula arccos x = arccotg x√

1−x2 to get

da(x, y) =
1

π
arccos

|xy + 1|√
(x2 + 1)(y2 + 1)

=
1

π
arccotg

|xy + 1|
|x− y|

da(x,∞) =
1

π
arccotg|x|

Alternatively, we consider the projective metric which is based on the approximation
φ ≈ 2 sin φ

2
. It is the distance of the normalized homogeneous coordinate x/||x|| from y/||y|| or

from −y/||y||:

dp(x, y) = min

{
2 sin

φ(x, y)

2
, 2 sin

π − φ(x, y)
2

}
= min{

√
2(1− cosφ(x, y)),

√
2(1 + cosφ(x, y))}

= min

{√
2

(
1− x · y
||x|| · ||y||

)
,

√
2

(
1 +

x · y
||x|| · ||y||

)}

= min

{∣∣∣∣∣∣∣∣ x||x|| − y

||y||

∣∣∣∣∣∣∣∣ , ∣∣∣∣∣∣∣∣ x||x|| + y

||y||

∣∣∣∣∣∣∣∣} ∈ [0,
√
2],

The last equality follows from

||x · ||y|| ± ||x|| · y||2 = 2 · ||x||2 · ||y||2 ± 2 · ||x|| · ||y|| · (x · y)
= 2 · ||x|| · ||y|| · (||x|| · ||y|| ± (x · y)) .
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A simpler metric is obtained from the approximation φ ≈ sinφ. Since sinφ = sin(π − φ), we
define the chord metric by

dc(x, y) = sinφ(x, y) =

√
||x||2 · ||y||2 − (x · y)2
||x|| · ||y||

∈ [0, 1]

In homogeneous coordinates in R, we get

dc(x, y) =
| det(x, y)|
||x|| · ||y||

=
1

2
||d(x)− d(y)||.

This follows from sinφ(x, y) = sin φ(d(x),d(y))
2

= 1
2
||d(x)− d(y)||. For x, y ∈ R we get

dc(x, y) =
|x− y|√

(x2 + 1)(y2 + 1)
,

dc(x,∞) =
1√

x2 + 1
.

Proposition 3.5 The three projective metrics are equivalent. We have dc(x, y) ≤ dp(x, y) ≤
πda(x, y) ≤ π

2
dc(x, y) and

lim
y→x

πda(x, y)

dp(x, y)
= lim

y→x

dp(x, y)

dc(x, y)
= 1.

Proof: For 0 ≤ α ≤ π
2
we have sinα ≤ 2 sin α

2
≤ α ≤ π

2
·sinα and limα→0

2 sin α
2

α
= limα→0

sinα
α

=
1.

3.4 Transformations

A linear transformation of the vector space R2 is determined by a (2×2)-matrixM = [M00 M01

M10 M11
].

The M -image of a column vector x ∈ R2 is Mx ∈ R2 defined by (Mx)i =
∑1

j=0Mijxj:

Mx =

[
M00 M01

M10 M11

]
·
[
x0
x1

]
=

[
M00x0 +M01x1
M10x0 +M11x1

]
As a vector space, the space R2×2 of (2 × 2)-matrices is isomorphic to R4, but R2×2 has an
additional structure of matrix multiplication (MP )ik =

∑1
j=0Mij ·Pjk. If det(M) =M00M11−

M01M10 ̸= 0, then M : R2 → R2 is bijective and the M -image of a one-dimensional subspace
of R2 is a one-dimensional subspace of R2. This means that M determines a transformation
of the projective space P(R2) = R which is called a Möbius transformation. A nonzero
multiple λM of M determines the same transformation as M , so a Möbius transformation is
determined by a projective matrix, i.e., by a one-dimensional subspace of R2×2 which is a
point of the projective space P(R2×2). We do not distinguish between a projective matrix and
its transformation. The determinant of a projective matrix is not a well-defined concept, since
det(λM) = λ2 det(M). However, the sign of the determinant does not depend on λ so we can
classify transformations according to the sign of their determinant:

M(R) = {M ∈ P(R2×2) : det(M) ̸= 0} : regular transformations

M+(R) = {M ∈M(R) : det(M) > 0} : increasing transformations

M−(R) = {M ∈M(R) : det(M) < 0} : decreasing transformations
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If M = [a b
c d

] ∈ M(R), then M : R → R is bijective and has an inverse M−1 = [ d −b
−c a

] =

[−d b
c −a

]. The composition of two transformations is again a transformation whose matrix is

obtained by matrix multiplication. Regular Möbius transformations thus form a group. If
M = [a b

c d
] ∈ M(R), x ∈ R, then M(x) = ax0+bx1

cx0+dx1
, in particular M(−d

c
) = ∞, M(∞) = a

c
.

A transformation can be lifted by the parametrization t : R → R to a continuous function
M̃ : R→ R which commutes in the diagram M ◦ t = t ◦ M̃ :

R
M̃

//

t
��

R

t
��

R
M

// R

If M ∈ M+(R) is increasing then M̃(t + 2π) = M̃(t) + 2π. If M ∈ M−(R) is decreasing then

M̃(t+ 2π) = M̃(t)− 2π. The graphs of some lifts M̃ can be seen in Figures 3.4 and 3.5.
The derivation of M in x ∈ R is readily computed as M ′(x) = (ad − bc)/(cx + d)2. If

|M ′(x)| < 1, then, in a neighbourhood of x, M is contracting with respect to the Euclidean
metric de(x, y) = |x− y|. If we work in R, we are rather interested in the derivation of M with
respect to the projective metrics.

Definition 3.6 The circle derivation of M ∈M(R) in x ∈ R is defined by

M•(x) =
det(M) · ||x||2

||Mx||2

Note that while the norm ||x|| depends on a particular homogeneous representation of x, the
ratio ||x||/||M(x)|| does not. For M = [a b

c d
], x ∈ R we get

M•(x) =
(ad− bc)(x2 + 1)

(ax+ b)2 + (cx+ d)2
,

M•(∞) =
ad− bc
a2 + c2

Proposition 3.7 If M ∈M(R) is a transformation then

|M•(x)| = lim
y→x

dc(M(y),M(x))

dc(y, x)

M•(x) = M̃ ′(t−1(x))

Proof: From det(M(y),M(x)) = det(M) · det(x, y) we get

lim
y→x

dc(M(y),M(x))

dc(y, x)
= lim

y→x

| det(M(y),M(x))|
| det(y, x)|

· ||y|| · ||x||
||M(y)|| · ||M(x)||

=
| det(M)| · ||x||2

||M(x)||2
= |M•(x)|
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For t−1(x) = 2 arctan x we have (t−1)′(x) = 2
x2+1

and t′(t−1(x)) = (1/t−1)′(x). From M̃ =
t−1 ◦M ◦ t we get

M̃ ′(t−1(x)) =
(t−1)′(M(x)) ·M ′(x)

(t−1)′(x)

=
2

M2(x) + 1
· det(M)

(cx+ d)2
· x

2 + 1

2

=
det(M)(x2 + 1)

(ax+ b)2 + (cx+ d)2
=M•(x)

Using det(MP ) = det(M) · det(P ), we immediately get the chain rule:

(MP )•(x) =
det(M) · ||Px||2

||MPx||2
· det(P ) · ||x||

2

||Px||2

= M•(Px) · P •(x)

Proposition 3.8 If M ∈ M(R), I ⊂ R is an interval and q0 ≤ M•(x) ≤ q1 for every x ∈ I,
then q0|I| ≤ |M(I)| ≤ q1|I|.

Proof: We use Proposition 3.4. Let I = [a, b], a = t(t), b = t(s) and 0 < s − t < 2π. By

the mean value theorem, there exists t ≤ x ≤ s such that M̃ ′(x) = M̃(s)−M̃(t)
s−t

= |M(I)|
|I| . If

q0|I| > |M(I)|, or q1|I| < |M(I)| then |M̃ ′(x)| < q0 or |M̃ ′(x)| > q1 which is a contradiction.

Definition 3.9 The expanding interval and the contracting interval of a transformation
M ∈M(R) are defined by

U(M) = {x ∈ R : |M•(x)| < 1},
V(M) = {x ∈ R : |(M−1)•(x)| > 1}.

The trace of a matrix M = [a b
c d

] is tr(M) = a + d. Define the trace of a projective

matrix M ∈M(R) by

trc(M) =
tr(M)2

det(M)
=

(a+ d)2

ad− bc
If M is decreasing then trc(M) ≤ 0, otherwise trc(M) ≥ 0. Increasing transformations are
classified into three kinds according to the number of their fixed points. We say that x ∈ R is
a fixed point of M , if M(x) = x. Every x ∈ R is a fixed point of the identity Id = [1 0

0 1
].

Proposition 3.10 A decreasing transformation M ∈ M−(R) has two fixed points. If M ∈
M+(R) is a nonidentical increasing transformation, there are three cases:

1. If trc(M) < 4, then M has no fixed point. We say that M is elliptic.

2. If trc(M) = 4, then M has one fixed point. We say that M is parabolic.

3. If trc(M) > 4, then M has two fixed points. We say that M is hyperbolic.
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Figure 3.4: Möbius transformations and their circle derivations: M(x) = 2x+1
2

is parabolic with
U(M) = (−1

4
, 1
0
), V(M) = (1

4
, 1
0
) (left), M(x) = 2x+4

−x+4
is elliptic (right).

Proof: IfM = [a b
c d

] is not the identity, then x is a fixed point ofM iff cx20+(d−a)x0x1−bx21 = 0.

If c ̸= 0, this is a quadratic equation with discriminant

D = (a− d)2 + 4bc = tr(M)2 − 4 det(M),

so D ≥ 0 iff either det(M) < 0 (and then trc(M) ≤ 0) or det(M) > 0 and trc(M) ≥ 4. If
c = 0 then we have one solution x = 1

0
and the other x = b

d−a
. If d ̸= a then M has two fixed

points and either det(M) < 0 or det(M) > 0 and trc(M) = (a+d)2

ad
> 4. If d = a, b ̸= 0, then

M has a unique fixed point ∞ and trc(M) = 4a2

a2
= 4. If d = a, b = 0, then M is the identical

transformation.

Some graphs of transformations and their circle derivations can be seen in Figures 3.4 and
3.5. The extended real line is displayed in the arc metric as a finite interval from −1

0
to 1

0
. In

other words, we use the function t(x) = tan x
2
which maps R bijectively to (−π, π) and the

graphs show the real functions M̃ = t−1 ◦M ◦ t : (−π, π)→ (−π, π). The fixed points are the
intersections of the graphs with the diagonal y = x.

3.5 Conjugated transformations

Definition 3.11 We say that transformations P,Q ∈ M(R) are conjugated if there exists
M ∈M(R) such that Q =M−1PM .

Conjugated transformations have the same dynamical properties. If Q =M−1PM , then Qn =
M−1P nM for any n ∈ Z. If x is a fixed point of P , then y =M−1x is a fixed point of Q and

Q•(y) = (M−1)•(PM(y)) · P •(M(y)) ·M•(y) = (M−1)•(M(y)) · P •(x) ·M•(y)

= P •(x).
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Figure 3.5: Möbius transformations and their circle derivations: M(x) = x+1
2x

is decreasing
with U(M) = (1

3
, 1
−1

), V(M) = (0, 2) (left), M(x) = x+1
2

is hyperbolic with U(M) = (−1, 3),
V(M) = (0, 2).

Conjugated transformations have the same trace. A direct computation shows that tr(PQ) =∑
i,j PijQji = tr(QP ). If Q = M−1PM , then tr(Q) = tr(PMM−1) = tr(P ). Since det(Q) =

det(P ), we get trc(Q) = trc(P ). We are going to show that two transformations of the same
orientation (increasing or decreasing) are conjugated iff they have the same trace by show-
ing that each transformation is conjugated to a canonical form which is either a similarity,
translation or rotation.

Definition 3.12 A similarity is a transformation Qr(x) = rx, where 0 ̸= r ̸= 1.

Thus Qr = [ r
0
, 0
1
], det(Qr) = r and trc(Qr) = (r + 1)2/r. The fixed points are 0 and ∞ with

circle derivations Q•
r(0) = r, Q•

r(∞) = 1
r
. The composition of similarities is again a similarity:

Qrt = Qr ◦Qt. If r < 0 then Qr is decreasing, in particular Q−1(x) = −x. If 0 < r ̸= 1 then Qr

is hyperbolic.

Proposition 3.13 A decreasing transformation M ∈M−(R) is conjugated to a similarity with
quotient −1 ≤ r < 0. A hyperbolic transformation M ∈ M+(R) is conjugated to a similarity
with quotient 0 < r < 1. If 0 < |r| < 1, then M has un unstable fixed point u(M) and
a stable fixed point s(M) such that limn→∞Mn(x) = s(M) for each x ̸= u(M). Moreover,
M•(u(M)) > 1, M•(s(M)) < 1 and M•(u(M)) ·M•(s(M)) = 1. If r = −1 then M2 = Id.

Proof: Let a, b ∈ R be the two fixed points of M and set P = [a, b] = [a0
a1
, b0
b1
]. Then P (0) = b

and P (∞) = a, so P−1MP has fixed points 0 and ∞. It follows P−1MP = Qr with 0 ̸= r ̸= 1.
From M = PQrP

−1 we get M•(b) = Q•
r(0) = r, M•(a) = Q•

r(∞) = 1/r, so M•(a) ·M•(b) = 1.
If |r| < 1 thenM•(b) < 1 and we have s(M) = b, u(M) = a. Since limn→∞Qrn(x) = 0 for every
x ̸= ∞, we get limn→∞Mn(x) = s(M) for every x ̸= u(M). If |r| > 1 then M•(b) > 1 and
s(M) = a, u(M) = b. We get again limn→∞Mn(x) = s(M) for every x ̸= u(M). A similarity
Qr with |r| > 1 is conjugated to Q1/r, since for P (x) = −1/x we have P−1QrP = Q1/r. Thus

M is conjugated to a similarity Qr with −1 ≤ r < 1. If r = −1 then tr(M) = 0 so M = [a b
c −a

]
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and M2 is the identical transformation.

Definition 3.14 The translation and rotation with parameter t ∈ R \ {0} are transforma-
tions with matrices

T t =

[
1

0
,
t

1

]
, Rt =

[
cos t

2

− sin t
2

,
sin t

2

cos t
2

]
We have T t+s = T t ◦ T s, Rt+s = Rt ◦ Rs, and T 0 = R0 = Id. Moreover, Rt+2π = Rt (as

transformations, not as matrices). For x =
r sin s

2

r cos s
2
we have Rtx =

r sin s+t
2

r cos s+t
2

, d(x) = (sin s,− cos s),

dRt(x) = R−2td(x). A translation is parabolic and has a unique fixed point ∞ with circle
derivation (T t)•(∞) = 1. A rotation is elliptic and has no fixed point and the unit circle
derivation everywhere: (Rt)•(x) = 1. It follows that its contraction and expansion intervals are
empty U(Rt) = V(Rt) = ∅. A parabolic transformation is a translation iff its fixed point is∞.
An elliptic transformation has no real fixed point but it has two complex fixed points. It is a
rotation iff its fixed points are i and −i.

Proposition 3.15 A parabolic transformationM is conjugated to the translation T 1(x) = x+1.
M has a unique fixed point s(M) such that limn→∞Mn(x) = s(M) for each x ∈ R, and
M•(s(M)) = 1.

Proof: Let s = s(M) be the unique fixed point of M . We take a transformation P with
the first column s and positive determinant. Then P (∞) = s, and P−1MP is a parabolic
transformation with fixed point ∞, so P−1MP = T r for some r ̸= 0. From x + r = r(x

r
+ 1)

we get T r = QrT
1Q−1

r , so T r is conjugated to T 1.

Proposition 3.16 An elliptic transformation is conjugated to a rotation Rt with 0 < t ≤ π.

Proof: If M = [a
c
, b
d
] is elliptic, then c ̸= 0 and we can assume c > 0. The transformation

has no fixed point in R but it has two complex fixed points s = a−d+i
√
−D

2c
, u = a−d−i

√
−D

2c
,

where D = (a + d)2 − 4(ad − bc). The transformation P = [
√
−D
0
, a−d

2c
] satisfies det(P ) > 0,

P (i) = s, P (−i) = u, so P−1MP has fixed points i and −i. It follows that it is a rotation with
0 < t < 2π. Since Rt is conjugated to R−t via Q(x) = −x, M is conjugated to a rotation with
angle 0 < t ≤ π.

Theorem 3.17 Two transformations from M+(R) are conjugated iff they have the same trace.
Two transformations from M−(R) are conjugated iff they have the same trace.

Proof: We have trc(Qr) =
(r+1)2

r
. If 0 < |r|, |s| < 1 and r ̸= s, then trc(Qr) ̸= trc(Qs), so Qr

is not conjugated to Qs. We have trc(Rt) = 4 cos2 t
2
. If 0 < t < s ≤ π then trc(Rt) ̸= trc(Rs),

so Rt and Rs are not conjugated.

A similarity can be written as Qr = St = [ e
t/2

0
, 0
e−t/2 ], where t = ln r. Then St+s = St ◦ Ss

and trc(St) = 2 cosh t
2
. The transformation St is conjugated to [

cosh t
2

sinh t
2

,
sinh t

2

cosh t
2

] with fixed points

−1,1 and the same trace 2 cosh t
2
. These formulas reveal a formal analogy of hyperbolic and

elliptic transformations.
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Definition 3.18 The similarity quotient sim(M) > 0 of a hyperbolic transformation and
the rotation angle rot(M) ∈ (0, π] of an elliptic transformation are defined by

sim(M) = 2 argcosh
trc(M)

2
, rot(M) = 2 arccos

trc(M)

2
.

Thus sim(St) = t, rot(Rt) = t.

Proposition 3.19 For every increasing transformation M ∈ M+(R) there exists a system of
transformations (M t)t∈R such that M0 is the identity, M1 =M and M t+s =M t ◦M t for every
t, s ∈ R.

Proof: If M = P−1SrP is hyperbolic, then M t = P−1SrtP . If M = P−1T 1P is parabolic,
then M t = P−1T tP . If M = P−1RrP is elliptic, then M t = P−1RrtP .

3.6 Complex transformations

Möbius transformations can be aplied not only to real numbers but to complex numbers as well
and their geometric and dynamic properties are more apparent in this setting. The real and
imaginary parts of a complex number z = x+ iy is denoted by ℜ(z) = x, ℑ(z) = y, the complex
conjugate of z is z = x−iy and its absolute value |z| =

√
z · z =

√
x2 + y2. We consider general

Möbius transformations on the complex sphere (i.e., extended complex plane) C = C∪ {∞}
given by

M(z) =
az + b

cz + d
, M(−d/c) =∞, M(∞) = a/c,

where a, b, c, d ∈ C are complex numbers with ad − bc ̸= 0. A complex transformation is
determined by a complex matrix M = [a b

c d
] and if λ ̸= 0 is a complex number, then M and

λM determine the same transformation. Thus we have the space of complex projective matrices
P(C2×2) and the space of regular complex projective matrices

M(C) = {M ∈ P(C2×2) : det(M) ̸= 0}

For the special case of linear transformations M(z) = az + b we have |M(z) −M(w)| =
|a| · |z −w|, so a linear transformation is a similarity with respect to the Euclidean metric and
therefore preserves all shapes. In particular, the image of a line is a line and the image of a circle
is a circle. In a general complex transformation, the image of a line is either a line or a circle
and the image of a circle is either a circle or a line. Thus the group of complex transformations
creates a geometry, in which lines and circles cannot be distinguished. We show this property
first for the transformation M(z) = 1/z.

Proposition 3.20 The transformation M(z) = 1/z transforms lines and circles to either lines
or circles.

Proof: 1. If c ̸= 0 then the line {ct : t ∈ R} which joins 0 and c is transformed by M to the
line {t/c : t ∈ R} which joins 0 and 1/c (see Figure 3.6 left).
2. If c ̸= 0, then the line {c(1 + it) : t ∈ R} which passes through c and is perpendicular to 0c
is transformed to the circle with center 1/2c and radius |1/2c| which passes through 0 and 1/c.
Indeed we have ∣∣∣∣ 1

c(1 + it)
− 1

2c

∣∣∣∣ = |1− it|
2|c| · |1 + it|

=
1

2|c|



3.6. COMPLEX TRANSFORMATIONS 55

c

3

-1

1

c 3

-1

1

s 3

-1

1

Figure 3.6: Transformation 1/z in the complex plane

since |1 − it|2 = 1 + t2 = |1 + it|2 (see Figure 3.6 center). Conversely a circle which passes
through 0 is transformed to a line.
3. If s ∈ C \ {0} and 0 < r ̸= 1, then {s(1 + rα) : |α| = 1} is the circle with the center s and
radius r|s| which does not pass through 0. Its image is the circle with center 1/s(1 − r2) and
radius r/|s(1− r2)|. Indeed∣∣∣∣ 1

s(1 + rα)
− 1

s(1− r2)

∣∣∣∣ = r|r + α|
|s(1− r2)| · |1 + rα|

=
r

|s(1− r2)|

since |r + α| = r2 + 1 + r(α + α) = |1 + rα| (see Figure 3.6 right). If r > 0 then the image of
the circle {rα : |α| = 1} is the circle {1

r
α : |α| = 1}.

Proposition 3.21 Any complex transformation transforms lines and circles to either lines or
circles.

Proof: Let M(z) = az+b
cz+d

. If c = 0 then M is a linear transformation which transforms lines to
lines and circles to circles. If c ̸= 0 then

M(z) =
a

c
+
b− ad/c
cz + d

= F0F1F2(z)

where F0(z) = a
c
+ (b − ad/c)z, F1(z) = 1/z, F2(z) = cz + d and all Fi transform lines and

circles to either lines or circles.

Another important geometrical property of Möbius transformations is that they are confor-
mal, i.e., they preserve angles. If two curves meet at angle α then theM -images of these curves
meet at the same angle α. The conformality is a general property of holomorphic functions,
(i.e., functions which have derivative - see e.g., Silverman [62]) at points c where their derivation
f ′(c) is nonzero. In the neighbourhood of c we get an approximation f(c + z) ≈ f(c) + f ′(c)z
and the mapping z 7→ f(c) + f ′(c)z is a similarity.

An example of a complex transformation is d(z) = iz+1
z+i

, which extends the stereographic
projection to the extended complex plane (see Figure 3.7). Indeed for x ∈ R we get our original
formula

d(x) =
ix+ 1

x+ i
· x− i
x− i

=
2x+ i(x2 − 1)

x2 + 1

Thus d maps the extended real line R = {z ∈ C : ℑ(z) = 0} ∪ {∞} to the unit circle
S = {z ∈ C : |z| = 1}. Since d(i) = 0, the upper half-plane U = {z ∈ C : ℑ(z) > 0} is
mapped to the unit disc D = {z ∈ C : |z| < 1}.
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Figure 3.7: The stereographic projection in the complex plane

3.7 Hyperbolic geometry

Increasing transformations M ∈ M+(R) map the upper half-plane U = {z ∈ C : ℑ(z) > 0}
onto itself and preserve the hyperbolic (noneuclidean) metric in U (see e.g., Beardon [4]).

Proposition 3.22 If M ∈M+(R), M(z) = az+b
cz+d

, and z ∈ U, then M(z) ∈ U and

ℑ(M(z)) =
(ad− bc) · ℑ(z)
|cz + d|2

Proof: We have

M(z) =
(az + b)(cz + d)

(cz + d)(cz + d)
=
ac|z|2 + bd+ adz + bcz

|cz + d|2

so if ℑ(z) > 0 then ℑ(M(z)) = (ad− bc)ℑ(z)/|cz + d|2 > 0.

Definition 3.23 The hyperbolic metric on U is defined by the differential form

ds =
|dz|
ℑ(z)

=

√
dx2 + dy2

y
, where z = x+ iy.

The hyperbolic metric is a special case of a Riemannian metric which is determined by
a positive definite differential form. With a Riemannian metric, we can compute length of
curves. In the case of the hyperbolic metric, if z : [t0, t1] → U is a differentiable curve
z(t) = x(t) + iy(t), then the length of z is

L(z) =

∫ t1

t0

√
x′(t)2 + y′(t)2

y(t)
dt.

Thus for example the curve z(t) = t+ ic maps R to the horizontal line through ic, so the length
of a horizontal line from a+ ci to b+ ci, where a < b is

L(a+ ci, b+ ci) =

∫ b

a

dt

c
=

t

c

∣∣∣∣b
a

=
b− a
c

.

The curve z(t) = c + it maps R to the vertical line through c, so the length of a vertical line
from c+ ai to c+ bi, where 0 < a < b is

L(c+ ai, c+ bi) =

∫ b

a

dt

t
= ln(t)|ba = ln

b

a
.
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Proposition 3.24 TransformationsM ∈M+(R) preserve the hyperbolic metric. If z : [t0, t1]→
U is a differentiable curve, then L(M ◦ z) = L(z).

Proof: For M(z) = az+b
cz+d

we have M ′(z) = ad−bc
(cz+d)2

. If w = M(z), then by Proposition 3.22 we

get ℑ(w) = (ad−bc)ℑ(z)
|cz+d|2 , dw = (ad−bc)dz

(cz+d)2
, and

|dw|
ℑ(w)

=
(ad− bc) · |dz|
|cz + d|2

· |cz + d|2

(ad− bc) · ℑ(z)
=
|dz|
ℑ(z)

.

Definition 3.25 We say that a differentiable curve z : [t0, t1]→ U is a geodesic, if its length
is shorter than the length of any other differential curve from z(t0) to z(t1). We say that
z : R→ U is a geodesic if each its restriction to a finite interval [t0, t1] is a geodesic.

Proposition 3.26 The vertical lines perpendicular to the real axis R = {z ∈ C : ℜ(z) = 0}
are geodesics of the hyperbolic metric.

Proof: Let z : [t0, t1] → U be a differentiable curve with ℜ(z(t0)) = ℜ(z(t1)) and ℑ(z(t0)) <
ℑ(z(t1)). Then

L(z) =

∫ t1

t0

√
x′(t)2 + y′(t)2

y(t)
dt ≥

∫ t1

t0

|y′(t)|
y(t)

dt

≥
∫ t1

t0

y′(t)

y(t)
dt = ln

y(t1)

y(t0)
.

This is exactly the length of the vertical line joining z(t0) and z(t1).

Since the transformations of M+(R) preseve hyperbolic metric, they map geodesics to
geodesics. Since they are conformal, the image of a line perpendicular to R is a line or circle
perpendicular to R. Thus we have

w

z

S

A

B C

α

β γ
a

b
c

Figure 3.8: The geodesic which joins z and w(left) and a hyperbolic triangle(right)

Theorem 3.27 The geodesics of the hyperbolic metric in U are either half-lines or semi-circles
perpendicular to the real line R.

There exists a unique geodesic which joins two different z, w ∈ U. If ℜ(z) = ℜ(w) then it
is the vertical line. If ℜ(z) ̸= ℜ(w) then the geodesic is the arc whose center S lies on the real
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line and has the same Euclidean distance from z and w (Figure 3.8 left). The length of this
geodesic, or the hyperbolic distance of z, w is given by

ϱ(z, w) = ln
|z − w|+ |z − w|
|z − w| − |z − w|

(see Beardon [4] for a proof). In particular we get ϱ(c + ia, c + ib) = | ln a
b
|. Three distinct

points A,B,C ∈ U determine a unique hyperbolic triangle with vertices A,B,C. Its angles
α, β, γ and the lengths of their sides a, b, c satisfy the relations of hyperbolic trigonometry.
In the Euclidean geometry we have the sine and cosine rules which read

sinα

a
=

sin β

b
=

sin γ

c
, cos γ =

a2 + b2 − c2

2ab

In hyperbolic geometry we have

sinh a

sinα
=

sinh b

sin β
=

sinh c

sin γ
,

cos γ =
cosh a · cosh b− cosh c

sinh a · sinh b
,

cosh c =
cosα · cos β + cos γ

sinα · sin β
,

Figure 3.9: A tessellation of the hyperbolic plane by equilateral triangles with angles π/8 (left)
and concentric circles and radii in the hyperbolic upper half-plane (right).

Since sinhx = ex−e−x

2
≈ x, the sine rule of the hyperbolic geometry approximates for small

traingles the sine rule of the Euclidean geometry. We have two cosine rules. The first one
is an analogue of the cosine rule of the Euclidean geometry obtained from the approximation
coshx = ex+e−x

2
≈ 1 + x2

2
. The second cosine rule computes angles from the sides. This is

impossible in the Euclidean geometry, since there exist similar triangles with the same angles
but differerent sides. In hyperbolic geometry there are no similar triangles. The sum of angles
of a hyperbolic triangle is always less then π and larger triangles have smaller sum of angles.
In fact we have the formula α+ β + γ = π − P where P is the hyperbolic area of the triangle.
Thus for example there exist equilateral triangles with angles π/n for each n ≥ 7, and they
tessellate the hyperbolic plane. One such tessellation can be seen in Figure 3.9 left. As another
visualization of the hyperbolic plane, Figure 3.9 right shows concentric circles with center i and
hyperbolic radii which form an arithmetic sequence. Hyperbolic circles are Euclidean circles
but their hyperbolic center need not coincide with their hyperbolic center.
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3.8 Disc transformations

The stereographic projection d : U→ D = {z ∈ C : |z| < 1} maps the upper half-plane to the
unit disc, and the lower halfplane C \ U to the exterior C \ D of the unit disc. To each real
transformation M = [a b

c d
] ∈M(R) there corresponds a conjugated disc transformation

M̂(z) = d ◦M ◦ d−1(z) =
αz + β

βz + α
,

where α = (a + d) + (b− c)i, β = (b + c) + (a− d)i. A disc transformation preserves the unit

circle: if z ∈ S then M̂(z) ∈ S. If det(M) > 0, then

det(M̂) = |α|2 − |β|2 = (a+ d)2 − (a− d)2 + (b− c)2 − (b+ c)2 = 4(ad− bc) > 0

and M̂ preserves the unit disc. If det(M) < 0 then det(M̂) < 0 and M̂ maps the unit disc to
its exterior and the exterior of D to D. Conversely, any complex transformation of the form
F (z) = αz+β

βz+α
with |β| ̸= |α| preserves the unit circle since

|F (eit)| = |αe
it + β|

|βeit + α|
=
|αeit + β|
|β + αeit · eit|

= 1.

If |F (0)| = |β|
|α| < 1 then F preserves the unit disc, otherwise it maps the unit disc to its exterior.

The transformation M = d−1 ◦ F ◦ d = [a b
c d

] ∈ M+(R) has real coefficients a = ℜ(α)+ℑ(β)
2

,

b = ℜ(β)+ℑ(α)
2

, c = ℜ(β)−ℑ(α)
2

, d = ℜ(α)−ℑ(β)
2

. The hyperbolic metric on the upper half-plane
is mapped by the stereographic projection d : U → D = {z ∈ C : |z| < 1} to a hyperbolic
metric on the unit disc. A circle perpendicular to R is mapped to a circle perpendicular to
the unit circle. Thus the geodesics of the hyperbolic unit disc are arcs or lines (diameters)
perpendicular to the unit circle. Some tesselations of the hyperbolic disc are shown in Figure
3.10.

Figure 3.10: Tesselations of the hyperbolic unit disc by equilateral triangles with angles 2π/7
(left) and by squares with angles 2π/5 (right).

Proposition 3.28 The stereographic projection transforms the metric ds = |dz|/ℑz on U to
the hyperbolic metric on the unit disc D given by

ds =
2|dz|

1− |z|2
=

2
√
dx2 + dy2

1− x2 − y2
,

ϱ(z, w) = 2 arg cosh
|1− zw|√

(1− |z|2)(1− |w|2)



60 CHAPTER 3. MATRICES AND TRANSFORMATIONS

Proof: If w = d(z) = iz+1
z+i

, then z = d−1(w) = −iw+1
w−i

· w+i
w+i

= w+w+i(1−|w|2)
|w−i|2 , so ℑ(z) = 1−|w|2

|w−i|2 .

By differentiation we get dz = (i2−1)dw
(w−i)2

, so |dz| = 2|dw|
|w−i|2 , and

|dz|
ℑ(z)

= 2|dw|
1−|w|2 . For the proof of the

formula for ϱ(z, w) se Beardon [4].

Since real Möbius transformations preserve the hyperbolic metric on U, the circle transfor-
mations preserve the hyperbolic metric on D. This can be verified directly. If w = αz+β

βz+α
then

|dw| = (|α|2−|β|2)|dz|
|βz+α|2 , 1− |w|2 = (|α|2−|β|2)(1−|z|2)

|βz+α|2 , so 2|dw|
1−|w|2 = 2|dz|

1−|z|2 .
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Figure 3.11: The similarity Q 1
2
(x) = x

2
(left), the translation T 1(x) = x + 1 (center) and the

rotation Rπ/2(x) = 1+x
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(right) in the upper half-plane (top) and in the unit disc (bottom)
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Figure 3.12: Disc transformations

The dynamics of a similarity, translation and rotation can be seen in Figure 3.11. The
upper row shows the dynamics in the upper half-plane and the bottom row shows that in the
unit disc. In the upper half-plane, the similarity Q 1

2
(x) = x

2
maps a semicircle with center 0
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and radius r (i.e., the geodesics joining −r to r) to the circle with center 0 and radius r
2
and

leaves invariant every line passing through 0. The translation T 1(x) = x + 1 maps a vertical
line {x+ it : t > 0} to the vertical line {x+1+ it : t > 0} and leaves invariant every horizontal
line. The rotation Rπ/2(x) = 1+x

1−x
maps a geodesic which passes through i to a perpendicular

geodesic through i. In the unit disc, the similarity maps the geodesic which joins d(−x) with
d(x) to the geodesic which joins d(−x/2) with d(x/2). It leaves invariant every arc which joins
∞ with 0. The translation maps a geodesic which joins d(x) with d(∞) to the geodesic which
joins d(x+1) with d(∞) and leaves invariant every circle which passes through∞. The rotation
maps each diameter to a perpendicular diameter. It leaves invariant every circle with center
0. The dynamics of the transformation from Figures 3.4, 3.5 can be seen in Figure 3.12. Since
these transformations are conjugated either to a similarity or to a translation or to a rotation,
we have in each case a family of geodesics mapped to one another and a system of invariant
curves perpendicular to these geodesics.

3.9 Isometric circles

For disc transformations we have an analogue of Proposition 3.7.

Proposition 3.29 If M ∈M(R) is a real MT, then |M•(x)| = |M̂ ′(d(x))|

Proof: Since M̂(z) = d ◦M ◦ d−1(z) and (d−1)′(d(x)) = 1/d′(x), we get

M̂ ′(d(x)) =
d′(M(x)) ·M ′(x)

d′(x)
=
−2 ·M ′(x)

(M(x) + i)2
· (x− i)

2

−2

|M̂ ′(d(x))| =
|x− i|2

|M(x) + i|2
· |M ′(x)| = x2 + 1

M2(x) + 1
· |ad− bc|
(cx+ d)2

=
|ad− bc| · (x2 + 1)

(ax+ b)2 + (cx+ d)2
= |M•(x)|.

Consider a real transformation M ∈ M(R), its disc conjugate M̂(z) = αz+β

βz+α
, its inverse

M̂−1(z) = αz−β

−βz+α
and their derivations

M̂ ′(z) =
|α|2 − |β|2

(βz + α)2
=
|β|2

β
2 ·
|α
β
|2 − 1

(z + α
β
)2

(M̂−1)′(z) =
|α|2 − |β|2

(βz − α)2
=
|β|2

β
2 ·
|α
β
|2 − 1

(z − α
β
)2

Note that |M̂(0)| = |M̂−1(0)| = |β
α
|, |M̂(∞)| = |M̂−1(∞)| = |α

β
|. M̂(∞) = 1/M̂(0) = α

β
. If

β ̸= 0 then we have isometric circles KM , KM−1 and expanding discs DM , DM−1 defined
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by

KM = {z : |M̂ ′(z)| = 1} = {z ∈ C : |z + α
β
| =

√
|1− |α

β
|2| },

DM = {z : |M̂ ′(z)| > 1} = {z ∈ C : |z + α
β
| <

√
|1− |α

β
|2| },

KM−1 = {z : |(M̂−1)′(z)| = 1} = {z ∈ C : |z + α
β
| =

√
|1− |α

β
|2| },

DM−1 = {z : |(M̂−1)′(z)| > 1} = {z ∈ C : |z + α
β
| <

√
|1− |α

β
|2| }.

All these circles and discs have the same radius r(M) =

√
1− |M̂(∞)|2. If α = 0 then both

KM and KM−1 are the unit circles and DM and DM−1 are the unit discs. For the expanding
interval and the contracting interval of a transformation M ∈M(R) we get by Proposition
3.29

U(M) = {x ∈ R : |M̂ ′(d(x))| < 1},

V(M) = {x ∈ R : |(M̂−1)′(d(x))| > 1}.

If either β = 0 or α = 0, then |M̂ ′(z)| = 1 for every z in the unit circle, so U(M) and V(M)
are empty. Otherwise they are proper intervals and d(U(M)) = S\DM , d(V(M)) = S∩DM−1 .

M−1
∞

KM V1 KM−1

0

M0
V M∞

V0

V(M)

U(M)

M−1
∞

KM
V1 KM−1

0

M∞ V M0

V0

V(M)

U(M)

Figure 3.13: Isometric circles of increasing transformations with 0 < |β| < |α| (left) and

decreasing transformations with 0 < |α| < |β| (right). Here M0 = M̂(0) = β
α
, M∞ = M̂(∞) =

α
β
, V = M̂(0)

|M̂(0)|
, M−1

∞ = M̂−1(∞) = −α
β
.

Proposition 3.30 Let M ∈M(R) and M̂(0) ̸= 0 ̸= M̂(∞), so α ̸= 0 ̸= β. Then

1. M̂(KM) = KM−1,

2. M̂(DM) = C \DM−1,

3. M̂(C \DM) = DM−1,
4. M(U(M)) = V(M),
5. |V(M)| < 1

2
< |U(M)|,

6. |U(M)|+ |V(M)| = 1.

Proof: 1. We have z ∈ KM iff |M̂ ′(z)| = 1 iff |(M̂−1)′(M̂(z))| = 1 iff M̂(z) ∈ KM−1 .

2,3. We have z ∈ DM iff |M̂ ′(z)| > 1 iff |(M̂−1)′(M̂(z))| < 1 iff M̂(z) ̸∈ DM−1 .
4. We have x ∈ U(M) iff |M•(x)| < 1 iff |(M−1)•(M(x))| > 1 iff M(x) ∈ V(M).
5,6. Since the radii of DM and DM−1 are the same, we see immediately |V(M)| < 1

2
< |U(M)|,

|U(M)|+ |V(M)| = 1.
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Proposition 3.31 Let M ∈ M(R), M̂(0) ̸= 0 ̸= M̂(∞) and denote by V0, V1 the d-images of
the endpoints of the expanding interval V(M) = (d−1(V0),d

−1(V1)). Then

M ∈M+(R) ⇒ M̂(0) = V0+V1

2
, |V(M)| = 1

π
arccos |M̂(0)|

M ∈M−(R) ⇒ M̂(∞) = V0+V1

2
, |V(M)| = 1

π
arccos |M̂(∞)|.

Proof: Since M̂(0)/M̂(∞) = |β|2
|α|2 ∈ R, the points 0, M̂(0), M̂(∞) lie on the same line. The

triangles (0, M̂(0), V1) and (0, V1, M̂(∞)) are similar since they have the same angle at 0 and

|M̂(0)| : |V1| = |V1| : |M̂(∞)|. We distinguish two cases. If M ∈ M+(R), then the triangle

(0, V1, M̂(∞) has the right angle at V1 since |V1|2 + |M̂(∞)− V1|2 = |M̂(∞)|2. It follows that
the triangle (0, M̂(0), V1) has the right angle at M̂(0). Thus V0, M̂(0), V1 lie on the same line,

M̂(0) = (V0 + V1)/2 and |V(M)| = 1
π
arccos |M̂(0)| (see Figure 3.13 left). If M ∈ M−(R) then

|M̂(∞)| < 1 and (0, V1, M̂(∞) has the right angle at V1 since |V1|2 = |M̂(∞)−V1|2+ |M̂(∞)|2.
Thus V0, M̂(∞), V1 lie on the same line, M̂(∞) = (V0 +V1)/2 and |V(M)| = 1

π
arccos |M̂(∞)|.

Proposition 3.32 Let M ∈M(R). Then

min{|M•(x)| : x ∈ R} =

∣∣∣∣∣1− |M̂(0)|
1 + |M̂(0)|

∣∣∣∣∣ ,
max{|M•(x)| : x ∈ R} =

∣∣∣∣∣1 + |M̂(0)|
1− |M̂(0)|

∣∣∣∣∣
so min{M•(x) : x ∈ R} ·max{M•(x) : x ∈ R} = 1.

Proof: If either M̂(0) = 0 or M̂(0) = ∞, then |M̂•(x)| = 1 for all x and the claim holds.

Assume M̂(0) ̸= 0 ̸= M̂(∞). Since V = M̂(0)

|M̂(0)|
= β|α|

α|β| =
M̂(∞)

|M̂(∞)|
= α|β|

β|α| is the closest point of S

to M̂(∞), |(M̂−1)′(x)| attains its smallest value in S at V . Since the centres of KM and KM−1

have the same absolute value |M̂−1(∞)| = |M̂(∞)| = |α|
|β| , by Proposition 3.29 we get

max{|M•(x)| : x ∈ R} = max{|(M̂−1)′(x)| : x ∈ S}

= |(M̂−1)′(V )| =

∣∣∣∣∣ |α|2 − |β|2(α|β||α| − α)2

∣∣∣∣∣ =
∣∣∣∣ |α|2 − |β|2(|α| − |β|)2

∣∣∣∣
=

∣∣∣∣ |α|+ |β||α| − |β|

∣∣∣∣ =
∣∣∣∣∣1 + |M̂(0)|
1− |M̂(0)|

∣∣∣∣∣
Similarly

min{|M•(x)| : x ∈ R} = min{|(M̂−1)′(x)| : x ∈ S}

= |(M̂−1)′(−V )| =

∣∣∣∣∣ |α|2 − |β|2(α|β||α| + α)2

∣∣∣∣∣ =
∣∣∣∣ |α|2 − |β|2(|α|+ |β|)2

∣∣∣∣
=

∣∣∣∣ |α| − |β||α|+ |β|

∣∣∣∣ =
∣∣∣∣∣1− |M̂(0)|
1 + |M̂(0)|

∣∣∣∣∣
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Proposition 3.33 If V(M) ̸= ∅, then M : U(M) → V(M) is a contraction (see Definition
2.20).

Proof: For t ≤ |U(M)| set ψM(t) = sup{|M(I)| : I ⊆ U(M), |I| = t}. Then ψM(t) < t and
ψM is continuous. The function ψM can be extended arbitrarily to a decreasing function on
[0, 1] such that ψM(t) < t for all t.

We have seen that |M̂(0)| characterizes the maximal and minimal contraction (circle deriva-
tion) of a transformation. An alternative characteristic is the norm of a transformation. The
norm of a matrix M = [a b

c d
] is ||M || =

√
a2 + b2 + c2 + d2.

Definition 3.34 Define the norm of a projective matrix M = [a b
c d

] ∈M(R) by

nrm(M) =
||M ||2

det(M)
=
a2 + b2 + c2 + d2

ad− bc

Thus the norm of a decreasing transformation is negative.

Proposition 3.35 If M ∈ M(R) then |nrm(M)| ≥ 2, |nrm(M)| = 2 iff either M̂(0) = 0 or

M̂(0) =∞, and

|M̂(0)|2 =
nrm(M)− 2

nrm(M) + 2
,

nrm(M) = 2 · 1 + |M̂(0)|2

1− |M̂(0)|2
,

min{|M•(x)| : x ∈ R} =
1

2
(|nrm(M)| −

√
nrm2(M)− 4 )

max{|M•(x)| : x ∈ R} =
1

2
(|nrm(M)|+

√
nrm2(M)− 4 )

r(M) =
2√

|nrm(M)− 2|
if M̂(0) ̸= 0

|V(M)| =
1

π
arcsin

2√
|nrm(M)|+ 2

if 0 ̸= M̂(0) ̸=∞

Thus |M̂(0)| < 1 iff nrm(M) ≥ 2 and |M̂(0)| > 1 iff nrm(M) ≤ −2.

Proof:

|M̂(0)|2 =

∣∣∣∣βα
∣∣∣∣2 = (b+ c)2 + (a− d)2

(a+ d)2 − (b− c)2
=
||M ||2 − 2 det(M)

||M ||2 + 2det(M)
=

nrm(M)− 2

nrm(M) + 2

The other formulas follow from Proposition 3.32 by a simple algebra with the use of the formula
arccosx = arcsin

√
1− x2.
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Proposition 3.36
1. If M is hyperbolic then V(M) ⊂ U(M).
2. If M is parabolic, then V(M) ⊂ U(M) have a common endpoint.
3. If M is elliptic and V(M) ̸= ∅, then V(M) ̸⊆ U(M).

Proof: 1. IfM is hyperbolic then u(M) ∈ R\U(M) and limn→∞M−n(x) = s(M−1) = u(M) ∈
V(M) so V(M) =M−1(U(M)) ⊂ U(M) and therefore V(M) ⊂ U(M).
2. If M is parabolic, then its fixed point s(M) is an endpoint of both V(M) and U(M). Since
M is orientation-preserving, we get V(M) ⊂ U(M).
3. Suppose by contradiction that M is elliptic and M−1(U(M)) = V(M) ⊆ U(M). Then M−1

has a fixed point in U(M) and this is impossible.

3.10 Singular transformations

Besides regular transformations with nonzero determinant we consider singular transfor-
mations with zero determinant and the zero transformation 0 = [0 0

0 0
] ∈ R2×2 which does

not belong to P(R2×2). Denote by

M0(R) = {M ∈ P(R2×2) : det(M) = 0},
M(R) = P(R2×2) ∪ {0}.

Thus M(R) is the set of all subspaces of R2×2 of dimension at most 1. IfM = [a b
c d

] is a singular

transformation, then one of its rows is a multiple of the other, say a = sc, b = sd, so M(x) = s
whenever cx + d ̸= 0. We say that s = s(M) is the stable point of M . We have s(M) = a

c

provided a
c
̸= 0

0
, otherwise s(M) = b

d
. For x = −d

c
, we get M(x) = 0

0
̸∈ R and we say that

−d
c
= u(M) is the unstable point of M provided −d

c
̸= 0

0
, otherwise u(M) = −b

a
. For example

for M = [a 0
c 0

] we have s(M) = a
c
, u(M) = 0

1
. For M = [0 b

0 d
] we have s(M) = b

d
, u(M) = 1

0
.

If s(M) = s and u(M) = u, then M = [s0u1 −s0u0

s1u1 −s1u0
]. The stable and unstable point of the zero

transformation is defined by u(0) = s(0) = 0
0
. The operation of inversion [a b

c d
]−1 = [ d −b

−c a
] is

applied to singular or zero transformations as well and (x, y) ∈ Γ(M) iff (y, x) ∈ Γ(M−1). If
M is singular, then s(M−1) = u(M), u(M−1) = s(M), and MM−1 is the zero transformation.

Proposition 3.37 Let P,Q ∈ M(R). Then PQ = 0 iff either P = 0 or Q = 0 or P,Q ∈
M0(R) and u(P ) = s(Q). Otherwise PQ is singular provided either P or Q is singular and

s(PQ) = P (s(Q)), u(PQ) = u(Q) if P ∈M(R), Q ∈M0(R)
s(PQ) = s(P ), u(PQ) = Q−1(u(P )) if P ∈M0(R), Q ∈M(R)
s(PQ) = s(P ), u(PQ) = u(Q) if P,Q ∈M0(R),u(P ) ̸= s(Q)

Proof: 1. Let P ∈M(R), Q ∈M0(R). For each x ̸= u(Q) we have PQ(x) = P (s(Q)).
2. Let P ∈M0(R), Q ∈M(R). For each x ̸= Q−1(u(Q)) we have PQ(x) = P (Q(x)) = s(P ).
3. Let P,Q ∈M0(R). For each x ̸= u(Q) we have PQ(x) = P (Q(x)) = s(P ).

The projective space P(R2×2) is a metric space with one of the equivalent projective metrics
da, dp, dc (see Section 3.3) and singular transformations appear as limits of regular transfor-
mations. Note that M(R) is an open set in P(R2×2), so its complement M0(R) is a closed
set.
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Proposition 3.38

1. If M ∈ M(R) is a hyperbolic transformation, then limn→∞Mn = Q ∈ M0(R) is a singular
transformation with s(Q) = s(M), u(Q) = u(M).

2. If M ∈ M(R) is a parabolic transformation, then limn→∞Mn = Q ∈ M0(R) is a singular
transformation with s(Q) = u(Q) = s(M).

3. If M is an elliptic transformation, then {Mn : n ≥ 0} has no limit in P(R2×2).

Proof: 1.A hyperbolic transformation is conjugated to a similarity, so there exists P ∈ M(R)
and 0 < r < 1 such that M = PQrP

−1. We have limn→∞Qn
r = Q0 = [0 0

0 1
] which has the

stable point 0 and the unstable point ∞. It follows that limn→∞Mn = PQ0P
−1 has the stable

point s(M) and unstable point u(M).
2. A parabolic transformation is conjugated to the translation T (x) = x + 1, so there exists
P ∈ M(R) such that M = PTP−1. We have limn→∞ T n = T0 = [0 1

0 0
] with s(T0) = u(T0) =

1
0
.

It follows that limn→∞Mn = PT0P
−1 has the stable and unstable point s(M).

3.11 Representing sequences

If {Mn ∈ M(R) : n ≥ 0} is a sequence of regular transformations which has a singular limit
M ∈ M0(R) then we may say that {Mn ∈ M(R) : n ≥ 0} represents s(M). There is a more
general concept of representation. Consider a sequence of hyperbolic transformations

M2n =

[
εn 0

1− εn 1

]
, M2n+1 =

[
εn 0

εn − 1 1

]
,

where εn > 0 and limn→∞ εn = 0. Then limn→∞M2n = [0 0
1 1

], limn→∞M2n+1 = [ 0 0
−1 1

], so

limn→∞Mn does not exist. However, limn→∞Mn(z) = 0 for each z ∈ R \ {−1, 1}. If we
consider also complex z, then we find that limn→∞Mn(z) = 0 for each z ∈ C with nonzero
imaginary part. It turns out that this leads to a fruitful concept of representation which is
based on Proposition 3.39.

Proposition 3.39 Let {Mn ∈ M(R) : n ≥ 0} be a sequence of transformations and x ∈ R
such that limn→∞ M̂n(0) = d(x). Then limn→∞ M̂n(z) = d(x) for each z ∈ C with |z| ̸= 1.

Proof: See Figure 3.13. Denote by Sn the center of KM−1
n
, S ′

n the center of KMn , and rn their

radius. Since limn→∞ M̂n(0) = d(x) ∈ S, we get limn→∞ rn = 0. Given z ∈ C \ S there exists

n0 such that for every n > n0 we have z ∈ D \DMn , so M̂n(z) ∈ DM−1
n
. Since M̂n(0) ∈ DM−1

n
,

we get |M̂n(z)− M̂n(0)| < rn → 0, so limn→∞ M̂n(z) = d(x).

Since d(i) = 0, we have limn→∞Mn(i) = x iff limn→∞Mn(z) = x for all z ∈ C with
ℑ(z) ̸= 0. Here we use the convergence in C = C∪{∞}. If zn ∈ C, then limn→∞ zn =∞ means
limn→∞ |zn| =∞. If z ∈ C, then limn→∞ zn = z is the convergence in the Euclidean metric.

Definition 3.40 We say that a sequence of transformations {Mn ∈M(R) : n ≥ 0}
bfinrepresents x ∈ R if limn→∞Mn(i) = x.

Theorem 3.41 Given a sequence {Mn ∈ M(R) : n ≥ 0} and x ∈ R, the following conditions
are equivalent:
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1. {Mn ∈M(R) : n ≥ 0} represents x ∈ R.
2. ∃z ∈ C \ R, limn→∞Mn(z) = x.

3. ∀z ∈ C \ R, limn→∞Mn(z) = x.

4. ∃z ∈ C \ S, limn→∞ M̂n(z) = d(x).

5. ∀z ∈ C \ S, limn→∞ M̂n(z) = d(x).

6. For each open interval I ⊂ R with x ∈ I we have limn→∞ |M−1
n (I)| = 1.

7. There exists c > 0 and a sequence of closed intervals Im such that x ∈ Im, limm→∞ |Im| = 0,
and lim infn→∞ |M−1

n (Im)| > c for each m.

8. There exists a sequence {xn ∈ R : n ≥ 0} with limn→∞ xn = x and limn→∞(M−1
n )•(xn) =∞.

Proof: 1 ⇒ 2 is trivial.
2⇔ 4 and 3⇔ 5 follow from d(R) = S.
4 ⇒ 5: Assume that w ∈ C\S and limn→∞ M̂n(w) = d(x). There exists a disc transformation

F such that F̂ (0) = w, so limn→∞ M̂nF̂ (0) = d(x) and by Proposition 3.39, limn→∞ M̂nF̂ (y) =

d(x) for each y ∈ C\S. For each z ∈ C\R we get limn→∞ M̂n(z) = limn→∞ M̂nF̂ F̂
−1(z) = d(x).

5 ⇒ 6: By Proposition 3.35, limn→∞ nrm(Mn) =∞, limn→∞ |V(Mn)| = 0, and limn→∞ |U(Mn)| =
1. There exists n0 such that for every n > n0 we have V(Mn) ⊆ I, so U(Mn) ⊆ M−1

n (I). and
limn→∞ |M−1

n (I)| = 1.
6 ⇒ 7 is trivial: We can take for Im any intervals which contain x in their interior.
7 ⇒ 8: For each m there exists nm and xm ∈ Im such that |M−1

nm
)•(xm)| ≥ c/|Im|. It follows

that the radii of the isometric circles converge to zero: limm→∞ r(Mnm) = 0. If c/|Im| > 1 then

xm ∈ V(Mnm) ∩ Im ̸= ∅ and |d(xm) − M̂nm(0)| ≤ r(Mnm). It follows limm→∞ d(xm) = d(x),
limm→∞ xm = x, and limm→∞M•

nm
(xm) =∞.

8 ⇒ 1: From limn→∞ max{|(M−1
n )•(x)| : x ∈ R} = ∞, we get limn→∞ nrm(Mn) =

∞, xn ∈ V(Mn), limn→∞ |V(Mn)| = 0. Thus |d(xn) − M̂n(0)| ≤ r(Mn) and therefore

limn→∞ M̂n(0) = d(x), limn→∞Mn(i) = x.

Proposition 3.42 Assume that {Mn ∈ M(R) : n ≥ 0} is a sequence of transformations,
z, w ∈ R, z ̸= w and limn→∞Mn(z) = limn→∞Mn(w) = x ∈ R. Then limn→∞Mn(i) = x.

Proof: Let Mn = [an
cn
, bn
dn
]. We can assume that the matrices Mn and vectors z, w are normed,

i.e., a2n + b2n + c1n + d2n = 1, z20 + z21 = w2
0 + w2

1 = 1. Assume first x ̸=∞, so x ∈ R. Then

0 = lim
n→∞

(Mn(z)−Mn(w)) = lim
n→∞

(andn − bncn) · (z0w1 − z1w0)

(cnz0 + dnz1) · (cnw0 + dnw1)
.

Since z ̸= w, either z ̸=∞ or w ̸=∞. Assume w ̸=∞ and take v = w0+i
w1

. Since |cnv0+dnv1| ≥
|ℜ(cnv0 + dnv1)| = |cnw0 + dnw1|, we get

lim
n→∞

(Mn(z)−Mn(v)) = lim
n→∞

(andn − bncn) · (z0v1 − z1v0)
(cnz0 + dnz1) · (cnv0 + dnv1)

= 0.

Thus limn→∞Mn(v) = x, and since ℑ(v) ̸= 0, we get limn→∞Mn(i) = x by Theorem 3.41.2. If
x = ∞, then for the transformations Pn = 1/Mn we have limn→∞ Pn(z) = limn→∞ Pn(w) = 0,
so limn→∞ Pn(i) = 0 and therefore limn→∞Mn(i) =∞.
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Proposition 3.43 Assume that I ⊂ R is a proper closed interval and {Mn : n ≥ 0}
is a sequence of transformations such that Mn(I) ⊆ I for each n. If there exists a limit
limn→∞M0M1 · · ·Mn(i) = x, then x ∈ I.

Proof: Assume by contradiction that x ∈ J = R \ I and denote by Pn = M0 · · ·Mn.
Then Pn(I) ⊆ I, J = R \ I ⊆ R \ Pn(I) = Pn(J) and P−1

n (J) ⊆ J . By Theorem 3.41.6,
limn→∞ |P−1

n (J)| = 1 and this is a contradiction with P−1
n (J) ⊆ J .

A special case of a representation involve general continued fractions. Let {an ∈ R\{0} :
n ≥ 1}, {bn ∈ R : n ≥ 0} be sequences of real numbers, The continued fraction

b0 +
a1
b1+

a2
b2+

a3
b3+ · · ·

= b0 +
a1

b1 +
a2

b2 +
a3

b3 + · · ·

represents an infinite product of regular transformations [1 b0
0 1

] · [0 a1
1 b1

] · [0 a2
1 b2

] · [0 a3
1 b3

] · · · . The
n-th convergents pn, qn are defined by p−1 = 1, q−1 = 0, p0 = b0, q0 = 1, p1 = a1 + b0b1,
q1 = b1, . . . pn = anpn−2 + bnpn−1, qn = anqn−2 + bnqn−1. Thus[

p−1 p0
q−1 q0

]
=

[
1 b0
0 1

]
[
pn−2 pn−1

qn−2 qn−1

]
·
[
0 an
1 bn

]
=

[
pn−1 pn
qn−1 qn

]
[
1 b0
0 1

]
·
[
0 a1
1 b1

]
·
[
0 a2
1 b2

]
· · ·
[
0 an
1 bn

]
=

[
pn−1 pn
qn−1 qn

]
Definition 3.44 We say that a general continued fraction b0 +

a1
b1+

a2
b2+

a3
b3+ · · · converges to

x ∈ R and write b0 +
a1
b1+

a2
b2+

a3
b3+ · · · = x, if limn→∞[1 b0

0 1
] · [0 a1

1 b1
] · [0 a2

1 b2
] · · · [0 an

1 bn
] · [i

1
] = x.

Definition 3.44 is more general than the classical definition of convergence which requires
that pn/qn converge to x. If limn→∞

pn
qn

= x, then by Proposition 3.42, b0+
a1
b1+

a2
b2+

a3
b3+ · · · = x,

since the sequence converges to x in z = 0 and z = ∞. The converse implication, however, is
not always satisfied. A counterexample is a periodic continued fraction

2

1+
1

0+
2

1+
1

0+
2

1+ · · ·
= 1.

The transformation M = [0 2
1 1

] · [0 1
1 0

] = [2 0
1 1

] is hyperbolic, has the stable fixed point 1 and

the unstable fixed point 0, so limn→∞Mn(i) = limn→∞[ 2n 0
2n − 1 1

][i
1
] = 1. However, pn/qn do not

converge since p2n
q2n

= 0
1
, p2n+1

q2n+1
= 2n

2n−1
→ 1, Even for this generalized convergence concept we

have a classical result on equivalence of continued fractions:

Proposition 3.45 Assume that b0 +
a1
b1+

a2
b2+

a3
b3+ · · · = x is a convergent continued fraction

and let {ri : i ≥ 1} be nonzero real numbers. Then

b0 +
r1a1
r1b1+

r1r2a2
r2b2 +

r2r3a3
r3b3 + · · ·

= x.

Proof: [
0 r1a1
1 r1b1

]
·
[
0 r1a2
1 b2

]
=

[
r1a1 r1a1b2
r1b1 r1a2 + r1b1b2

]
=

[
0 a1
1 b1

]
·
[
0 a2
1 b2

]



Chapter 4

Möbius number systems

A number system specifies the representation of real numbers by symbolic sequences, so its key
element is the value mapping Φ : Σ→ R. Möbius number systems are based on representations
of real numbers by sequences of Möbius transformations, so the alphabet of the subshift Σ
consists of the symbols of the transformations. We have several means how to define suitable
subshift Σ and suitable value mapping Φ.

4.1 Iterative systems

An iterative system over an alphabet A is a system F = {Fa ∈ M(R) : a ∈ A} of Möbius
transformations indexed by letters of A. For a finite word u ∈ An, we denote by Fu = Fu0 ◦
· · · ◦ Fun−1 , the composition of Fui

and by Fλ = IdR the identity. An iterative system can be
regarded as a mapping F : A∗ × R → R which satisfies Fuv = Fu ◦ Fv. Using the concept
of representation from Definition 3.40, we define the convergence space XF ⊆ Aω and the
value mapping Φ : XF → R by

XF = {u ∈ Aω : lim
n→∞

Fu[0,n)
(i) ∈ R}, Φ(u) = lim

n→∞
Fu[0,n)

(i).

Here i is the imaginary unit. Thus u ∈ Aω belongs to XF if the limit limn→∞ Fu[0,n)
(i) exists

and belongs to R.

Proposition 4.1 Let F be an iterative system over A.
1. For v ∈ A+, u ∈ Aω we have vu ∈ XF iff u ∈ XF , and then Φ(vu) = Fv(Φ(u)).
2. For v ∈ A+ we have vω ∈ XF iff Fv is either parabolic or hyperbolic or decreasing with

F 2
v ̸= Id. In this case Φ(vω) = s(Fv) is the stable fixed point of Fv.

Proof: 1 follows from the continuity of Fv.
2: If Fv is elliptic, then all Fvk(i) lie on a closed curve in U, so Fvk(i) cannot converge to
a real number. Let Fv be hyperbolic or parabolic, |v| = p. For each 0 ≤ m < p we have
limk→∞ F(vω

[0,kp+m)
)(i) = limk→∞ F k

v Fv[0,m)
(i) = s(Fv), since the stable fixed point s(Fv) attracts

all points of U. Thus Φ(vω) = s(Fv). If Fv is decreasing and F 2
v ̸= Id, then F 2

v is a hyperbolic
transformation and Φ(vω) = s(F 2

v ) = s(Fv).

Note that the set XF need not be closed, so it need not to be a subshift. Moreover, the
value mapping Φ : XF → R can be neither continuous nor surjective.

Definition 4.2 We say that (F,Σ) is a number system, if F is an iterative system and
Σ ⊆ XF is a subshift such that Φ : Σ→ R is continuous and surjective.
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Occasionally as in Section 1.4 we consider number systems for proper closed intervals I ⊂ R.
In this case we require that Φ : Σ→ I is continuous and surjective.

0
/
1

1
/
4

1/2

3/4

1/1

3/2

2/
1

4
/
11
/
0

-
4
/
1

-2
/1

-3/
2

-1/1

-3/4

-1/2

-
1
/
4

0  

1 

0 -

1-

0  0
0
 
 

0  0
1

 
 

0  01  -

1 10
  

1 11
  

0-01
- 

0 -0
0
-
-

0-01 --

1-10 - 

1-11 --

0
/
1

1
/
6

1/2

1/1

3/2

9
/
21
/
0

-
9
/
2

-3/
2

-1/1

-1/2

-
1
/
6

0  1  

0 -

1 -

0  0
0
 
 

0  0
1

 
 

0  01  -

1 10
  
1 11
  

1  1
1

 
-

0-01
- 

0 -0
0
-
-

0-01 --

1-10 - 1 -11 - 

1-11 --

Figure 4.1: The binary signed system with forbidden words D = {10, 00, 10, 00, 11, 11} (left)
and the ternary signed system with forbidden words D = {10, 00, 10, 00} (right).

Example 4.3 The binary signed system (F,ΣD) from Proposition 1.8 has alphabet A = {1, 0, 1, 0},
transformations F1(x) =

x−1
2
, F0(x) =

x
2
, F1(x) =

x+1
2
, F0(x) = 2x, and the subshift ΣD with

forbidden words D = {10, 00, 10, 00, 11, 11}.

A finite word of LD can be written as 0
m
u, where m ≥ 0 and u ∈ {1, 0, 1}∗. If |u| = n then

F0
m
u(x) = 2m

(
u0

2
+ · · ·+ un−1

2n
+ x

2n

)
, so for u ∈ {1, 0, 1}ω we get

Φ(0
m
u) = lim

n→∞
F0

m
u[0,n)

(i) =
∑
n≥0

un · 2m−n−1

Thus ΣD ⊆ XF and Φ : ΣD → R is continuous and surjective. Figure 4.1 left shows the values
of the disc transformations F̂u(0) in the complex unit disc D = {z ∈ C : |z| < 1}. The labels

u ∈ A+ at F̂u(0) are written in the direction of the tangent vectors F̂ ′
u(0). Recall that for an

increasing transformation M ∈ M+(R) there exists a family of transformations (M t)t∈R such

that M0 = Id, M1 =M , and M t+s =M t ◦M s (Proposition 3.19). In Figure 4.1, a point F̂u(0)

is joined to F̂ua(0) by the curve {F̂uF̂
t
a(0) : 0 ≤ t ≤ 1}.

Example 4.4 The ternary signed system (F,ΣD) from Proposition 1.6 has alphabet A =
{1, 0, 1, 0}, transformations F1(x) =

x−1
3
, F0(x) =

x
3
, F1(x) =

x+1
3

F0(x) = 3x and the subshift
ΣD with forbidden words D = {10, 00, 10, 00}.

For u ∈ {1, 0, 1}ω we get

Φ(0
m
u) = lim

n→∞
F0

m
u[0,n)

(i) =
∑
n≥0

un · 3m−n−1

Thus ΣD ⊆ XF and as proved in Chapter 1, Φ : ΣD → R is continuous and surjective (see
Figure 4.1 right).
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Figure 4.2: The system of signed continued fractions from Example 4.5 (left) and the system
of symmetric continued fractions from Definition 1.14 and Example 4.6 (right).

We modify the number system of simple continued fractions of Definition 1.13. Instead of
the decreasing transformation 1/x we take the increasing transformation F0(x) = −1/x. When
we expand a number x > 1, we subtract 1 (apply F−1

1 (x) = x− 1) till we get into the interval
[0, 1).The we apply F−1

0 (x) = −1/x, so we get a negative number smaller than −1. Then we
apply F−1

1
(x) = x+1 till we get into the interval (−1, 0]. The words 101 and 101 do not occur

in this expansion process.

Example 4.5 The system (F,ΣD) of signed continued fractions consists of the alphabet
A = {1, 0, 1}, transformations F1(x) = x − 1, F0(x) = −1/x, F1(x) = x + 1, and the subshift
with forbidden words D = {00, 11, 11, 101, 101}.

Each word u ∈ LD can be written as u = 1a001a10 · · · 01an , where ai ∈ Z, a0a1 ≤ 0 and
aiai+1 < 0 for i > 0 (so ai ̸= 0 for i > 0). If a < 0 then 1a means 1

−a
. For the transformation

Fu we get

Fu(x) =

[
1 a0
0 1

]
·
[
0 −1
1 a1

]
· · ·
[
0 −1
1 an

]
·
[
x
1

]
= a0 −

1

a1−
1

a2− · · ·−
1

an−1−
1

(an + x)
.

This is equivalent to a simple continued fraction which has either positive entries a1,−a2, a3,−a4, . . .
or positive entries −a1, a2,−a3, . . .. For an infinite word u = 1a001a101a20 · · · ∈ ΣD we get a
converging sequence

Φ(u) = lim
n→∞

F−1
u[0,n)

(i) = a0 −
1

a1−
1

a2−
1

a3− · · ·

The sequence {an : n ≥ 0} may be finite if its last member is infinite. In this case we get

Φ(1a00 · · · 01an01ω) = a0 −
1

a1−
1

a2− · · ·−
1

an−1−
1

an
,

Φ(1ω) = Φ(1
ω
) =∞.
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Example 4.6 The number system of symmetric continued fractions of Definition 1.14
with the alphabet A = {1, 0, 0, 1} consists of transformations F1(x) = x − 1, F0(x) = x

1−x
,

F0(x) = x
x+1

, F1(x) = x + 1, and the subshift ΣD = {1, 0}ω ∪ {0, 1}ω with forbidden words

D = {00, 01, 10, 11, 01, 00, 11, 10}.

As proved in Chapter 1, the value mapping Φ is continuous and surjective

Φ(1a00a11a2 · · · ) = a0 +
1

a1+

1

a2+ · · ·

Φ(1
a00

a11
a2 · · · ) = −a0 −

1

a1−
1

a2− · · ·

The transformations of the system are parabolic. F1, F1 have the fixed point ∞, F0, F0 have
the fixed point 0. The system has two symmetries. The transformation −x conjugates F1 to
F1 and F0 to F0. The transformation 1/x conjugates F0 to F1 and F0 to F1.

4.2 Interval number systems

In Chapter 1 we define several number systems by means of the expansion process. In all
cases we have a SFT Σ of order two and a system of closed intervals {Wa : a ∈ A} such
that F−1

a (Wa) =
∪
{Wb : ab ∈ L2

D}. Let us generalize this approach. Given an iterative
system F over A and a system of intervals {Wa : a ∈ A}, we may consider the subshift of all
expansions. A word u ∈ Aω is an expansion of x ∈ R iff xi = F−1

u[0,i)
(x) ∈ Wui

for all i. It turns

out, however, that this does not always work properly. For example in the system of simple
continued fractions from Definition 1.13 with F0(x) = 1/x, W0 = [0, 1], we get the expansion
0ω of 1, but 0ω belongs neither to ΣD nor to XF : the sequence F n

0 (i) does not converge. A
remedy is to take for Wa the open intervals W1 = (∞, 0), W0 = (0, 1), W1 = (1,∞). Since
F−1
0 (W0)∩W0 = ∅, the word 00 is a forbidden and for a similar reason, the words 11, 01 and 11

are forbidden as well. Although Wa do not cover R, the numbers 0, 1,∞, which are not covered
by Wa have expansions which are the limits of expansions of points in Wa.

Definition 4.7 We say that W = {Wa ⊂ R : a ∈ A} is an open almost-cover if Wa are
proper open intervals and

∪
a∈AWa = R. Let F = {Fa ∈ M(R) : a ∈ A} be an iterative

system and let W = {Wa ⊂ R : a ∈ A} be an open almost-cover. A finite or infinite sequence
u ∈ A∗∪Aω is an expansion of x ∈ R if xn = F−1

u[0,n)
(x) ∈ Wun for each n < |u|. The sequence

{xn : n ≥ 0} is called the trajectory of x. We denote by Wu the set of points with the
expansion u ∈ A∗.

Thus x ∈ Wu if for each i ≤ n we have xi = F−1
u[0,i)

(x) ∈ Wui
iff x ∈ Fu[0,i)

(Wui
). For u ∈ An+1

we get
Wu = Wu0 ∩ Fu0(Wu1) ∩ Fu[0,2)

(Wu2) ∩ · · · ∩ Fu[0,n)
(Wun).

The expansion subshift SF,W with the expansion language LF,W = L(SF,W ) is defined by

LF,W = {u ∈ A∗ : Wu ̸= ∅},
SF,W = {u ∈ Aω : ∀n,Wu[0,n)

̸= ∅}.

As a convention we set Wλ = R. For u, v ∈ A∗ we have Wuv = Wu ∩ Fu(Wv).
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Example 4.8 For the ternary signed system (F,ΣD) from Example 4.4 we have transforma-
tions and intervals

F1(x) = (x− 1)/3, F0(x) = x/3, F1(x) = (x+ 1)/3, F0(x) = 3x
W1 = (−1

2
,−1

6
), W0 = (−1

6
, 1
6
), W1 = (1

6
,−1

2
), W0 = (1

2
,−1

2
)

and we get SF,W = Σ{10,00,10,00}.

Example 4.9 For the system of simple continued fractions of Definition 1.13 we have trans-
formations and intervals

F1(x) = x− 1, F0(x) = 1/x, F1(x) = x+ 1,
W1 = (∞, 0), W0 = (0, 1), W1 = (1,∞).

and we get SF,W = Σ{11,01,00,11}.

Example 4.10 For the system of signed continued fractions from Definition 4.5 we have trans-
formations and intervals

F1(x) = x− 1, F0(x) = −1/x, F1(x) = x+ 1,
W1 = (∞,−1), W0 = (−1, 1). W1 = (1,∞).

and we get SF,W = Σ{00,11,11,101,101}.

Example 4.11 For the system of symmetric continued fractions from Definition 1.14 we have
transformations and intervals

F1(x) = x− 1, F0(x) = x
1−x

, F0(x) = x
x+1

, F1(x) = x+ 1,

W1 = (∞,−1), W0 = (−1, 0), W0 = (0, 1), W1 = (1,∞).

and we get SF,W = {1, 0}ω ∪ {0, 1}ω.

In the next Theorem 4.12 we give conditions which imply that (F,SF,W ) is a number system.
In the proof we work with the lengths of sets Wu which are not necessarilly intervals. Each Wu

is either a proper interval or a finite union of proper intervals. Define the length of a set Y ⊆ R
as the length of the shortest interval I such that Y ⊆ I.

Theorem 4.12 (Kůrka and Kazda [44]) Let F = {Fa ∈ M(R) : a ∈ A} be an iterative
system and W = {Wa ⊂ R : a ∈ A} an open almost-cover such that Wa ⊆ V(Fa) for each
a ∈ A. Then
1. (F,SF,W ) is a number system, so Φ : SF,W → R is continuous and surjective.

2. {Φ(u)} =
∩

n>0Wu[0,n)
for each u ∈ SF,W .

3. Φ([u]) = Wu for each u ∈ LF,W .

4. If {Wa : a ∈ A} is a cover of R, then Φ : SF,W → R is redundant.

Proof: We use the angle metric da, so if I = (l(I), r(I)) is an interval with length |I| < 1
2
,

then its length is the distance of its endpoints. For a proper interval I ⊆ R and 0 < ε < |I|/2
denote by

Iε− = I ∩Bε(l(I)), I
ε+ = I ∩Bε(r(I)), I

ε = I \ (Iε− ∪ Iε+).

Denote by la = l(Wa), ra = r(Wa) the left and right endpoints of Wa. Since Fa are contractions
on F−1

a (Wa) ⊆ U(Fa), there exists an increasing continuous function ψ : [0, 1] → [0, 1] such
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that ψ(0) = 0, 0 < ψ(t) < t for t > 0, and |Fa(Y )| ≤ ψ(|Y |) for each a ∈ A and any set
Y ⊆ F−1

a (Wa). Given u ∈ S(F,W ) and m ≤ n we have

F−1
u[0,m]

(Wu[0,n]
) ⊆ F−1

u[0,m]
Fu[0,m)

(Wum) = F−1
um

(Wum) ⊆ U(Fum).

For each n > 0 we get

|Wu[0,n]
| = |Fu0F

−1
u0

(Wu[0,n]
)| ≤ ψ(|F−1

u0
(Wu[0,n]

)|) = ψ(|Fu1F
−1
u[0,1]

(Wu[0,n]
)|)

≤ ψ2(|F−1
u[0,1]

(Wu[0,n]
)|) ≤ · · · ≤ ψn(|F−1

u[0,n)
(Wu[0,n]

)|) ≤ ψn(|Wun |) ≤ ψn(1).

Since ψ(t) < t and the only fixed point of ψ is zero, we get limn→∞ |Wu[0,n]
| = 0, so there exists

a unique point

x ∈
∩
n≥0

Wu[0,n]
⊆ Wu0 ∩ Fu0(Wu1) ∩ · · · ∩ Fu[0,n)

(Wun).

We show that u ∈ XF and Φ(u) = x. If a, b ∈ A and F−1
a (la) ∈ Wb, then F

−1
a (I) ⊆ Wb for some

open interval I ∋ a. Thus there exists ε > 0 such that for any a, b ∈ A,

F−1
a (la) ∈ Wb ⇒ F−1

a (W ε−
a ) ⊆ W ε

b

F−1
a (ra) ∈ Wb ⇒ F−1

a (W ε+
a ) ⊆ W ε

b

Denote by xn = F−1
u[0,n)

(x), x0 = x. Since x ∈ Wu[0,n]
, we get xn ∈ F−1

u[0,n)
(Wu[0,n]

) ⊆ Wun . For

the circle derivation we get

(F−1
u[0,n)

)•(x) = (F−1
u0

)•(x0) · (F−1
u1

)•(x1) · · · (F−1
un−1

)•(xn−1),

and each factor in this product is at least 1. If xn ∈ W ε
un

for an infinite number of n, then
limn→∞(F−1

u[0,n)
)•(x) = ∞ and Φ(u) = x by Theorem 3.41. Assume therefore that there exists

n0 such that xn ∈ Wun \W ε
un

= W ε−
un
∪W ε+

un
for each n ≥ n0. Let xn ∈ W ε−

un
. Since xn+1 =

F−1
un

(xn) ̸∈ W ε
un+1

, we get F−1
un

(lun) ̸∈ Wun+1 , so F
−1
un

(lun) ∈ {lun+1 , run+1}. Since F−1
un

(Wun) ∩
Wun+1 is nonempty, we get F−1

un
(lun) = lun+1 provided Fun is increasing and F−1

un
(lun) = run+1

provided Fun is decreasing. Similarly, if xn ∈ W ε+
un

, then F−1
un

(run) = run+1 provided Fun is
increasing and F−1

un
(run) = lun+1 provided Fun is decreasing. It follows that there exists an

open interval I whose one endpoint is x, such that F−1
u[0,n)

(I) ∩ Wun is a nonempty interval

for each n. If F−1
u[0,n)

(I) ⊆ W o
un
, then |F−1

u[0,n+1)
(I)| ≥ ψ−1(|F−1

u[0,n)
(I)|), so there exists c > 0

such that |F−1
u[0,n)

(I)| > c for all sufficiently large n. By Theorem 3.41, Φ(u) = x, so we

have proved SF,W ⊆ XF and {Φ(u)} =
∩

n>0Wu. For each u ∈ SF,W and n > 0 we have

Φ(u) ∈ Wu[0,n)
, so for each u ∈ LF,W we have Φ([u]) ⊆ Wu. Conversely, if x ∈ Wu then there

exists a ∈ A such that F−1
u (x) ∈ Wa and F−1

u (Wu) ∩Wa ̸= ∅, so Wua ̸= ∅ and x ∈ Wua. It
follows that we can extend u to an infinite word v ∈ [u] such that x ∈ Wv[0,m)

for each m, so

x = Φ(v). Thus we have proved Φ([u]) = Wu. This works also for Wλ = R, so Φ : SF,W → R
is surjective. Since limn→∞ |Φ([u[0,n)]| = 0, Φ : SF,W → R is continuous, so (F,SF,W ) is a

number system. If {Wa : a ∈ A} is a cover of R, then {intWu
(Wua) : ua ∈ LF,W} is a cover

of Wu for every u ∈ LF,W : If x ∈ Wu, then there exists a ∈ A such that F−1
u (x) ∈ Wa, so

x ∈ Wu ∩ Fu(Wa) = Wua and ua ∈ LF,W . By Theorem 2.27, Φ : SF,W → R is redundant.

The system of symmetric continued fractions of Definition 1.14 is a number system
according to Theorem 4.12 since Wa ⊆ V(Fa) (see Figure 4.3). The circle derivations of the
inverse transformations F−1

a can be seen in Figure 4.3 left. Since F−1
1

(W1) = F−1
0

(W0) = (∞, 0),
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a Fa Wa V(Fa) F−1
a (Wa)

1 [1 −1
0 1

] (∞,−1) (∞,−1
2
) (∞, 0)

0 [ 1 0
−1 1

] (−1, 0) (−2, 0) (∞, 0)
0 [1 0

1 1
] (0, 1) (0, 2) (0,∞)

1 [1 1
0 1

] (1,∞) (1
2
,∞) (0,∞) -1_

0

-1_
1

0_
1

1_
1

1_
0

3

0 1 0-1-

0 1 0-1-

Figure 4.3: The system of symmetric continued fractions from Definition 1.14 and Example 4.6
(left) and the circle derivations of is inverse transformations (F−1

a )• (right).

F−1
0 (W0) = F−1

1 (W1) = (0,∞), SF,W = {0, 1}ω ∪ {0, 1}ω is a SFT ΣD with forbidden words
D = {00, 01, 10, 11, 01, 00, 11, 10}. Note that 0 ∈ W0 ∩W0 is a fixed point of both F0 and F0.
If the intervals Wa were assumed closed, any sequence in {0, 0}ω would be an expansion of 0.
With open Wa, the only expansions of 0 are 0ω and 0

ω
.

For the system of signed continued fractions from Example 4.5, Theorem 4.12 cannot be
applied since F0(x) = −1/x is a rotation, and V(F0) = ∅. However, for the words of length 2
we get Wu ⊆ V(Fu) (see Figure 4.4). In the next Theorem 4.13 we show that a number system
is obtained in this case also.

Theorem 4.13 Let F = {Fa ∈ M(R) : a ∈ A} be an iterative system and W = {Wa ⊂
R : a ∈ A} an open almost-cover. Assume that there exists n ≥ 1 such that Wu ⊆ V(Fu) for
each u ∈ Ln

F,W . Then (F,SF,W ) is a number system and Φ([u]) = Wu for each u ∈ LF,W . If

{Wa : a ∈ A} is a cover of R then Φ : SF,W → R is redundant.

Proof: Consider the alphabet B = Ln
F,W and the iterative system G over B given by Gu = Fu.

Then V = {Wu : u ∈ B} is an open almost-cover, so (G,SG,V ) is a number system by Theorem
4.12. Given u ∈ Aω, define ũ ∈ BN by ũk = u[kn,(k+1)n). If u ∈ SF,W , then ũ ∈ SG,V , so
limk→∞ Fu[0,kn)

(z) = ΦG(ũ) for any z ∈ U. In particular the condition is satisfied for each
z = Fv(i), where v ∈ A+, |v| < n. If kn ≤ j < k(n + 1), then Fu[0,j)

(i) = Fu[0,kn)
Fu[kn,j)

(i),

so limj→∞ Fu[0,j)
(i) = ΦG(ũ), and ΦF (u) = ΦG(ũ). Thus SF,W ⊆ XF and Φ : SF,W → R

is continuous, since limn→∞ |Wu[0,n)
| = 0. Since V is an almost-cover, ΦF : SF,W → R is

surjective. By Theorem 4.12 we get ΦF ([u]) = ΦG(ũ) = Vũ = Wu for each u ∈ LF,W . If
{Wa : a ∈ A} is a cover of R, then {intWu

(Wua) : ua ∈ LF,W} is a cover of Wu for each
u ∈ LF,W , so ΦF is redundant.

Definition 4.14 We say that (F,W ) is an interval number system of order n ≥ 1 over an
alphabet A, if F = {Fa ∈ M(R) : a ∈ A} is an iterative system, W = {Wa ⊂ R : a ∈ A} is
an open almost-cover and Wu ⊆ V(Fu) for each u ∈ Ln

F,W . We say that (F,W ) is redundant,

if {Wa : a ∈ A} is a cover of R.

The system of signed continued fractions is an interval number system of order 2 with inter-
vals W1 = (∞,−1), W0 = (−1, 1), W1 = (1,∞). The ternary signed system from Proposition
1.6 and Example 4.8 is an interval number system of order 4. The following Theorem 4.15 is a
partial answer to the question whether for a given iterative system there exists a subshift which
forms with it a number system.
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b u Fu Wu V(Fu)

2 11 [1 −2
0 1

] (∞,−2) (∞,−1)
1 10 [ 1 1

−1 0
] (−2,−1) (∞,−1

2
)

0 01 [ 0 1
−1 −1

] (−1, 0) (−2, 0)
0 01 [ 0 1

−1 1
] (0, 1) (0, 2)

1 10 [−1 1
−1 0

] (1, 2) (1
2
,∞)

2 11 [1 2
0 1

] (2,∞) (1,∞)

-1_
0

-2_
1

-1_
1

0_
1

1_
1

2_
1

1_
0

6

2-

1- 0- 0 1 

2 

2- 1- 0- 0 1 2 

Figure 4.4: The second iteration of the system of signed continued fractions of Example 4.5
with alphabet B = {2, 1, 0, 0, 1, 2} = {11, 10, 01, 01, 10, 11}.

Theorem 4.15 (Kůrka [37]) Let F = {Fa ∈M(R) : a ∈ A} be an iterative system.

1. If there exists a finite set B ⊆ A+ such that {V(Fu) : u ∈ B} is a cover of R, then
Φ(XF ) = R and there exists a subshift Σ ⊆ Aω such that (F,Σ) is a number system.

2. If
∪

u∈A+ V(Fu) ̸= R then Φ(XF ) ̸= R, so there exists no number system with the iterative
system F .

Proof: Item 1 is a consequence of Theorem 4.13. If x does not belong to the closure of the
union of all V(Fu), then there exists an open interval I which contains x and is disjoint from
all V(Fu). Given u ∈ Aω, then for each n we have |F−1

u[0,n)
(I)| ≤ |I|, so Fu[0,n)

(i) cannot converge

to x. Thus x ̸∈ Φ(XF ).

To find an expansion of x ∈ R in an interval number system (F,W ), we find u0 with x ∈ Wu0

and repeat the procedure with x1 = F−1
u0

(x). However, if some xn = F−1
u[0,n)

(x) is an endpoint

of Wun , then we are constrained in the choice of further um with m > n: if Fu[n,m)
is increasing

and xn = l(Wun) then xm cannot be r(Wum) since we would getWu[n,m)
= ∅. This is why during

the expansion process we should keep information whether an endpoint ofWui
has been visited.

For u ∈ A∗ denote by o(u) ∈ {−1, 1} the orientation of Fu, so o(u) = −1 if Fu is decreasing
and o(u) = +1 if Fu is increasing.

Definition 4.16 For an interval number system (F,W ), define the expansion graph with
vertices (x, s) ∈ R× {−1, 0,+1} and labelled edges

(x, s) a−→ (F−1
a (x), s · o(a)), if x ∈ Wa,

(x, s) a−→ (F−1
a (x),−o(a)), if x = l(Wa), s ≤ 0,

(x, s) a−→ (F−1
a (x),+o(a)), if x = r(Wa), s ≥ 0.

Proposition 4.17 Let (F,W ) be an interval number system, x ∈ R, u ∈ Aω. Then u ∈ SF,W
and Φ(u) = x iff u is the label of a path with source (x, 0).

Proof: Let u be the label of a path (x, 0) u0−→ (x1, s1) u1−→ · · · , so xn = F−1
u[0,n)

∈ Wun . If sn = 0

for all n, then xn ∈ Wun and x ∈ Wu[0,n)
̸= ∅. Thus u ∈ SF,W and Φ(u) = x. Let n be the

first integer with sn+1 ̸= 0, so xn ̸∈ Wun . Then x ∈ Wu[0,n)
∩ Fu[0,n

(Wun), so Wu[0,n+1)
̸= ∅ If

xn = l(Wun) and o(un) = −1 then sn+1 = +1 and xn+1 ̸= l(Wun+1), since otherwise no edge
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would lead out of (xn+1, sn+1). This implies Wu[0,n+2)
̸= ∅. By induction we show that for each

m > n we have

o(u[n,m)) = −1 ⇒ sm = +1, xm ̸= l(Wum),

o(u[n,m)) = +1 ⇒ sm = −1, xm ̸= r(Wum).

In both cases we get W[0,m] ̸= 0, and x ∈ W[0,m]. Thus u ∈ SF,W and Φ(u) = x. If xn = r(Wun),
the proof is analogous. Conversely if u ∈ SF,W , Φ(u) = x, then xn ∈ Wun . If xn ∈ Wun for
each n, then we get a path with sn = 0. Let n be the first index such that xn ̸∈ Wun , say
xn = l(Wun). Given m > n then Wun ∩ F[n,m)(Wum) ̸= ∅ so we get

o(u[n,m)) = −1 ⇒ xm ̸= l(Wum),

o(u[n,m)) = +1 ⇒ xm ̸= r(Wum).

In the former case we set sm = +1, in the latter case we set sm = −1. This defines an infinite
path with label u. If xn = r(Wun), the proof is analogous.

4.3 Partition number systems

If the intervalsWa do not overlap, then we get an order on SF,W which corresponds to the order
on R. We say that an open almost-cover W = {Wa ⊂ R : a ∈ A} is an open partition if
Wa ∩Wb = ∅ for a ̸= b. An open partition is uniquely specified by its set of cutpoints

E(W ) = {l(Wa) : a ∈ A} = {r(Wa) : a ∈ A}.

Definition 4.18 We say that an interval number system (F,W ) is a partition number sys-
tem, if W is an open partition and for each a ∈ A we have ∞ ̸∈ Wa and ∞ ̸∈ F−1

a (Wa).

Examples of partition number systems are the system of simple continued fractions of Defini-
tion 1.13 or the system of symmetric continued fractions of Definition 1.14. The system of signed
continued fractions of Example 4.5 does not comply with Definition 4.18 since ∞ ∈ F−1

0 (W0).
However it can be modified to a partition number system if we take the alphabet A = {1, 0, 0, 1}
with transformations F0(x) = F0(x) = −1/x, W0 = (−1, 0), W0 = (0, 1).

When we work with partition number systems it is convenient to distinguish two infinities
−∞ = −1

0
and +∞ = 1

0
with the order on R extended by −∞ < x < +∞ for every x ∈ R.

Assume that the alphabet A = {0, 1, . . . , s} of a partition number system respects the order on
R. This means that for the endpoints la = l(Wa), ra = r(Wa) we have

−∞ = l0 < r0 = l1 < r1 = l2 < · · · < rs−1 = ls < rs = +∞.

We define the order ≺ on SF,W by

u ≺ v ⇔ ∃n, u[0,n) = v[0,n), un < vn, o(u[0,n)) = +1, or

∃n, u[0,n) = v[0,n), un > vn, o(u[0,n)) = −1,

where o(u) = +1 if Fu is increasing and o(u) = −1 if Fu is decreasing. For u = λ we set
o(λ) = +1, so u0 < v0 implies u ≺ v. We write u ⪯ v if u ≺ v or u = v. Both inequalities ≺
and ⪯ are defined analogously between finite words of the same length. If u, v ∈ SF,W and u ⪯ v
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then u[0,n) ⪯ v[0,n) for each n. By Proposition 4.17, each x ∈ R has at most two expansions.
If u ∈ SF,W , Φ(u) = x and n is the first index such that xn = F−1

u[0,n)
(x) is a cutpoint of the

partition then we have two possibilities for un but all um with m > n are determined uniquely.
We denote the two expansions by E−(x) and E+(x) and distinguish them by the requirement

E+(∞) ≺ E−(∞), E−(x) ⪯ E+(x) for x ∈ R

If the orbit of x never visits any cutpoint then x has a unique expansion E(x) = E−(x) = E+(x).
Thus E−(ra)0 = a = E+(la)0, in particular E−(∞)0 = s, E+(∞)0 = 0. If u = E−(x) and
xi = F−1

u[0,i)
(x), then either xi ∈ Wui

or xi = rui
provided o(u[0,i)) = +1 or xi = lui

provided

o(u[0,i)) = −1. For v = E+(x) and xi = F−1
v[0,i)

(x) we have either xi ∈ Wvi or xi = l(Wvi)

provided o(v[0,i)) = +1 or xi = r(Wvi) provided o(v[0,i)) = −1. It follows that if u ∈ Ln
F,W , and

x ∈ Wu then
E(x)[0,n) = E−(r(Wu))[0,n) = E+(l(Wu))[0,n) = u.

Examples of expansions in partition number systems can be seen in Figures 1.8 or 1.9. If
x, y ∈ Wa, x < y and o(a) = +1 then F−1

a (x) < F−1
a (y). This follows from the assumption

∞ ̸∈ Wa, ∞ ̸∈ F−1
a (Wa). By induction we get for any u ∈ LF,W

x, y ∈ Wu, x < y,o(u) = +1 ⇒ F−1
u (x) < F−1

u (y)

x, y ∈ Wu, x < y,o(u) = −1 ⇒ F−1
u (x) > F−1

u (y)

Proposition 4.19 Let (F,W ) be a partition number system and x, y ∈ R.
1. If x < y then E+(x) ≺ E−(y).
2. E+(∞) ≺ E−(x) ⪯ E+(x) ≺ E−(∞).

3. If E−(x) ≺ E−(y) or E+(x) ≺ E+(y) then x < y.

4. If u ∈ Ln
F,W and E+(x)[0,n) ⪯ u then x < r(Wu).

5. If u ∈ Ln
F,W and u ⪯ E−(x)[0,n) then l(Wu) < u.

Proof: 1. If x < y then u = E+(x) ̸= E−(y) = v. Let n be the first integer such that un ̸= vn.
If o(u[0,n)) = +1 then xn = F−1

u[0,n)
(x) < F−1

u[0,n)
(y) = yn, so un < vn and u ≺ v. If o(u[0,n)) = −1

then xn > yn, so un > vn and u ≺ v.
2. With the convention −∞ < x < +∞, the argument of the preceding proof works for −∞ < x
and x < +∞.
3. If E−(x) ≺ E−(y), then x ̸= y. From y < x we would get E+(y) ≺ E−(x) ≺ E−(y) which is a
contradiction. Thus x < y. The proof is similar if E+(x) ≺ E+(y).
4. Assume by contradiction r(Wu) ≤ x. Then u = E−(r(Wu))[0,n) ≺ E+(r(Wu))[0,n) ⪯ E+(x)[0,n)
which is a contradiction.
5. If x ≤ l(Wu) then E−(x)[0,n) ⪯ E−(l(Wu))[0,n) ≺ E+(l(Wu))[0,n) = u which is a contradiction.

The language of the subshift SF,W is determined by the expansions of the endpoints la, ra
of Wa. Before the proof of the next theorem note that open intervals I, J ⊆ R have nonempty
intersection iff max{l(I), l(J)} < min{r(I), r(J)}.

Theorem 4.20 Let (F,W ) be a partition number system. Then

1. u ∈ A+ belongs to LF,W iff E+(lun)[0,|u|−n) ⪯ σn(u) ⪯ E−(run)[0,|u|−n) for each n < |u|.
2. u ∈ Aω belongs to SF,W iff E+(lun) ⪯ σn(u) ⪯ E−(run) for each n.
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Here we set σn(u) = u[n,|u|) for u ∈ A+.
Proof: 1. Assume that u ∈ LF,W and choose some x ∈ Wu. For n < m = |u| we have
xn = F−1

[0,n)(x) ∈ Wσn(u) ⊆ Wun and either σn(u) = E−(xn)[0,|u|−n) or σ
n(u) = E+(xn)[0,|u|−n). By

Proposition 4.19 it follows E+(lun)[0,|u|−n) ⪯ σn(u) ⪯ E−(run)[0,|u|−n). Conversely assume that
u ∈ Am satisfies the condition. If m = 1 then u ∈ LF,W is trivial. Assume that the statement
is true for all v with |v| < m. Since |σ(u)| < m, we get σ(u) ∈ LF,W . By the assumption with
n = 0 there exist v, w ∈ Am−1 such that u0v = E+(lu0)[0,m) ⪯ u ⪯ E−(ru0)[0,m) = u0w. We
consider two cases. If o(u0) = +1 then by Proposition 4.19 we get

E+(F−1
u0

(lu0))[0,m−1) = v ⪯ σ(u) ⪯ w = E−(F−1
u0

(ru0))[0,m−1),

so F−1
u0

(lu0) < r(Wσ(u)), l(Wσ(u)) < F−1
u0

(ru0). Since F
−1
u0

(lu0) < F−1
u0

(ru0), we have

max{F−1
u0

(lu0), l(Wσ(u))} < min{F−1
u0

(ru0), r(Wσ(u))}.

It follows Wσ(u) ∩ F−1
u0

(Wu0) ̸= ∅, so Wu ̸= ∅ and u ∈ LF,W . If o(u0) = −1 then

E−(F−1
u0

(lu0))[0,m−1) = v ⪰ σ(u) ⪰ w = E+(F−1
u0

(ru0))[0,m−1),

so F−1
u0

(lu0) > l(Wσ(u)), r(Wσ(u)) > F−1
u0

(ru0). Since F
−1
u0

(lu0) > F−1
u0

(ru0), we get

max{F−1
u0

(ru0), l(Wσ(u))} < min{F−1
u0

(lu0), r(Wσ(u))}.

It follows that Wσ(u) ∩ F−1
u0

(Wu0) ̸= ∅, so Wu ̸= ∅ and u ∈ LF,W .
2. is an immediate consequence of 1.

4.4 Sofic expansion subshifts

We characterize interval number systems whose expansion subshifts are of finite type or sofic.

Theorem 4.21 (Kůrka [39]) Let (F,W ) be an interval number system. Then SF,W is an
SFT of order m+ 1 iff

∀a ∈ A, ∀u ∈ Lm
F,W , (Wu ∩ F−1

a (Wa) ̸= ∅ ⇒ Wu ⊆ F−1
a (Wa))

In this case Wu = Fu[0,n−m]
(Wu(n−m,n]

) for each u ∈ LF,W with |u| = n+ 1 > m.

Proof: The condition can be equivalently stated in the form that Fa(Wu) ∩Wa ̸= ∅ implies
Fa(Wu) ⊆ Wa. Let u ∈ An+1, and assume that u[i,i+m] ∈ LF,W for all i < n − m. Then
∅ ̸=Wu[0,m]

= Wu0 ∩ Fu0(Wu[1,m]
), so Fu0(Wu[1,m]

) ⊆Wu0 and Wu[0,m]
= Fu0(Wu[1,m]

). It follows

Wu = Wu[0,m]
∩ Fu[0,m]

(Wu[m+1,n]
)

= Fu0(Wu[1,m]
) ∩ Fu[0,m]

(Wu[m+1,n]
)

= Fu0(Wu[1,n]
) = Fu[0,1]

(Wu(2,n]
) = · · ·

= Fu[0,n−m]
(Wu(n−m,n]

) ̸= ∅.

Thus u ∈ LF,W , so we have proved that SF,W is an SFT of order m + 1. Conversely, assume
that the condition is not satisfied, so let a ∈ A, u ∈ Lm

F,W be such that Wu ∩ F−1
a (Wa) ̸= ∅ but

Wu ̸⊆ F−1
a (Wa), so Wu \ F−1

a (Wa) ̸= ∅. Since limn→∞max{|Wv| : v ∈ Lm
F,W} = 0, there exists
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v ∈ LW such that Wv ⊆ F−1
u (Wu) \ F−1

au (Wa) = F−1
u (Wu \ F−1

a (Wa)), so Fu(Wv) ⊆ Wu and
Fau(Wv) ∩Wa = ∅. It follows Wuv = Wu ∩ Fu(Wv) = Fu(Wv) ̸= ∅ but Wauv = Wa ∩ Fa(Wu) ∩
Fau(Wv) = ∅. Thus au ∈ LF,W , uv ∈ LF,W , and auv ̸∈ LF,W , so SF,W is not an SFT of order
m+ 1.

The condition of Theorem 4.21 means that each endpoint of F−1
a (Wa) is an endpoint of some

Wu, where u ∈ Lm
F,W . In particular SF,W is an SFT of order 2 iff each endpoint of F−1

a (Wa) is
an endpoint of some Wb. In this case we have Wu = Fu[0,n)

(Wun) for each u ∈ An+1.
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Figure 4.5: Expansion subshifts of finite type: the ternary system of Example 4.4 of order 2
(left) and the system of signed continued fractions of Example 4.5 of order 3 (right).

The ternary signed system (F,ΣD) of Proposition 1.6 and Example 4.4 has the expansion
subshift of order 2, since each endpoint of F−1

a (Wa) is an endpoint of some Wb (see Figure 4.5
left). Indeed F−1

1
(W1) = F−1

0 (W0) = F−1
1 (W1) = (−1

2
, 1
2
), F−1

0
(W0) = (1

6
, 1
−6

). The system
of signed continued fractions from Example 4.5 has the expansion subshift of order 3: Each
endpoint of Wu with |u| = 2 is an endpoint of some Wa (see Figure 4.5 right).

Theorem 4.22 If (F,W ) is an interval number system and {Wa : a ∈ A} is a cover of R,
then SF,W is not an SFT.

Proof: By the assumption, {Wu : u ∈ Ln
F,W} is a cover for each n. If x is an endpoint of

some F−1
a (Wa), and m > 0 then there exists u ∈ Lm

F,W with x ∈ Wu, so Wu ∩F−1
a (Wa) ̸= ∅ but

Wu ̸⊆ F−1
a (Wa). Thus SF,W is not an SFT of order m+ 1.

Thus interval number systems whose expansion subshifts are of finite type cannot be redun-
dant.

Theorem 4.23 (Kůrka [39]) Let (F,W ) be an interval number system with alphabet A. Then
the expansion subshift SF,W is sofic iff there exists an open partition V = {Vp ⊆ R : p ∈ B}
such that if Fa(Vq) ∩ Vp ∩Wa ̸= ∅, then Fa(Vq) ⊆ Vp ∩Wa. In this case, SF,W is the subshift of
the labelled graph GF,W,V with vertices p ∈ B and labelled edges p a−→ q ⇔ Fa(Vq) ⊆ Vp ∩Wa.

Proof: Let V = {Vp : p ∈ B} be an open partition with the assumed properties and let
p0 u0−→ p1 u1−→ · · · un−1−→ pn un−→ be a path in the graph GF,W,V . Then Vpn ∩Wun ̸= ∅ and for each
k < n we have Fuk

(Vpk+1
∩Wuk+1

) ⊆ Fuk
(Vpk+1

) ⊆ Vpk ∩Wuk
. We get

∅ ̸= Fu[0,n)
(Vpn ∩Wun) ⊆ Fu[0,n−1)

(Vpn−1 ∩Wun−1) ⊆ · · · ⊆ Fu0(Vp1 ∩Wu1) ⊆ Vp0 ∩Wu0 ,

∅ ̸= Fu[0,n)
(Vpn ∩Wun) ⊆ Fu[0,n−1)

(Wun−1) ∩ · · · ∩ Fu0(Wu1) ∩Wu0 ⊆ Wu[0,n)
,

Thus u[0,n) ∈ LF,W . On the other hand, assume that Wu ̸= ∅ and let us construct a path in the
graph with the label u. There exists p0 ∈ B such that ∅ ̸= Vp0 ∩Wu and there exists p1 such
that

∅ ̸= Vp1 ∩ F−1
u0

(Vp0 ∩Wu) ⊆ Vp1 ∩ F−1
u0

(Vp0 ∩Wu0).
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By the assumption, Fu0(Vp1) ⊆ Vp0 ∩Wu0 . Thus we have an edge p0 u0−→ p1 and we get Vp1 ∩
F−1
u0

(Wu) ̸= ∅. There exists p2 such that

∅ ̸= Vp2 ∩ F−1
u1

(Vp1 ∩ F−1
u0

(Wu)) ⊆ Vp2 ∩ F−1
u1

(Vp1 ∩Wu1).

Thus we have an edge p1 u1−→ p2 and Vp2 ∩ F−1
u[0,2)

(Wu) ̸= ∅. We continue by induction. Assume

that we have constructed pk ∈ B with Vpk ∩ F−1
u[0,k)

(Wu) ̸= ∅. Then there exists pk+1 such that

∅ ̸= Vpk+1
∩ F−1

uk
(Vpk ∩ F−1

u[0,k)
(Wu)) ⊆ Vpk+1

∩ F−1
uk

(Vpk ∩Wuk
),

so we have an edge pk uk−→ pk+1 and Vpk+1
∩ F−1

u[0,k+1)
(Wu) ̸= ∅. We have constructed a path with

label u, so we have established that SF,W is the subshift of the graph GF,W,V .
Conversely assume that SF,W is sofic. Recall that the follower set of a word u ∈ LF,W is
Fu = {v ∈ Aω : uv ∈ SF,W}. Since SF,W is sofic, the set {Fu : u ∈ LF,W} of follower sets
is finite. Given u, v ∈ LF,W , then Fu = Fv iff Wuw ̸= ∅ ⇔ Wvw ̸= ∅ for any w ∈ LF,W .
This is equivalent to F−1

u (Wu) ∩ Ww ̸= ∅ ⇔ F−1
v (Wv) ∩ Ww ̸= ∅ for any w ∈ LF,W . Since

the length of Ww tends to zero as |w| → ∞, we get Fu = Fv iff F−1
u (Wu) = F−1

v (Wv), so
{F−1

u (Wu) : u ∈ LF,W} is a finite set. Each F−1
u (Wu) is either an open interval or a finite

union of open intervals. Denote by E the finite set of all endpoints of all these intervals and
let {Vp : p ∈ B} be the open interval partition whose cutpoints are exactly E . Assume that
Vp ∩Wa ̸= 0 and let x be its endpoint. Then x is either an endpoint of Wa or an endpoint of
some (interval of) F−1

u (Wu) ∩Wa. In the former case, F−1
a (x) is an endpoint of F−1

a (Wa), in
the latter case, F−1

a (x) is an endpoint of some interval of

F−1
a (Wa ∩ F−1

u (Wu)) = F−1
ua (Fu(Wa) ∩Wu) = F−1

ua Wua

Thus in either case, F−1
a (x) ∈ E , so it is an endpoint of some Vq. This means that if Vq∩F−1

a (Vp∩
Wa) ̸= ∅ then V ◦

q ⊆ F−1
a (Vp ∩Wa). Thus we have proved that V satisfies the conditions of the

theorem.

If the conditions of Theorem 4.23 are satisfied, then we say that V = {Vp : p ∈ B} is an
open SFT partition for (F,W ).

Theorem 4.24 A partition number system (F,W ) has a sofic subshift SF,W iff E−(l(Wa)) and
E+(l(Wa)) are periodic sequences for each a ∈ A.

Proof: The condition implies that E−(r(Wa)) and E+(r(Wa)) are also periodic sequences. If all
trajectories of all edpoints of Wa are periodic, then the points of these trajectories form a finite
set E and we define V = {Vp : p ∈ B} as the open partition whose endpoints are the points of
E . Assume by contradiction that Fa(Vq)∩ Vp ∩Wa ̸= ∅ and Fa(Vq) ̸⊆ Vp ∩Wa. Then for one of
the endpoints x of Vp∩Wa we have F

−1
a (x) ∈ Vq and this is a contradiction since x belongs to a

trajectory of an endpoint of some Wa. Conversely, let V = {Vp : p ∈ B} be an open partition
which satisfies the conditions of Theorem 4.23. Assume by contradiction that an endpoint x of
some Wa does not have periodic expansion u = E−(x) or u = E+(x). Let n be the first integer
such that xn+1 = F−1

u[0,n]
(x) is not an endpoint of any Vp, so there exists b ∈ A such that xn is

an endpoint of some Vp ∩Wb and xn+1 ∈ Vq for some q ∈ B. Then xn ∈ Fb(Vq) ∩ Vp ∩Wb, so
Fb(Vq) ∩ Vp ∩Wb ̸= ∅, but Fb(Vq) ̸⊆ Vp ∩Wb and this is a contradiction.

Note that the binary signed system from Example 4.3 is not an interval number system. If
we take the cover W0 = (1

2
, 1
−2

), W1 = (−1
1
, −1

4
), W0 = (−1

2
, 1
2
), W1 = (1

4
, 1
2
), then SF,W ̸⊆ XF .

We obtain an interval number system with another cover:
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p a Vp F−1
a (Vp) q

0 0 (−3,−2) (−3
2
,−1) 2

1 0 (−2,−3
2
) (−1,−3

4
) 3

1 1 (−2,−3
2
) (−3,−2) 0

2 1 (−3
2
,−1) (−2,−1) 1, 2

3 1 (−1,−3
4
) (−1,−1

2
) 3, 4

4 1 (−3
4
,−1

2
) (−1

2
, 0) 5

5 1 (−1
2
, 0) (0, 1) 6, 7, 8

5 0 (−1
2
, 0) (−1, 0) 3, 4, 5

6 0 (0, 1
2
) (0, 1) 6, 7, 8

6 1 (0, 1
2
) (−1, 0) 3, 4, 5

7 1 (1
2
, 3
4
) (0, 1

2
) 6

8 1 (3
4
, 1) (1

2
, 1) 7, 8

9 1 (1, 3
2
) (1, 2) 9, A

A 1 (3
2
, 2) (2, 3) B

A 0 (3
2
, 2) (3

4
, 1) 8

B 0 (2, 3) (1, 3
2
) 9

C 0 (3,−3) (3
2
,−3

2
) A,B,C, 0, 1
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Figure 4.6: The open SFT partition and the labelled graph of the binary signed interval system
from Example 4.25

Example 4.25 The binary signed interval system (F,W ) has alphabet A = {1, 0, 1, 0},
transformations F1(x) =

x−1
2
, F0(x) =

x
2
, F1(x) =

x+1
2
, F0(x) = 2x, and intervalsW1 = (−2, 0),

W0 = (−1
2
, 1
2
), W1 = (0, 2), W0 = (3

2
, 3
−2

).

Since V(F1) = (−2, 0), V(F0) = (−
√
2

2
,
√
2
2
), V(F1) = (0, 2), V(F0) = (

√
2,−
√
2), we get a

number system by by Theorem 4.12. The expansion subshift SF,W is sofic. Its SFT partition
V = {Vp : p ∈ B} has endpoints −3, −2, −3

2
, −1, −3

4
, −1

2
, 0, 1

2
, 3
4
, 1, 3

2
, 2, 3. Since W is a cover,

SF,W is not a SFT by Theorem 4.22. Indeed, each cylinder interval W0n contains the endpoint
0 of V . The graph GF,W,V is given in Figure 4.6. Each row of the table gives all edges (p, a, q)
with source p ∈ B and label a.

Proposition 4.26 Let (F,W ) be an interval number system with sofic expansion subshift SF,W
and let V = {Vp : p ∈ B} be its open SFT cover. Then

1. If p u−→ q is a path in GF,W,V , then Fu(Vq) ⊆ Vp ∩Wu and Fu(Vq) ⊆ Vp ∩Wu.

2. Φ(Fp) = Vp =
∪
{Fa(Vq) : p

a→ q}.
3. Φ([u]) = Wu =

∪
{Fu(Vq) :

u→ q}

Proof: 1. By the proof of Theorem 4.23 we have Fu(Vq) ⊆ Vp ∩Wu, so Fu(Vq) ⊆ Vp ∩Wu ⊆
Vp ∩Wu.
2. If p a−→ q, then Fa(Vq) ⊆ Vp. If x ∈ Vp, then there exists a ∈ A with x ∈ Wa and Vp∩Wa ̸= ∅.
There exists q ∈ B with F−1

a (x) ∈ Vq, so x ∈ Fa(Vq) and p a−→ q. Thus we have proved
Vp =

∪
{Fa(Vq) : p a−→ q}. We show Φ(Fp) = Vp. For x ∈ Vp there exists p = p0 u0−→ p1 with

F−1
u0

(x) ∈ Vp1 . We continue in this construction and obtain an infinite path p = p0 u0−→ p1 · · ·
such that F−1

u[0,n)
(x) ∈ Vpn , so x ∈ Fu[0,n)

(Vpn) ⊆ Wu[0,n)
. Thus x ∈ Φ(Fp), so Vp ⊆ Φ(Fp).
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Conversely, if x ∈ Φ(Fp), let p = p0 u0−→ p1 u0−→ · · · be an infinite path with Φ(u) = x. For each
n we have Fu[0,n)

(Vpn) ⊆ Vp0 ∩Wu[0,n)
̸= ∅. Choose an xn ∈ Vp0 ∩Wu[0,n)

, then limn→∞ xn = x,

so x ∈ Vp. Thus we have proved Φ(Fp) = Vp.
3. If x ∈ Wu, then we construct a path p u−→ q with x ∈ Vp ⊆ Wu0 similarly as in the
proof of Theorem 4.23. The only difference is that we choose at each step pk with F−1

u[0,k)
(x) ∈

Vpk ∩ F−1
u[0,k)

(Wu). The opposite inclusion
∪
{Fu(Vq) :

u→ q} ⊆ Wu follows from 1.

4.5 Sofic number systems

Proposition 4.26 has a partial converse. Let (F,Σ) be a number system with a sofic subshift
Σ and let G = (B,E) be a labelled graph with Σ = ΣG. Then the sets {Φ(Fp) : p ∈ B}
satisfy the same conditions as the sets Vp in Proposition 4.26, but they need not be intervals. If
they are intervals, then their endpoints can be obtained as Φ-values of periodic paths and these
periodic paths are determined by selectors. A selector for a labelled graph G = (B,E) is a
mapping K : B → E which selects at each vertex p ∈ B an outgoing edge K(p) = (p, a, q) with
source p. A selector K determines for each vertex p ∈ B a path p = p0 u0−→ p1 u0−→ · · · defined
by p0 = p, K(pi) = (pi, ui, pi+1). This path is periodic, since there exist i < j with pi = pj and
then pi+k = pj+k, ui+k = uj+k for all k ≥ 0. We denote by Kp = u[0,i)(u[i,j))

ω the label of the
path of K.

Theorem 4.27 Let F be an iterative system over A and let G = (B,E) be an A-labelled graph
such that (F,ΣG) is a number system. For p ∈ B consider the closed sets Vp = Φ(Fp). Then

1. Vp =
∪
{Fa(Vq) : p a−→ q} for each p ∈ B.

2. Φ([u]) =
∪
{Fu(Vq) : u−→ q} for each u ∈ LG.

3. If all Vp are intervals then there exist selectors L,R, such that for each p ∈ B either Vp = R
or Vp is a proper closed interval with l(Vp) = Φ(Lp) and r(Vp) = Φ(Rp).

Proof: 1. If p a−→ q and u ∈ Fq then au ∈ Fp and Fa(Φ(u)) = Φ(au) ∈ Φ(Fp) = Vp, so
Fa(Vq) ⊆ Vp. Conversely, if au ∈ Fp, then there exists an edge p a−→ q with u ∈ Fq and
Φ(au) = Fa(Φ(u)) ∈ Fa(Vq). Thus VP =

∪
{Fa(Vq) : p a−→ q}.

2. If u−→ q and v ∈ Fq then Fu(Φ(v)) = Φ(uv) ∈ Φ([u]), so Fu(Vq) ⊆ Φ([u]). Conversely, if
uv ∈ [u], then there exists a path p u−→ q v−→ and Φ(uv) = Fu(Φ(v)) ∈ Fu(Vq), so Φ([u]) =∪
{Fu(Vq) : u−→ q} for each u ∈ LG.

3. Assume that each Vp is an interval and denote by B0 = {p ∈ B : |Vp| < 1} the set of vertices
whose intervals are proper. For p ∈ B0 denote by lp = l(Vp), rp = r(Vp). Since lp ∈ Vp, by item
1, there exists an edge p a−→ q and x ∈ Vq with lp = Fa(x). It follows that Vq is also a proper
interval and either x = lq provided Fa is increasing or x = rq provided Fa is decreasing. We
define the left selector L on p as L(p) = (p, a, q). Analogously there exists an edge p b−→ s such
that Fb(rp) = rs provided Fb is increasing and Fb(rp) = ls provided Fb is decreasing, and we
define R(p) = (p, b, s). If Vp = R, we define L(p) and R(p) arbitrarily. Thus L,R are selectors
for G = (B,E). For p ∈ B0, there exists q ∈ B0 such that p u−→ q v−→ q and Lp = uvω. For
every k we have Φ(Lp) = Fu(s(Fv)) = Fuvk(s(Fv)) ∈ Φ([uvk]). Depending on the orientations
of Fu and Fv we have either lp = Fu(lq) = Fuvk(lq) ∈ Φ([uvk]) or lp = Fuvk(rq) ∈ Φ([uvk]). Since
limk→∞ |Φ([uvk])| = 0, we get Φ(Lp) = lp and similarly Φ(Rp) = rp.

If L,R are selectors from Theorem 4.27, then for each selector K and for each p ∈ B we have
Φ(Kp) ∈ Φ(Fp) ⊆ [Φ(Lp),Φ(Rp)]. Since there is only a finite number of selectors for a given
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labelled graph, the left and right selectors L,R from Theorem 4.27 can be found effectively.
We define now a class of number systems with sofic subshifts whose sets Φ(Fp) are intervals.
We say that V = {Vp ⊆ R : p ∈ B} is a closed interval cover, if each Vp is a closed interval and∪

p∈B = R.

Definition 4.28 A sofic number system of order n ≥ 1 over an alphabet A is a triple
(F,G, V ), where

1. F = {Fa ∈M(R) : a ∈ A} is an iterative system.

2. G = (B,E) is a finite A-labelled graph.

3. V = {Vp ⊆ R : p ∈ B} is a closed interval cover of R such that Vp =
∪
{Fa(Vq) : p a−→ q}.

4. Vq ⊆ U(Fu) whenever p u−→ q and |u| = n.

5. If G = (B,E, i) is an initialized graph, then Vi = R.
6. If {intVp(Fa(Vq)) : p a−→ q} is a cover of Vp, then we say that (F,G, V ) is a redundant

sofic number system.

Theorem 4.29 Let (F,G, V ) be a sofic number system. Then

1. (F,ΣG) is a number system, i.e., ΣG ⊆ XF and Φ : ΣG → R is continuous and surjective.

2. Φ(Fp) = Vp for each p ∈ B
3. x = Φ(u) iff there exists an infinite path (p, u) such that x ∈

∩
Fu[0,i)

(Vpi).

4. Φ([u]) =
∪
{Fu(Vq) : u−→ q} for each u ∈ LG.

5. If G = (B,E, i) is an initialized graph then Φ([u]) =
∪
{Fu(Vq) : i u−→ q}.

6. If G = (B,E, i) is a deterministic graph and i u−→ q, then Φ([u]) = Fu(Vq).

7. If (F,G, V ) is a redundant sofic system then Φ : ΣG → R is a redundant mapping.

Proof: We assume that the order is n = 1, since the proof in the case of a general order is
similar. Thus we assume that Vq ⊆ U(Fa) whenever p a−→ q. By Proposition 3.33 there exists
a real increasing function ψ : [0, 1] → [0, 1] such that ψ(0) = 0, ψ(t) < t for t > 0 and for
each a ∈ A and for each interval I ⊆ U(Fa) we have |Fa(I)| ≤ ψ(|I|). Let u ∈ ΣG and let
p0 u0−→ p1 u1−→ p2 u2−→ · · · be an infinite path with label u. For 0 < m < n we have

Fu[m,n)
(Vpn) ⊆ Fu[m,n−1)

(Vpn−1) ⊆ · · · ⊆ Vpm ⊆ U(Fum−1),

|Fu[0,n)
(Vpn)| = |Fu0Fu[1,n)

(Vpn)| ≤ ψ(|Fu[1,n)
(Vpn)|) ≤ ψ2(|Fu[2,n)

(Vpn)|) ≤ · · ·
≤ ψn(|Vpn |).

Thus limn→∞ |Fu[0,n)
(Vpn)| = 0. Since Fu[0,n+1)

(Vpn+1) ⊆ Fu[0,n)
(Vpn), there exists a unique

point x ∈
∩

n Fu[0,n)
(Vpn). Since Fu[0,n)

(Vpn) ⊆ Vp0 , by Proposition 3.8 there exist points
xn ∈ Fu[0,n)

(Vpn) such that

(F−1
u[0,n)

)•(xn) ≥ |Vp0 |/|Fu[0,n)
(Vpn)| ≥ |Vpn |/ψn(|Vpn|),

so limn→∞ xn = x, limn→∞(F−1
u[0,n)

)•(xn) = ∞. By Theorem 3.41 we get Φ(u) = x. Thus

we have proved ΣG ⊆ XF . Since Fu[0,n)
(Vpn) ⊆ Vp0 , we get Φ(Fp0) ⊆ Vp0 . Conversely, we

construct for each x = x0 ∈ Vp a path p = p0 u0−→ p1 u1−→ p2 u2−→ · · · such that x = Φ(u).
If p0

u[0,n)
−→ pn has been already constructed and xn = F−1

u[0,n)
(x) ∈ Vpn , then we find an edge

pn un−→ pn+1 with xn ∈ Fun(Vpn+1) and set xn+1 = F−1
un

(xn). Then x = Φ(u), so we have

proved Vp ⊆ Φ(Fp) for each p ∈ B. Since V is a cover, Φ : ΣG → R is surjective. We
show that Φ : ΣG → R is continuous. For u ∈ Ln

G there exists a finite number of paths
p0,j u0−→ p1,j u1−→ · · · un−1−→ pn,j with label u. Set Wi =

∪
j Vi,j ⊆ U(Fui−1

). Then Φ(u) ∈ Fu(Wn)
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and |Fu(Wn)| ≤ ψn(|U(Fum−1)|) ≤ ψn(1). Thus |Φ(u)| ≤ ψ|u|(1) and therefore Φ is continuous.
Thus we have proved 1,2,3.
4. If x ∈ Φ([u]) then there exists an infinite path with prefix p u−→ q so x ∈ Fu(Vq). Conversely,
if x ∈ Fu(Vq), then u can be extended to an infinite path and x ∈ Φ([u]).
5. If x ∈ Φ([u]) then there exists an infinite path with prefix i u−→ q so x ∈ Fu(Vq). Conversely,
if x ∈ Fu(Vq), then u can be extended to an infinite path and x ∈ Φ([u]).
6. is an immediate consequence of 5.
7. If x ∈ Φ([u]), then there exists a path with label u and target p such that x ∈ Fu(Vp), so
F−1
u (x) ∈ Vp. By the assumption there exists an edge p a−→ q such that F−1

u (x) ∈ intVp(Fa(Vq))
so x ∈ intFu(Vp)(Fua(Vq)) ⊆ intΦ([u])(Φ([ua])). By Theorem 2.27, Φ is redundant.

Note that the mapping Φ : ΣG → R may be redundant even if the system (F,G, V ) is
not redundant, This may happen in an interval number system (F,W ) with a cover W , whose
expansion subshift SF,W is sofic. Then {Vp : p ∈ B} need not be a cover. However, the subshift
may have another graph G with another almost cover V and (F,G, V ) may be redundant.

p a Vp F−1
a (Vp) q

1 1 (∞,−1) (∞, 0) 1, 0
0 0 (−1, 0) (1,∞) 1
0 0 (0, 1) (∞,−1) 1
1 1 (1,∞) (0,∞) 0, 1

1-

1 

1-

1 

1-

1 

0 

0 

0 

0-

Figure 4.7: The labelled graph of SF,W for the system of signed continued fractions of Example
4.5
.

Consider the number system of signed continued fractions (F,ΣD) = (F,SF,W ) of Example
4.5 with forbidden words D = {00, 11, 11, 101, 101} and intervals W1 = (∞,−1), W0 = (−1, 1),
W1 = (1,∞). Its open SFT partition has alphabet B = {1, 0, 0, 1} and intervals V1 = (∞,−1),
V0 = (−1, 0), V0 = (0, 1), V1 = (1,∞). The graph GF,W,V is neither initialized nor right-
resolving: all edges with the same source carry the same label (see Figure 4.7) and we have

F−1
1

(V1) = [∞, 0] = [∞− 1] ∪ [−1, 0] = V1 ∪ V0
F−1
0 (V0) = [1,∞] = V1

F−1
0 (V0) = [∞,−1] = V1

F−1
1 (V1) = [0,∞] = [0, 1] ∪ [1,∞] = V0 ∪ V1.

The vertices of the deterministic labelled graph of ΣD are proper prefixes of the forbidden
words B = {λ, 1, 0, 1, 10, 10}. In figure 4.8 we give the left and right selectors constructed
according to Theorem 4.27, corresponding intervals Vq and their preimages by the labels of
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p a q Lq Rq Vq Fa(Vq)

λ, 0, 1, 10 1 1 1
ω

01ω [∞, 0] [∞,−1]
λ 0 0 101

ω
101ω [1,−1] [−1, 1]

λ, 0, 1, 10 1 1 01
ω

1ω [0,∞] [1,∞]
1 0 10 101

ω
1ω [1,∞] [−1, 0]

1 0 10 1
ω

101ω [∞,−1] [0, 1]

1-

1 

1-

1 

0 

0 

1 

1-

1 10  

1-10- 

1-

1 
0 0 

1-

1 

λ

Figure 4.8: The deterministic graph of the number system of signed continued fractions.

ingoing edges. We have

Vλ = R = F1(V1) ∪ F0(V0) ∪ F1(V1)

V1 = [∞, 0] = [∞,−1] ∪ [−1, 0] = F1(V1) ∪ F0(V10)

V0 = [1,−1] = [1,∞] ∪ [∞, 1] = F1(V1) ∪ F1(V1)

V1 = [0,∞] = [0, 1] ∪ [1,∞] = F0(V10) ∪ F1(V1)

V10 = [1,∞] = F1(V1)

V10 = [∞,−1] = F1(V1)

The interval cylinders are obtained from the unique paths with source i = λ: Φ([1]) = F1V1 =
[∞,−1], Φ([0]) = F0V0 = [−1, 1], Φ([1]) = F1V1 = [1,∞]. Thus ΣG = ΣD and (F,G, V ) is a
sofic number system.

Consider the binary signed system with alphabet A = {1, 0, 1, 0} and forbidden words
D = {10, 00, 10, 00, 11, 11}. The vertices of the deterministic labelled graph are prefixes of the
forbidden words B = {λ, 1, 0, 1, 0}. The graph together with the V -intervals is in Figure 4.9.
We have

Vλ = R = F1(V1) ∪ F0(V0) ∪ F1(V1) ∪ F0(V0)

V1 = [−1, 1
2
] = [−1,−1

4
] ∪ [−1

2
, 1
2
] = F1(V1) ∪ F0(V0)

V0 = [−1, 1] = [−1,−1
4
] ∪ [−1

2
, 1
2
] ∪ [1

4
, 1] = F1(V1) ∪ F0(V0) ∪ F1(V1)

V1 = [−1
2
, 1] = [−1

2
, 1
2
] ∪ [1

4
, 1] = F0(V0) ∪ F1(V1)

Thus ΣG = ΣD and (F,G, V ) is a sofic number system.

p a q Lq Rq Vq FaVq
0, 0, 1 1 1 1

ω
01ω [−1, 1

2
] [−1,−1

4
]

0, 1, 1 0 0 1
ω

1ω [−1, 1] [−1
2
, 1
2
]

0, 1, 0 1 1 01
ω

1ω [−1
2
, 1] [1

4
, 1]

0 0 0 101
ω

101ω [1
4
,−1

4
] [1

2
,−1

2
] 0 

0 

0 0 0 
1 1 

1 

1 

1 

0-
0-

0-

1-1-

1-

1-

1- λ

Figure 4.9: The deterministic graph of the binary signed system
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4.6 The contraction and length quotients

The speed of convergence of a number system is expressed by its length quotients which mea-
sure the dependence of the cylinder interval length on the word length. The length quotients
are related to the contraction quotients which measure the growth of the derivations of the
composite transformations. To develop the theory of these quotients we need the subadditive
Lemma 4.30.

Lemma 4.30 Let {an : n ≥ 1} be a sequence of real numbers such that an+m ≤ an+am. Then
there exists a limit a = limn→∞

an
n

and a ≤ am
m

for each m.

Proof: For a fixed m, let n = m · qn + rn, where qn = ⌊n/m⌋ is the integer part of n/m, and
0 ≤ rn < m is the remainder. Since an ≤ qn · am + arn , we get

lim sup
n→∞

an
n
≤ am · lim

n→∞

qn
n

+ lim
n→∞

arn
n

=
am
m

lim sup
n→∞

an
n
≤ lim inf

m→∞

am
m

so the limit a = limn→∞
an
n

exists and a ≤ am
m

for each m.

Proposition 4.31 Let (F,Σ) be a number system. For n > 0 set

qn = inf{|F •
u (Φ(v))| : uv ∈ Σ, |u| = n}

Qn = sup{|F •
u (Φ(v))| : uv ∈ Σ, |u| = n}

Then

1. 0 < qn · qm ≤ qn+m.

2. 0 < Qn+m ≤ Qn ·Qm.

3. There exists the limit q = limn→∞ n
√
qn called the lower contracting quotient of (F,Σ).

4. There exists the limit Q = limn→∞
n
√
Qn called the upper contracting quotient of (F,Σ).

5. For each n we have qn ≤ q ≤ Q ≤ Qn

Proof: The function Qn : Σ → R defined by Qn(u) = |(Fu[0,n)
)•(Φ(σn(u))| is continuous and

positive. Since Σ is compact, the function has a positive minimum qn and a positive maximum
Qn. Let uvw ∈ Σ, |u| = n, |v| = m. Since F •

uv(Φ(w)) = F •
u (Φ(vw)) · F •

v (Φ(w)), we get
qn · qm ≤ F •

uv(Φ(w)) ≤ Qn ·Qm, so qn · qm ≤ qn+m, Qn+m ≤ Qn ·Qm. We apply Lemma 4.30
to − lnqn and lnQn to get the existence of limits q, Q with qn ≤ q ≤ Q ≤ Qn.

Proposition 4.32 If (F,W ) is an interval number system then

qn = min{F •
u (x) : u ∈ Ln

F,W , x ∈ F−1
u (Wu)}

Qn = max{F •
u (x) : u ∈ Ln

F,W , x ∈ F−1
u (Wu)}

Proof: If uv ∈ Σ then Fu(Φ(v)) = Φ(uv) ∈ Φ([u]) = Wu, so Φ(v) ∈ F−1
u (Wu). There exists

uv ∈ Σ such that

qn = F •
u (Φ(v)) ≥ min{F •

u (x) : u ∈ Ln
F,W , x ∈ F−1

u (Wu)}.
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Conversely, the minimum of all F •
u (x) on F−1

u (Wu) is attained at some x ∈ F−1
u (Wu) with

u ∈ Ln
F,W . Since Wu = Φ([u]), there exists uv ∈ [u] with x = F−1

u (Φ(uv)) = Φ(v), so

min{F •
u (x) : u ∈ Ln

F,W , x ∈ F−1
u (Wu)} = F •

u (Φ(v)) ≥ qn

For Qn the proof is analogous.

Proposition 4.33 If (F,G, V ) is a sofic number system then

qn = min{F •
u (x) : x ∈ Vq, u−→ q, |u| = n}

Qn = max{F •
u (x) : x ∈ Vq, u−→ q, |u| = n}

Proof: There exists uv ∈ Σ such that |u| = n, qn = F •
u (Φ(v)). There exists a path p u−→ q v−→

such that v ∈ Fq, Φ(v) ∈ Φ(Fq) = Vq, so qn ≥ min{F •
u (x) : x ∈ Vq, u−→ q, |u| = n}. Conversely,

there exists a path p u−→ q and x ∈ Vq, where F •
u (x) attains its minimum. Since Vq = Φ(Fq),

there exists a v ∈ Fq with x = Φ(v), so min{F •
u (x) : x ∈ Vq, u−→ q, |u| = n} ≥ qn. For Qn, the

proof is analogous.

Definition 4.34 Let (F,Σ) be a Möbius number system. The lower and upper length quo-
tients are defined by

ln = min{|Φ[u]| : u ∈ Ln
G},

Ln = max{|Φ[u]| : u ∈ Ln
G}

l = lim inf
n→∞

n
√

ln

L = lim sup
n→∞

n
√

Ln

Proposition 4.35 For an interval number system (F,W ) we have L ≤ m
√
Qm for each m > 0.

Proof: For each u ∈ Ln+1
F,W we have |Φ([u])| = |Wu| ≤ |Fu[0,n)

(Wun)|. For a fixed m let
n = km+ j with 0 ≤ j < m. We get

|Wu| ≤ |Fu[0,m)
(Wu[m,n]

)| ≤ Qm · |Wu[m,n]
| ≤ · · · ≤ Qk

m · |Wu[km,n]
|

n
√
|Wu| ≤ Q

k
km+j
m · C

1
km+j

where C = max{|Wu| : |u| < m}. As n → ∞, k → ∞ and the right-hand side converges to
m
√
Qm.

Theorem 4.36 If (F,G, V ) is a sofic number system and m > 0 then

m
√
qm ≤ l ≤ L ≤ m

√
Qm.
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Proof: For a fixed m denote by

C0 = min{|Fu(Vq)| : u−→ q, |u| < m}
C1 = max{|Fu(Vq)| : u−→ q, |u| < m}

Assume that p u−→ q is a path in G and n = km+ j, where 0 ≤ j < m. Then

|Fu(Vq)| ≤ Qm · |Fσm(u)(Vq)| ≤ · · · ≤ Qk
m · |Fσkm(u)(Vq)| ≤ C1 ·Qk

m

and similarly |Fu(Vq)| ≥ C0 · qk
m, so

C
1
n
0 · q

k
km+j
m ≤ n

√
|Fu(Vq)| ≤ C

1
n
1 ·Q

k
km+j
m

As n→∞, the left-hand side converges to m
√
qm and the right-hand side converges to m

√
Qm.

Example 4.37 For the binary signed number system of Example 4.3 we have l = L = 1
2
.

Proof: sz(a, b) = a·b
det(b,a)

. For m ≥ 0, u ∈ {1, 0, 1}n we get Φ[0
m
u] = F0

m
u(Vp) where [−1

2
, 1
2
] ⊂

Vp ⊆ [−1, 1], so

2m[φ(u)− 2−n−1, φ(u) + 2−n−1] ⊆ Φ[0
m
u] ⊆ 2m[φ(u)− 2−n, φ(u) + 2−n]

where φ(u) =
∑

i<|u| ui2
−i−1, so |φ(u)| ≤ 1. On both sides we have an interval of the form

In = [2
nan−bn

2n
, 2

nan+bn
2n

], where |an| ≤ 1, 1
2
≤ bn ≤ 1. We get sz(In) =

22n(a2n+1)−b2n
2n+1bn

, 2n−1−2−n−1 ≤
sz(In) ≤ 2n+1. From the estimate 1

4·sz(I) ≤ |I| ≤
1

π·sz(I) we obtain limn→∞
n
√
|In| = 1

2
, so

lim|u|→∞
m+|u|
√
|Φ[0mu]| = 1

2
. For 0

m
we have Φ[0

m
] = Fm

0
(V0) = [2

m−2

1
, 2

m−2

−1
] with sz(Φ[0

m
]) =

22m−4−1
2m−1 , so limm→∞

m

√
|Φ[0m]| = 1

2
. Thus l = L = 1

2
.

Proposition 4.38 For the system of symmetric continued fractions from Example 4.6 we have
l ≤ 3−

√
5

2

.
= 0.312, L = 1.

Proof: The deterministic graph of the system has vertices B = {λ, 1, 1} and edges

1
1,0← 1

1,0← λ
0,1→ 1

0,1→ 1

with intervals V1 = [∞, 0], V1 = [0,∞]. For u = (10)n we have F n
10 = [f2n+1

f2n
, f2n
f2n−1

], where fn are
the Fibonacci numbers defined by f1 = f2 = 1, fn+2 = fn + fn−1. It follows

Φ[(10)n] = F n
10V1 = [ f2n

f2n−1
, f2n+1

f2n
]

sz(Φ[(10)n]) = f2n(f2n+1 + f2n−1) ≈ α−4n(α + α−1)/5,

where α =
√
5−1
2

.
= 0.618, so limn→∞

2n
√
|Φ[(10)n]| = α2, and l ≤ α2. For u = 1n we have Φ[1n] =

F n
1 (V1) = [n

1
, 1
0
], with sz(Φ[1n]) = n so 1

4n
≤ |Φ[1n]| ≤ 1

πn
. It follows limn→∞

n
√
|Φ[1n]| = 1, so

l = 1.
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Figure 4.10: The square interval number system with r = (
√
2 − 1)2 and W0 = V(F0) =

(1−
√
2,
√
2− 1). The expansion subshift is the circular subshift with speed 1.

4.7 Polygonal number systems

Polygonal number systems consist of hyperbolic transformations whose fixed points form ver-
tices of a regular polygon. The parameters of these systems are the number n ≥ 3 of vertices
and the similarity quotient 0 < r < 1 of the transformations. We denote by Qr(x) = rx the
similarity with quotient r and by Rn the rotation by angle 2π

n
. For a ∈ A = {0, 1, . . . , n − 1},

we get

Ra
n =

[
cos πa

n
sin πa

n

− sin πa
n

cos πa
n

]
, Qr =

[
r 0
0 1

]
Definition 4.39 The polygonal iterative system with n ≥ 3 vertices and quotient 0 < r < 1
has alphabet A = {0, 1, . . . , n− 1} and transformations Fa = Ra

nQrR
−a
n .

The transformations of the system are

Fa =

[
r cos2 πa

n
+ sin2 πa

n
(1− r) sin πa

n
cos πa

n

(1− r) sin πa
n
cos πa

n
r sin2 πa

n
+ cos2 πa

n

]

=

[
(1 + r)− (1− r) cos 2πa

n
(1− r) sin 2πa

n

(1− r) sin 2πa
n

(1 + r) + (1− r) cos 2πa
n

]

The expansion interval of Qr is V(Qr) = (−
√
r,
√
r) with the length

|V(Qr)| =
1

π
arccotg

1− r
2
√
r

=
1

π
arccos

1− r
1 + r

.

To get an interval number system we take an interval W0 = (−s, s) with s ≤
√
r and

Wa = Ra
n(W0) =

(−s cos πa
n
+ sin πa

n

s sin πa
n
+ cos πa

n

,
s cos πa

n
+ sin πa

n

−s sin πa
n
+ cos πa

n

)
.
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All Wa have the same length |Wa| = 1
π
arccos 1−s2

1+s2
. These intervals should overlap, so their

length should be larger than 1
n
. This condition gives

√
r ≥ s ≥

√
1− cos π

n

1 + cos π
n

= tan
π

2n

which implies r ≥ tan2 π
2n
. For example for n = 3 we get r ≥ 1

3
, for n = 4 we get r ≥ 3−2

√
2 ≈

0.172 (Figure 4.10), and for n = 6 we get r ≥ 7− 4
√
3 ≈ 0.072. Thus we have

Proposition 4.40 If n ≥ 3, A = {0, 1, . . . , n− 1}, Fa = Ra
nQrR

−a
n , Wa = Ra

n(−s, s), tan π
2n
≤

s ≤
√
r < 1, then (F,W ) is an interval number system.
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Figure 4.11: The sexagon number systems with circular SFT with speed 1 and parameter
r = 2−

√
3 (left) and r = 1

3
(right)

We consider now polygonal systems (F,Σ), with circular SFT Σ which are symmetric with
respect to rotations and allow a limited speed around the circle. The circular subshift Σ1 with
speed 1 allows only transitions to neighboring letters, so the forbidden words are

D = {ab ∈ A2 : b ̸∈ {modn(a− 1), a,modn(a+ 1)}}.

For example, with n = 4, the forbidden words are D = {02, 13, 20, 31}. With n = 5, the
forbidden words are D = {02, 03, 13, 14, 24, 20, 30, 31, 41, 42}. The left and right selectors are
L(a) = modn(a− 1), R(a) = modn(a + 1), so L0 = (0(n− 1) · · · 21)ω, R0 = (012 · · · (n− 1))ω.
For v = 012 · · · (n − 1) we get Fv = Qr(RnQrR

−1
n )(R2

nQrR
−2
n ) · · · (Rn−1

n QrR
1−n
n ) = (QrRn)

n.
We have

QrRn =

[
r cos π

n
r sin π

n

− sin π
n

cos π
n

]
, trc(QrRn) =

(r + 1)2 cos2 π
n

r

Thus trc(QrRn) ≥ 4 iff r2 cos2 π
n
+ 2r(cos2 π

n
− 2) + cos2 π

n
≥ 0. This quadratic inequality has

discriminant D = 4 sin2 π
n
and solutions

2− cos2 π
n
± 2 sin2 π

n

cos2 π
n

=
(1± sin π

n
)2

1− sin2 π
n

=
1± sin π

n

1∓ sin π
n

.
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If r > rn =
1−sin π

n

1+sin π
n
then QrRn is elliptic and Σ1 ̸⊆ XF . If r = rn then QrRn is parabolic and if

r < rn then QrRn is hyperbolic. The stable fixed point of QrRn is then

sr,n =
(1− r) cos π

n
−
√
(1 + r)2 cos2 π

n
− 4r

2 sin π
n

.

The vertices of the deterministic automaton for Σ1 are the prefixes of the forbidden words
B = {λ, 0, 1, . . . , n − 1}. For the V -intervals we get Va = Ra

nV0, where V0 = (−sr,n, sr,n). The
value mapping Φ : Σ → R is surjective provided the intervals Va cover R, i.e., if the length of
V0 is at least 1

n
, i.e., if

sr,n ≥

√
1− cos π

n

1 + cos π
n

=
1− cos π

n

sin π
n

.

or √
(1 + r)2 cos2

π

n
− 4r ≤ (3− r) cos π

n
− 2

The right-hand side of this inequality must be positive which gives the condition r <
3 cos π

n
−2

cos π
n

.

For n = 3 we get r < −1 which is impossible so there exists no polygonal number system with
n = 3 and Σ1. If n ≥ 4 then the right-hand side of the inequality is positive, and we get after

a little of algebra the condition r ≥ 2 cos π
n
−1

2 cos π
n
+1

. Since
1−sin π

n

1+sin π
n
≤ 3 cos π

n
−2

cos π
n

for n ≥ 4, we get

Proposition 4.41 If n ≥ 4, A = {0, 1, . . . , n− 1}, Fa = Ra
nQrR

−a
n , Σ1 is the circular subshift

with speed 1 and
2 cos π

n
− 1

2 cos π
n
+ 1
≤ r ≤

1− sin π
n

1 + sin π
n

.

then (F,Σ1) is a number system.

Proof: The condition implies that the sets Va obtained by the selectors cover R. To show
that (F,Σ1) is a sofic number system we have to prove the condition 4 of Definition 4.28 that
Vq ⊆ U(Fa) provided a−→ q. This reads Va−1 ∪ Va ∪ Va+1 ⊆ U(Fa). This is satisfied provided
V1 = Rn(V0) ⊆ U(F0) and this is equivalent with V0 ⊆ R−1

n (U(F0)). Since U(F0) = (− 1√
r
, 1√

r
),

the condition reads

sr,n ≤
cos π

n
−
√
r sin π

n

sin π
n
+
√
r cos π

n

for all r with
2 cos π

n
−1

2 cos π
n
+1
≤ r ≤ 1−sin π

n

1+sin π
n
. This can be proved by elementray methods.

In particular for n = 4 we get unique r = (
√
2 − 1)2 (Figure 4.10). For n = 6 we get

2 −
√
3 ≤ r ≤ 1

3
. The systems with these extreme values are in Figure 4.11. To obtain

more convergent systems we take a smaller circular subshift Σ1/2 with speed 1
2
. The subshift

forbids the same words as Σ1 and moreover the words 012, 0(n− 1)(n− 2), 123, 10(n− 1) . . ..
For the right selector we get L0 = vω with v = 01122 · · · (n − 1(n − 1)0. For Fv we get
Fv = Qr(RnQ

2
rR

−1
n )(R2

nQ
2
rR

−2
n ) · · · (Rn−1

n Q2
rR

1−n
n ) = (QrRnQr)

n. For each n ≥ 3 there exist
sofic polygonal number systems with the subshift Σ1/2.
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4.8 Discrete groups

Regular transformations with a projective metric form the metric space MR) and the com-
position operation is continuous. Thus M(R) is a continuous group. An iterative system
F = {Fa ∈ M(R) : a ∈ A} determines a subgroup of M(R): the smallest subgroup of M(R)
which contains all Fa. We say that this is a discrete group, if it is discrete subspace of M(R),
i.e., if each its element is isolated (see Beardon [4], Katok [28]). An important example of
a discrete group is the modular group of transformations with integer coefficients and unit
determinant (see Section 6.3)

M1(Z) = {M(x) =
ax+ b

cx+ d
: a, b, c, d ∈ Z, det(M) = ad− bc = 1}

For example, the systems of signed continued fractions or symmetric continued fractions gener-
ate the modular group. Some polygonal systems determine discrete groups as well. We consider
discrete polygonal systems with 2n transformations which determine tesellation of the hyper-
bolic disc by regular m-gons. For Fa = R2nQrR

−1
2n we have FaFa+n = Id. A discrete system

occurs if the points A0 = 0, A1 = F̂n−1(0), A2 = F̂2(n−1)(0), . . . form vertices of a regular
polygon.

Definition 4.42 Let n,m be integers with 1
n
+ 2

m
< 1. The (2n,m)-discrete polygonal system

has alphabet A = {0, 1, . . . , 2n− 1} and transformations Fa = Ra
2nQrR

−a
2n , where

r = r2n,m =
1−

√
1− sin2 π

2n
/ cos2 π

m

1 +
√
1− sin2 π

2n
/ cos2 π

m

0
/
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Figure 4.12: The discrete polygonal (4, 5)-system with r4,5 =
1−
√√

5−2

1+
√√

5−2
≈ 0.346 (left) and the

(4, 6)-system with r4,6 = 2−
√
3 ≈ 0.268 (right).

Proposition 4.43 The (2n,m)-discrete polygonal system generates a discrete group which sat-
isfies

FaFa+n = Id,

F0Fn+1F2(n+1) · · ·F(m−1)(n+1) = Rmn+m
2n ,

F0Fn−1F2(n−1) · · ·F(m−1)(n−1) = Rmn−m
2n
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(the additions are modulo 2n).

Proof: Denote by A0 = 0 and Ai = F̂0F̂n−1F̂2(n−1) · · · F̂(i−1)(n−1)(0). We derive a condition on r
which implies that Am = 0, so A0, . . . , Am−1 form the vertices of a regular m-gon, whose inner
angles at vertices Ai are π/n. Denote by a = ϱ(0, F̂0(0)) the hyperbolic length of the sides of
the polygon, by S its center and by B0 the middle of the hyperbolic line A0A1. The hyperbolic
triangle SA0B0 has angles π

2n
at A0,

π
2
at B0 and π

m
at S. Its side has length A0B0 = a

2
. By

the second cosine rule and Proposition 3.28 we get

1√
1− |F̂ (0)|2

= cosh
a

2
=

cos π
2n

cos π
2
+ cos π

m

sin π
2n

sin π
2

=
cos π

m

sin π
2n

Since F̂0(0) =
i(1−r)
1+r

we get

r =
1− |F̂ (0)|
1 + |F̂ (0)|

=
1−

√
1− 1/ cosh2(a/2)

1 +
√

1− 1/ cosh2(a/2)

and the formula for r follows. For the transformation G− = F0Fn−1F2(n−1) · · ·F(m−1)(n−1) we
have

G− = Qr(R
n−1
2n QrR

1−n
2n ) · · · (R(m−1)(n−1)

2n QrR
(m−1)(1−n)
2n ) = (QrR

n−1
2n )mRmn+m

(We use R2n
2n = Id). We compute the trace

trc(QrR
n−1
2n ) =

(r + 1)2

r
· cos2 π(n− 1)

2n
= 4 cosh2 a

2
· sin2 π

2n
= 4 cos2

π

m

Thus QrR
n−1
2n is an elliptic transformation with rotation angle rot(QrR

n−1
2n ) = 2π

m
and therefore

(QrR
n−1
2n )m = Id. Thus G− = Rmn+m

2n . Similarly we get for

G+ = Qr(R
n+1
2n QrR

−n−1
2n ) · · · (R(m−1)(n+1)

2n QrR
−(m−1)(n+1)
2n ) = (QrR

n+1
2n )mRmn−m = Rmn−m.

Note that Rmn+m = Rm, Rmn−m = R−m for m even and Rmn+m = Rn+m, Rmn−m = Rn−m

for m odd. In Figure 4.12 left we see the (4, 5) discrete system with r4,5 =
1−
√√

5−2

1+
√√

5−2
≈ 0.346

and the circular subshift Σ1/2 with speed 1
2
and forbidden words

D = {02, 13, 20, 31, 012, 123, 230, 301, 032, 103, 210, 321}.

In Figure 4.12 right we see the (4, 6) discrete system with r4,6 = 2−
√
3 ≈ 0.268 and the subshift

with forbidden words

D = {02, 13, 20, 31, 0321, 0123, 1032, 1230, 2103, 2301, 3201, 3012}.



Chapter 5

Arithmetical algorithms

If (F,Σ) is a number system with redundant value mapping Φ : Σ→ R, then each continuous
mapping G : R→ R can be lifted to a continuous mapping F : Σ→ Σ such that Φ ◦F = G ◦Φ
(Proposition 2.16). A mapping F : Σ→ Σ is continuous iff there exists a sequence of mappings
{fk : Lnk(Σ) → A : k ≥ 0} such that F (u)n = fn(u[0,nk)) for each u ∈ Σ and k ≥ 0. If
there exists an algorithm which for each n computes fn, then we say that F is an algorithmic
mapping. In this case there exists an algorithm which computes F (u) for each input word
u ∈ Σ. The algorithm successively reads letters of the input word u and when it reads the prefix
of u of length kn, it writes the letter F (u)n to the output. Thus the algorithm works in infinite
time but each finite prefix of the oputput is computed in a finite time from a finite prefix of
the input. Each algorithmic mapping is continouous but there exist continous mappings which
are not algorithmic (see Weihrauch [68]).

Not every continuous mapping G : R → R has an algorithmic lifting. Assume that we
want to compute a unary arithmetical operation, or Möbius transformation G(x) = ax+b

cx+d
. This

is possible if a, b, c, d are alhorithmic numbers and if the entries of the projective matrices
which define the number system (F,Σ) are algorithmic as well. This condition is satisfied if
all these entries are rational numbers (see Chapter 6) or algebraic numbers (see Chapter 6).
Moreover, the subshift Σ should be an algorithmic subset of Aω. In the present chapter we
present arithmetical algorithms for sofic number systems (F,G, V ) such that the entries of the
projective matrices Fa and Vp are either rational or algebraic numbers.

In this case there exist also algorithms which compute binary arithmetical operations like
addition or multiplication. There is, however, one difference with the unary arithmetical opera-
tions. Binary arithmetical operations are not defined everywhere. For example∞+∞ or 0 ·∞
are undefined expressions. If the addition algorithm is run on inputs which represent ∞ then
it never produces any output. With this exception, binary algorithms work similarly as unary
algorithms: Each finite prefix of the output is computed in a finite time from finite prefixes of
the inputs. The idea of such an online computation of arithmetic operations comes from an
unpublished manuscript of Gosper [21] and has been elaborated by Kornerup and Matula [34],
[33] and Vuillemin [66].

5.1 Intervals

In section 3.2 we determine a proper interval I = (a, b) by the ordered pair of its endpoints
a, b ∈ R as (a, b) = {x ∈ R : det(a, x) ·det(x, b) ·det(b, a) > 0} (Definition 3.2). When we work
with intervals in arithmetical algorithms, this notation is not convenient. For example, for a
decreasing transformation M ∈M−(R) we get M(I) = (M(b),M(a)) so we have to distinguish

95
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the sign of det(M) when we map an interval by a transformation. A better possibility, which
leads to an efficient matrix calculus (see Kůrka [40]), is to define the open interval with endpoints
a, b as the set {ay0 + by1 : y0, y1 > 0} of convex combinations of a, b. The two disjoint
intervals I = (a, b) and J = (b, a) are then represented by the matrices P = [a0 b0

a1 b1
] and

Q = [a0 −b0
a1 −b1

] (see Figure 5.1). The order of columns is arbitrary. Matrices [a0 b0
a1 b1

] and [b0 a0
b1 a1

]

represent the same interval. A nonzero multiple λP of P represents the same interval as P , so
proper intervals are represented by regular projective matrices, i.e., by the elements of the
projective space M(R). We get x ∈ I iff x = Py for some vector y with positive sign: the
sign of y ∈ R is the sign of the product y0y1: sgn(y) = sgn(y0y1) ∈ {−1, 0, 1}. Thus x ∈ I iff
sgn(P−1x) > 0. To get also improper intervals we apply this definition also to singular matrices
and even to the zero matrix 0 = [0 0

0 0
] (the zero-dimensional subspace of the vector space R2×2).

Denote by
M(R) = P(R2×2) ∪ {0}

the set of all subspaces of R2×2 of dimension at most 1. Recall that the (pseudo)inverse of a
matrix is defined by [a b

c d
]−1 = [ d −b

−c a
]. If P is not regular then PP−1 is the zero matrix. The

stable and unstable point of the zero matrix is by definition 0
0
.

P = [−4 3
8 7

] Q = [−4 −3
8 −7

]

−1
2 P

3
7 Q

−1
2

3
7 Q

d(a) a b
d(b) d(a)

a

b

d(b)
d(P )

d(Q)

Figure 5.1: The stereographic projection of intervals.

Definition 5.1 The open and closed intervals of a matrix P ∈M(R) are defined by

P o = {x ∈ R : sgn(P−1x) > 0},
P c = {x ∈ R : sgn(P−1x) ≥ 0}.

The left and right endpoints of P = [a0 b0
a1 b1

] ∈ M(R) are l(P ) = a0
a1
, r(P ) = b0

b1
provided

det(P ) < 0 and l(P ) = b0
b1
, r(P ) = a0

a1
provided det(P ) > 0.

Proposition 5.2 Let P = [a0 b0
a1 b1

] ∈M(R). Then

P o =


(a0
a1
, b0
b1
) if det(P ) < 0,

( b0
b1
, a0
a1
) if det(P ) > 0,

∅ if det(P ) = 0, sgn(u(P )) ≤ 0

R \ {s(P )} if det(P ) = 0, sgn(u(P )) > 0

P c =


[a0
a1
, b0
b1
] if det(P ) < 0,

[ b0
b1
, a0
a1
] if det(P ) > 0,

{s(P )} if det(P ) = 0, sgn(u(P )) < 0

R if det(P ) = 0, sgn(u(P )) ≥ 0
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In particular for the zero matrix we have 0o = ∅, 0c = R.

Proof: We have P−1x = b1x0−b0x1

a0x1−a1x0
, so

det(a, x) · det(x, b) · det(b, a) = (a0x1 − a1x0)(b1x0 − b0x1)(b0a1 − b1a0)
= −(P−1x)1 · (P−1x)0 · det(P )

det(b, x) · det(x, a) · det(a, b) = (P−1x)1 · (P−1x)0 · det(P )

and we get the statement for P regular. If P = [s0u1 −s0u0

s1u1 −s1u0
] is singular with u = u(P ) and

s = s(P ) then

P−1x =

[
−s1u0 s0u0
−s1u1 s0u1

]
· x0
x1

=
u0(−s1x0 + s0x1)

u1(−s1x0 + s0x1)

If sgn(u) < 0 then P o = ∅, P c = {s}. If sgn(u) = 0 then P o = ∅, P c = R. If sgn(u) > 0 then
P o = R \ {s}, P c = R.

Denote by

R+ = (0,∞) = {x ∈ R : sgn(x) > 0} = Ido

R+
= [0,∞] = {x ∈ R : sgn(x) ≥ 0} = Idc

Denote by ¬ = [1 0
0 −1

] the negation matrix. We have ¬−1 = ¬ and ¬x = x0

−x1
for x ∈ R, so

sgn(x) ≥ 0 iff sgn(¬x) ≤ 0. Moreover,

P =

[
a b
c d

]
⇒ ¬P =

[
a b
−c −d

]
, P¬ =

[
a −b
c −d

]
Thus multiplying by ¬ from the left changes the signs of the bottom row and multiplying by ¬
from the right changes the signs of the right column.

Proposition 5.3 For P ∈ M(R) we have (P¬)c = R \ P o, (P¬)o = R \ P c, P o ∩ (P¬)o = ∅,
P c ∪ (P¬)c = R.

Proof: We have x ∈ (P¬)c iff sgn(¬P−1x) = sgn((P¬)−1x) ≥ 0 iff sgn(P−1x) ≤ 0 iff x ̸∈ P o

and similarly, x ∈ (P¬)o iff x ̸∈ P c. For P = [a b
c d

] we get P−1x = dx0−bx1

−cx0+ax1
, (P¬)−1x = dx0−bx1

cx0−ax1
,

so P o ∩ (P¬)o = ∅, P c ∪ (P¬)c = R.

Definition 5.4 Define the sign of a matrix M ∈M(R) by

sgn(M) =


1 if ∃λ ̸= 0,∀i, j, λMij > 0
0 if ∃λ ̸= 0,∀i, j, λMij ≥ 0 and ∃i, j,Mij = 0
−1 if ∃i, j, k, l,Mij < 0 < Mkl

Proposition 5.5 If P,Q ∈M(R) then sgn(Q−1P ) ≥ 0 iff P o ⊆ Qo iff P c ⊆ Qc.

Proof: If P , Q are regular then P o ⊆ Qo iff P c ⊆ Qc since P c = P o ∪ {l(P ), r(P )}. If
sgn(Q−1P ) ≥ 0, x ∈ P c then sgn(Q−1x) = sgn((Q−1P ) · (P−1x)) ≥ 0, so x ∈ Qc and therefore
P c ⊆ Qc. Conversely assume by contradiction that P c ⊆ Qc and sgn(Q−1P ) < 0. If P = [a b

c d
]

then a
c
∈ P c ⊆ Qc, b

d
∈ P c ⊆ Qc, so sgn(Q−1 a

c
) ≥ 0, sgn(Q−1 b

d
) ≥ 0. This means that both

columns of Q−1P have nonnegative sign, and since sgn(Q−1P ) < 0, they have the opposite
sign. It follows that sgn(Q−1P¬) > 0 and therefore (P¬)c ⊆ Qc. We get R = P c ∪ (P¬)c ⊆ Qc

and this is a contradiction since Q is assumed to be regular.
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Definition 5.6 For P,Q ∈ M(R) we write P ⊆ Q if sgn(Q−1P ) ≥ 0. The image of a set
I ⊆ R by a transformation M ∈M(R) is defined by

M(I) = {y ∈ R : ∃x ∈ I : y =Mx} = {M(x) : x ∈ I} ∩ R.

If M is a singular transformation and I = {u(M)}, then M(I) = ∅. If I contains a point
different from u(M) then M(I) = {s(M)}. For the zero transformation we have 0(I) = ∅ for
every set I ⊆ R.

Proposition 5.7

1. If P,Q ∈M(R) then P (Qc) ⊆ (PQ)c.

2. If P,Q ∈M(R) then P (Qc) = (PQ)c.

Proof: We use Proposition 3.37.
1. If P = 0 then P (Qc) = ∅.
2. If Q = 0 then (PQ)c = R.
3. Let P ∈ M0(R), Q ∈ M(R). Then P (Qc) = {s(P )}, s(PQ) = s(P ), so either (PQ)c =
{s(P )}, or (PQ)c = R.
4. Let Q ∈ M0(R). Then either PQ = 0 and (PQ)c = R or PQ ∈ M0(R) and then u(PQ) =
u(Q). If u(Q) ≥ 0 then (PQ)c = R. If u(Q) < 0 then P (Qc) = {P (s(Q))} = (PQ)c.
5. Let P,Q ∈ M(R). We have y ∈ (PQ)c iff sgn(Q−1P−1y) ≥ 0 iff P−1y ∈ Qc. This is
equivalent to y = PP−1y ∈ P (Qc).

Proposition 5.8 Let P,Q ∈M(R) be regular matrices.

1. If M ∈M(R) and sgn(Q−1MP ) ≥ 0, then M(P c) ⊆ Qc.

2. If M ∈M(R) and M(P c) ⊆ Qc, then sgn(Q−1MP ) ≥ 0.

Proof: 1. If M = 0 is the zero matrix then M(P c) = ∅ ⊆ Qc. If M is singular then
sgn(Q−1MP ) ≥ 0 implies s(M) = s(MP ) ∈ Qc so M(P c) = {s(M)} ⊆ Qc. If M is regular
then sgn(Q−1MP ) ≥ 0 implies M(P c) = (MP )c ⊆ Qc by Propositions 5.5 and 5.7.
2. If M is regular, then (MP )c = M(P c) ⊆ Qc by Proposition 5.7. By Proposition 5.5 we get
sgn(Q−1MP ) ≥ 0.

Proposition 5.9 Define the size of a regular projective matrix P = [a b
c d

] ∈M(R) by sz(P ) =
ab+cd
|ad−bc| . Then sz(P ) = sz(P c) (see Definition 3.2) and

|P | =
1

π
arccotg sz(P ) =

1

2
− 1

π
arctan sz(P )

=


1
π
arctan 1

sz(P )
if sz(P ) > 0

1
2

if sz(P ) = 0
1
π
arctan 1

sz(P )
+ 1 if sz(P ) < 0

For the length of small intervals we have an estimate

sz(P ) > 1⇔ |P | < 1

4
⇒ 1

4 · sz(P )
≤ |P | ≤ 1

π · sz(P )
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Proof: We use Definition 3.2 and Proposition 3.3. If det(P ) < 0 then det([b a
d c

]) = − det(P ) >

0. If det(P ) > 0 then det([a b
c d

]) = det(P ) > 0. In both cases we get |P c| = 1
π
arccos ab+cd√

(a2+c2)(b2+d2)
.

The rest of the proof follows from well-known trigonometric formulas.

We have seen that a projective matrix can be regarded as a transformation, i.e., as a selfmap
of R or as an interval, i.e., a subset of R. We turn now to its third interpretation as an operator
on intervals. We say that M ∈ M(R) is a nonnegative projective matrix if its sign is
nonnegative. If M is nonnegative and P = [a b

c d
] ∈ M(R), then by definition, PM ⊆ P , i.e.,

(PM)o ⊆ P o and (PM)c ⊆ P c. For example if M0 = [1 1
0 1

], M1 = [1 1
1 0

] then

PM0 =

[
a a+ b
c c+ d

]
, PM1 =

[
a+ b b
c+ d d

]
.

If det(P ) < 0 then PM0 is a left part of P and PM1 is a right part of P . Consider an interval
number system (F,W ) over A. The intervals Wa are assumed proper and open so we represent
them by matrices: from now on we assume that Wa ∈M(R). For u ∈ An+1 we have

Wu = W o
u0
∩ Fu0(W

o
u1
) ∩ Fu[0,2)

(W o
u2
) ∩ · · · ∩ Fu[0,n)

(W o
un
).

If SF,W is a SFT of order 2, then Wu = Fu[0,n)
(W o

un
) = (Fu[0,n)

Wun)
o is an open interval (see

Theorem 4.21) which is represented by the matrix Fu[0,n)
Wun . If u ∈ SF,W is an infinite word,

the intervals Wu[0,n)
give ever better approximation to Φ(u). We can compute Wu[0,n+1)

from

Wu[0,n)
by the cut matrices Hab = W−1

a FaWb. If ab ∈ L2
F,W then FaWb ⊆ Wa, so Hab is a

nonnegative matrices and for u ∈ Ln+1
F,W we get

Wu = Wu0Hu0u1Hu1u2 · · ·Hun−1un

Indeed Wuab = FuFaWb = FuWaW
−1
a FaWb = WuaHab is obtained by ”cutting” Wua by Hab.

For example for the number system of symmetric continued fractions of Definition 1.14 we get
Ha0 = [1 1

0 1
], Ha1 = [1 1

1 0
] for a ∈ {0, 1} and Ha1 = [1 1

0 1
], Ha0 = [1 1

1 0
] for a ∈ {1, 0}. Thus

each interval Wu = (a
c
, b
d
) is divided into two intervals Wu0 = (a

c
, a+b
c+d

) and Wu1 = (a+b
c+d

, b
d
) (see

Figure 5.2).

0 10_
1

1_
1

1_
0

0
0

0
1

1
0

1
1

0_
1

1_
2

1_
1

2_
1

1_
0

0
0
0

0
0
1

0
1
0

0
1
1

1
0
0

1
0
1

1
1
0

1
1
1

0_
1

1_
3

1_
2

2_
3

1_
1

3_
2

2_
1

3_
1

1_
0

Figure 5.2: The cylinder intervals of the number system of symmetric continued fractions.

Similarly we can compute the intervals Φ([u]) in a sofic number system (F,G, V ). If G =
(B,E, i) is an initialized graph (i.e., u ∈ LG iff i u−→), then Vi = R. For each noninitial state
p ∈ B, Vp is a proper closed interval which we represent by a matrix Vp ∈ M(R). For an edge
(p, a, q) ∈ E we define the cut matrix Hp,a,q by

Hp,a,q =

{
FaVq if p = i
V −1
p FaVq if p ̸= i

.
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If p ̸= i then FaVq ⊆ Vp, so Hp,a,q is a nonnegative matrix. For a path p0 u0−→ p1 u1−→ · · · un−1−→ pn
we get

FuVpn =

{
Vp0Hp0,u0,p1Hp1,u1,p2 · · ·Hpn−1,un−1,pn if p0 ̸= i,
Hp0,u0,p1Hp1,u1,p2 · · ·Hpn−1,un−1,pn if p0 = i.

5.2 The unary algorithm

Given a redundant sofic number system (F,G, V ), we consider the unary algorithm, which
computes a unary arithmetical operation x 7→ Mx, where M ∈ M(R) is a Möbius transfor-
mation The input is a path (p, u) ∈ Σ|G| and the output is a path (q, v) ∈ Σ|G| such that
Φ(v) = MΦ(u). The computation takes infinite time but each finite prefix (q[0,n), v[0,n)) of the
output path is computed in a finite time from a finite prefix (p[0,kn), u[0,kn)) of the input path.

The algorithm works by searching a path in the labelled unary graph whose edges are
labelled by pairs (a, b) ∈ (A ∪ {λ})2 of input and output letters. An edge with label (a, λ)
represents an absorption of a letter a from the input, an edge with label (λ, b) represents an
emission of a letter b to the output. The label (u, v) ∈ (A∗)2 of a finite path is the concatenation
of the labels of its edges. Such a path represents the change of state upon reading the word u
from the input and writing the word v to the output. We assume that the graph G = (B,E, i)
is initialized, i.e., i ∈ B and u ∈ ΣG iff there is a path with source i and label u.

Definition 5.10 The unary graph of a sofic number system (F,G, V ) with initialized graph
G = (B,E, i) is defined as follows: Its vertices are (X, p, q) ∈M(R)×B2, its labelled edges are

absorption: (X, p, q) (a,λ)
−→ (XHp,a,r, r, q), if p a−→ r

emission: (X, p, q) (λ,a)
−→ (F−1

a X, p, r) if p ̸= i, q a−→ r,X ⊆ FaVr.

The test X ⊆ FaVr is evaluated by computing the sign of the matrix (FaVr)
−1X. Such a test

is algorithmic provided the entries of Fa, Vr and X belong to a computable ordered field
(see Section 7dfnordfield), for example to the field of rational numbers (see Chapter 6). Recall
that the cut matrix of an edge p a−→ q is Hp,a,q = FaVq provided p = i and Hp,a,q = V −1

p FaVq
otherwise. Define the admissible set of a vertex (X, p, q) ∈M(R)×B2 by

A(X, p, q) =
{
∅ if p = i
{(a, r) ∈ A×B : q a−→ r,X ⊆ FaVr} if p ̸= i

A redundant sofic system (F,G, V ) has a threshold τ > 0 such that A(X, p, q) ̸= ∅ whenever
p ̸= i and |X| < τ . The threshold is the minimum of the Lebesgue numbers of the covers
{intV c

p
(Fa(V

c
q )) : p

a−→ q} of V c
p .

Proposition 5.11 If (X, i, i) (u,v)
−→ (Y, p, q) is a finite path, then i u−→ p, i v−→ q, Y = F−1

v XFuVp.
If p ̸= i ̸= q then Y ⊆ Vq. If (X, i, i) u,v

−→ is an infinite path and u, v ∈ Aω, then u, v ∈ ΣG and
X(Φ(u)) = Φ(v).

Proof: In the initial state (X, i, i) no emission is aplicable, so the first edge must be an

absorption. If i u−→ a is a path in G and (X, i, i) (u,λ)
−→ (XFuVp, p, i)

(λ,a)
−→ (Y, p, q) is a path in the

unary graph up to the first emission, then XFuVp ⊆ FaVq, so Y = F 1
aXFuVp ⊆ Vq. Assume that

the condition is satisfied for a path (X, i, i) (u,v)
−→ (Y, p, q). If (Y, p, q) (a,λ)

−→ (Z, r, q) is an absorption,

then Z = Y Hp,a,r = F−1
v XFuVpHp,a,r = F−1

v XFuaVr and Z ⊆ Y ⊆ Vq. If (Y, p, q)
(λ,a)
−→ (Z, p, r) is

an emission, then Z = F−1
a Y = F−1

va XFuVp. Since Y ⊆ FaVr, we get Z ⊆ Vr. Let (u, v) ∈ (Aω)2
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be a label of an infinite path with source (X, i, i). Then for each n there exists kn and a path

(X, i, i) (u[0,kn),v[0,n))
−→ (Yn, pn, qn). Thus F−1

v[0,n)
XFu[0,kn)

Vpn ⊆ Vqn and therefore XFu[0,kn)
Vpn ⊆

Fv[0,n)
Vqn . We get X(Φ(u)) ∈ (XFu[0,kn)

Vpn)
c ⊆ (Fv[0,n)

Vqn)
c, and Φ(v) ∈ (Fv[0,n)

Vqn)
c. Since the

length of these intervals converges to zero, we get Φ(v) = X(Φ(u)).

A path (X0, i, i) u0,v0−→ (X1, p1, q1) u1,v1−→ (X2, p2, q2) u2,v2−→ · · · in the unary graph projects to an
input path i u0−→ p1 u1−→ p2 u2−→ · · · and to an output path i v0−→ q1 v1−→ q2 v2−→ · · · . Some edges in
these projected paths are of the form p λ−→ p. The unary graph represents a nondeterministic
algorithm for computing the symbolic representation of M . From each state (X, p, q) there
leads several absorption edges and none, one or several emission edges. To get a deterministic
algorithm, we consider a selector s which at each state chooses an emission, i.e., an element
of A(X, p, q) provided A(X, p, q) ̸= ∅. If A(X, p, q) = ∅ then s chooses an absorption. This is
indicated by s(X, p, q) = x.

Definition 5.12

1. A unary selector for a sofic number system (F,G, V ) is a mapping s : M(R) × B2 →
(A×B) ∪ {x} such that if s(X, p, q) = (a, r) ∈ A×B then (a, r) ∈ A(X, p, q).

2. If s(X, p, r) = x then we say that (X, p, q) is an absorption state of s, otherwise (X, p, q)
is an emission state.

3. A selector s is greedy if s(X, p, q) ∈ A(X, p, q) whenever A(X, p, q) ̸= ∅..

If all entries of matrices Fa, Vp are integers, the state matrices X can be stored with integer
entries whose GCD (greatest common divisor) is 1 (see Chapter 6). After each step, the entries
of the state matrix X are cancelled by their common GCD. If the admissible set contains
more than one element, a reasonable selection is the choice of the edge p a−→ p′ which gives
the smallest norm of the result F−1

a X. A selector s determines for each input transformation
M ∈M(R) and input path (p, u) ∈ Σ|G| a unique output path ΘM,s(p, u) = (q, v) ∈ Σ|G| ∪ L|G|
such that

(M, i, i) u0,v0−→ (X1, p1, q1) u1,v1−→ (X2, p2, q2) u2,v2−→ · · ·
is an infinite path in the unary graph. Here ui, vi may be empty, so they are not necessarily
the i-th letters of u or v. If s(Xi, pi, qi) = x, then ui ̸= λ, vi = λ. If s(Xi, pi, qi) ̸= x then ui = λ
and (vi, qi+1) = s(Xi, pi, qi). The image ΘM,s(p, u) of an infinite path may be a finite path. In
redundant systems with a greedy selector, an infinite input yields an infinite output:

Theorem 5.13 If (F,G, V ) is a redundant sofic number system, then for any greedy selector
s and an initial state matrix M ∈ M(R) the mapping ΘM,s : Σ|G| → Σ|G| is continuous. If
(q, v) = ΘM,s(p, u), then M(Φ(u)) = Φ(v).

Proof: Since (F,G, V ) is redundant it has a threshold τ > 0 which is the minimum of the
Lebesgue numbers of {intV c

p
(Fa(V

c
q )) : p

a−→ q}. Thus if I ⊆ V c
p and |I| ≤ τ then there exists

p a−→ q such that I ⊆ Fa(V
c
q ). We show that each infinite path of the selector contains an

infinite number of both absorptions and emissions. Assume by contradiction that (Xi, pi, qi) is
an infinite path which consists only of absorptions, so its label is (u, λ) with u ∈ ΣG. Since
limn→∞ |Fu[0,n)

Vpn | = 0, we get limn→∞ |X0Fu[0,n)
Vpn | = 0 by the continuity of X0, and therefore

|X0Fu[0,n)
Vpn| ≤ τ for some n, which is a contradiction. Assume that there exists an infinite

path consisting only of emissions. Then by Proposition 3.33 the length of the intervals Xi grows
until it exceeds the length of any Vq, and this is a contradiction. The rest of the proof follows
from Proposition 5.11.
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p Vp a q FaVq Hp,a,q

λ R 0 0 [−1
2
, 1
2
] [−1

2
, 1
2
]

1 1 [1
4
, 2
2
] [1

4
, 2
2
]

0 0 [1
2
, 1
−2

] [1
2
, 1
−2

]

1 1 [−2
2
, −1

4
] [−2

2
, −1

4
]

0 [−1
1
, 1
1
] 1 1 [−2

2
, −1

4
] [4

0
, 5
3
]

0 0 [−1
2
, 1
2
] [3

1
, 1
3
]

1 1 [1
4
, 2
2
] [3

5
, 0
4
]

1 [−1
2
, 1
1
] 0 0 [−1

2
, 1
2
] [3

0
, 1
4
]

1 1 [1
4
, 2
2
] [1

2
, 0
2
]

0 [1
4
, 1
−4

] 1 1 [1
4
, 2
2
] [4

0
, 5
3
]

0 0 [1
2
, 1
−2

] [3
1
, 1
3
]

1 1 [−2
2
, −1

4
] [3

5
, 0
4
]

1 [−1
1
, 1
2
] 1 1 [−2

2
, −1

4
] [2

0
, 2
1
]

0 0 [−1
2
, 1
2
] [4

1
, 0
3
]

Xc XHp,u,p′ F−1
v X p u−→ p′ q v−→ q′

[3.00, 0.33] [3 1
1 3

][1 1
2 −2

] 0
0→ 0

[0.71,−0.20] [5 1
7 −5

][4 5
0 3

] 0
1→ 1

[0.71, 1.40] [1 0
0 2

][5 7
7 5

] λ
0→ 0

[0.36, 0.70] [2 −1
0 1

][ 5 7
14 10

] 0
1→ 1

[−0.29, 0.40] [2 0
0 1

][−2 2
7 5

] 1
0→ 0

[−0.57, 0.80] [−4 4
7 5

][1 0
2 2

] 1
1→ 1

[0.24, 0.80] [ 4 8
17 10

][1 0
2 2

] 1
1→ 1

[0.54, 0.80] [2 −1
0 1

][20 16
37 20

] 0
1→ 1

[0.08, 0.60] [ 3 12
37 20

][1 0
2 2

] 1
1→ 1

[0.35, 0.60] [2 −1
0 1

][27 24
77 40

] 1
1→ 1

[−0.30, 0.20] [2 0
0 1

][−23 8
77 40

] 1
0→ 0

[−0.60, 0.40] [−46 16
77 40

][1 0
2 2

] 1
1→ 1

[−0.09, 0.40] [2 0
0 1

][−14 32
157 80

] 0
0→ 0

[−0.18, 0.80] [−28 64
157 80

][1 0
2 2

] 1
1→ 1

[0.32, 0.80] [2 −1
0 1

][100 128
317 160

] 0
1→ 1

[−0.37, 0.60] [−117 96
317 160

][3 1
0 4

] 1
0→ 0

[−0.37, 0.28] [2 0
0 1

][−117 89
317 319

] 1
0→ 0

[−0.74, 0.56] [−234 178
317 319

][3 0
5 4

] 0
1→ 1

[0.07, 0.56] [ 94 356
1273 638

][3 1
0 4

] 1
0→ 0

[0.07, 0.40] [2 0
0 1

][ 94 506
1273 1275

] 0
0→ 0

input matrix M = [3 1
1 3

]

input: u = 0111111010, pn = 0, FuVpn = [505 507
256 256

] = [1.97266, 1.98047]

result: MFuVpn = [1771 1777
1273 1275

] = [1.39120, 1.39373]

output: v = 0101100100, qm = 0, FvVqm = [355 357
256 256

] = [1.38672, 1.39453]

Table 5.1: The computation of the unary algorithm (right) in the binary signed system from
Figure 4.9 (left).
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If G is a deterministic graph then each word u ∈ ΣG determines a unique path i u−→ with
label u. Thus there exists a continuous mapping ΘM,s : ΣG → ΣG such that ΦΘM,s = MΦ.
In Table 5.1 we give the graph of the binary signed system from Figure 4.9 (left) and the
computation of the unary algorithm in the system (right).

For a nonredundant system, the unary algorithm with a greedy selector need not work.
It may happen that ever smaller intervals X contain a point which does not belong to the
interior of any FaVr, so the condition X ⊆ FaVr is never met and the output remains finite. In
this case X is a subset of a union FaVq0 ∪ FbVq1 of two neighboring intervals. Thus we know
that the output is either a or b and we may pursue both these possibilities in two parallel
branches. These two branches may coexist indefinitely, giving two output words v, w such that
Φ(M(u)) = Φ(v) = Φ(w). It may also happen that at some later step one of the branches
ceases to represent an output with Φ(M(u)) = Φ(v) and is therefore closed. In these parallel
branches with states (X, p, q) we do not always have X ⊆ Vq but only ∅ ̸= X∩Vq. If ∅ = X∩Vq,
then the branch is closed. On the other hand if X ⊆ Vq, then the branch represents the correct
computation and the other branch is closed.

The nondeterministic algorithm based on these principles is given by the branching unary
graph in Definition 5.14. Since the two branches have different output words, we incorporate
the output word to the state. Thus a state (or a vertex of the graph) is (X, p, q, v), where
v ∈ LG is the output word. The edges are labelled only by the input letters. A vertex of the
graph is either a single state (X, p, q, v) or a pair of states ((X0, p, q0, v), (X1, p, q1, w)) with the
same input vertex p. The initial state is (X, i, i, λ). There are branching edges from a single
state to a pair of states and closing edges which close one of the branches. If the vertex is a
pair of states, an absorption is applied to both states simultaneously. On the other hand, an
emissions is applied only to one of the states.

Definition 5.14 The branching unary graph of a sofic number system (F,G, V ) with de-
terministic graph G = (V,E, i) is defined as follows: Its vertices are either (X, p, q, v) ∈
M(R)×B2 × LG, or pairs ((X0, p, q0, v), (X1, p, q1, w)) of vertices. The labelled edges are

absorption: (X, p, q, v) a−→ (XHp,a,p′ , p
′, q, v), if p a−→ p′

absorption:
(X0, p, q0, v)
(X1, p, q1, w)

a−→
(X0Hp,a,p′ , p

′, q0, v)
(X1Hp,a,p′ , p

′, q1, w)
if p a−→ p′

emission: (X, p, q, v) λ−→ (F−1
a X, p, q′, va) if

p ̸= i, q a−→ q′

∅ ̸= X ∩ Vq ⊆ FaVq′ ,

branching: (X, p, q, v) λ−→
(F−1

a X, p, q0, va)
(F−1

b X, p, q1, vb)
if

p ̸= i, q a−→ q0, q b−→ q1
X ⊆ Vq ∩ (FaVq0 ∪ FbVq1),

closing:
(X0, p, q0, v)
(X1, p, q1, w)

λ−→ (X1, p, q1, w) if ∅ = X0 ∩ Vq0 or X1 ⊆ Vq1

closing:
(X0, p, q0, v)
(X1, p, q1, w)

λ−→ (X0, p, q0, v) if ∅ = X1 ∩ Vq1 or X0 ⊆ Vq0

To obtain a deterministic algorithm, we should define a selector which selects one of the
possible edges. The closing edges should be chosen whenever they are applicable: the branch
to be closed does not represent any possible output. A branching edge should be chosen if the
interval X becomes too small. One possibility is to define small open intervals Vq0,q1 which
contain the common endpoints of FaVq0 ∩FbVq1 and opt for the branching when X ⊆ Vq0,q1 . For
appropriate selectors, the input word u ∈ ΣG yields an infinite path with label u. The words
v, w of the states of the path give either a single output v with Φ(M(u)) = Φ(v) or two output
words with Φ(M(u)) = Φ(v) = Φ(w).
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5.3 Bilinear tensors

Binary arithmetical operations like addition or multiplication are obtained from bilinear func-
tions T : R2 × R2 → R2. While a linear function M : R2 → R2 is a 1-contravariant and
1-covariant tensor, a bilinear function is a 1-contravariant and 2-covariant tensor given by
T (x, y)k =

∑1
i=0

∑1
j=0 Tkijxiyj (see e.g., Bishop and Goldberg [6]). The tensor T determines a

function T : R× R→ R ∪ {0
0
} defined by

T (x, y) =
(T000x0 + T010x1)y0 + (T001x0 + T011x1)y1
(T100x0 + T110x1)y0 + (T101x0 + T111x1)y1

=
(T000y0 + T001y1)x0 + (T010y0 + T011y1)x1
(T100y0 + T101y1)x0 + (T110y0 + T111y1)x1

For example T (x, y) = x + y = x0y1+x1y0
x1y1

. A nonzero multiple of a tensor defines the

same function on R× R, so tensors are conceived as points of the projective space P(R2×2×2).
Denote by T(R) = P(R2×2×2) ∪ {0} the set of all projective tensors of dimension at most 1.
We write tensors as (2 × 4)-matrices T = [T000 T010 T001 T011

T100 T110 T101 T111
]. For a tensor T and projective

vectors x, y, z ∈ R we have projective matrices T ∗x, T∗y, zT obtained by different kinds of
multiplication:

(T ∗x)kj =
∑
i

Tkijxi, (T∗y)ki =
∑
j

Tkijyj, (zT )ij =
∑
k

zkTkij.

Then (T ∗x)y = (T∗y)x = T (x, y).
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T (x, y) = x+ y T (x, y) = xy

T (x, y) = x+y
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T (x, y) = x+y
1−xy

Figure 5.3: Level curves of bilinear tensors with marked positivity and negativity regions. The
straight lines in the last case follow from the formula tan t+tan s

1−tan t·tan s
= tan(t+ s).
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T (x, y) T ∗x det(T ∗x) Dx S(T )

x+ y [x1 x0

0 x1
] x21 0 {(1

0
, 1
0
)}

xy [x0 0
0 x1

] x0x1 1 {(0
1
, 1
0
), (1

0
, 0
1
)}

x+y
xy

[x1 x0

x0 0
] −x20 0 {(0

1
, 0
1
)}

x+y
1−xy

[ x1 x0

−x0 x1
] x20 + x21 −4 ∅

Table 5.2: Singular points of tensors

Bilinear tensors can be classified according to the number of their singular marginal matrices.
For a given tensor T consider the quadratic form

det(T ∗x) = det

[
T000x0 + T010x1 T001x0 + T011x1
T100x0 + T110x1 T101x0 + T111x1

]
= Ax20 +Bx0x1 + Cx21.

Denote by Dx(T ) = B2 − 4AC the discriminant of det(T ∗x). If A = B = C = 0 then T ∗x is
singular for every x ∈ R. Assume that at least one of the A,B,C is nonzero. If Dx < 0 then
T ∗x is regular for every x ∈ R. If Dx = 0 then there exists one point x ∈ R with singular T ∗x.
If Dx > 0 then there exist two points x with singular T ∗x. If T ∗x is singular and y = u(T ∗x)
then T (x, y) = 0

0
. We say that (x, y) is a singular point of T . Denote by S(T ) the set of

singular points of a tensor (see Table 5.2). A tensor may be visualized by its level curves

T−1(z) = {(x, y) ∈ R2
: T (x, y) = z}.

In singular points with T (x, y) = 0
0
the level curves intersect (see Figure 5.3).

For a tensor T and a matrix P we define tensors T ∗P , T∗P and PT by

(T ∗P )kij =
∑
p

TkpjPpi, (T∗P )kij =
∑
q

TkiqPqj, (PT )kij =
∑
r

PkrTrij.

Then (T ∗P )∗x = T ∗(Px), (T∗P )∗y = T∗(Py). The operations with the first and second argu-
ment commute, so we adopt notations

T (x, y) = (T ∗x)y = (T∗y)x,

T (x,Q) = (T ∗x)Q = (T∗Q)
∗x,

T (P, y) = (T∗y)P = (T ∗P )∗y,

T (P,Q) = (T∗P )
∗Q = (T ∗Q)∗P.

The multiplication from the left commutes with the multiplication from the right, so we
write PT ∗Q = P (T ∗Q) = (PT )∗Q for P,Q ∈ M(R). For vectors x, y ∈ R we have (xT )y =
x(T∗y), x(yT ) = y(T ∗x). For a matrix M = [M00 M01

M10 M11
] we denote its left and right columns

by M−0 = M00

M10
, M−1 = M01

M11
, and the upper and lower row by M0− = M00

M01
, M1− = M10

M11
, so

(M−j)i = Mij, (Mi−)j = Mij. Similarly for a tensor T we denote by Tk−−, T−i−, T−−j the
marginal matrices obtained from T by fixing a coordinate, and T−ij, Tk−j, Tki− marginal
vectors obtained by fixing two coordinates. A simple algebra shows that the tensor T (P,Q)
consists of T -images of the endpoints of P and Q:



106 CHAPTER 5. ARITHMETICAL ALGORITHMS

Proposition 5.15 For a tensor T and matrices P,Q we have

T (P,Q)−i− = T (P−i, Q), T (P,Q)−−j = T (P,Q−j), T (P,Q)−ij = T (P−i, Q−j).

Proof:

(T (P,Q)−i−)kj = T (P,Q)kij =
∑
pq

TkpqPpiQqj =
∑
pq

Tkpq(P−i)pQqj = T (P−i, Q)kj

and similarly in other cases.

Definition 5.16 The image of sets I, J ⊆ R by a tensor T is defined by

T (I, J) = {T (x, y) : x ∈ I, y ∈ J} ∩ R

= {z ∈ R : ∃x ∈ I,∃y ∈ J, z = T (x, y)}

In arithmetical algorithms we verify whether the image T (I, J) of intervals I, J is included in
a given interval K. We have an inclusion criterion which is formally similar to the criterion of
the inclusion of intervals. The sign of a tensor is defined similarly as the sign of a matrix: it is
nonnegative if there exists nonzero λ such that all λTkij are nonnegative.

Proposition 5.17 (Algebraic inclusion criterion) Let T ∈ T(R) be a tensor and P,Q,R ∈
M(R) regular matrices. If sgn(R−1T (P,Q)) ≥ 0 then T (P c, Qc) ⊆ Rc.

Proof: Let x ∈ P c, y ∈ Qc and z = T (x, y) ∈ R. Since P is regular, for u = P−1x we have
sgn(u) ≥ 0 and x = Pu, so

(T ∗x)Q = (T ∗(Pu))Q = ((T ∗P )∗u)Q = ((T ∗P )∗Q)
∗u = T (P,Q)∗u.

It follows sgn(R−1(T ∗x)Q) = sgn(R−1(T (P,Q)∗u) ≥ 0, so (T ∗x)(Qc) ⊆ Rc by Proposition 5.8
and therefore z ∈ Rc. Thus we have proved T (P c, Qc) ⊆ Rc.

Theorem 5.17 has a converse for regular tensors.

Definition 5.18 We say that T is a regular tensor, if for each x, y, z ∈ R, the matrices zT ,
T ∗x, T∗y are nonzero. Denote by T(R) the space of regular tensors.

A tensor is regular iff its pairs of marginal matrices are linearly independent, i.e., if T0−− ̸= T1−−,
T−0− ̸= T−1− and T−−0 ̸= T−−1 are different points of the projective space P(R2×2). Examples of
regular tensors are [1 0 0 0

0 0 0 1
] (multiplication), [0 1 1 0

0 0 0 1
] (addition), or [0 1 0 0

0 0 1 0
] (division).

Proposition 5.19 If T is a regular tensor and M is a regular matrix, then MT , T ∗M and
T∗M are regular tensors.

Proof: If x ∈ R, Mx ∈ R and (T ∗M)∗x = T ∗(Mx) is nonzero. Since T∗x is nonzero,
(T ∗M)∗x = (T∗x)M is nonzero. Since zT is nonzero, z(T ∗M) = MT (zT ) is nonzero (here MT

is the transposed matrix of M . Thus we have proved that T ∗M is regular. Similarly we show
that T∗M is regular. Since (MT )∗x = M(T∗x), (MT )∗x = M(T ∗x), z(MT ) = (zM)T , we get
that MT is regular.
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Proposition 5.20 If T is a regular tensor then det(T ∗x) is a nonzero quadratic form.

Proof: Assume by contradiction that

det(T ∗x) = det

[
T000x0 + T010x1 T001x0 + T011x1
T100x0 + T110x1 T101x0 + T111x1

]
.

is a zero quadratic form, so we have zero coefficients at x20 and x21:

det

[
T000 T001
T100 T101

]
= 0, det

[
T010 T011
T110 T111

]
= 0

It follows that there exist ai, bi, Tij such that

T ∗x =

[
a0T00x0 + b0T10x1 a0T01x0 + b0T11x1
a1T00x0 + b1T10x1 a1T01x0 + b1T11x1

]
For the coefficient at x0x1 we get (a0b1 − a1b0) · (T00T11 − T01T10) = 0. If a0b1 − a1b0 = 0
then a1T0−− = a0T1−− so T0−− and T1−− are linearly dependent. If T00T11 − T01T10 = 0 then
T11T−−0 = T10T−−1, so T−−0 and T−−1 are linearly dependent. In both cases, T is not regular
and this is a contradiction.

Proposition 5.21 If T is a regular tensor, P,Q,R are regular matrices and T (P c, Qc) ⊆ Rc,
then sgn(R−1T (P,Q)) ≥ 0.

Proof: We show that for x ∈ [0,∞] we have (T ∗(Px))(Qc) ⊆ Rc. Indeed if z ∈ (T ∗(Px))(Qc)
then there exists y ∈ Qc such that z = (T ∗(Px))(y) = T ∗(Px, y). Since Px ∈ P c, we get z ∈
T (P c, Qc) ⊆ Rc. Since T is a regular tensor, T ∗(Px) is a nonzero matrix and therefore M(x) =
R−1(T ∗(Px))Q is a nonzero matrix too. We can therefore norm it and assume that ||M(x)||2 =∑

ij M(x)2ij = 1. Since (T ∗(Px))(Qc) ⊆ Rc, by Theorem 5.8 we get sgn(R−1(T ∗(Px))Q) ≥ 0
whenever T ∗(Px) is a regular matrix. By Proposition 5.20, det(T ∗(Px)) is a nonzero quadratic
form, so there exist at most two x ∈ [0,∞] such that T ∗(Px) is a singular matrix. Since each
M(x)ij is continuous function of x ∈ [0,∞], there exists λ such that λM(x)ij ≥ 0 for all i, j
and x ∈ [0,∞], so sgn(R−1T (P,Q)) ≥ 0.

The intervals P c, Qc form a rectangle in R2
whose vertices are (P−0, Q−0), (P−0, Q−1),

(P−1, Q−0), (P−1, Q−1). Since all MT are monotone, T (P c, Qc) is the image of the sides of
this rectangle. We have T (P−1, Q−0) ∈ T (P c, Q−0) ∩ T (P−1, Q

c), T (P−1, Q−1) ∈ T (P−1, Qc) ∩
T (P c, Q−1), T (P−0, Q−1) ∈ T (P c, Q−1) ∩ T (P−0, Q

c), T (P−0, Q−0) ∈ T (P−0, Q
c) ∩ T (P c, Q−0),

so T (P c, Q−0), T (P−1, Q
c), T (P c, Q−1), T (P−0, Q

c) are contiguous intervals.

Theorem 5.22 (Geometric inclusion criterion) If T is a regular tensor and P,Q are reg-
ular matrices, then

T (P c, Qc) = T (P c, Q−0) ∪ T (P−1, Q
c) ∪ T (P c, Q−1) ∪ T (P−0, Q

c)

Proof: The right-hand side Y = T (P c, Q−0)∪T (P−1, Q
c)∪T (P c, Q−1)∪T (P−0, Q

c) is a union of
contiguous intervals, so it is a (possibly full) interval which is included in T (P c, Qc). Conversely
let z ∈ T (P c, Qc), so there exist x ∈ P c, y ∈ Qc such that z = T (x, y). Assume that T ∗x is
regular. Then T (x, y) is a linear combination of T (x,Q−0) and T (x,Q−1) which both belong
to Y . It follows that z belongs to Y as well. Assume that T ∗x is singular. Since it has at most
one unstable point, either z = T (x,Q−0) ∈ Y or z = T (x,Q−1) ∈ Y .



108 CHAPTER 5. ARITHMETICAL ALGORITHMS

Definition 5.23 For a tensor T ∈ T(R) and a matrix M ∈ M(R) we write T ⊆ M if
sgn(M−1T ) ≥ 0.

T = [ 0 1 0 1
−1 0 1 1

]

T = [ 0 0
−1 1

]

T = [ 1 1 1 0
−1 0 1 1

]

T = [ 1 0
−1 1

]

T = [−1 0 1 0
−1 1 0 0

]

T = [1 −1
0 0

]

Figure 5.4: The matrix convex hull of a tensor

We are going to construct for a tensor T its matrix convex hull T which is a matrix such
that sgn(Q−1T ) ≥ 0 iff sgn(Q−1T ) ≥ 0 for each regular matrix Q. Let u, v ∈ R2 be vectors with
det(u, v) > 0. This means that the counterclockwise oriented angle from u to v is less than
π = 180◦. We say that a vector w ∈ R2 is a convex combination of u and v, if w = ux0+vx1
for some x0, x1 ≥ 0. This can be written as w = [u, v]x, where [u, v] is the matrix with columns
u, v and w, x are column vectors. Then we get

x = [u, v]−1w =
1

det(u, v)

[
v1 −v0
−u1 u0

]
·
[
w0

w1

]
=

1

det(u, v)

[
w0v1 − w1v0
u0w1 − u1w0

]
=

1

det(u, v)

[
det(w, v)
det(u,w)

]
so w is a convex combination of u, v iff det(u,w) ≥ 0 and det(w, v) ≥ 0. For a regular matrix
Q we have Q−1w = Q−1[u, v]x. It follows that sgn(Q−1[u, v]) ≥ 0 iff sgn(Q−1[u, v, w]) ≥ 0.

Proposition 5.24 Let T be a (2×n)-matrix with n ≥ 3. There exists a (2× 2)-matrix T such
that sgn(Q−1T ) ≥ 0 iff sgn(Q−1T ) ≥ 0 for each regular (2 × 2)-matrix Q. We say that T is a
matrix convex hull of T .

Proof: If T is the zero matrix then T is also the zero matrix. Assume that T is nonzero. If
a nonzero column u of T is a negative multiple of another column v of T then sgn(Q−1T ) ≥ 0
for no regular matrix Q, so we can take T = [u, v] (see Figure 5.4 left). If a column u of T is
a nonnegative multiple of another column of T , or if it is a convex combination of two other
columns of T , then we can omit it and obtain a (2×(n−1))-matrix T ′ such that sgn(Q−1T ) ≥ 0
iff sgn(Q−1T ′) ≥ 0 for each regular matrix Q. We show that if n ≥ 4 and no column of T is a
nonzero multiple of another column of T , then a column of T is a convex combination of two
other columns of T . Indeed for a column u of T there exist two different columns v, w of T such
that sgn(det(u, v)) = sgn(det(u,w)). By a permutation of u, v, w we can attain det(u,w) > 0,
det(w, v) > 0, det(u, v) > 0, so w is a convex combination of u and v. Thus we successively omit
columns which are convex combinations of other columns till we get a matrix which cannot be
further reduced in this way. If this matrix has two columns we are done (see Figure 5.4 center).
If it has three columns u, v, w then they can be permuted so that det(u, v) > 0, det(v, w) > 0,
det(w, v) > 0 and sgn(Q−1[u, v, w]) ≥ 0 for no regular matrix Q. Thus we can take for T any
singular matrix with sgn(u(T )) > 0, for example T = [0 0

1 −1
] (see Figure 5.4 right).

Note that the matrix convex hull is not determined by T uniquely.
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def s(X,p,q,r):
if p == i or q == i: return xy
for r c−→ r′:

if sgn(V −1
r′ F

−1
c X) ≥ 0: return c

x, y=False,False
for r c−→ r′:
Y = V −1

r′ F
−1
c X

s0, s1 = sgn(Y−0−), sgn(Y−1−)
s2, s3 = sgn(Y−−0), sgn(Y−−1)
if (s0 ≥ 0 ∨ s1 ≥ 0) & (s2 < 0 ∨ s3 < 0) : x = True
if (s2 ≥ 0 ∨ s3 ≥ 0) & (s0 < 0 ∨ s1 < 0) : y = True

if (x & y) ∨ (¬x & ¬y): return xy
if x: return x
if y: return y

Table 5.3: The balanced greedy selector for the binary algorithm

5.4 The binary algorithm

The binary arithmetical algorithm for the addition, subtraction, multiplication, division and
other bilinear functions works similarly as the unary algorithm by searching a path in the
binary graph. The states (vertices) of the binary graph consist of binary tensors and states
of the input and output paths.

Definition 5.25 The binary graph for a sofic number system (F,G, V ) is defined as follows:
Its vertices are (X, p, q, r) ∈ T(R)×B3. The labelled edges are

x− absorption: (X, p, q, r) (a,λ,λ)
−→ (X∗Hp,a,p′ , p

′, q, r), if p a−→ p′

y − absorption: (X, p, q, r) (λ,a,λ)
−→ (X∗Hq,a,q′ , p, q

′, r), if q a−→ q′

emission: (X, p, q, r) (λ,λ,a)
−→ (F−1

a X, p, q, r′) if p ̸= i ̸= q, r a−→ r′,
X ⊆ FaVr′ ,

The first rule is an x-absorption of a letter of the first argument, the second rule is an y-
absorption of a letter of the second argument, and the third rule is an emission of a letter
of the output. The label of an edge is a triple consisting of x-input, y-input and output. The
label of a path is the concatenation of the labels of its edges.

Proposition 5.26 If (X, i, i, i) (u,v,w)
−→ (Y, p, q, r) is a finite path, then i u−→ p, i v−→ q, i w−→ r,

Y = F−1
w X(FuVp, FvVq). If p ̸= i, q ̸= i and r ̸= i, then Y ⊆ Vr. If (X, i, i, i)

(u,v,w)
−→ is an infinite

path with u, v, w ∈ Aω, then u, v, w ∈ ΣG and X(Φ(u),Φ(v)) = Φ(w).

Proof: The first emission must be preceeded by an x-absorption and an y-absorption. If
(X, i, i, i) (u,v,λ)

−→ (Y, p, q, i) (λ,λ,a)
−→ (Z, p, r) is the shortest path with an emission, then Y =

X(FuVp, FvVq) ⊆ FaVr, so Z = F−1
a X(FuVp, FvVq) ⊆ Vr. Assume that the condition is sat-

isfied for (X, i, i, i) (u,v,w)
−→ (Y, p, q, r). If (Y, p, q, r) (a,λ,λ)

−→ (Z, p′, q, r) is an x-absorption, then

Z = Y ∗Hp,a,p′ = F−1
w X(FuVpHp,a,p′ , FvVq) = F−1

w X(FuaVp′ , FvVq). If (Y, p, q, r)
(λ,a,λ)
−→ (Z, p, q′, r)

is an y-absorption, then Z = Y∗Hq,a,q′ = F−1
w X(FuVp, FvVqHq,a,q′) = F−1

w X(FuVp, FvaVq′). If

(Y, p, q, r) (λ,λ,a)
−→ (F−1

a Y, p, q, r′) is an emission, then Y ⊆ FaVs, so F
−1
a Y ⊆ Vs. If u, v, w ∈ Aω

and (u, v, w) is a label of an infinite path with source (X, i, i, i), then for each n there exist jn, kn
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such that (X, i, i, i) (u[0,jn),v[0,kn),w[0,n))
−→ (Yn, pn, qn, rn) is a path, so Yn = F−1

w[0,n)
X(Fu[0,jn)

Vn, Fv[0,kn)
Vn),

Yn ⊆ Vrn , so X(Fu[0,jn)
Vpn , Fv[0,kn)

Vqn) ⊆ Fw[0,n)
Vrn . We get Φ(w), X(Φ(u),Φ(v)) ∈ Fw[0,n)

(Vrn),
so Φ(w) = X(Φ(u),Φ(v)).

The binary graph represents a nondeterministic algorithm for arithmetic operations. To get
a deterministic algorithm, we use a selector s : T(R)×B3 → (A×B)∪{x, y, xy} which chooses an
admissible emission or an absorption. If s(X, r) = (c, r′) ∈ A×B, then the algorithm performs
an emission with edge r c−→ r′. Otherwise the algorithm performs either an x-absorption or an
y-absorption or both. The simplest greedy selector chooses an emission whenever possible and
both the x-absorption and y-absorption if no emission is possible. But then it may happen that
the length of the x-intervals X−−j becomes disproportionate with the length of the y-intervals
X−i−.

Z−−1

Z−−0

X−−1

X−−0

X−0− X−1− Z−0− Z−1−

x⇐= y
=⇒

Figure 5.5: The x-absorption (left) and y-absorption (right)

In Table 5.3 we give in a Python-like syntax the balanced greedy selector which keeps
the length of x-intervals and y-intervals balanced. The selector choses an emission whenever
possible. If not it chooses either an x-absorption or an y-absorption or both. To choose a
convenient kind of absorption we consider all edges r c−→ r′ and evaluate the tensor Y =
V −1
r′ F

−1
c X. If for some c, i, j, sgn(Y−i−) ≥ 0, and sgn(Y−−j) < 0, then X−i− ⊆ FcVr′ but

X−−j ̸⊆ FcVr′ and we select an x-absorption to get a smaller interval Z−−j = X−−jHp,a,p′ in
the next step (Figure 5.5 left). If sgn(Y−−j) ≥ 0, and sgn(Y−i−) < 0, then X−−j ⊆ FcVr′ but
X−i− ̸⊆ FcVr′ and we select an y-absorption to get a smaller interval Z−i− = X−i−Hq,b,q′ in the
next step (Figure 5.5 right). We select both x-absorption and y-absorption if both or none of
these two conditions is satisfied.

A sample run of the algorithm is in Table 5.4. It shows the convex closure X of the state
tensor, the state tensor X itself together with the matrices which act upon it and the input and
output paths. In the first step we start with the multiplication tensor X = [1 0 0 0

0 0 0 1
], whose

marginal matrices are included in no FaVq, so both x-absorption and y-absorption are used.
The same situation occurs in the second and third steps. In the fourth step we get a tensor
with interval [0.56, 3.00] which is included in F0V3 = [1 1

2 −2
] so the emission of 0 is chosen. In

the next step with tensor X = [ 9 6 18 12
32 16 16 8

] we have X−−1 = [18 12
16 8

] ⊆ F0V3 = [1 1
2 −2

] but

neither X−0− = [ 9 18
32 16

] nor X−1− = [ 6 12
16 8

] is included in F0V3, so the y-absorption is closed to

get smaller X−i− intervals.
In contrast to the unary algorithm, the binary algorithm in redundant systems is not guar-

anteed to produce an infinite output. This happens if we try to compute indefinite expressions
like 0

0
, 0 ·∞ or∞+∞. In this case the algorithm reads ever longer prefixes of the input words

without producing any output. Nevertheless, in redundant systems the algorithm gives the
correct result whenever the computed result belongs to R.

Proposition 5.27 Let (F,G, V ) be a sofic number system with initialized graph G and let
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X (X∗Hu)∗Hv F−1
w X u v w

[0.00,∞] [1 0 0 0
0 0 0 1

]∗[1 2
4 2

]∗[
1 1
2 −2

] λ 1−→ 1 λ 0−→ 0

[0.12,−0.12] [1 2 1 2
8 4 −8 −4

]∗[3 1
0 4

]∗[
3 1
1 3

] 1 0−→ 0 0 0−→ 0

[0.25,−0.25] [1 3 1 3
4 4 −4 −4

]∗[3 0
5 4

]∗[
4 5
0 3

] 0 1−→ 1 0 1−→ 1

[0.56, 3.00] [1 0
0 2

].[ 9 6 18 12
16 8 8 4

] λ 0−→ 0

[0.28, 1.50] [ 9 6 18 12
32 16 16 8

]∗[
3 1
0 4

] 1 0−→ 0

[0.28, 1.12] [ 9 6 27 18
32 16 32 16

]∗[1 0
2 2

]∗[
3 1
1 3

] 1 1−→ 1 0 0−→ 0

[0.49, 0.94] [2 −1
0 1

].[ 63 36 105 60
128 64 128 64

] 0 1−→ 1

[−0.02, 0.88] [−1 4 41 28
64 32 64 32

]∗[
3 1
1 3

] 0 0−→ 0

[0.15, 0.69] [ 19 20 61 44
128 64 128 64

]∗[1 0
2 2

]∗[
3 0
5 4

] 1 1−→ 1 0 1−→ 1

[0.45, 0.69] [2 −1
0 1

].[ 461 280 298 176
1024 512 512 256

] 1 1−→ 1

[−0.10, 0.38] [2 0
0 1

].[−51 24 42 48
512 256 256 128

] 1 0−→ 0

[−0.20, 0.75] [−51 24 42 48
256 128 128 64

]∗[1 0
2 2

]∗[
3 1
0 4

] 1 1−→ 1 1 0−→ 0

[−0.01, 0.56] [−3 48 183 144
512 256 512 256

]∗[1 0
2 2

]∗[
3 1
1 3

] 1 1−→ 1 0 0−→ 0

[0.18, 0.47] [2 0
0 1

].[ 375 288 753 480
2048 1024 2048 1024

] 0 0−→ 0

[0.37, 0.94] [2 −1
0 1

].[ 375 288 753 480
1024 512 1024 512

] 0 1−→ 1

[−0.27, 0.88] [−137 32 241 224
512 256 512 256

]∗[1 0
2 2

]∗[
4 5
0 3

] 1 1−→ 1 0 1−→ 1

[−0.07, 0.41] [2 0
0 1

].[−146 128 851 832
2048 1024 4096 2048

] 1 0−→ 0

[−0.14, 0.81] [−146 128 851 832
1024 512 2048 1024

]∗[3 1
0 4

]∗[
2 2
0 1

] 1 0−→ 0 1 1−→ 1

[−0.14, 0.40] [2 0
0 1

].[−292 244 559 1637
2048 2048 4096 4096

] 0 0−→ 0

[−0.29, 0.80] [−292 244 559 1637
1024 1024 2048 2048

]∗[3 0
5 4

]∗[
4 0
1 3

] 0 1−→ 1 1 0−→ 0

[0.23, 0.80] [1873 1742 4931 3274
8192 4096 8192 4096

]∗[1 0
2 2

]∗[
3 0
5 4

] 1 1−→ 1 0 1−→ 1

[0.56, 0.80] [2 −1
0 1

].[36733 21596 22958 13096
65536 32768 32768 16384

] 0 1−→ 1

[0.12, 0.60] [ 3965 5212 6574 4904
32768 16384 16384 8192

]∗[3 1
0 4

]∗[
3 1
0 4

] 1 0−→ 0 1 0−→ 0

[0.12, 0.44] [2 0
0 1

].[ 3965 8271 10087 14397
32768 32768 32768 32768

] 1 0−→ 0

[0.24, 0.88] [ 3965 8271 10087 14397
16384 16384 16384 16384

]∗[4 5
0 3

]∗[
3 0
5 4

] 0 1−→ 1 0 1−→ 1

input tensor M = [1 0 0 0
0 0 0 1

] (multiplication)

input: u = 1011111101101, p = 1, FuVp = [6122 12247
8192 16384

] = [0.747, 0.747]

input: v = 001000100110101, q = 1, FvVq = [8617 4310
4096 2048

] = [2.105, 2.113]

result: M(FuVp, FvVq) = [52753274 105532399 26385820 52784570
33554432 67108864 16777216 33554432

] = [1.573, 1.572, 1.575, 1.573]

output: w = 0110010010, r = 0, FwVr = [401 403
256 256

] = [1.566, 1.574]

Table 5.4: The computation of the binary algorithm in the binary signed system
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s be the balanced greedy selector. If T is a tensor and (p, u), (q, v) are paths of G such
that T (Φ(u),Φ(v)) ∈ R, then the binary algorithm computes an infinite path (r, w) such that
T (Φ(u),Φ(v)) = Φ(w).

Proof: It suffices to show that in the computed path there must be an infinite number of
emissions. If not then the output of the path is a finite word w. When all emissions are done
we have a state tensor X = F−1

w T (Fu[0,n)
, Fv[0,m)

). The length n of the x-input grows with
x-absorptions and the length m of the y-input grows with y-absorptions. We show that both
m and n grow to infinity. If not, from some step onwards, only one kind of absorptions is
chosen, say x-absorptions. This means that the length of X−−j intervals converges to zero and
ultimately, since the system is redundant, these intervals are contained in some FcVr′ . If the
intervals X−i− are included in FcVr′ , then the selector choses the emission of c. If not then
the selector choose an y-absorption. Thus there is an infinite number of both x-absorptions
and y-absorptions. But then the length of the interval Xc converges to zero and X has to be
included in some FcVr′ so that an emission is available.

5.5 Polynomials

With the binary algorithm, we can compute polynomial and rational functions. However, they
can be also computed directly. A polynomial is a complex function p(x) = p0+p1x+ · · ·+pnxn,
where pi ∈ C. If we define p(∞) =∞, then p : C→ C is a continuous function. Often we write
a polynomial as an infinite sum p(x) =

∑
i≥0 pix

i, where only a finite number of coefficients
pi are nonzero. The degree deg(p) of p is the largest n such that pn ̸= 0 and its leading
coefficient is ℓ(p) = pdeg(p). For the constant zero polynomial p(x) = 0 we set deg(p) = −1.
We say that p is a monic polynomial if its leading coefficient is ℓ(p) = 1. Denote by C[x] the
set of all polynomials and by R[x] the set of polynomials with real coefficients. As algebraic
structures, both C[x] and R[x] are commutative rings with a unit. The addition, subtraction
and multiplication are defined pointwise by (p+ q)(x) = p(x) + q(x), (p− q)(x) = p(x)− q(x),
(pq)(x) = p(x) · q(x). For the coefficients we get (p + q)n = pn + qn, (p − q)n = pn − qn,
(pq)n =

∑n
i=0 piqn−i. The multiplication of p ∈ C[x] by a ∈ C is (ap)(x) = a · p(x), or

(ap)n = a · pn, so C[x] is also a vector space over C and R[x] is a vector space over R.
If r = pq, we say that p divides r and write p|r. A linear polynomial p(x) = x− a divides r

iff a is a root of r, i.e., if r(a) = 0. By the fundamental theorem of algebra, every polynomial
of positive degree has a real or complex root. It follows that each polynomial can be written as
p(x) = a(x−c1)r1 · · · (x−cm)rm , where a, ci ∈ C are complex numbers and r1+· · ·+rm = deg(p).
Polynomials can be divided with remainder: For every nonzero polynomials t, s there exist
unique polynomials q (quotient) and r (remainder) such that t = sq + r and deg(r) < deg(s).
Nonzero polynomials s, t have the greatest common divisor (GCD) p = gcd(s, t) which is the
monic polynomial of highest degree which divides both s and t. If a polynomial divides both p
and q, then it divides also gcd(p, q). The GCD of two polynomials can be found by the Euclidean
algorithm. If p0, p1 are given nonzero polynomials, there exists a unique sequence of polynomials
p2, . . . , pn, pn+1 such that n ≥ 1, pi−1 = piqi + pi+1 for some qi ∈ C[x], deg(pi+1) < deg(pi), and
pn+1(x) = 0, so pn−1 = pnqn. Then pn is a constant multiple of gcd(p0, p1).

Proposition 5.28 If p, q ∈ C[x] are nonzero polynomials then there exist polynomials s, t such
that ps+ qt = gcd(p, q).

Proof: Set M = {ps + qt : s, t ∈ C[x]} and let r be a nonzero monic polynomial of M with
the lowest degree. For each nonzero ps + qt ∈ M there exist u, v with ps + qt = ru + v and
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deg(v) < deg(r). Since v ∈M we get v = 0, so r divides all elements of M in particular p and
q. On the other hand if r divides p and q it divides also r, so r = gcd(p, q).

The derivation of a polynomial p(x) = p0 + p1x+ · · ·+ pnx
n is

p′(x) = p1 + 2p2x+ · · ·+ npnx
n−1.

For p(x) = (x − c)rq(x) we get p′(x) = r(x − c)r−1q(x) + (x − c)rq′(x). Thus for p(x) =
a(x− c1)r1 · · · (x− cm)rm we get

gcd(p, p′) = a(x− c1)r1−1 · · · (x− cm)rm−1.

The number of real roots of a real a polynomial can be determined by the Sturm Theorem
(see Waerden [65]). Define the variance w(a0, . . . , an) of a finite sequence of real numbers as
its number of sign changes. To get the variance, delete first all zeros, so

w(a0, . . . , ai−1, 0, ai+1, . . . , an) = w(a0, . . . , ai−1, ai+1, . . . , an).

For a sequence which does not contain zeros we have

w(a0, . . . , an) = |{i < n : aiai+1 < 0}|.

Given a polynomial p(x) define its Sturm chain as a finite sequence pi of polynomials defined
by p0 = p, p1 = p′, pi−1 = piqi − pi+1, where deg(pi+1) < deg(pi). Thus the Sturm chain is just
the Euclidean sequence of p, p′ except that the remainders are taken negative. The last element
of the chain satisfies pm−1 = pmqm, so pm is a constant multiple of gcd(p, p′).

Theorem 5.29 Let p ∈ R[x] be a real polynomial with the Sturm chain p = p0, . . . , pm, let
a < b be real numbers which are not the roots of p. Then the number of roots of p (counted
without multiplicities) in the interval I = (a, b) is

|{x ∈ I : p(x) = 0}| = w(p0(a), . . . , pm(a))− w(p0(b), . . . , pm(b))

Proof: Since pm is a constant multiple of gcd(p, p′), there exist polynomials ri with pi = ripm.
Since p(a) ̸= 0 ̸= p(b), we have pm(a) ̸= 0 ̸= pm(b), r0(a) ̸= 0 ̸= r0(b), rm(a) = rm(b) = 1. By
passing from pi to ri the variations do not change: w(p0(a), . . . , pm(a)) = w(r0(a), . . . , rm(a))
and similarly w(p0(b), . . . , pm(b)) = w(r0(b), . . . , rm(b)). If J ⊆ I is an interval in which no ri
has a root, then w(r0(c), . . . , rm(c)) is constant on J . We evaluate how w changes at c ∈ I in
which one of the ri is zero. If ri(c) = 0, with 0 < i < m, then ri+1(c) ̸= 0, since otherwise
we would get ri+2(c) = 0 and by induction rm(c) = 0 which is a contradiction. Thus both
ri+1(c), ri−1(c) are nonzero and therefore they are nonzero also in some interval which contains
c. This implies that w(ri−1(x), ri(x), ri+1(x)) is constant in such an interval. Assume now that
r0(c) = 0. Then p0(c) = 0 and p(x) = (x− c)ks(x) for some k ≥ 1 and a polynomial s(x) with
s(c) ̸= 0. We get p′(x) = k(x − c)k−1s(x) + (x − c)ks′(x). If we divide p and p′ by (x − c)k−1,
we get

s0(x) = (x− c)s(x), s1(x) = ks(x) + (x− c)s′(x).

For x < c we have sgn(s0(x)) = −sgn(s(c)), sgn(s1(x)) = sgn(s(c)), while for x > c we get
sgn(s0(x)) = sgn(s1(x)) = sgn(s(c)). Thus as x passes through c, w(s0(x), s1(x)) diminishes by
one. Since ri(c) are nonzero multiples of si(c), the same happens for ri. Thus for each root c
of p(x) in I, the variance w(r0(x), . . . , rm(x)) diminishes by one when x passes through c.
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5.6 Rational functions

A rational function R : R → R ∪ {0
0
} of degree at most q ≥ 0 is a ratio of two polynomials

of degree at most q, or a function of the form

R(x) =
R00x

q
0 +R01x

q−1
0 x1 + · · ·+R0qx

q
1

R10x
q
0 +R11x

q−1
0 x1 + · · ·+R1qx

q
1

.

A rational function is regular if the numerator and denominator polynomials are relatively
prime. In this case R(x) ̸= 0

0
for every x ∈ R and R is a mapping R : R→ R. We do not adopt

the assumption of regularity in general, since its verification would unnecessarily complicate the
transcendent algorithm of Section 8.3. For each rational function R there exists an equivalent
regular rational function r, which is obtained from R by cancelling the common factors of the
numerator and denominator of R. A rational function R of degree at most q is given by a
2× (q+1)-matrix R = (Rkj)k=0,1,j=0,...,q, so R(x)k =

∑q
i=0Rkix

q−i
0 xi1. If M is a transformation,

then both compositions RM = R ◦M and MR = M ◦ R are rational functions of degree at
most q, which is regular provided both R and M are regular. The composition MR is obtained
by the product of the matrices (MR)ki =

∑1
j=0MkjRji. To obtain the composition RM , let

yi =
∑1

j=0Mijxj, so

R(y)k =

q∑
p=0

Rkp(M00x0 +M01x1)
q−p(M10x0 +M11x1)

p

=

q∑
p=0

Rkp ·
q−p∑
i=0

(
q − p
i

)
M q−p−i

00 M i
01x

q−p−i
0 xi1 ·

p∑
j=0

(
p

j

)
Mp−j

10 M j
11x

p−j
0 xj1

=

q∑
r=0

r∑
i=0

q−i∑
p=r−i

Rkp

(
q − p
i

)(
p

r − i

)
M q−p−i

00 M i
01M

p−r+i
10 M r−i

11 xq−r
0 xr1

where r = i + j. Since 0 ≤ i ≤ q − p, 0 ≤ j ≤ p, we get j = r − i ≤ p ≤ q − i. Thus the
composition RM is defined by

(RM)kr =
r∑

i=0

q−i∑
p=r−i

Rkp

(
q − p
i

)(
p

r − i

)
M q−p−i

00 M i
01M

p−r+i
10 M r−i

11

If S is a rational function of degree p, then R◦S and S ◦R are rational functions of degree q ·p.
Rational functions are obtained from tensors. A bilinear tensor T is symmetric if Tijk =

Tikj for each i, j, k. For a rational function R of degree 2 there exists a symmetric tensor

T = [R00 R01/2 R01/2 R02

R10 R11/2 R11/2 R12
], such that R(x) = T (x, x). For each interval I ⊆ R we have

R(I) = {R(x) : x ∈ I} ⊆ {T (x, y) : x, y ∈ I} = T (I, I).

If P,Q are regular matrices and sgn(Q−1RP ) ≥ 0 then sgn(Q−1T (P, P )) ≥ 0 and by Theorem
5.17 R(P c) ⊆ T (P c, P c) ⊆ Qc.

To get the inclusion criterion for rational functions of degree 2 or more, we have to gener-
alize Theorem 5.17 to tensors of higher degrees. For example, trilinear tensors T (x, y, z)k =∑

i,j,l Tkijlxiyjzl determine functions T : R3 → R∪ {0
0
}. For x ∈ R we get a bilinear tensor T ∗x
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and for matrices P,Q,R we get a trilinear tensors T ∗P , T (P,Q,R) defined by

(T ∗x)kjl =
∑
i

Tkijlxi

(T ∗P )kijl =
∑
r

TkrjlPri

T (P,Q,R)kijl =
∑
r,s,t

TkrstPriQsjRtl

The image of intervals I, J,K ⊆ R by a trilinear tensor T is

T (I, J,K) = {T (x, y, z) : x ∈ I, y ∈ J, z ∈ K} ∩ R.

Proposition 5.30 Let T be a trilinear tensor, P,Q,R, S regular matrices. If sgn(S−1T (P,Q,R)) ≥
0, then T (P c, Qc, Rc) ⊆ Sc.

Proof: Let sgn(S−1T (P,Q,R)) ≥ 0, x ∈ P c, u = P−1x, so x = Pu and sgn(u) ≥ 0. We have

(T ∗x)(Q,R) = (T ∗(Pu))(Q,R) = ((T ∗P )∗u)(Q,R) = T (P,Q,R)∗u

Since sgn(S−1T (P,Q,R)∗u) ≥ 0, we get by Theorem 5.17 (T ∗x)(Qc, Rc) ⊆ Sc. If y ∈ Qc,
z ∈ Rc then T (x, y, z) = (T ∗x)(y, z) ∈ Sc, so T (P c, Qc, Rc) ⊆ Sc.

For a rational function R of degree 3 there exists a symmetric trilinear tensor T given by
Tkijl = Rk,(i+j+l)/

(
3

i+j+l

)
such that R(x) = T (x, x, x) for any x ∈ R. Thus if sgn(Q−1RP ) ≥ 0

then R(P c) ⊆ Qc. More generally, a q-linear tensor Tk,i1,...,iq of q variables x(1), . . . , x(q) ∈ R is
given by

T (x(1), . . . , x(q))k =
∑

i1,...,iq

Tk,i1,...,iqx
(1)
i1
, . . . , x

(q)
iq
.

If sgn(Q−1T (P1, . . . , Pq)) ≥ 0 then T (P c
1 , . . . , P

c
q ) ⊆ Qc. For a rational function R of order q

there exists a symmetric q-linear tensor T of q variables such that R(x) = T (x, . . . , x). We
obtain a simple criterion for the inclusion:

Theorem 5.31 Let R : R→ R be a rational function and P,Q regular matrices. If sgn(Q−1RP ) ≥
0, then R(P c) ⊆ Qc.
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Chapter 6

Integer vectors and matrices

When we compute arithmetical algorithms in a sofic number system, we perform arithmetical
operations with the entries of its transformations, intervals and vectors. These operations are
algorithmic, provided the entries of the matrices are rational numbers. Since we work with
projective matrices and vectors, we can assume that their entries are integers whose greatest
common divisor is 1. Then each projective tensor, matrix or vector with rational entries has
exactly two representations with coprime integers.

6.1 Determinant, norm and length

Denote by Z = {. . . ,−2,−1, 0, 1, 2, . . .} the set of integers and by

Q = {x ∈ Z2 \ {0
0
} : gcd(x) = 1}

the set of (homogeneous coordinates of) rational numbers which we understand as a subset of
R. Here gcd(x) > 0 is the greatest common divisor of x0 and x1. Each rational number has
exactly two representations in Q, x = x0

x1
= −x0

−x1
. In contrast to the norm of vectors x ∈ R, the

norm ||x|| =
√
x20 + x21 of x ∈ Q does not depend on the representation of x. We have the

cancellation map d : Z2 \ {0
0
} → Q given by d(x) = x0/ gcd(x)

x1/ gcd(x)
. Denote by Z2×2 the set of 2× 2

matrices with integer entries and by

M(Z) = {M ∈ Z2×2 : gcd(M) = 1, det(M) ̸= 0}.

Each matrix ofM(R) with rational entries has exactly two representationsM = [a b
c d

] = [−a −b
−c −d

]

in M(Z). For x ∈ Q we distinguish M · x ∈ Z2 given by (M · x)i =
∑

j Mijxj from Mx =

d(M ·x) ∈ Q. For M = [a b
c d

] ∈ Z2×2 \{0} denote by d(M) = [a/g b/g
c/g d/g

], where g = gcd(M) > 0

is the greatest common divisor of the entries of M . Thus we have the cancellation map d :
Z2×2 \ {0} → M(Z). We distinguish the matrix multiplication M · N from the multiplication
MN = d(M ·N) in M(Z). The determinant and norm of M = [a b

c d
] ∈ Z2×2 are defined by

det(M) = ad− bc, ||M || =
√
a2 + b2 + c2 + d2

and do not depend on the representation of M in M(Z). We have

det(M ·N) = det(M) · det(N), ||M ·N || ≤ ||M || · ||N ||,

so | det(MN)| ≤ | det(M)| · | det(N)|, ||MN || ≤ ||M || · ||N ||. The pseudo-inverse of M = [a
c
, b
d
]

is M−1 = [ d
−c
, −b

a
] = [−d

c
, b
−a

]. We have M ·M−1 = det(M) · Id, MM−1 = Id = [1
0
, 0
1
].

117
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Proposition 6.1 If M,N ∈M(Z), then g = gcd(M ·N) divides both det(M) and det(N).

Proof: Clearly g divides M−1 ·M ·N = det(M) ·N . Since gcd(N) = 1, g divides det(M). For
a similar reason, g divides det(N).

Recall that by Proposition 5.9 the size and length of a matrix P = [a b
c d

] ∈M(Z) are defined
by sz(P ) = ab+cd

|ad−bc| , |P | =
1
2
− 1

π
arctan sz(P ) and we have an estimate

sz(P ) ≥ 1⇔ |P | ≤ 1

4
⇒ 1

4 · sz(P )
≤ |P | ≤ 1

π · sz(P )

Lemma 6.2 If P = [a b
c d

] ∈M(Z) is an integer matrix, then

max{|a|, |b|, |c|, |d|} ≤ max{|ab+ cd|, |ad− bc|},√
2 · | det(P ) · sz(P )| ≤ ||P || ≤ 2 · | det(P )| ·max{|sz(P )|, 1},

||P || ≤ | det(P )| ·max
{

1
|P | ,

1
1−|P |

}
.

Proof: If a = 0, then |bc| = | det(P )| ̸= 0, and

0 < |b|, |c| ≤ |bc| = |ad− bc|, |d| ≤ |cd| = |ab+ cd|.

If b = 0, then ad = det(P ) ̸= 0, and 0 < |a|, |d| ≤ |ad| = |ad − bc|, |c| ≤ |cd| = |ab + cd|.
Similarly we prove the inequality if c = 0 or d = 0. Assume now that all a, b, c, d are nonzero.
If sgn(ab) · sgn(cd) > 0 then |a| · |b|+ |c| · |d| = |ab+ cd|, so max{|a|, |b|, |c|, |d|} ≤ |ab+ cd|. If
sgn(ab) · sgn(cd) < 0 then

sgn(ad) · sgn(bc) = sgn(abcd) = sgn(ab) · sgn(cd) < 0,

so |a| · |d| + |b| · |c| = |ad − bc| and max{|a|, |b|, |c|, |d|} ≤ |ad − bc|. Thus we have proved the
first inequality in all cases. From (a± b)2 + (c± d)2 ≥ 0 we get

2 · | det(P ) · sz(P )| = 2|ab+ cd| ≤ ||P ||2,

so
√

2 · | det(P ) · sz(P )| ≤ ||P ||. If max{|a|, |b|, |c|, |d|} ≤ K then ||P || ≤ 2K. Thus

|ab+ cd| ≤ |ad− bc| ⇒ ||P || ≤ 2| det(P )|,
|ab+ cd| ≥ |ad− bc| ⇒ ||P || ≤ 2|ab+ cd| = 2| det(P ) · sz(P )|.

Thus ||P || ≤ 2 · | det(P )| · max{|sz(P )|, 1}. To prove the last inequality we distinguish three
cases. If |P | ≤ 1

4
then ab+cd

|ad−bc| ≥ 1 so ab+ cd ≥ |ad− bc|. From max{|a|, |b|, |c|, |d|} ≤ ab+ cd we
get by Proposition 5.9

||P || ≤ 2(ab+ cd) = 2 · sz(P ) · | det(P )| ≤ |2 det(P )|
π|P |

≤ | det(P )|
|P |

.

If 1
4
≤ |P | ≤ 1

2
, then | arctan ab+cd

ad−bc
| ≤ π

4
, so |ab+cd| ≤ |ad−bc|. It follows max{|a|, |b|, |c|, |d|} ≤

|ad − bc|, so ||P || ≤ 2| det(P )| ≤ |det(P )
|P | . If |P | ≥ 1

2
then for the matrix Q = [a −b

c −d
] we have

|Q| = 1− |P | so |Q| ≤ 1
2
and ||P || = ||Q|| ≤ | det(Q)|

|Q| = |det(P )|
1−|P | .
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Lemma 6.3 If P ∈M(Z) and x ∈ P o ∩Q, then

1. 6 · ||x||2 · |P | · | det(P )| ≥ 1.

2. If |P | < 1
2
then ||P || ≤

√
3 · ||x|| · | det(P )|, and |sz(P )| ≤ 3

2
||x||2 · | det(P )|.

Proof: If |P | ≥ 1
2
, then the first inequality is satisfied trivially. Let P = [a b

c d
] and |P | < 1

2
, so

ab+ cd > 0. For x = p
q
we have P−1x = [−d b

c −a
] · p

q
= β

α
, where α = pc− aq, β = qb− pd. Since

x ∈ P ◦, sgn(β
α
) > 0. Replacing x by −p

−q
if necessary, we can assume that α > 0 and β > 0.

Since |P | < 1
2
, either 0

1
̸∈ P c or 1

0
̸∈ P c. Assume first 1

0
̸∈ P o. Then sgn(P−1 · 1

0
) = sgn(−d

c
) < 0,

so cd > 0. Since x ̸= 1
0
, we have q ̸= 0 and

q det(P ) = qad− qbc = (pc− α)d− (pd+ β)c = −(αd+ βc)

so α|d|+ β|c| = |αd+ βc| = |q det(P )|. Since α, β, |c|, |d| are positive integers, we get

α + β ≤ |q det(P )|, |c+ d| = |c|+ |d| ≤ |q det(P )|.

From a+ b = pc−α+pd+β
q

we get

|a+ b| ≤ |pc|+ α + |pd|+ β

|q|
≤ (|p|+ 1) · | det(P )|.

Since ab+ cd > 0 we get

||P ||2 < (a+ b)2 + (c+ d)2 ≤ ((|p|+ 1)2 + q2) · det(P )2 ≤ 3 · ||x||2 · det(P )2

so we have proved ||P || ≤
√
3 · ||x|| · | det(P )|. It follows 4(ab+ cd) ≤ 2||P ||2 ≤ 6||x||2 · det(P )2,

so |sz(P )| = ab+cd
| det(P )| ≤

3
2
· ||x||2 · | det(P )|. Similarly if 0 ̸∈ P then p ̸= 0, sgn(P−1 · 0

1
) =

sgn( b
−a

) < 0, so ab > 0. We get p det(P ) = −(αb+ βa), so (α|b|+ β|a|) = |p det(P )|. It follows
α + β ≤ |p det(P )|, |a|+ |b| ≤ |p det(P )|,

c+ d ≤ |aq|+ |bq|+ α + β

|p|
≤ (|q|+ 1) · | det(P )|.

We get again ||P ||2 ≤ 3 · ||x||2 · det(P )2 and |sz(P )| ≤ 3
2
· ||x||2 · | det(P )|.

The inequality 6 · ||x||2 · |P | · | det(P )| ≥ 1 is satisfied whenever |P | ≥ 1
4
. If |P | ≤ 1

4
then by

Proposition 5.9 we get |P | ≥ 1
4|sz(P )| ≥

1
6||x||2·| det(P )| .

6.2 Rational number systems

We consider number systems whose transformations have rational entries. By multiplying by
the common denominator, we can assume that Fa ∈M(Z). In interval number systems (F,W )
or sofic number systems we assume alsoWa ∈M(Z) or Vp ∈M(Z). For interval number systems
with integer entries we use the concept of rational expansion interval

Definition 6.4 The rational expansion interval of M ∈M(Z) is defined by

R(M) = {x ∈ Q : (M−1)•(x) > | det(M)|}.

Proposition 6.5 Let M ∈M(Z).
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1. R(M) ⊆ V(M) is a (possibly empty) open interval.

2. 0,∞ ̸∈ R(M), so either R(M) ⊆ (∞, 0) or R(M) ⊆ (0,∞).

3. If M•(0) = det(M) then M(0) ∈ {0,∞}
4. If M•(∞) = det(M) then M(∞) ∈ {0,∞}
5. If x ∈ R(M) ∩Q, then ||M−1(x)|| < ||x||.

Proof: Let M = [a b
c d

].

1. R(M) is an interval by the proof of Proposition 3.31.

2. We have (M−1)•(0) = det(M)
b2+a2

≤ det(M), so 0 ̸∈ R(M). We have (M−1)•(∞) = det(M)
c2+d2

≤
det(M), so ∞ ̸∈ R(M).

3. If M•(0) = det(M)
b2+d2

= det(M) then M(0) = b
d
∈ {0,∞}.

4. If M•(∞) = det(M)
a2+c2

= det(M) then M(∞) = a
c
∈ {0,∞}.

5. If x ∈ R(M) ∩Q then (M−1)•(x) = det(M)·||x||2
||M−1(x)||2 > det(M), so ||M−1(x)|| < ||x||.

Definition 6.6 We say that (F,W ) is a rational interval number system of order n ≥ 1,
if Fa,Wa ∈M(Z) for each a ∈ A and Wu ⊆ R(Fu) for each u ∈ Ln

F,W .

The system of symmetric continued fractions of Definition 1.14 is a a rational number
system of order 1. Since all its transformations have unit determinant, we have R(Fa) = V(Fa).
For the same reason, the system of signed continued fractions from Example 4.5 is a rational
number system of order 2.

Theorem 6.7 A rational interval number system is neither redundant nor expansive.

Proof: Since 0,∞ ̸∈ Wa for any a ∈ A, the system is not redundant. We show that Qn =
max{F •

u (x) : u ∈ Ln
F,W , x ∈ F−1

u (Wu)} = 1. Let u be any expansion of 0, and xn = F−1
u[0,n)

(0).

Then ui ∈ {0,∞} and (F−1
un

)•(xn) = 1, so Qn = 1.

Theorem 6.8 (Delacourt and Kůrka [12]) If (F,W ) is a rational interval number system,
then each rational number x ∈ Q has a periodic expansion and SF,W is a SFT.

Proof: We prove the theorem for the order n = 1 since the case of a general order is similar.
Thus we assume that Wa ⊆ R(Fa). If u ∈ SF,W is an expansion of x ∈ Q, then for xn =

F−1
u[0,n

(x) ∈ Wun ⊆ R(Fun) we have by Proposition 6.5 ||xn+1|| ≤ ||xn|| so there exists m ≥ 0

and n > 0 such that xn = xm. Then u[0,m)(u[m,n))
ω is a periodic expansion of x. Thus each

rational number has a periodic expansion.
We show that SF,W is a sofic subshift. Define by induction

E0 = {l(Wa), r(Wa), a ∈ A},
En+1 = {F−1

a (x) : a ∈ A, x ∈ Wa ∩ En}.

If x ∈ Wa∩En, then ||F−1
a (x)|| ≤ ||x|| by Proposition 6.5, so there exists n such that En+1 = En.

Let V = {Vp ⊆ R : p ∈ B} be the open interval partition with endpoints E(V ) = En. If
Vp ∩Wa ̸= ∅, then both endpoints of F−1

a (Vp ∩Wa) belong to En, so if Vq ∩ F−1
a (V ◦

p ∩Wa) ̸= ∅,
then Vq ⊆ F−1

a (Vp ∩Wa). By Theorem 4.23, SF,W is a sofic subshift and its labelled graph is
G = (B,E) with vertices B and edges p a−→ q iff Vq ⊆ F−1

a (Vp ∩Wa). This graph determines



6.3. MODULAR SYSTEMS 121

the SFT Σ|G| ⊆ Eω of order two such that (p, a, q)(r, b, s) ∈ L2
|G| iff q = r. A path in this graph

is a pair (p, u) ∈ Bω ×Aω such that pi ui−→ pi+1 for each i. This implies Vpi ∩Wui
̸= ∅. We have

a factor map π : Σ|G| → ΣG = SF,W which is the projection π(p, u) = u. We show that π is
bijective, i.e., that for each u ∈ SF,W there exists a unique p ∈ Bω such that (p, u) ∈ Σ|G|. For
a given u ∈ SF,W denote by x = Φ(u) and xn = F−1

u[0,n)
(x) ∈ Wun . If x is irrational, then all xn

are irrational and for each n there exists a unique pn such that xn ∈ Vpn , so (p, u) ∈ SF,W,V .

If x is rational then all xn are rational. Since xn ∈ R(Fui
), we have ||xn+1|| ≤ ||xn||. If

xn ∈ R(Fui
) then ||xn+1|| < ||xn||, so there exists only a finite number of indices n with

xn ∈ R(Fun). Thus there exists n0 such that for all n ≥ n0, xn is an endpoint of R(Fun) and
therefore also an endpoint of Wun . It follows that there exists a unique pn such that x ∈ Vpn
and Vpn ∩Wun ̸= ∅. For each m ≤ n there exists unique pm such that xm ∈ Vpm ∩Wum and
F−1
u[m,n)

(Vpm ∩Wum) ∩ Vpn ̸= 0: either xm is an inner point of Vpm or xm is an endpoint of Vpm
but for the other p′m with xm ∈ Vp′m ∩Wum we get F−1

u[m,n)
(Vp′m ∩Wum) ∩ V ◦

pn = 0. Thus the

projection π : Σ|G| → SF,W is bijective. Since a homomorphic image of a SFT is a SFT, SF,W
is a subshift of finite type.

6.3 Modular systems

Definition 6.9 A transformation M ∈ M(Z) is modular, if det(M) = 1. We say that (F,Σ)
is a modular number system, if each Fa is a modular transformation.

The number system of signed continued fractions and the number system of symmetric
continued fractions are modular systems. For a modular transformation we have R(M) =
V(M), so a modular interval number system is rational. Thus if (F,W ) is a modular interval
number system, then each rational number has a periodic expansion and SF,W is a SFT. On the
other hand a modular system is neither redundant nor expansive. Despite this fact, we show
that the unary algorithm works in modular systems for the Möbius transformations with integer
entries. For each input the algorithm gives an infinite output and the size of the state matrix
of the algorithm remains bounded during the computation. This implies that the algorithm
has linear time complexity and can be computed by a finite state transducer. We first prove
an auxiliary Lemma.

Lemma 6.10 Consider the unary graph in a modular sofic number system (F,G, V ) of order
1.

1. If (X, p, q) a,λ
−→ (Y, r, q) is an absorption and p ̸= i then |Y | < |X|.

2. If (X, p, q) λ,a
−→ (Y, p, r) is an emission then |Y | > |X| and ||Y || ≤ ||X||.

Proof: 1. Since Hp,a,r is a nonnegative matrix, we have Y = XHp,a,r ⊂ X, so |Y | < |X|.
2. Since Vr ⊆ U(Fa), we have X ⊆ FaVr ⊆ V(Fa) and |Y | > |X|. For each x ∈ Xc we have
(F−1

a )•(x) ≥ 1 and therefore ||F−1
a (x)|| ≤ ||x||. In particular this holds for both endpoints of

X which implies ||F−1
a X|| ≤ ||X||.

In Theorem 5.13 we have proved that a redundant sofic system (F,G, V ) has a threshold
and the unary algorithm with greedy selector computes a mapping ΘM,s : Σ|G| → Σ|G| such
that if ΘM,s(p, u) = (q, v) then MΦ(u) = Φ(v). Modular systems have a weaker property: they
have local thresholds.
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Proposition 6.11 A greedy selector in a modular sofic number system has a local thresh-
old. This means that for each X ∈ M(Z) there exists a threshold τ(X) > 0 such that in
the computation (Xi, pi, qi) with initial state (X, i, i) each absorption state (Xi, pi, qi) satisfies
|Xi| ≥ τ(X)

Proof: Set

C = 6 ·max{||l(FaVr)||2, ||r(FaVr)||2 : a−→ r},
D = max{| det(Vp)| : p ∈ B}

Let (X0, p0, q0)
(u0,v0)−→ (X1, p1, q1)

(u1,v1)−→ · · · be a path in the unary graph computed by a greedy
selector s (here ui, vi ∈ A ∪ {λ}). Since each Fa is modular, and Xi = F−1

v[0,i)
X0Fu[0,i)

Vpi , we get

| det(Xi)| ≤ D · | det(X0)|. If (Xi, pi, qi) is an absorption state, then Xi contains an endpoint x
of some FaVr, so by Lemma 6.3

CD · | det(X0)| · |Xi| ≥ 6 · ||x||2 · | det(Xi)| · |Xi| ≥ 1.

Thus |Xi| ≥ τ(X0) =
1

CD|det(X0)| .

Corollary 6.12 In modular sofic systems, the unary algorithm with a greedy selector computes
for each M ∈M(Z) a continuous mapping ΘM,s : ΣG → ΣG such that ΦΘM,s =MΦ.

Proof: By Proposition 6.11 each computation of the unary algorithm contains an infinite
number of both absorptions and emissions, so analogously as in Theorem 5.13 we prove that
the unary algorithm with a greedy selector computes for eachM ∈M(Z) a continuous mapping
ΘM,s : Σ|G| → Σ|G| such that if ΘM,s(p, u) = (q, v) then Φ(v) =M(Φ(u). By Theorem 6.8, Σ|G|
is conjugated to ΣG, and we get the result.

We show now that in each computation of a greedy selector, the norm of the state matrix
remains bounded.

Theorem 6.13 (Delacourt and Kůrka [12]) Let s be a greedy selector in a sofic modular
number system. Then for each X ∈ M(Z) there exists a bound ν(X) > 0 such that for each
computation (X0, i, i) u0,v0−→ (X1, p1, q1) u1,v1−→ (X2, p2, q2) · · · we have ||Xi|| ≤ ν(X0) for each i.

Proof: Denote by τ(X0) the local threshold from Proposition 6.11. Let C,D be the constants
from its proof and set

L = max{|U(Fa)| : a ∈ A},
H = max{||Hp,a,q|| : p a−→ q}

Each path (X0, i, i) u0,v0−→ (X1, p1, q1) u1,v1−→ (X2, p2, q2) · · · of a greedy selector contains an infi-
nite number of both absorptions and emissions and | det(Xi)| ≤ D · | det(X0)| for each i. If
(Xn, pn, qn) is an emission state and (Xi, pi, qi) are absorption states for n < i < m, then
|Xn| ≤ |FunVqn+1| ≤ |V(Fun)| < 1

2
and by Lemma 6.10,

1 > L > |Xn+1| > |Xn+2| > · · · > |Xm|.
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If n0 is the time of the first emission, then |Xn| ≤ L for each n ≥ n0. If n ≥ n0, (Xn, pn, qn)
is an absorption state and (Xi, pi, qi) are emission states for n < i < m, then by Proposition
6.11, |Xn| > τ(X0), so

||Xn|| ≤ M = D · | det(X0)| ·max{ 1
τ(X0)

, 1
1−L
}

M ·H ≥ ||Xn+1|| > ||Xn+1|| > · · · > ||Xm||.

Denote by νn(X0) = max{||Xi|| : 0 ≤ i ≤ n} and let n1 be the time of the first absorption
with n1 > n0. Then ||Xi|| ≤ ν(X0) = max{M ·H, νn1(X0)} for every i.

A special case of Theorem 6.13 for simple continued fractions has been proved by Raney
[57]. Since there is only a finite number of matrices X ∈ M(Z) whose norm ||X|| does not
exceed a given bound, there is only a finite number of vertices (Xi, pi, qi) which appear in the
computation of the unary algorithm. This means that the computation of the unary algorithm
can be done by a finite state transducer which is a finite automaton with an output function.

6.4 Finite state transducers

Definition 6.14 A finite state transducer over an alphabet A is a quadruple T = (Q, δ, τ, i),
where (Q, δ, i) is an accepting automaton (Definition 2.28) and τ : A × Q → A∗ is a partial
output function with the same domain as δ.

For each u ∈ A∗ we have a partial mapping τu : Q → A∗ defined by induction: τλ(p) = λ,
τua(p) = τu(p)τ(a, δu(p)) (concatenation). The output mapping works also for infinite words.
If u is a prefix of v, then τu(p) is a prefix of τv(p), so for each p ∈ Q and u ∈ Aω there exists a
unique τu(p) ∈ A∗ ∪ Aω such that each τu[0,n)

(p) is its prefix. A finite transducer determines a

labelled oriented graph, whose vertices are elements of Q. There is an oriented edge p (a,v)
−→ q iff

δa(p) = q and τa(p) = v. The label of a path is the concatenation of the labels of its edges, so

there is a path p (u,v)
−→ q iff δu(p) = q and τu(p) = v.

It follows from Theorem 6.13 that for a given sofic modular system (F,G, V ), a greedy
selector s and an initial transformation M ∈ M(Z) there exists a finite state transducer T =
(Q, δ, τ, ı) which computes M . The state set Q consists of the absorption states (X, p, q) ∈
M(Z) × B2 such that ||X|| ≤ ν(M), where ν(M) is the bound from Theorem 6.13. For
a given (X, p, q) ∈ Q and a ∈ A with p a−→ p0 take the path (X, p, q) a,λ

−→ (X0, p0, v0) λ,v0−→
· · · λ,vn−1−→ (Xn, pn, qn) such that (Xi, pi, qi) are emission states for i < n and (Xn, pn, qn) is an
absorption state. Then we define partial mappings δ : Q × A → Q, τ : Q × A → A∗ by
δ((X, p, q), a) = (Xn, pn, qn) and τ((X, p, q), a) = v0 · · · vn−1. If n = 0 then τ((X, p, q), a) = λ.
The initial state of the transducer is ı = (M, i, i).

Definition 6.15 Let (F,G, V ) be a sofic number system with an alphabet A and an initialized
graph G = (B,E, i). We say that a finite state transducer T = (Q, δ, τ, ı) extends G if there
is a projection π : Q → B such that π(ı) = i, and if δ(p, a) = q then π(p) a−→ π(q) in G. We
say that T computes a real function g : R → R, if T extends G and for any u ∈ ΣG we have
v = τu(ı) ∈ ΣG and Φ(v) = g(Φ(u)).

If we define Θg(u) = τu(ı), then Θ : ΣG → ΣG is a continuous function which satisfies ΦΘg = gΦ.

Corollary 6.16 For a modular sofic number system (F,G, V ) with a deterministic graph G
and a transformation M ∈M(Z) there exists a finite state transducer which computes M .
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On the other hand, we show that Möbius transformations are the only functions which
are computable by finite state transducers in sofic number systems. This has been proved
in Konečný [31], who assumes that the function in question is differentiable and has nonzero
derivative at the fixed point of the transformations. A similar result has been obtained by
Kůrka and Vávra [45] for the case of analytic functions. Recall that Fp = {u ∈ ΣG : p u−→} is
the follower set of p ∈ B.

Proposition 6.17 Assume that a finite state transducer T = (Q, δ, τ, ı) computes a real func-
tion g in a sofic number system (F,G, V ) with an initialized graph G. Then for every state
p ∈ Q there exists a real function gp : Vp → R such that if w ∈ Fp and τw(p) = z, then

Φ(z) = gp(Φ(w)). We say that T computes gp at state p. If u, v ∈ L(Σ), and p (u,v)
−→ q, then

gq = F−1
v gpFu.

Proof: Assume that ı (u,v)
−→ p (w,z)

−→ with w, z ∈ ΣG and set gp = F−1
v gFu. Then

gpΦ(w) = F−1
v gFuΦ(w) = F−1

v gΦ(uw) = F−1
v Φ(vz) = Φ(z),

so T computes gp at p. If p
(u,v)
−→ q (w,z)

−→ , then F−1
v gpFuΦ(w) = F−1

v gpΦ(uw) = F−1
v Φ(vz) = Φ(z),

so T computes F−1
v gpFu at q and is equal to gq.

Lemma 6.18 Assume that a finite transducer T = (Q, δ, τ, ı) computes a nonconstant rational
function g in a sofic number system (F,G, V ) and let p u,v

−→ p be a path in T . Then Fu and Fv

are either hyperbolic or decreasing transformations.

Proof: By Proposition 6.17 T computes at the vertex p a function gp : Φ(Fp) → R with
gpFu = Fvgp. If g is rational, then gp is a rational function defined on the interval Φ(Fp) which
extends to a unique rational function defined on whole R. Since π(p) u−→ π(p) is a path in G, we
get uω ∈ ΣG, so Fu is not elliptic. Since Θ(uω) = vω we get vω ∈ ΣG, so Fv is not elliptic. We
show that neither Fu nor Fv is parabolic. We distinguish three cases. 1. If both Fu and Fv are
parabolic, they are conjugated to the translation T 1(x) = x+ 1, so there exist transformations
f0, f1 such that Fu = f0T

1f−1
0 , Fv = f1T

1f−1
1 . For the rational function h = f−1

1 gpf0 we get

T 1h = T 1f−1
1 gpf0 = f−1

1 Fvgpf0 = f−1
1 gpFuf0 = f−1

1 gpf0T
1 = hT 1,

so h(x + 1) = h(x) + 1. It follows that the rational function h0(x) = h(x) − x is periodic:
h0(x+ 1) = h(x+ 1)− x− 1 = h(x)− x = h0(x). However, no rational function is periodic.
2. If Fu is parabolic and Fv is hyperbolic or decreasing, then there exist transformations f0, f1
such that Fu = f0T

1f−1
0 , Fv = f1Qrf

−1
1 , where Qr(x) = rx and 0 ̸= r ̸= 1. For the rational

function h = f−1
1 gpf0 we get Qrh = hT 1, which implies h(x + n) = h(x) · rn for each integer

n. If r = −1 then h is a periodic function with period 2, which is impossible. If r ̸= −1 and
h(x) ̸= 0, then we get limn→∞ h(x + n) ̸= limn→−∞ h(x + n): one of these limits is zero and
the other is infinity. This means that h is not continuous at ∞ which is a contradiction. Thus
h(x) = 0 for all x and gp is a constant function.
3. If Fu is hyperbolic or decreasing and Fv is parabolic, then there exist transformations f0, f1
such that Fu = f0Qrf

−1
0 , Fv = f1T

1f−1
1 , where Qr(x) = rx and 0 ̸= r ̸= 1. For the rational

function h = f−1
1 gpf0 we get T

1h = hQr, i.e., h(x)+1 = h(rx). For x = 0 we get h(0)+1 = h(0)
which is a contradiction.
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Lemma 6.19 Let g be a real rational function of degree n ≥ 2, and let F0, F1, F2, F3 ∈ M(R)
be hyperbolic or decreasing transformations such that F0g = gF1, F2g = gF3. Then F2 has the
same fixed points as F0 and F3 has the same fixed points as F1.

Proof: There exist transformations f0, f1 and r0, r1 different from 0 and 1 such that F0 =
f0Qr0f

−1
0 , F1 = f1Qr1f

−1
1 . For the rational function h = f−1

0 gf1 we get

Qr0h = Qr0f
−1
0 gf1 = f−1

0 F0gf1 = f−1
0 gF1f1 = f−1

0 gf1Qr1 = hQr1 ,

so h(rm1 x) = h(x)rm0 . The only rational functions which satisfy this equation are of the form
h(x) = pxn. From deg(g) ≥ 2 we get n ≥ 2 and

f−1
0 F2f0h = f−1

0 F2gf1 = f−1
0 gF3f1 = hf−1

1 F3f1.

Setting f−1
0 F2f0 = [a b

c d
], f−1

1 F3f1 = [A B
C D

] we get

(apxn + b)(Cx+D)n = p(cpxn + d)(Ax+B)n

Comparing the coeficients at x2n and x2n−1 we get aCn = pcAn, aCn−1D = pcAn−1B, so
pcAnD = aCnD = pcAn−1BC, and pcAn−1(AD − BC) = 0. Thus cA = 0 and it follows
aC = 0. Comparing the coeficients at x and x0, we get bCDn−1 = pdABn−1, bDn = pdBn,
so pdABn−1D = bcDn = pdCBn and pdBn−1(AD − BC) = 0. Thus dB = 0 and it follows
bD = 0. We have therefore proved cA = aC = dB = bD = 0. Since both matrices are regular,
either A = D = a = d = 0 or B = C = b = c = 0. In the former case, F2 and F3 would be
elliptic which is excluded by the assumption. Thus B = C = b = c = 0, so both f−1

0 F2f0 and
f−1
1 F3f1 have the fixed points 0 and ∞. It follows that F2 has the same fixed points as F0 and
F3 has the same fixed points as F1.

Theorem 6.20 (Kůrka and Vávra [45]) A rational function of degree 2 or more cannot be
computed by a finite state transducer in a sofic number system.

Proof: Assume that a finite state transducer T = (Q, δ, τ, ı) computes a rational function h of
degree deg(h) ≥ 2 in (F,G, V ). Then each vertex p computes a rational function of the same
degree. Take any infinite path ı u,v

−→ in T . There exists a state p ∈ Q which occurs infinitely
many times in this path, so we have an infinite sequence of finite words u(i), v(i) such that

i (u(0),v(0))
−→ p (u(1),v(1))

−→ p (u(2),v(2))
−→ p · · ·

By Lemma 6.19, all Fu(i) with i > 0 are either hyperbolic or decreasing and have the same fixed
points. It follows that Φ(u) = Fu(0)(s), where s is one of the fixed points of Fu(1) . However,
the set of such points Φ(u) is countable, while the mapping Φ : ΣG → R is assumed to be
surjective. This is a contradiction.

6.5 Bimodular systems

As an examples of a rational number system which is not modular, consider the bimodular
number system which extends the binary signed system and consists of all transformations
M = [a b

c d
] with det(M) = ad− bc = 2, tr(M) = a + d = 3 and ||M ||2 = a2 + b2 + c2 + d2 = 6

(see Kůrka [39]).
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Example 6.21 The bimodular number system has alphabet A = {0, 1, 2, 3, 4, 5, 6, 7} and trans-
formations with matrices

F0 = [1
1
, 0
2
], F1 = [1

0
, 1
2
], F2 = [2

1
, 0
1
], F3 = [2

0
, 1
1
),

F4 = [2
0
, −1

1
], F5 = [ 2

−1
, 0
1
], F6 = [1

0
, −1

2
], F7 = [ 1

−1
, 0
2
]
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Figure 6.1: The small bimodular system
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Figure 6.2: The large bimodular system

There exists several number systems with transformations of Example 6.21. The small
bimodular system (F,R) is the interval number system with intervals Wa = R(Fa). They
form an almost-cover so (F,R) is a rational system with an SFT expansion subshift SF,W (see
Figure 6.1) of order 3 with forbidden words

D = {03, 04, 05, 06, 07, 12, 13, 14, 15, 16, 20, 21, 25, 26, 27, 30, 34, 35, 36, 37,
40, 41, 42, 43, 47, 50, 51, 52, 56, 57, 61, 62, 63, 64, 65, 70, 71, 72, 73, 74,

024, 175, 246, 317, 460, 531, 602, 753}
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a Fa R(Fa) F−1
a (R(Fa)) V(Fa) F−1

a (V(Fa))

0 [1 0
1 2

] (0, 1
2
) (0, 2) (−1

3
, 1) (−1

2
,∞)

1 [1 1
0 2

] (1
3
, 1) (−1

3
, 1) (0, 2) (−1, 3)

2 [2 0
1 1

] (1, 3) (1,−3) (1
2
,∞) (1

3
,−1)

3 [2 1
0 1

] (2,∞) (1
2
,∞) (1,−3) (0,−2)

4 [2 −1
0 1

] (∞,−2) (∞, −1
2

(3,−1) (2, 0)

5 [ 2 0
−1 1

] (−3,−1) (3,−1) (∞, −1
2
) (−1,−1

3
)

6 [1 −1
0 2

] (−1, −1
3
) (−1, 1

3
) (−2, 0) (−3, 1)

7 [ 1 0
−1 2

] (−1
2
, 0) (−2, 0) (−1, 1

3
) (∞, 1

2
)

Table 6.1: The transformations and intervals of the small and large bimodular interval systems

p a q Lp Rp Vq FaVq
7, 0, 1 0 0 (76543210)ω (12345670)ω [ 1

−2
, −2
−1

] [ 1
−3
, −2
−4

]

0, 1, 2 1 1 (07654321)ω (23456701)ω [ 1
−3
, −3
−1

] [−2
−6
, −4
−2

]

1, 2, 3 2 2 (10765432)ω (34567012)ω [−1
−3
, −3

1
] [−2

−4
, −6
−2

]

2, 3, 4 3 3 (21076543)ω (45670123)ω [−1
−2
, −2

1
] [−4

−2
, −3

1
]

3, 4, 5 4 4 (32107654)ω (56701234)ω [−2
−1
, −1

2
] [−3

−1
, −4

2
]

4, 5, 6 5 5 (43210765)ω (67012345)ω [−3
−1
, −1

3
] [−6

2
, −2

4
]

5, 6, 7 6 6 (54321076)ω (70123456)ω [ 3
−1
, −1
−3

] [ 4
−2
, 2
−6

]

6, 7, 0 7 7 (65432107)ω (01234567)ω [ 2
−1
, −1
−2

] [ 2
−4
, −1
−3

]

Table 6.2: The circular bimodular system with SFT subshift of speed 1 and order 2

Its expansion quotient is Q = 2 and it is not redundant. The large bimodular system
(F,V) is an interval number system with intervals Wa = V(Fa) (see Figure 6.2). Its expansion
quotient is Q = 1 and it is redundant. Its expansion subshift is not SFT but it is sofic with
the same SFT partition as (F,R), with endpoints 0, 1

3
, 1

2
, 1, 2, 3,∞, −3, −2, −1, −1

2
, and −1

3
.

See Table 6.1 for the intervals of both systems. There is also an interval partition system with
endpoints

0,
√
2− 1, 1,

√
2 + 1,∞,−

√
2− 1,−1,−

√
2 + 1.

Then there is a redundant bimodular sofic system with the circular subshift Σ1 with speed 1
and order 2 (see Section 4.7) with forbidden words

D = {ab ∈ A2 : mod8(a− b) ∈ {2, 3, 4, 5, 6}
= {02, 03, 04, 05, 06, 13, 14, 15, 16, 17, 20, 24, 25, 26, 27, 30, 31, 35, 36, 37,

40, 41, 42, 46, 47, 50, 51, 52, 53, 57, 60, 61, 62, 63, 64, 71, 72, 73, 74, 75}

The deterministic automaton has states B = {i, 0, 1, 2, 3, 4, 5, 6, 7}. The intervals Va together
with intervals FaVq are given in Table 6.2 and Figure 6.3. The system is not an interval number
system. If we take intervals Wa = Φ([a]), we get a different interval number system whose
expansion subshift is sofic but not of finite type.

If the unary algorithm is computed in a nonmodular system whose transfomattions have
integer entries then the determinant of the state matrix need not remain bounded. If X,F ∈
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Figure 6.3: The circular bimodular system (F,Σ1) with the circular subshift of speed 1.

M(Z) and Y = FX = d(F · X) then either det(Y ) = det(F ) · det(X) provided gcd(F · X) =
1 or det(Y ) = det(X)/ det(F ) provided gcd(F · X) = det(F ) and det(F ) is a prime (see
Proposition 6.1). When the unary algorithm is computed in the large bimodular system, the
determinant and norm of the state matrix remain small most of the time so the unary algorithm
has asymptotically linear time complexity. This is due to the fact that some compositions of
the transformations are modular - see Proposition 6.22, whose proof is a simple verification.
A selector which takes advantage of this scheme in the large bimodular system takes a small
threshold τ and applies an absorption whenever |XVp| > τ . If |XVp| < τ then the selector
chooses the an emission of the letter a with the smallest norm of the matrix F−1

a X. If τ is
sufficiently small then there are usually several possible emissions letters a and the smallest
norm of F−1

a X is achieved by cancellation of F−1
a ·X by 2 (see Kůrka [42], Kůrka and Delacourt

[43]).

Proposition 6.22 For the bimodular number system of Example 6.21, set A0 = {1, 2, 5, 6},
A1 = {0, 3, 4, 7}.
1. If a0 ∈ A0, a1 ∈ A1, then det(Fa0a1) = 1.
2. F14 = F27 = F50 = F63 = Id.
3. Both {V(Fa) : a ∈ A0} and {V(Fa) : a ∈ A1} are almost-covers.

While statistically, cancellations occur frequently in the large bimodular system, there are
exceptional cases in which they do not occur at all, so that the determinant and norm of the
state matrices steadily grows. We prove this results for general expansive number systems
whose transformations have determinants 1 or 2.

Lemma 6.23 Assume F ∈M(Z) and | det(F )| ≤ 2.
1. If |F •(0)| > 1, then either F = [2 0

c ±1
], F (0) = 0, or F = [a ±1

2 0
], F (0) =∞.

2. If |F •(∞)| > 1, then either F = [ 0 2
−1 d

], F (∞) = 0, or F = [1 b
0 2

], F (∞) =∞.

Proof: Let F = [a b
c d

]. If |F •(0)| = |det(F )|
b2+d2

> 1, then | det(F )| = 2 since b, d cannot be both

zero. Thus b2 + d2 < 2, so b, d ∈ {−1, 0, 1} and either b = 0 or d = 0. It follows that either

F = [2 0
c ±1

] or F = [a ±1
2 0

]. If |F •(∞)| = |det(F )|
a2+c2

> 1, then | det(F )| = 2, a, c ∈ {−1, 0, 1} and
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either F = [±1 b
0 2

], or F = [ 0 2
±1 d

].

Theorem 6.24 (Kůrka and Vávra [45]) Let (F,G, V ) be an expansive sofic number system
such that Fa ∈ M(Z) and | det(Fa)| ≤ 2 for each a ∈ A. Then there exists a transformation
M ∈M(Z) and an input word u ∈ ΣG such that in the computation of the unary algorithm on
input matrix M and input word u, no cancellation ever occurs.

Proof: Denote by mod2 the modulo function whose value is 0 on even numbers and 1 on odd
numbers. The modulo function works on integer matrices as well. Choose any transformation
M such that M(0) = 0 and mod2(M) = (0

1
, 0
0
), e.g., M(x) = 2x

x+2
. Pick a word u ∈ ΣG

with Φ(u) = 0 and assume that we have a finite automaton which computes M on u with
the result v, so Φ(v) = 0. The computation of the automaton determines a path with ver-
tices (Gn,mVpn , pun , qvm), where Gn,m = F−1

v[0,m)
MFu[0,n)

and in each transition we have either

Gn,m
(un,λ)−→ Gn+1,m or Gn,m

(λ,vn)−→ Gn,m+1. We show by induction that during the process no can-
cellation ever occurs: either det(Gn+1,m) = 2 det(Gn,m) or det(Gn,m+1) = 2 det(Gn,m). Denote
by xn = Φ(σn(u)) = F−1

u[0,n)
Φ(u) = F−1

u[0,n)
(0), so x0 = 0 and ym = F−1

v[0,m)
MΦ(u) = F−1

v[0,m)
(0), so

y0 = 0. Denote by Hn,m = mod2(Gn,m). We show by induction that xn, ym ∈ {0,∞}, and Hn,m

is determined by xn, ym by the table

xn, ym 0, 0 0,∞ ∞, 0 ∞,∞
Hn,m (0

1
, 0
0
) (1

0
, 0
0
) (0

0
, 0
1
) (0

0
, 1
0
)

If xn = ym = 0, then (F−1
un

)•(0) > 0 since the system is expansive, so by Lemma 6.23 either
xn+1 = 0 and then Hn+1,m = (0

1
, 0
0
) · (0

c
, 0
1
)−1 = (0

1
, 0
0
) · (1

c
, 0
0
) = (0

1
, 0
0
), or xn+1 = ∞ and then

Hn+1,m = (0
1
, 0
0
) · (a

0
, 1
0
)−1 = (0

1
, 0
0
) · (0

0
, 1
a
) = (0

0
, 0
1
). Similarly (F−1

vm )•(0) > 0 so by Lemma
6.23 either ym+1 = 0 and then Hn,m+1 = (0

c
, 0
1
) · (0

1
, 0
0
) = (0

1
, 0
0
), or ym+1 = ∞ and then

Hn,m+1 = (a
0
, 1
0
) · (0

1
, 0
0
) = (1

0
, 0
0
). Similarly in other cases:

(xn, ym) = (0, 0) ⇒ (xn+1, ym) = (0, 0), Hn+1,m = (0
1
, 0
0
) · (1

c
, 0
0
) = (0

1
, 0
0
)

⇒ (xn+1, ym) = (∞, 0), Hn+1,m = (0
1
, 0
0
) · (0

0
, 1
a
) = (0

0
, 0
1
)

⇒ (xn, ym+1) = (0, 0), Hn,m+1 = (0
c
, 0
1
) · (0

1
, 0
0
) = (0

1
, 0
0
)

⇒ (xn, ym+1) = (0,∞), Hn,m+1 = (a
0
, 1
0
) · (0

1
, 0
0
) = (1

0
, 0
0
)

(xn, ym) = (0,∞) ⇒ (xn+1, ym) = (0,∞), Hn+1,m = (1
0
, 0
0
) · (1

c
, 0
0
) = (1

0
, 0
0
)

⇒ (xn+1, ym) = (∞,∞), Hn+1,m = (1
0
, 0
0
) · (0

0
, 1
a
) = (0

0
, 1
0
)

⇒ (xn, ym+1) = (0, 0), Hn,m+1 = (0
1
, 0
d
) · (1

0
, 0
0
) = (0

1
, 0
0
)

⇒ (xn, ym+1) = (0,∞), Hn,m+1 = (1
0
, b
0
) · (1

0
, 0
0
) = (1

0
, 0
0
)

(xn, ym) = (∞, 0) ⇒ (xn+1, ym) = (0, 0), Hn+1,m = (0
0
, 0
1
) · (d

1
, 0
0
) = (0

1
, 0
0
)

⇒ (xn+1, ym) = (∞, 0), Hn+1,m = (0
0
, 0
1
) · (0

0
, b
1
) = (0

0
, 0
1
)

⇒ (xn, ym+1) = (∞, 0), Hn,m+1 = (0
c
, 0
1
) · (0

0
, 0
1
) = (0

0
, 0
1
)

⇒ (xn, ym+1) = (∞,∞), Hn,m+1 = (a
0
, 1
0
) · (0

0
, 0
1
) = (0

0
, 1
0
)

(xn, yn) = (∞,∞) ⇒ (xn+1, ym) = (0,∞), Hn+1,m = (0
0
, 1
0
) · (d

1
, 0
0
) = (1

0
, 0
0
)

⇒ (xn+1, ym) = (∞,∞), Hn+1,m = (0
0
, 1
0
) · (0

0
, b
1
) = (0

0
, 1
0
)

⇒ (xn, ym+1) = (∞, 0), Hn,m+1 = (0
1
, 0
d
) · (0

0
, 1
0
) = (0

0
, 0
1
)

⇒ (xn, ym+1) = (∞,∞), Hn,m+1 = (1
0
, b
0
) · (0

0
, 1
0
) = (0

0
, 1
0
).

It follows that in all cases det(Gn,m) = 2n+m det(G). If n +m ̸= n′ +m′, then Gn,m ̸= Gn′,m′

and the corresponding states of the automaton must be different. Thus the number of states
cannot be finite.



130 CHAPTER 6. INTEGER VECTORS AND MATRICES

n b(n) p(n)
0 0 −
1 1 0
2 10 100
3 11 101
4 100 11000
5 101 11001
6 110 11010
7 111 11011
8 1000 1110000
9 1001 1110001
10 1010 1110010
11 1011 1110011
12 1100 1110100
∞ − 1ω

u c(u) dc(u) v d(v) cd(v)
0 00 0 0 λ λ
1 01 1 1 λ λ
2 10 2 00 0 00
3 11 3 01 1 01
00 001 00 10 2 10
01 000 01 11 3 11
10 010 10 000 01 000
11 011 11 001 00 001
22 101 22 010 10 010
23 100 23 011 11 011
32 110 32 100 23 100
33 111 33 101 22 101
000 001 00 110 32 110
001 00100 001 111 33 111

Table 6.3: The binary and prefix codes (left) and the compression and decompression codes
(right)

6.6 Binary continued fractions

In modular systems both the unary and binary arithmetical algorithms are computed faster than
in nonmodular systems. But modular systems have the disadvantege of slow convergence: their
upper contraction quotient is Q = 1 We therefore modify the symmetric system of continued
fractions by coding words 0a01a1 · · · as sequences of binary representations of the integers an. We
represent the digits 0, 1 by numbers 2, 3, so we work with the alphabet A = {0, 1, 2, 3} and the
subshift ΣD = {0, 1}ω ∪{2, 3}ω. For a ∈ {0, 1} we denote by a = 1−a ∈ {0, 1} its complement.
For integers n ∈ Z and k > 0 we denote by |n|k = n mod k. Denote by b : N → {0, 1}+
the binary code defined by b(0) = 0 and b(n) = u ∈ {0, 1}k+1, where 2k ≤ n < 2k+1 and
n = 2ku0 + · · · + uk. Define the prefix code p : {1, 2, . . . ,∞} → {0, 1}+ ∪ {1ω} by p(∞) = 1ω

and p(n) = 1k0u, where 2k ≤ n < 2k+1, |u| = k, and n = 2k + 2k−1u0 + · · · uk−1, so b(n) = 1u
(see Table 6.3 left). Define the compression code c : ΣD → {0, 1}ω by

c(0a01a10a2 · · · ) = 00p(a0)p(a1)p(a2) · · ·
c(1a00a11a2 · · · ) = 01p(a0)p(a1)p(a2) · · ·
c(2a03a12a2 · · · ) = 10p(a0)p(a1)p(a2) · · ·
c(3a02a13a2 · · · ) = 11p(a0)p(a1)p(a2) · · ·

Here all ai are positive. The sequence {an : n ≥ 0} may be finite if its last element is ∞. The
compression code is bijective and has an inverse decompression code d : {0, 1}ω → ΣD. Both
codes are continuous in the Cantor topology, so they act also on finite words: For u ∈ ΣD,
c(u) ∈ {0, 1}∗ is the longest common prefix of all c(v) with v ∈ [u] and the length of c(u) goes
to infinity with |u| → ∞. Similarly, for u ∈ {0, 1}∗, d(u) is the longest common prefix of all
d(v) with [u]. Thus dc(u) is a prefix of u and cd(u) is a prefix of u (see Table 6.3).

Both codes can be computed by transducers, which are infinite graphs whose labels are
pairs u/v of input and output words. The states of the compression transducer are (s, a, n) ∈
{0, 1}2×N where s ∈ {0, 1} is the sign, a ∈ {0, 1} is the digit and n ∈ N counts the number of
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digits. The initial state is i = (0, 0, 0). The transducer accepts on input either single letters, or
more generally words of the form ak, where a ∈ A The transitions are

(0, 0, 0) ak/⌊a
2
⌋|a|21⌊log2(k)⌋
−→ (⌊a

2
⌋, |a|2, k),

(⌊a
2
⌋, |a|2, n) ak/1⌊log2(n+k)⌋−⌊log2(n)⌋

−→ (⌊a
2
⌋, |a|2, n+ k) if n > 0

(⌊a
2
⌋, |a|2, n) ak/0σ(b(n))1⌊log2(k)⌋

−→ (⌊a
2
⌋, |a|2, k) if n > 0

For example we have a path

(0, 0, 0) 22/101
−→ (1, 0, 2) 2/λ

−→ (1, 0, 3) 3/01
−→ (1, 1, 1) 35/11

−→ (1, 1, 6) 3/λ
−→ (1, 1, 7)

which yields c(2337) = 1010111. The inverse decompression code d = c−1 : {0, 1}ω → ΣD is
computed by a transducer with states (s, a, b, n) ∈ {0.1}3 × ({−1} ∪ N), where s is the sign, a
is the digit, n is the count of the letters, b = 0 if the count increases and b = 1 if the count
decreases. The initial state is j = (0, 0, 0,−1) and the transitions are

(0, 0, 0,−1) s/λ
−→ (s, 0, 0, 0)

(s, 0, 0, 0) a/2s+a
−→ (s, a, 0, 1)

(s, a, 0, n) 1/(2s+a)n
−→ (s, a, 0, 2n) if n > 0

(s, a, 0, n) 0/λ
−→ (s, a, 1, n

2
) if n > 1

(s, a, 0, 1) 0/2s+a
−→ (s, a, 0, 1)

(s, a, 1, n) 1/(2s+a)n
−→ (s, a, 1, n

2
) if n > 1

(s, a, 1, n) 0/λ
−→ (s, a, 1, n

2
) if n > 1

(s, a, 1, 1) 1/2s+a,2s+a
−→ (s, a, 0, 1)

(s, a, 1, 1) 0/2s+a
−→ (s, a, 0, 1)

If we feed the decompression transducer with the word c(2337) = 1010111, we get a path

(0, 0, 0,−1) 1/λ
−→ (1, 0, 0, 0) 0/2

−→ (1, 0, 0, 1) 1/2
−→ (1, 0, 0, 2) 0/λ

−→

(1, 0, 1, 1) 1/23
−→ (1, 1, 0, 1) 1/3

−→ (1, 1, 0, 2) 1/32
−→ (1, 1, 0, 4)

giving d(1010111) = 2334 which is a prefix of 2337.
The binary continued fraction system (BCF) is defined by the value mapping Ψ = Φ◦c :

{0, 1}ω → R, where Φ : ΣD → R is the value mapping of the CF system. We define the length
quotients similarly as in Möbius number systems with Φ replaced by Ψ. Moreover we define
the mean length quotient by

Ln = 2−n
∑

u∈{0,1}n
|Ψ[u]|.

Some values of these quotients are in Figure 6.4.
We now modify the general binary algorithm for the BCF system. Recall that we have

transformations with matrices F0 = [1 0
1 1

], F1 = [1 1
0 1

], F2 = [ 1 0
−1 1

], F3 = [1 −1
0 1

]. The graph

has vertices B = {λ, 0, 1} and the intervals have matrices V0 = [0 1
1 0

], V1 = [−1 0
0 1

]. For the

matrices Ha = V −1
⌊a
2
⌋FaV⌊a

2
⌋ we get

H0 = H3 = [1 1
0 1

], H1 = H2 = [1 0
1 1

].
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00

01
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11

000
001

010
011

100
101

110
111

n n
√
Ln

n
√
Ln

n
√
Ln

1 0.500 0.500 0.500
2 0.500 0.500 0.500
3 0.468 0.500 0.528
4 0.446 0.535 0.620
5 0.433 0.527 0.600
6 0.424 0.540 0.654
7 0.417 0.533 0.630
8 0.413 0.540 0.668
9 0.409 0.535 0.647

Figure 6.4: The binary continued fractions (left) and the lengths of its cylinders (right)

For u ∈ {0, 1}n we set Hu = Hu0 ◦ · · · ◦ Hun−1 . The states of the modified binary graph are
(X, p, q, r), where X ∈ T(R), p, q ∈ {0, 1}3 × {−1, 0, 1, 2, . . .} are states of the decompression
transducer, and r ∈ {0, 1}2 × N is a state of the compression transducer. The initial state
is (T, j, j, i) where j = (0, 0, 0,−1) is the initial state of the decompression transducer and
i = (0, 0, 0) is the initial state of the compression transducer. The transitions are

(X, p, q, r) a,λ,λ
−→ (X∗Fb, p

′, q, r) if p3 < 0, p a/b
−→ p′

(X, p, q, r) λ,a,λ
−→ (X∗Fb, p, q

′, r) if q3 < 0, q a/b
−→ q′

(X, p, q, r) a,λ,λ
−→ (X∗Hb, p

′, q, r) if p3 ≥ 0, p a/b
−→ p′

(X, p, q, r) λ,a,λ
−→ (X∗Hb, p, q

′, r) if q3 ≥ 0, q a/b
−→ q′

(X, p, q, r) λ,λ,b
−→ (F−k

a X, p, q, r′) if p3, q3 ≥ 0,

X ⊆ F k
a V⌊a

2
⌋, r

ak/b
−→ r′

If (T, j, j, i) u,v,w
−→ is an infinite path with infinite u, v, w ∈ {0, 1}ω, then Ψ(w) = T (Ψ(u),Ψ(v)).

We consider a selector s : T(R)→ A+∪{’x’, ’y’, ’xy’} which depends only on the stateX ∈ T(R).
It searches a letter a ∈ A such that X ⊆ FaV⌊a

2
⌋. If it finds such a letter, it finds the maxi-

mum k such that X ⊆ F k
a V⌊a

2
⌋ and outputs ak. This can be done in ⌊log2 k⌋ steps. If no such

letter exists then it finds one of the absorptions similarly as the selector of the general binary
algorithm (see Kůrka [41]).



Chapter 7

Algebraic number fields

Arithmetical algorithms considered in Chapter 5 are based on the arithmetical operations with
the entries of the matrices of the number systemin question. If these entries are not integers
or rationals, we need arithmetical algorithms which work with them. Such algorithms exist for
algebraic numbers. Algebraic numbers can be represented by vectors of rational numbers, and
arithmetical operations with them are based on matrix calculus.

7.1 Polynomials with rational coefficients

Recall that a polynomial is a complex function p(x) =
∑

i≥0 pix
i, where pi are complex numbers

and pi = 0 for i > deg(p). Polynomials can be added, subtracted and multiplied and they form
the ring C[x]. The subring of polynomials with real coefficients is denoted by R[x]. Similarly
we denote by Q[x] the ring of polynomials with rational coefficients and by Z[x] the ring of
polynomials with integer coefficients. The content of a polynomial p ∈ Z[x] is the greatest
common divisor of its coefficients. A polynomial of Z[x] is primitive, if its content is 1. It is
irreducible if it cannot be written as a product of two polynomials of Z[x] of positive degree.
Similarly, a polynomial of Q[x] is irreducible if it cannot be written as a product of two
polynomials of Q[x] of positive degree.

Proposition 7.1 (Gauss) The product of two primitive polynomials of Z[x] is primitive.

Proof: Let p(x) =
∑

i pix
i, q(x) =

∑
i qix

i, r(x) = p(x)q(x) =
∑

i rix
i, and assume that k > 1

is a prime number which divides the content of r. Let pn be the first coefficient of p not divisible
by k and let qm be the first coefficient of q not divisible by k. In the sum

rn+m = pnqm + pn−1qm+1 + pn+1qm−1 + · · ·

every term except the first is divisible by k. Since k|rn+m we get k|pnqm, so k divides either pn
or qm which is a contradiction.

Proposition 7.2 A polynomial r ∈ Z[x] is irreducible in Z[x] iff it is irreducible in Q[x].

Proof: If r is irreducible in Q[x] then it is clearly irreducible in Z[x]. Conversely assume that
r is reducible in Q[x], so r = pq with p, q ∈ Q[x] of positive degree. Then we can write p = 1

a
s,

q = 1
b
t, where a, b are positive integers and s, t ∈ Z[x] are primitive polynomials. It follows that

abr = st is a primitive polynomial, so ab = 1 and r is reducible in Z[x].

133
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Proposition 7.3 An irreducible polynomial p ∈ Z[x] does not have multiple roots.

Proof: If p(x) is in C[x] divisible by (x − a)2, where a ∈ C, then (x − a) divides both p and
p′ ∈ Z[x], so r = gcd(p, p′) has positive degree. The Euclidean algorithm which computes gcd
uses only field operations, so r ∈ Q[x]. Thus p is reducible in Q[x] and this is a contradiction.

The irreducibility of a polynomial p ∈ Z[x] can be tested algorithmically. We use the fact
that a polynomial of degree n is uniquely determined by its value at n + 1 distinct points. If
c0, c1, . . . , cn are distinct complex numbers and a0, . . . , an are arbitrary complex numbers, the
unique polynomial of degree n which satisfies p(ci) = ai is given by the formula

p(x) =
n∑

i=0

ai(x− c0) · · · (x− ci−1)(x− ci+1) · · · (x− cn)
(ci − c0) · · · (ci − ci−1)(ci − ci+1) · · · (ci − cn)

.

Let p ∈ Z[x] and deg(p) = n. If p is reducible, then it has a factor r of degree at most ⌊n
2
⌋.

To test whether p has a factor of degree m ≤ ⌊n
2
⌋, take m + 1 distinct integers c0, . . . , cm. We

have r(ci)|p(ci) and there is only a finite number of integers which divide p(ci). Thus for each
sequence of integers bi which divide p(ci) we take the polynomial r which satisfies r(ci) = bi
and test whether r divides p.

Definition 7.4 We say that α ∈ C is an algebraic number if there exists a polynomial p ∈ Q[x]
such that p(α) = 0. The degree of α is the smallest integer d such that there exists a polynomial
p ∈ Q[x] with p(α) = 0 and deg(p) = d.

Proposition 7.5 For an algebraic number α there exists a unique monic irreducible polynomial
p ∈ Q[x] with p(α) = 0. We say that p is the minimal polynomial of α. If q ∈ Q[x] and
q(α) = 0 then p divides q.

Proof: Let p ∈ Q[x] be a monic polynomial of smallest degree which satisfies p(α) = 0. Then
p is irreducible, since otherwise α would be a root of one of its factors. If q(α) = 0, then
x− α divides in C[x] both p and q, so r = gcd(p, q) has a positive degree and r(α) = 0. Thus
deg(r) = deg(p) and therefore p divides q.

7.2 Extension fields

Assume that K ⊆ C is a subfield of the field of the complex numbers. This means that if
x, y ∈ K then the sum x+ y, difference x− y, and product xy belong to K, and if y ̸= 0 then
also x/y ∈ K. The smallest subfield of C is the field Q of rational numbers. Each subfield K
of C contains Q as a subfield. If Q ⊆ K ⊂ L ⊆ C are two subfields, then L is a vector space
over K: If ui ∈ L and ai ∈ K then

∑
i aiui ∈ L. If L as a K-vector space has a finite dimension

n, we say that L is a finite field extension of K and write n = [L : K]. In particular we
say that K ⊆ C is an algebraic number field if it has finite dimension over Q. If K is an
algebraic number field of dimension n, then each α ∈ K is an algebraic number of degree at
most n. Indeed, the numbers 1, α, . . . , αn are linearly Q-dependent, so there exist pi ∈ Q with∑

i≤n piα
i = 0. Given a field K ⊆ C and a set M ⊆ C then the intersection of all subfields

of C which contain M ∪ K as a subset is the extension field K(M) of K generated by M .
In particular a simple field extension of K is by definition an extension K(α) by a single
α ∈ C\K. See e.g., Ireland and Rosen [26] for an introduction to the theory of extension fields.
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Proposition 7.6 If Q ⊆ K ⊂ L ⊂ M ⊆ C are subfields of C and if L is finite field extension
of K and M is a finite field extension of L, then M is a finite field extension of K and
[M : K] = [M : L] · [L : K].

Proof: Let {u0, . . . , un−1} be a basis of L over K and let {v0, . . . vm−1} be a basis of M over
L. Then {uivj : i < n, j < m} is a basis of M over K.

For example Q(
√
2) = {x0 + x1

√
2 : xi ∈ Q} and Q(

√
3) = {x0 + x1

√
3 : xi ∈ Q}

are algebraic fields of dimension 2 and Q(
√
2,
√
3) = {x0 + x1

√
2 + x2

√
3 + x3

√
6 : xi ∈ Q}

is an algebraic field of dimension 4. We show that Q(
√
2,
√
3) is a simple field extension.

For α =
√
2 +
√
3 we get α2 = 5 + 2

√
6 so it is a root of an irreducible monic polynomial

p(x) = x4 − 10x2 + 1. Since α3 = 11
√
2 + 9

√
3, we get

√
2 = α3−9α

2
,
√
3 = 11α−α3

2
, so

Q(
√
2 +
√
3) = Q(

√
2,
√
3).

Proposition 7.7 If L ⊆ C is a finite field extension of K ⊂ L, then it is a simple field
extension of K. In particular, every algebraic number field is a simple field extension of Q.

Proof: we show first that for each α, β ∈ C \ K there exists γ ∈ C such that K(γ) =
K(α, β). Let p, q be the minimal polynomials of α and β of degree n and m. Denote by
α = α0, α1, . . . , αn−1 the distinct roots of p and by β = β0, . . . , βm−1 the distinct roots of q in
C. There exists c ∈ Q such that α+ cβ ̸= αi+ cβj for all 0 < i < n, 0 < j < m. Set γ = α+ cβ,
r(x) = p(γ − cx). Then β is the only common root of r and q. Indeed if βj is a root of r then
γ − cβj ̸= αi, so p(γ − cβj) ̸= 0. It follows that gcd(r, q) = x − β. The coefficients of both r
and q are in the field K(γ) and the GCD is computed using only the field operations of K(γ).
It follows β ∈ K(γ) and therefore α = γ− cβ ∈ K(γ) as well. Thus K(γ) = K(α, β). To prove
that L is a simple field extension of K, take any α0 ∈ L \K. Then K(α0) ⊆ L. If K(α0) ̸= L,
take any α1 ∈ L \K(α0), and so on. Since the dimensions of these fields increase, after a finite
number of steps we get L = K(α0, . . . , αp), so there exists α ∈ L \K with L = K(α).

Example 7.8 Each algebraic number field of dimension 2 is of the form

Q(
√
d) = {x0 + x1

√
d : x0, x1 ∈ Q},

where d is a squarefree integer. This means that d is not divisible by any r2 with r > 1. The
arithmetical operation in Q(

√
d) are given by

(x0 + x1
√
d)± (y0 + y1

√
d) = (x0 ± y0 + (x1 ± y1)

√
d)

(x0 + x1
√
d)(y0 + y1

√
d) = (x0y0 + x1y1d+ (x0y1 + x1y0)

√
d)

1

x0 + x1
√
d

=
x0 − x1

√
d

x20 − x21d

Proof: If [K : Q] = 2 and α ∈ K \ Q then there exist rational a, b with α2 + aα + b = 0, so
α = 1

2
(−a±

√
a2 − 4b), and K = Q(

√
d) with d = a2 − 4b. If d = r2c, then K = Q(

√
c).

We have seen that each element of Q(
√
d) is given by a pair x = (x0, x1) of rational numbers,

so Q(
√
d) is isomorphic to Q2.
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Proposition 7.9 Let α be an algebraic number of degree n > 1. Then [Q(α) : Q] = n,
Q(α) over Q has the power basis {1, α, . . . , αn−1} and Q(α) = {q(α) : q ∈ Qn[x]}, where
Qn[x] = {q ∈ Q[x] : deg(q) < n}.

Proof: Clearly α ∈ {q(α) : q ∈ Qn[x]} ⊆ Q(α). We show that {q(α) : q ∈ Qn[x]} is a field.
Let p(x) = −p0−p1x−· · ·−pn−1x

n−1+xn be the minimal polynomial of α. If q, r ∈ Qn[x] then
q+r, q−r ∈ Qn[x], so {q(α) : q ∈ Qn[x]} is closed with respect to addition and subtraction. For
the product we have qr ∈ Q2n−1[x]. Using successively the identity α

n = p0+p1α+· · ·+pn−1α
n−1

we reduce (qr)(α) to an expression which does not contain any power of α higher than n− 1.
Thus there exists s ∈ Qn[x] such that (qr)(α) = s(α). If q ∈ Qn[x] is a nonzero polynomial,
then gcd(p, q) = 1. By Proposition 5.28 there exist s, t ∈ Q[x] such that ps + qt = 1. Thus
1 = p(α)s(α)+ q(α)t(α) = q(α)t(α). Using the identity αn = p0+ p1α+ · · ·+ pn−1α

n−1 we find
a polynomial r ∈ Qn[x] such that r(α) = t(α), so r(α) = 1/q(α). Thus {q(α) : q ∈ Qn[x]} is
the smallest field which contains α and coincides with Q(α). As a vector space over Q, Q(α)
is generated by 1, α, α2, . . ., αn−1. Since these numbers are Q-independent, they form a basis,
so [Q(α) : Q] = n.

Let α be an algebraic number with minimal polynomial p(x) = −p0−p1x−· · ·−pn−1x
n−1+xn

of degree n. A polynomial q ∈ Q[x] with degree deg(q) < n is determined by the vector of its
coefficients so Q(α) is isomorphic with Qn. A row vector or a (1×n)-matrix x = [x0, . . . , xn−1] ∈
Qn represents the number β =

∑
i<n xiα

i = x · w ∈ Q(α), where w = [1, α, . . . , αn−1]T is a
column vector or a (n×1)-matrix. Thus the isomorphism from Qn to Q(α) is given by x 7→ x·w.
The addition and subtraction in Q(α) corresponds to the addition and subtraction in Qn and
multiplication by a ∈ Q in Q(α) corresponds to multiplication by a in Qn: For a ∈ Q, x, y ∈ Qn

we have (x± y) ·w = x ·w± y ·w, (ax) ·w = a(x ·w). The product xy ∈ Qn which corresponds
to the product in Q(α) is defined by (xy) ·w = (x ·w)(y ·w). To obtain the product xy we first
multiply x and y as polynomials so we get a vector in Q2n−1. This polynomial product can be
obtained by matrix multiplication x ·B(y) where B(y) is an (n× (2n− 1))-matrix given by

B(y)ij =

{
yj−i if 0 ≤ j − i < n
0 otherwise

For n = 3 we have

B(y) =

y0 y1 y2 0 0
0 y0 y1 y2 0
0 0 y0 y1 y2


so x · B(y) = [x0y0, x0y1 + x1y0, x0y2 + x1y1 + x2y1, x1y2 + x2y1, x2y2]. Then we reduce the
polynomial x · B(y) to degree at most n − 1 using repeatedly the identity αn = p0 + p1α +
· · ·+ pn−1α

n−1. This reduction is also represented by matrix multiplication. If m ≥ n, then the
reduction of z ∈ Qm to w ∈ Qm−1 is given by

w = z0 + · · ·+ zm−1α
m−1 + zmα

m−n(p0 + p1α + · · ·+ pn−1α
n−1),

so w = z · P (m) where P (m) is an ((m+ 1)×m)-matrix given by

P (m)ij =


1 if i = j
pj−m+n if i = m, 0 ≤ j −m+ n < n
0 otherwise
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The reduction of a vector z ∈ Q2n−1 to a vector of Qn is then represented by the ((2n−1)×n)-
matrix P = P (2n− 2) · · ·P (n+ 1) · P (n). For example for n = 3 we get

P = P (4) · P (3) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 p0 p1 p2

 ·

1 0 0
0 1 0
0 0 1
p0 p1 p2

 =


1 0 0
0 1 0
0 0 1
p0 p1 p2
p0p2 p0 + p1p2 p1 + p22


Thus the multiplication in Qn is given by xy = x ·B(y) ·P = y ·B(x) ·P . The division is given
by x

y
= x · (B(y) · P )−1. Here we write the matrix multiplication with dot ·. For an algebraic

number field Q(
√
d) of dimension 2 we have

B(y) · P =

[
y0 y1 0
0 y0 y1

]
·

1 0
0 1
d 0

 =

[
y0 y1
dy1 y0

]
[
x0 x1

]
·B(y) · P =

[
x0y0 + dx1y1 x0y1 + x1y0

]
Besides this vector representation of algebraic numbers there is also a matrix representa-

tion. It uses an (n × n)-rational matrix to represent an algebraic number of degree n and the
multiplication of algebraic numbers corresponds to the multiplication of matrices. Let K ⊆ C
be an algebraic number field of dimension n. Given β ∈ K, the multiplication x 7→ βx is a
linear mapping on the vector space K over Q so it is represented by an (n × n)-matrix. Let
w = [w0, . . . , wn−1]

T be a basis of K over Q conceived as a column vector or a (n× 1)-matrix.
Then for each β ∈ K there exists an (n× n)-matrix Mw(β) such that βwi =

∑
j<kMw(β)ijwj,

or βw = Mw(β) · w. This means that β is an eigenvalue of Mw(β) and w is the corresponding
right eigenvector.

Proposition 7.10 Let w ∈ Kn be a basis of an algebraic number field K, let Mw(β) be the
matrix representation of β ∈ K such that βw =Mw(β) · w. Then for each β, γ ∈ K, a ∈ Q we
have

1. Mw(1) is the identity matrix.

2. Mw(β ± γ) =Mw(β)±Mw(γ),

3. Mw(aβ) = aMw(β),

4. Mw(βγ) =Mw(β) ·Mw(γ),

5. Mw(1/β) =Mw(β)
−1 provided β ̸= 0.

Proof: Multiplication by 1 is the identity mapping. Since (β ± γ)w = (Mw(β) ±Mw(γ)) · w,
we get Mw(β ± γ) =Mw(β)±Mw(γ). Since

(βγ)w = γ(βw) = γMw(β) · w =Mw(β) · (γw) =Mw(β) ·Mw(γ) · w,

we get Mw(βγ) = Mw(β) ·Mw(γ). Since Mw(β) ·Mw(1/β) is the identity matrix, Mw(1/β) =
Mw(β)

−1.

If K = Q(α) we denote by Mα(β) the matrix representation of β ∈ K by the power basis
w = [1, α, . . . , αn−1]T . By Proposition 7.10 we get

Mα

(∑
i<n

yiα
i

)
=
∑
i<n

yiMα(α)
i
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so each Mα(β) can be obtained from Mα(α). Let p(x) = −p0 = p1x − · · · − pn−1x
n−1 + xn be

the minimal polynomial of α. Since ααi = αi+1 and ααn−1 =
∑

i<n piα
i we get

Mα(α)ij =


1 if i < n− 1, j = i+ 1
pj if i = n− 1
0 otherwise

Indeed for w = [1, α, . . . , αn−1]T we have

αw =


α
α2

...
αn−1

αn

 =


0 1 0 · · · 0
0 0 1 · · · 0

. . .

0 0 0 · · · 1
p0 p1 p2 · · · pn−1

 ·


1
α
...

αn−2

αn−1

 =Mα(α) · w

For an algebraic number field Q(
√
d) of dimension 2 we have p0 = d, p1 = 0, so

M√
d(
√
d) =

[
0 1
d 0

]
M√

d(x0 + x1
√
d) =

[
x0 x1
dx1 x0

]
Indeed[

x0 x1
dx1 x0

]
·
[
y0 y1
dy1 y0

]
= x0

[
1 0
0 1

]
+ x1

[
0 1
d 0

]
=

[
x0y0 + dx1y1 x0y1 + x1y0
d(x0y1 + x1y0) x0y0 + dx1y1

]
While the matrices Mw(β) depend on the choice of the basis w, their trace and determinant

depend only on β.

Proposition 7.11 Let K be an algebraic number field. Then the trace TK(β) = tr(Mw(β)),
and norm NK(β) = det(Mw(β)) of β ∈ K do not depend on the basis w of K.

Proof: Let w = [w0, . . . , wn−1]
T , v = [v0, . . . , vn−1]

T be two bases of K. There exists a regular
matrix A ∈ Qn×n such that vi =

∑
j<nAijwj or v = A · w, w = A−1 · v, so

βv = A · βw = A ·Mw(β) · w = A ·Mw(β) · A−1 · v.

Thus Mv(β) = A ·Mw(β) · A−1 and tr(Mv(β)) = tr(Mw(β)), det(Mv(β)) = det(Mw(β)).

For an algebraic α we write Nα(β) = NQ(α)(β), Tα(β) = TQ(α)(β). For example for a positive
squarefree number d ∈ N we get

T√d(x0 + x1
√
d) = 2x0,

N√
d(x0 + x1

√
d) = x20 − dx21.

If p(x) = −p0 = p1x−· · ·−pn−1x
n−1+xn is the minimal polynomial of α, then from Mα(α)

we get Tα(α) = pn−1, Nα(α) = (−1)n+1p0.

Proposition 7.12 Let K be an algebraic number field of dimension n > 1. For x, y ∈ K,
a ∈ Q we have TK(ax) = aTK(x), TK(x+ y) = TK(x)+TK(y), NK(ax) = anNK(x), NK(xy) =
NK(x) ·NK(y).
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Proof: For each basis w of K we have Mw(ax) = aMw(x), Mw(x + y) = Mw(x) +Mw(y),
Mw(xy) =Mw(x) ·Mw(y).

A field embedding σ : K → C of a field K ⊆ C is an injective mapping which preserves
the field operations, so σ(x ± y) = σ(x) ± σ(y), σ(xy) = σ(x)σ(y), and σ(x/y) = σ(x)/σ(y)
provided y ̸= 0. Any field embedding σ fixes Q: for a ∈ Q we have σ(a) = a. It follows that
for any polynomial q ∈ Q[x] and any β ∈ K we have σ(q(β)) = q(σ(β)). Let α be an algebraic
number with minimal polynomial p(x) = −p0 − p1x − · · · − pn−1x

n−1 + xn. If σ : Q(α) → C
is a field embedding, then p(σ(α)) = σ(p(α)) = 0. Thus σ(α) is a root of p and σ is uniquely
determined by σ(α). Since there are n distinct roots α = α0, α1, . . . , αn−1 ∈ C of p, there are n
field embeddings σ0, . . . , σn−1 : Q(α) → C defined by σi(q(α)) = q(αi), and σ0 is the identity.
We say that αi are conjugated to α = σ0(α). Since p(x) =

∏n−1
i=0 (x− αi), we get∑

i

αi = pn−1∑
i<j

αiαj = −pn−2

∑
i<j<k

αiαjαk = pn−3

...

α0 · · ·αn−1(
1
α0

+ · · · 1
αn−1

) = (−1)np1

α0 · · ·αn−1 = (−1)n+1p0

From the formula for Mα(α) we get

Proposition 7.13 If α is an algebraic number of degree n with minimal polynomial p(x) =
−p0 − p1x− · · · − pn−1x

n−1 + xn and conjugated roots α = α0, . . . , αn−1 then

Tα(α) = pn−1 =
∑
i<n

αi

Nα(α) = (−1)n+1p0 =
∏
i<n

αi

For example for α = α0 =
√
d we have α1 = −

√
d and σ1(x0 + x1

√
d) = x0 − x1

√
d ∈ Q(

√
d),

so both σ0, σ1 : Q(
√
d) → Q(

√
d) are automorphisms. For α = 3

√
2 we have α1 =

3√2(−1+i
√
3)

2
,

α2 =
3√2(−1−i

√
3)

2
, so σ1(Q(α)) ̸= Q(α). If α is algebraic and β ∈ Q(α), then β is algebraic too,

since 1, β, . . . , βn are linearly dependent over Q. The degree m of the minimal polynomial Q
of β divides n, since Q(β) ⊆ Q(α).

Proposition 7.14 Let Q ⊆ K ⊂ L ⊂ C be algebraic number fields of dimensions [K : Q] = m,
[L : K] = k, [L : Q] = n = mk. Then for each embedding σ : K → C there exist exactly k
embeddings σ0, . . . , σk−1 : L→ C which extend σ, i.e., σi(x) = σ(x) for x ∈ K.

Proof: Let σ : K → C be a field embedding. There exists α ∈ L \ K such that L = K(α).
The minimal polynomial p(x) =

∑
i<k pix

i of α over K has degree k and coefficients pi ∈ K. If
c ∈ C is a root of p, then ∑

i<k

σ(pi)σ(c)
i = σ

(∑
i<k

pic
i

)
= σ(0) = 0,
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so σ(c) is a root of q(x) =
∑

i<k σ(pi)x
i. It follows that q(x) has k distinct roots. If τ : L→ C

is an embedding which extends σ, then

0 = τ(p(α) =
∑
i<k

τ(pi)τ(α)
i =

∑
i<k

σ(pi)τ(α)
i = q(τ(α))

so τ(α) is a root of q(x) and τ is uniquely determined by τ(α). Since q has k roots, there exists
exactly k embeddings τ of σ.

Proposition 7.15 Let K be an algebraic number field of dimension n > 1 and let σi : K → C,
i = 0, 1, . . . , n− 1 be its distinct embeddings. If β ∈ K is an algebraic number of degree m ≤ n
with minimal polynomial q(x) = −q0 − · · · − qm−1x

m−1 + xm, then m diviede n and

TK(β) =
∑
i<n

σi(β) =
n

m
· qm−1,

NK(β) =
∏
i<n

σi(β) = (−1)n · (−q0)
n
m .

In particular TK(a) = na, NK(a) = an for a ∈ Q.

Proof: Let K = Q(α), and assume that σ0, . . . , σn−1 are distinct embeddings of Q(α) to C
such that the restrictions of σ0, . . . , σm−1 to Q(β) are distinct embeddings of Q(β) to C. We
have βαi =

∑
j<nMα(β)ijα

j and∑
j<n

Ijkσk(β)σj(α
i) = σk(β)σk(α

i) = σk(βα
i) =

∑
j<n

Mα(β)ijσk(α
j)

where I is the identity matrix. Define (n × n)-matrices S(α), N(β) by S(α)ij = σj(α
i),

N(β)jk = Ijkσk(β). Then S(α) · N(β) = Mα(β) · S(α) and N(β) is a diagonal matrix with
diagonal formed by σj(β). By Propositions 7.13, 7.14 we get

TK(β) = tr(Mα(β)) = tr(N(β)) =
∑
j<n

σj(β) =
n

m

∑
j<m

σj(β)

=
n

m
qm−1,

NK(β) = det(Mα(β)) = det(N(β)) =
∏
j<n

σj(β) = (
∏
j<m

σj(β))
n
m

= ((−1)m+1q0)
n
m = (−1)n · (−q0)

n
m .

For a ∈ Q we have m = 1, q0 = a, so TK(a) = na, NK(a) = (−1)n · (−a)n = an.

Proposition 7.16 Let K be an algebraic number field of dimension n and σ0, . . . , σn−1 the
distinct field embeddings of K into C. For a vector w ∈ Kn define (n×n)-matrices S(w), τ(w)
by S(w)ij = σj(wi), τ(w)ij = TK(wiwj). Then

det(τ(w)) = det(S(w))2 = ∆(w)

is called the discriminant of w.
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Proof:
τ(w)ij =

∑
k<n

σk(wi)σk(wj) =
∑
k<n

S(w)ikS(w)
T
kj = (S(w) · S(w)T )ij,

so τ(w) = S(w) · S(w)T and therefore det(τ(w)) = det(S(w))2.

Proposition 7.17 A vector w ∈ Kn is a basis of K over Q iff ∆(w) ̸= 0.

Proof: If w0, . . . , wn−1 are linearly dependent then
∑

i<n aiwi = 0 for some nonzero a ∈ Qn.
For each j we get

∑
i<n aiTK(wiwj) = TK(

∑
i<n aiwiwj) = TK(0) = 0, so det(τ(w)) = 0.

Conversely assume that w ∈ Kn is a basis and det(τ(w)) = 0. Then there exist nonzero ai such
that

∑
i<n aiTK(wiwj) = 0. If α =

∑
i<n aiwi, then T (αwj) = 0 for all wj. Since w is a basis of

K, we get TK(αβ) = 0 for all β ∈ K which is a contradiction since TK(1) ̸= 0.

Proposition 7.18 Assume that w, v ∈ Kn are bases of K over Q and A is the transformation
matrix with vi =

∑
j<nAijwj. Then ∆(v) = det(A)2 ·∆(w).

Proof: By Proposition 7.12 we have

TK(vivj) =
∑
k<n

∑
l<n

AikAjlTK(wkwl) = (Aτ(w)AT )ij

so τ(v) = A · τ(w) · AT and det(τ(v)) = det(τ(w)) · det(A)2

7.3 Computable ordered fields

Definition 7.19 An ordered field is a pair (K,P ), where K is a field and P ⊂ K is its
subset (of positive elements) which satisfies the following conditins:
1. For every x ∈ K either x ∈ P or −x ∈ P or x = 0.
2. If x, y ∈ P then x+ y ∈ P and xy ∈ P .
3. We say that (K,P ) is a computable ordered field, if the operations of addition, sub-
traction, multiplication and division are algorithmic and if the set P of positive elements is
computable.

While R or Q together with its sets of positive elements are ordered fields, the field C of
complex numbers is not orderable. There exists no set P ⊂ C such that (C, P ) is an ordered
field. On the other hand, each subfield of R is an ordered field with the order inherited from
R, If (K,P ) is an ordered field, then the inequality is defined by x < y iff y− x ∈ P and x ≤ y
if x < y or x = y.

Theorem 7.20 Each real algebraic number field K ⊂ R is a computable ordered field.

Proof: The operations of addition, subtraction, multiplication and division are performed on
Qn and they are clearly algorithmic. It rests the inequality or the set of positive elements
P . Let K = Q(α) and let p be the minimal polynomial for α. Since all the fields σi(K) are
isomorphic, we must distinguish α from its conjugate roots. We can do it by specifying an
interval I with rational endpoints such that α is the only root of P in I. This can be verified
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by the Sturm theorem 5.29. Given an element β = q(α) ∈ Q(α) where q ∈ Qn[x], we have to
decide whether q(α) > 0 or q(α) < 0. If q has no root in I, then q(α) > 0 iff q is positive on
both endpoints of I. If q has a root in I, then we take a smaller interval I1 ⊂ I with rational
endpoints which contains α and repeat the test with I1. Since α is irrational we find finally an
interval which contains α but q has no root in Ik. Then the sign of q(α) is the sign of q at any
endpoint of Ik.

All arithmetical algorithms use only the field operations with the entries of the matrices Fa

and Vp and the comparisions.

Corollary 7.21 Let α be a real algebraic number and let (F,G, V ) be a sofic number system
such that all entries of matrices Fa, Vp are in Q(α). Then all arithmetic algorithms work
properly.

7.4 Algebraic integers

Definition 7.22 An algebraic number α is an algebraic integer if its minimal polynomial
belongs to Z[x], i.e., if there exist pi ∈ Z such that −p0 − p1α− · · · − pn−1α

n−1 + αn = 0.

Denote by Q the set of algebraic integers. For an algebraic number field K denote by ZK the
set of algebraic integers of K. For an algebraic number α denote by Zα = ZQ(α) the set of
algebraic integers of Q(α). For α ∈ C denote by Z(α) = {q(α) : q ∈ Z[x]} the smallest ring
which contains α.

Proposition 7.23 If α is an algebraic number, then there exists a positive integer k ∈ Z such
that kα is an algebraic integer.

Proof: Let p ∈ Q[x] be the minimal polynomial of α. Denote by k > 0 the GCD of the
denominators of the coefficients of p, so p(x) = (p0 + · · ·+ pnx

n)/k for some pi ∈ Z. Then pnα
is a root of q(x) = p0p

n−1
n + p1p

n−2
n x+ · · ·+ pn−2pnx

n−2 + pn−1x
n−1 + xn.

Proposition 7.24 Let d be a positive squarefree integer greater than 1.

1. If mod4(d) = 2 or mod4(d) = 3 then Z√
d = {x0 + x1

√
d : x0, x1 ∈ Z}.

1. If mod4(d) = 1 then Z√
d = {x0 + x1

√
d−1
2

: x0, x1 ∈ Z}.

Proof: A number x = x0 + x1
√
d with x0, x1 ∈ Q is an algebraic integer iff its minimal

polynomial x2 − 2x0x + x20 − dx21 has integer coefficients, iff T√d(x) = 2x0 ∈ Z and N√
d(x) =

x20 − dx21 ∈ Z. It follows 4dx20 ∈ Z, so 4dx21 ∈ Z and since d is squarefree, 2x1 ∈ Z. For the
integers y0 = 2x0, y1 = 2x1 we have 4|(y20 − dy21). If d = 4k+ 2 then 4|(y20 − 2y21). If d = 4k+ 3
then 4|(y20 − 3y21). In both cases this is possible only if both y0, y1 are even, so x0, x1 ∈ Z. If
d = 4k + 1 then 4|(y20 − y21) and y0, y1 must have the same parity. We get

x0 + x1
√
d =

y0 + y1
2

+

√
d− 1

2
y1,

where y0+y1
2
∈ Z and y1 ∈ Z.
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Definition 7.25 A set M ⊆ C is a free Z-module if it is a group with respect to the addition,
i.e., if x+y ∈M and x−y ∈M whenever x, y ∈M . A free Z-moduleM is finitely generated
if there exists m and w0, . . . , wm−1 ∈M such that each x ∈M can be written as x =

∑
i<m xiwi

with xi ∈ Z.

Proposition 7.26 α ∈ C is an algebraic integer iff there exists a finitely generated free Z-
module M ⊂ C such that αM = {αx : x ∈M} ⊆M .

Proof: If α ∈ Q is an algebraic integer of degree m then Z(α) = {q(α) : q ∈ Zm[x]}. Indeed,
using the equality α = p0+ p1α+ · · ·+ pn−1α

n−1, we can find for any q ∈ Z(α) some r ∈ Zm(α)
with q(α) = r(α). Clearly αZ(α) ⊆ Z(α) and 1, α, . . . , αm−1 are generators of Z(α). Conversely
assume that M is a finitely generated module with αM ⊆ M . Let w0, . . . , wm−1 ∈ C be
generators of M . Then there exist Cij ∈ Z such that αwi =

∑
j Cijwj. If w = [w0, . . . , wm−1]

T

is the column vector and C is the matrix with entries Cij then we have C ·w = αw, so w is the
right eigenvector of C with the eigenvalue α. It follows that det(Iα − C) = 0, where I is the
identity matrix. Thus α is a root of a monic polynomial p(x) = det(Ix− C) which belongs to
Z[x]. It follows that the minimal polynomial of α belongs to Z[x].

Proposition 7.27 The set Q of algebraic integers is a subring of C.

Proof: Let α be an arithmetic integer of degree n and let β be an arithmetic integer of degreem.
Then Z(α, β) = {

∑
ij xijα

iβj : xij ∈ Z} is a finitely generated module, (α+β)Z(α, β) ⊆ Z(α, β)
and (αβ)Z(α, β) ⊆ Z(α, β). Thus α + β ∈ Q and αβ ∈ Q.

Corollary 7.28 For each algebraic number field K the set ZK = K∩Q of its algebraic integers
is a ring.

Definition 7.29 Let K be an algebraic number field of dimension n. We say that w ∈ (ZK)
n

is an integral basis of ZK if ZK = {xiwi : xi ∈ Z}.

Proposition 7.30 If K is an algebraic number field then ZK has an integral basis.

Proof: By Proposition 7.23 there exists an algebraic integer α ∈ K such that K = Q(α). Thus
there exist bases of K over Q which consist of algebraic integers. If w is such a basis then
TK(wiwj) ∈ Z are integers by Proposition 7.15, so ∆(w) ∈ Z. Take a basis w ∈ (ZK)

n with
minimal absolute value of the discriminant ∆(w). We show that w is an integral basis. Since
w is a Q-basis for K, for each x ∈ ZK there exist unique xi ∈ Q such that x =

∑
i<n xiwi. We

show that xi ∈ Z. If not we can reorder wi so that x0 ̸∈ Z. There exists m ∈ Z such that
0 < y0 = x0 −m < 1. Take v0 = x −mw0 ∈ ZK and vi = wi for i > 0. Then v ∈ (ZK)

n is a
basis for K. Since v0 = y0w0 + x1w1 + · · ·+ xn−1wn−1, we get v = A · w where

A =


y0 x1 x2 · · · xn−1

0 1 0 · · · 0
0 0 1 · · · 0

...
0 0 0 · · · 1


Since det(A) = y0 < 1, we get |∆(v)| < |∆(w)| by Proposition 7.18 and this is a contradiction.
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Corollary 7.31 All integral bases of an algebraic number field K have the same discriminant
which is called the discriminant ∆(K) of K.

The quadratic field Q(
√
d) with squarefree d = 4k + 2 or d = 4k + 3 has integral basis

w = [1,
√
d]T . For the discriminant we get

τ(w) =

[
2 0
0 2d

]
, ∆(Q(

√
d)) = det(τ(w)) = 4d

If d = 4k + 1, then Q(
√
d) has integral basis w = [1,

√
d−1
2

]T and discriminant

τ(w) =

[
2 −1
−1 (d+ 1)/2

]
, ∆(Q(

√
d)) = det(τ(w)) = d.

7.5 Pisot and Salem numbers

Definition 7.32 We say that a real algebraic integer α > 1 is a Pisot number if for all its
conjugates we have |σi(α)| < 1. A real algebraic integer α > 1 is a Salem number if for all
its conjugates we have |σi(α)| ≤ 1 and there exists a conjugate with |σi(α)| = 1.

Each ordinary integer n ≥ 2 is a Pisot number. The golden mean α =
√
5+1
2

.
= 1.618 is a

Pisot number. Its minimal polynomial is p(x) = x2−x−1 and its conjugate is 1−
√
5

2

.
= −0.618.

The smallest known Salem number is the largest real root of the polynomial

p(x) = x10 + x9 − x7 − x6 − x5 − x4 − x3 + x+ 1

which is approximatgely 1.176. We are going to show that every algebraic number field contains
a Pisot number which generates it.

A lattice is a finitely generated subgroup L ⊆ Rn with pointwise addition. Thus a lattice
is a set L = {

∑
i xivi : xi ∈ Z} where vi ∈ Rn are linearly R-independent vectors. The

determinant of the lattice is the determinant of its matrix Vij = (vj)i whose columns are the
vectors vj. The simplest lattice is Zn which is generated by the identity matrix I. We say that
a set X ⊆ Rn is convex if for every x, y ∈ X and 0 < t < 1 we have tx+(1− t)y ∈ X. We say
that X is symmetric if −x ∈ X whenever x ∈ X (see Micciancio and Goldwasser [51]).

Proposition 7.33 Let X ⊆ Rn be a convex symmetric set with volume vol(X) > 2n. Then X
contains a nonzero point of Zn.

Proof: Consider a mapping f : X → Rn given by f(x)i = |xi|2 ∈ [0, 2]. This mapping preserves
the volume and its image is included in a cube f(X) ⊆ [0, 2]n with volume 2n. Thus there exist
different x, y ∈ X with f(x) = f(y), i.e., y = x + 2u for some u ∈ Zn with u ̸= 0. Since X is
symmetric, we get −x ∈ X and since X is convex we have u = 1

2
(x+2u−x) = 1

2
(y−x) ∈ X.

Theorem 7.34 (Minkowski) Let L ⊆ Rn be a lattice and let X ⊆ Rn be a symmetric convex
set with volume vol(X) > 2n · | det(L)|. Then X contains a nonzero point of L.

Proof: Let L = {
∑

i xivi : xi ∈ Z} be a lattice generated by linearly independent vectors
vi ∈ Rn. Define the square matrix V by Vij = (vj)i. Then L = {V · x : x ∈ Zn} and
V −1(L) = Zn. If X ⊆ Rn is convex and symmetric then V −1(X) is convex and symmetric and
its volume is vol(X)/| det(L)|. Thus V −1(X) contains a nonzero point of Zn by Proposition
7.33, and therefore X contains a nonzero point of L.
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Theorem 7.35 (Salem) In each algebraic number field K there exists a Pisot number α ∈ K
such that K = Q(α).

Proof: Let w ∈ Kn be an integral basis of ZK and let σ0, . . . , σn−1 be the distinct embeddings
of K into C. We have a matrix S(w) defined by S(w)ij = σj(wi). Take a lattice L whose
generators are the rows of S(w), so L = {

∑
i yi(σ0(wi), σ1(wi), . . . , σn−1(wi)) : yi ∈ Z}. Then

∆(K) = det(S(w))2 = det(L)2. For 0 < δ < 1, B >
√
∆(K)/δn−1 consider the set

X = {x ∈ Rn : |x0| < B,∀i > 0, |xi| < δ}.

Then the volume of X is 2nBδn−1 > 2n| det(L)| so by Theorem 7.34 there exists a nonzero
x ∈ L ∩ X and there exist yi ∈ Z such that xj =

∑
i yiσj(wi). Since X is symmetric, we can

assume x0 ≥ 0. Thus α = x0 = y0w0 + · · ·+ yn−1wn−1 ∈ ZK , 0 < α < B, |σi(α)| = |xj| < δ for
0 < j < n. By Proposition 7.15,

∏
j σj(α) ∈ Z \ {0}, and therefore α > 1. Thus α ∈ ZK is a

Pisot number. We show that K = Q(α). If not then m = [K : Q(α)] < n and α would appear
n/m times among the conjugates σi(α). However, this is not the case since |σi(α)| < 1 for all
i > 0.

7.6 Positional systems

A positional number system for a bounded interval (see Section 1.4) is defined by a real base
β > 1 and a finite contiguous set of digits A = [r, s] = {r, r + 1, . . . , s − 1, s} ⊂ Z with
s− r ≥ β − 1. If s− r > β, then the system is redundant. The base β need not be an integer.
The study of positional system with noninteger bases has been initialized by Rényi [58]. The
surjective and continuous value mapping Φ : Aω → [ r

β−1
, s
β−1

] is given by Φ(u) =
∑

i≥0 uiβ
−i−1.

Thus we have a sofic number system whose graph has a single vertex λ and edges λ a−→ λ for
all a ∈ A. For Vλ we get

Vλ = [b0, b1] = [ r
β−1

, s
β−1

]

Fa(Vλ) = [ b0+a
β
, b1+a

β
] = [ a

β
+ r

β(β−1)
, a
β
+ s

β(β−1)
, ]

Among the expansions of x ∈ [b0, b1] we consider the smallest (in lexicographic order) which
we call the lazy expansion and the largest which we call the greedy expansion. The lazy
function Lβ : [b0, b1]→ [b0, b1] and the lazy expansion map El : [b0, b1]→ Aω are defined by

Lβ(x) = βx− al(x)

El(x)i = al(L
i
β(x)), where

al(x) = min{a ∈ A : x ∈ Fa(Vλ)}

Proposition 7.36 If β > 1, A = [r, s] ⊆ Z, s− r ≥ β − 1 then

1. al(x) = max{r, ⌈βx− b1⌉}.
2. Φ(El(x)) = x for every x ∈ Vλ
3. El(Φ(u)) ⪯ u for every u ∈ Aω.

Proof: 1. We have al(x) = r iff x ≤ b1+r
β

iff βx − b1 ≤ r iff ⌈βx − b1⌉ ≤ r. For a > r we

have al(x) = a iff b1+a−1
β

< x ≤ b1+a
β

iff a − 1 < βx − b1 ≤ a iff ⌈βx − b1⌉ = a, so we get

al(x) = max{r, ⌈βx− b1⌉}.
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2,3. We use Theorem 4.29. We have Φ(u) = x iff there exists a sequence xi ∈ Vλ with
xi+1 = F−1

ui
(xi). Since Lβ(x) = F−1

a (x) for a = al(x), the result follows.

The lazy expansion map is in fact the left expansion in a partition number system (see
Definition 4.18 and Figure 7.1 left).

Definition 7.37 The lazy partition number system with base β > 1 and alphabet A =
[r, s] ⊂ Z is given by transformations Fa(x) =

x+a
β

and intervals

Wa =

{
(b0,

b1+r
β

) for a = r

( b1+a−1
β

, b1+a
β

) for r < a ≤ s

Proposition 7.38 For the lazy partition number system (F,W ) with base β > 1 and alphabet
A = [r, s] we have

1. E−(x) = El(x), so E−(x)i = al(L
i
β(x))

2. E−(Φ(u)) ⪯ u for any u ∈ Aω.

3. u ∈ Aω belongs to SF,W iff σn+1(u) ⪰ E+(b1 − 1) whenever un > p.

4. The subshift SF,W is sofic iff E+(b1 − 1) is periodic.

Proof: Items 1,2 follow from al(x) = min{a ∈ A : x ∈ Wa}.
3. We use Theorem 4.20. For a ∈ A we have E−(ra) = asω. If a > r then E+(la) = aE+(b1− 1),
for a = r we have E+(lr) = rω. If un = r, then the condition E+(lr) = rω ⪯ σn(u) ⪯ rsω =
E−(rr) is always satisfied. If un > r then the condition E+(la) = aE+(b1 − 1) ⪯ σn(u) ⪯ asω =
E−(rr) is satisfied iff σn+1(u) ⪰ E+(b1 − 1).
Item 4 follows from Theorem 4.24.

b0

b1

b1−1

b0 b1+r
β

b1+s−1
β

b1
b0

b1

b0+1

b0 b0+r+1
β

b0+s
β

b1

Wr Ws−1 Ws Wr Wr+1 Ws

Figure 7.1: The lazy function Lβ and the lazy partition {Wa : a ∈ A} (left), the greedy function
Gβ and the greedy partition {Wa : a ∈ A} (right) in a positional system with noninteger base

The greedy function Gβ : [b0, b1]→ [b0, b1] and the greedy expansion map Eg : [b0, b1]→
Aω are given by

Gβ(x) = βx− ag(x)

Eg(x)i = ag(G
i
β(x)), where

ag(x) = max{a ∈ A : x ∈ Fa(Vλ)}

Proposition 7.39 If β > 1, A = [r, s] ⊆ Z, s− r ≥ β − 1 then
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1. ag(x) = min{s, ⌊βx− b0⌋}
2. Φ(Eg(x)) = x for every x ∈ Vλ
3. u ⪯ Eg(Φ(u)) for every u ∈ Aω.

Proof: 1. We have ag(x) = s iff b0+s
β
≤ x iff s ≤ βx − b0 iff s ≤ ⌊βx − b0⌋. For a < s we

have ag(x) = a iff b0+a
β
≤ x < b0+a+1

β
iff a ≤ βx − b0 < a + 1 iff ⌊βx − b0⌋ = a, so we get

ag(x) = min{s, ⌊βx− b0⌋}.
2,3 follow from Theorem 4.29.

The greedy expansion map is the right expansion in a partition number system (see Figure
7.1 right)

Definition 7.40 The greedy partition number system with base β > 1 and alphabet A =
[r, s] ⊂ Z is given by transformations Fa(x) =

x+a
β

and intervals

Wa =

{
( b0+a

β
, b0+a+1

β
) for r ≤ a < s

( b0+s
β
, b1) for a = s

Proposition 7.41 (Parry [53]) For the greedy partition number system (F,W ) with base β >
1 and alphabet A = [r, s] we have

1. E+(x) = Eg(x), so E+(x)i = ag(G
i
β(x))

2. u ⪯ E+(Φ(u)) for any u ∈ Aω.

3. u ∈ Aω belongs to SF,W iff σn+1(u) ⪯ E−(b0 + 1) whenever un < q.

4. The subshift SF,W is sofic iff E−(b0 + 1) is periodic.

Proof: The proof is similar to the proof of Theorem 7.38. For a ∈ A we have E+(la) = arω.
If a < s then E−(ra) = aE−(b0 + 1), otherwise E−(rs) = sω. If un = s, then the condition
E+(lq) = srω ⪯ σn(u) ⪯ sω = E−(rs) is always satisfied. If a = un < s then the condition
E+(la) = arω ⪯ σn(u) ⪯ aE−(b0 + 1) is satisfied iff σn+1(u) ⪯ E−(b0 + 1).

V0 V1 V2 V3 V4

0 0 0

1 1 1

2 2

V0 V1 V2 V3 V4

0 0

1 1 1

2 2 2

W0 W1 W2 W0 W1 W2

Figure 7.2: The β-system with β = 3+
√
5

2
.

As an example consider the positional system with base β = 3+
√
5

2

.
= 2.618 and alphabet

A = [0, 1, 2]. The intervals Wa of the lazy partition have endpoints 0, b1
β

.
= 0.472, b1+1

β

.
= 0.854,

b1 = 2
β
=
√
5 − 1

.
= 1.236. Since F−1

0 (b1 − 1) = β − 2 ∈ W1 and F−1
1 (β − 2) = β − 2, we get

E+(b1− 1) = 01ω, so the lazy subshift SF,W is sofic. Its SFT partition V = {Va : a ∈ [0, 5]} has
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endpoints 0, b1− 1
.
= 0.236, b1

β

.
= 0.472, β − 2

.
= 0.618, b1+1

β

.
= 0.854, b1

.
= 1.236 and graph (see

Figure 7.2 left)

[0, b1 − 1] = V0 = F0(V0 ∪ V1 ∪ V2)
[b1 − 1, b1

β
] = V1 = F0(V3 ∪ V4)

[ b1
β
, β − 2] = V2 = F1(V1 ∪ V2)

[β − 2, b1+1
β

] = V3 = F1(V3 ∪ V4)

[ b1+1
β
, b1] = V4 = F2(V1 ∪ V2 ∪ V3 ∪ V4)

The intervals Wa of the greedy partition have endpoints 0, 1
β

.
= 0.382, 2

β

.
= 0.764, and b1 =

2
β
=√

5− 1
.
= 1.236. Since F−1

2 (1) = β − 2 ∈ W1 and F−1
1 (β − 2) = β − 2, we get E−(1) = 21ω, so

the greedy subshift SF,W is sofic. Its SFT partition has cutpoints 0, 1
β

.
= 0.382, β − 2 = 0.618,

2
β

.
= 0.764, 1 and b1 and graph (see Figure 7.2 right)

[0, 1
β
] = V0 = F0(V0 ∪ V1 ∪ V2 ∪ V3)

[ 1
β
, β − 2] = V1 = F1(V0 ∪ V1)

[β − 2, 2
β
] = V2 = F1(V2 ∪ V3)

[ 2
β
, 1] = V3 = F2(V0 ∪ V1)

[1, b1] = V4 = F2(V2 ∪ V3 ∪ V4)

b0

b1−1

b1

b0 b1+s−1
β

b1+r
β

b1
b0

b0+1

b1

b0 b0+s
β

b0+r+1
β

b1

Ws Ws−1 Wp Ws Wr+1 Wr

Figure 7.3: The lazy expansion function Lβ (left) and the greedy expansion function Gβ (right)
in a positional system with negative noninteger base

The positional system with negative base β < −1 and the alphabet A = [r, s] determines a
mapping Φ : Aω → [b0, b1] where b0 =

sβ+r
β2−1

and b1 =
rβ+s
β2−1

, so

Vλ = [b0, b1] = [ sβ+r
β2−1

, rβ+s
β2−1

]

Fa(Vλ) = [ b1+a
β
, b0+a

β
]
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For the lazy and greedy expansions we get the same formulas as for β > 1.

al(x) = min{a ∈ A : x ∈ Fa(Vλ)} = max{r, ⌈βx− b1⌉}
Lβ(x) = βx− al(x),

El(x)i = al(L
i
β),

ag(x) = max{a ∈ A : x ∈ Fa(Vλ)} = min{s, ⌊βx− b0⌋}
Gβ(x) = βx− ag(x),

Eg(x)i = ag(G
i
β).

Indeed we have al(x) = r iff b1+r
β
≤ x iff βx − b1 ≤ r iff ⌈βx − b1⌉ ≤ r. For a > r we

have al(x) = a iff b1+a
β
≤ x < b1+a−1

β
iff a − 1 < βx − b1 ≤ a iff ⌈βx − b1⌉ = a, so we get

al(x) = max{r, ⌈βx− b1⌉} and similarly for ag(x). The lazy partition system has intervals

Wa =

{
( b1+r

β
, b1) for a = r

( b1+a
β
, b1+a−1

β
) for r < a ≤ s

The greedy partition system has intervals

Wa =

{
(b0,

b0+s
β

) for a = s

( b0+a+1
β

, b0+a
β

) for r ≤ a < s

When we iterate the greedy function (with β > 1) then for all x < b1 there exists n0 such
that Gn

β(x) ∈ [b0, b0 + 1] for all n ≥ n0. This is why the dynamics of the function Gβ has been
studied in Rényi [58] on this restricted interval.

Definition 7.42 The restricted greedy partition number system with noninteger base
β > 1 is given by the alphabet A = [0, ⌊β⌋], transformations Fa(x) =

x+a
β

and intervals

Wa =

{
( a
β
, a+1

β
) if a < ⌊β⌋

( q
β
, 1) if a = ⌊β⌋

The value function Φ is defined on the subshift SF,W and its range is the unit interval [0, 1].

Proposition 7.43 In the restricted greedy system with β > 1 we have u ∈ SF,W iff for each
k ≥ 0 we have σk(u) ⪯ E−(1). The expansion subshift is sofic iff E−(1) is periodic.

Proof: We use Theorem 4.20. We have la = a/β for 0 < a < n and ra = (a + 1)/β for
0 ≤ a < q = ⌊β⌋, rq = 1. We have E+(la) = a0ω for each a ∈ A, E−(ra) = aE−(1) for a < q and
E−(rq) = E−(1). The condition E+(luk

) ⪯ σk(u) ⪯ E−(ruk
) yields

uk < b ⇒ uk0
ω ⪯ ukσ

k+1(u) ⪯ ukE−(1)⇔ σk+1(u) ⪯ E−(1)
uk = b ⇒ uk0

ω ⪯ ukσ
k+1(u) ⪯ E−(1)⇔ σk(u) ⪯ E−(1)

Thus the condition is equivalent to σk(u) ⪯ E−(1) for all k ≥ 0.

Theorem 7.44 (Schmidt [61]) If β > 1 is a Pisot number then every x ∈ Q(β) ∩ [0, 1] has
a periodic expansion in the restricted greedy system with base β.
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Proof: Denote by σ0, . . . , σn−1 the n distinct embeddings of Q(β) into C with σ0 the identity.
Let x ∈ [0, 1), xm = Gm

β (x), um = ⌊βGm
β (x)⌋, where Gβ(x) = βx − ⌊βx⌋. Since xm =

(xm+1 + um)/β we get by induction for each m and j < n

x =
∑
i<m

uiβ
−i−1 + xmβ

−m

xm = xβm −
∑
i<m

uiβ
m−i−1

σj(xm) = σj(x)σj(β)
m −

∑
i<m

uiσj(β)
m−i−1

For j = 0 we have 0 ≤ xm < 1. Since |ui| < β, for j > 0 we have

|σj(xm)| ≤ |σj(x)|+ β
∑
i<m

|σj(β)|m−i−1 ≤ |σj(x)|+
β

1− η
,

where η = max{|σj(β)| : j > 0} < 1. There exists an integer q > 0 such that qx0 is an
algebraic integer. Since xm+1 = βxm − um, it follows that each qxm is an algebraic integer.
Let w = [w0, . . . , wn−1]

T be an integral basis for Zβ. Thus for each m there exist integers
xm,0, . . . xm,n−1 such that xm = 1

q

∑
j<n xm,jwj and therefore σk(xm) =

1
q

∑
j<n xm,jσk(wj) for

each k < n. Denote by S(w) the regular matrix S(w)jk = σk(wj). Then

[σ0(xm), . . . , σn−1(xm)] =
1

q
[xm,0, . . . , xm,n−1] · S(w)

[xm,0, . . . , xm,n−1] = q[σ0(xm), . . . , σn−1(xm)] · S(w)−1

The right-hand side is bounded, i.e., there exists M > 0 such that |σj(xm)| < M for all j < n
and all m ≥ 0. It follows that the left-hand side is bounded too and there exists m and k > 0
such that xm+k = xm. Thus xi is a periodic sequence and ui is a periodic sequence as well.

Corollary 7.45 If β > 1 is a Pisot number, then both the lazy and greedy partition number
systems with base β have sofic expansion subshift.

Theorem 7.46 (Schmidt [61]) If β > 1 and each x ∈ Q ∩ [0, 1) has a periodic expansion in
the restricted greedy system with base β, then β is a Pisot number or a Salem number.

Proof: First we show that β is algebraic. If 0 < q < 1 is a rational number whose expansion
u ∈ Aω has preperiod m and period n > 0, then

q =
∑
i<m

uiβ
−i−1 +

β−m

1− β−n

∑
i<n

um+iβ
−i−1

which is an algebraic equation for β. Assume by contradiction that β has a conjugate γ = σ(β)
with |γ| > 1. If x ∈ Q ∩ [0, 1) then for xm = Gm

β (x) we get

x−
∑
i<m

uiβ
−i−1 = xm · β−m

x−
∑
i<m

uiγ
−i−1 = σ(xm) · γ−m

∣∣∣∣∣x−∑
i<m

uiγ
−i−1

∣∣∣∣∣ ≤ max{|σ(xm)| : m ≥ 0} · |γ|−m
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Since {xm : m ≥ 0} is a periodic sequence, the right hand side converges to zero, so x =∑∞
i=0 uiγ

−i−1. For each k there exists a rational x ∈ Q such that 1
β
< x < 1

β
+ 1

βk+1 . Its greedy

expansion u satisfies u0 = 1, u1 = · · · = uk−1 = 0, and, as we have proved, x =
∑∞

i=0 uiγ
−i−1.

It follows

|β−1 − γ−1| =

∣∣∣∣∣
∞∑
i=k

ui(β
−i−1 − γ−i−1)

∣∣∣∣∣ ≤ β

βk(β − 1)
+

β

|γ|k(|γ| − 1)

As k →∞, the right-hand side converges to zero, so we get β = γ which is a contradiction.

To get a number system for whole R we add digit 0 and sometimes the sign digit −. The
transformations are

Fa(x) =


x+a
β

if a ∈ [r, s]

βx if a = 0
−x if a = −

Suitable subshifts depend on β and A. We identify some simple SFT for symmetric alphabets
A = [−s, s] ∪ {0}.

Proposition 7.47 Let 1 < β ≤ 2, A = {1, 0, 1, 0} and set

D = {a0 : a ∈ {1, 0, 1}} ∪ {10n1, 10n1 : n ≤ nβ}, where

nβ =

⌊
− ln(β − 1)

ln β

⌋
.

Then (F,ΣD) is a number system.

Proof: The value mapping Φ : ΣD → R is clearly surjective and continuous at every x ̸= ∞.
We show that it is continuous at ∞. The smallest number in Φ([1]) is x = Φ(10n1) where

n = nβ + 1. Since n > − ln(β−1)
lnβ

and therefore βn > 1
β−1

, we get

x =
1

β
− 1

βn+2
− 1

βn+3
− · · · = 1

β
− 1

βn+1(β − 1)
> 0

Similarly the largest number in Φ([1]) is −x, so Φ([0
m
]) = [xβm,−xβm]. The angle length of

this interval converges to 0 as m→∞, so Φ is continuous at ∞.

For
√
5+1
2

< β ≤ 2 we get nβ = 0, so the forbidden set is D = {10, 00, 10, 00, 11, 11}. This
case includes the binary signed system of Example 4.3. All these systems are redundant.

Proposition 7.48 Consider a number system with β > 2 and symmetric alphabet A = [−s, s]
with s ≥ 1. Assume that an integer s0 ≤ s satisfies s

β−1
< s0 ≤ 2s

β−1
and define the forbidden

set D by D = {a0 : a ∈ [−s, s]} ∪ {0a : |a| < s0}. Then (F,ΣD) is a number system.

Proof: Set s0 = ⌊ s
β−1
⌋+ 1. The intervals [−s,−s0], [s0, s] have at least one element and 0a is

forbidden iff |a| < s0. The intervals

Φ({u ∈ [−s, s]ω : −s ≤ u0 ≤ −s0}) = [ −s
β−1

, −s0
β

+ s
β(β−1)

] = [−b1,−b0]

Φ({u ∈ [−s, s]ω : s0 ≤ u0 ≤ s}) = [ s0
β
− s

β(β−1)
, s
β−1

] = [b0, b1]

do not contain zero since b0 > 0. This implies that Φ is continuous at ∞. Since βb0 ≤ b1, the
intervals [b0, b1], [βb0, βb1], [β

2b0, β
2b1], . . . overlap and Φ : ΣD → R is surjective.

For s0 = 1 we get the condition 2 ≤ s+1 < β ≤ 2s+1. A special case is the ternary signed
system from Example 4.4 with s = 1, β = 3.
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7.7 Positional arithmetic

In positional number systems the arithmetical algorithms are simplified since these systems
consist of linear transformations of the form M(x) = ax + b. A Möbius transformation
M = [a b

c d
] is linear iff M(∞) =∞ iff c = 0. Linear transformations form a subgroup of M(R).

If the unary algorithm computes a linear transformation M(x) = ax+ b in a positional number
system, all F−1

v MFu are linear transformations. Similarly if a binary algorithm computes a
bilinear tensor of the form T (x, y) = T0xy+ T1x+ T2y+ T3, then all compositions T ∗Fu, T∗Fv,
F−1
w T are of this form. We show that in this case the arithmetical algorithms work with a

bounded delay. This means that there exists δ > 0 such that the prefix w[0,n) of the result
depends on the prefixes u[0,n+δ), v[0,n+δ) of the operands. Suppose we add two numbers in a
positional system from Proposition 7.47 or Proposition 7.48. If the operands are u = v =
0
ω
then the addition algorithm does not give any output since ∞ +∞ is an indeterminate

expression. If u = 0
ω
and v has a prefix 0

n
, then after reading the first letter of v different from

0, the algorithm starts writing 0 to the output and in infinite time outputs 0
ω
. If the operands

are 0
n
u, 0

m
v, where u, v ∈ [−s, s]+ do not contain 0, then the output is in the form 0

p
w, where

w ∈ [−s, s]+ and |w| + δ ≥ min{|u|, |v|}. With multiplication, the situation is similar. Since
∞ · ∞ = ∞, the inputs u = v = 0

ω
yield 0

ω
but the input u = 0ω, v = 0

ω
does not give

any output since 0 · ∞ is an indeterminate expression. In all other cases, the algorithm works
eventually with a bounded delay. To get this result we work with the Euclidean length of an
interval I = [a, b] ⊂ R which we denote by |I|e = b − a. If Fa = x+a

β
is a transformation of a

positional number system, then |Fa(I)|e = |I|e/β and |F−1
a (I)|e = β|I|e.

Lemma 7.49 Let T (x, y) = T0xy + T1x + T2y + T3 be a bilinear tensor, K > 0 and let
I, J ⊂ [−K,K] be bounded intervals. Then

|T (I, J)|e ≤ (|T0|K + |T1|) · |I|e + (|T0|K + |T2|) · |J |e

Proof: If x0, x1 ∈ I, y0, y1 ∈ J , then

|T (x1, y1)− T (x0, y0)| ≤ |T0x1(y1 − y0) + T0(x1 − x0)y0 + T1(x1 − x0) + T2(y1 − y0)|
≤ (|T0|K + |T1|) · |x1 − x0|+ (|T0|K + |T2|) · |y1 − y0|

and the result follows.

Proposition 7.50 Assume that the binary algorithm works with a greedy selector in a re-
dundant positional number system from Proposition 7.47 or Proposition 7.48 with symmet-
ric alphabet A = [−s, s] ∪ {0}. Assume that the initial tensor is of the form T (x, y) =
T0xy + T1x + T2y + T3. Then there exists a delay δ > 0 such that if (T, i, i, i) u,v,w

−→ (X, p, q, r)
and u, v ∈ [−s, s]∗ (no prefix of 0) then |w|+ δ ≥ min{|u|, |v|}.

Proof: Since the inputs u, v do not contain 0, there exists K > 0 such that Vp, Vq ⊆ [−K,K].
Since |FuVp|e = |Vp|e · β−|u|, |FvVq|e = |Vq|e · β−|v|, there exists C > 0 such that

|T (FuVp, FvVq)|e ≤ (|T0|K + |T1|) · |Vp|e · β−|u| + (|T0|K + |T2|) · |Vq|eβ−|v|

≤ C ·max{β−|u|, β−|v|}
|X|e = |F−1

w T (FuVp, FvVq)|e ≤ C · β|w|−min{|u|,|v|}
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If |w|+d ≤ min{|u|, |v|}, then |X|e ≤ C ·β−d. There exists δ such that C ·β−δ+1 is less than the
Lebesgue number (overlap) of the number system. It follows that if (T, i, i, i) u,v,w

−→ (X, p, q, r)
and |w|+ δ − 1 ≤ min{|u|, |v|}, then (X, p, q, r) is an emission state and the result follows.

By Proposition 7.50, the addition in positional number systems works with a finite delay. For
certain algebraic and integer bases β and sufficiently redundant alphabets we have a stronger
result - the existence of a parallel addition algorithm with a delay δ > 0. For given inputs
u, v ∈ ΣG the algorithm computes w ∈ ΣG such that Φ(w) = Φ(u) + Φ(v) and wi depends
only on u[i+δ) and v[i+δ) (and not on the prefixes u[0,i) and v[0,i)). Assume that β > 1 is a base,
A = [r, s] ⊂ Z is an interval of integers with r ≤ 0 ≤ s and Φ(x) =

∑
i≥0 xiβ

−i−1. For x, y ∈ Aω

we have Φ(x) + Φ(y) = Φ(z), where

zi = xi + yi ∈ A+ A = {a+ b : a, b ∈ A} = [2r, 2s].

To obtain an addition algorithm for the alphabet A we have to reduce z ∈ (A + A)∗ to w
in the alphabet A with the same value Φ(w) = Φ(z). However, because of the carry overs,
the expansion of w may start already at position −1. We consider therefore larger spaces of
symbolic sequences which start at arbitrary integer. Denote by

A∗ω = {x ∈ AZ : ∃k ∈ Z,∀i < k, xi = 0}.

For each finite alphabet A ⊂ Z and β > 1 the value map Φβ : A∗ω → R is given by Φβ(x) =∑
i∈Z xiβ

−i. We consider a reduction from a finite alphabet B ⊂ Z to A given by a a sliding
block code. This is a mapping F : B∗ω → A∗ω given by F (z)i = f(z[i+l,i+r]) where f :
Ar−l+1 → A is a local rule which fixes zero, i.e., f(0, . . . , 0) = 0.

Definition 7.51 Let β > 1 and 0 ∈ A ⊂ B ⊂ Z be finite interval alphabets. We say that a
sliding block code F : B∗ω → A∗ω performs a parallel reduction if Φβ(F (x)) = Φβ(x) for
every x ∈ B∗ω.

Proposition 7.52 (Avizienis [1]) The Avizienis addition algorithm works for an integer base
β ≥ 3 and alphabet A = [−a, a], where β

2
< a ≤ β − 1. Given inputs x, y ∈ A∗ω, the algorithm

computes in parallel wi = xi+ yi and then determines the quotients qi and remainders ri by the
rule

wi ≤ −a ⇒ qi = −1, ri = wi + β
−a < wi < a ⇒ qi = 0, ri = wi

a ≤ wi ⇒ qi = 1, ri = wi − β
The block code F : A∗ω×A∗ω → A∗ω defined by F (x, y)i = zi = ri+qi+1 satisfies Φβ(x)+Φβ(y) =
Φβ(F (x, y)).

Proof: We have xi + yi = wi = βqi + ri. If n = min{i ∈ Z : xi ̸= 0 or yi ̸= 0}, then

Φβ(x) + Φβ(y) =
∑
i≥n

(βqi + ri)β
−i =

∑
i≥n−1

(qi+1 + ri)β
−i = Φβ(F (x, y))

We show that F (x, y) ∈ A∗ω. If −2a ≤ wi ≤ −a then

a < −2a+ β ≤ ri ≤ −a+ β < a

Since |qi+1| ≤ 1 we get |zi| ≤ a. If −a < wi < a, then |zi| = |wi| ≤ a. If a ≤ wi ≤ 2a then
−a < a− β ≤ ri ≤ 2a− β < a, so |zi| ≤ |ri|+ |qi+1| ≤ a. Thus F (x, y) ∈ A∗ω.
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Proposition 7.53 (Chow and Robertson [8]) The Chow and Robertson algorithm works
for an even integer base β = 2a and the alphabet A = [−a, a]. Given inputs x, y ∈ A∗ω,
the algorithm computes in parallel wi = xi + yi and then determines the quotients qi and the
remainders ri by the rule

−β ≤ wi < −a ⇒ qi = −1, ri = wi + β
−a < wi < a ⇒ qi = 0, ri = wi

a < wi ≤ β ⇒ qi = 1, ri = wi − β
wi = −a, wi+1 < 0 ⇒ qi = −1, ri = a
wi = −a, wi+1 ≥ 0 ⇒ qi = 0, ri = −a
wi = a, wi+1 ≤ 0 ⇒ qi = 0, ri = a
wi = a, wi+1 > 0 ⇒ qi = 1, ri = −a

The block code F : A∗ω×A∗ω → A∗ω defined by F (x, y)i = zi = ri+qi+1 satisfies Φβ(x)+Φβ(y) =
Φβ(F (x, y)).

Proof: We have xi + yi = wi = βqi + ri, so Φβ(F (x, y)) = Φβ(x) + Φβ(y). We show that
F (x, y) ∈ A∗ω. In each case we have |qi| ≤ 1. If |wi| ≤ a − 1 or |wi| ≥ a + 1 then |ri| < a, so
|zi| ≤ a. If wi = −a, wi+1 < 0, then qi+1 ≤ 0 and zi = a+ qi+1 ≤ a. If wi = −a, wi+1 ≥ 0, then
qi+1 ≥ 0 and zi = −a+ qi+1 ≥ −a. The proof is similar for wi = a.

For noninteger bases β > 1 we show that a sliding block code exists iff β is algebraic and
no conjugate of β lies on the unit circle in the complex plane.

Proposition 7.54 Let 0 ∈ A ⊂ B ⊂ Z. If there exists a reduction from B to A then β is an
algebraic number.

Proof: Let F (z)i = f(z[i+l,i+r]), where f : Ar−l+1 → A is a local rule. Choose b ∈ B \A and set
x = bω ∈ Bω ⊂ B∗ω, so xi = 0 for i < 0. Denote by a = f(b, . . . , b) ∈ A. For y = F (x) ∈ A∗ω

we have yi = 0 for i < −r and yi = a for i ≥ −l. We get

bβ

β − 1
= Φβ(x) = Φβ(y) =

−l−1∑
i=−r

yiβ
−i + βl+1 a

β − 1

or bβ = (β−1)(y−l−1β
l+1+ · · ·+y−rβ

r) = aβl+1. If n ≥ l+1 is the largest integer with nonzero
yn, we get an algebraic equation for β of degree n+ 1. If all yn are zero, we get a = bβl. Since
a ̸= b, we have l > 0 and we get an algebraic equation of degree l.

Assume now that β > 1 is an algebraic number which is a root of a polynomial p ∈ Z[x].
This need not be the minimal polynomial of β. The reduction algorithm presupposes special
properties of p which are not always satisfied by the minimal polynomial. If p(β) = 0, then β
is also a root of xkp(x) for any integer k, and we assume p in the form

p(x) =
r∑

i=l

pix
−i =

∑
i∈Z

pix
−i,

where pi ∈ Z for l ≤ i ≤ r and pi = 0 for i ∈ Z \ [l, r]. If {qi ∈ Z : i ∈ Z} is a bounded
sequence of integers and yi =

∑
k∈Z qkpi+k then for γ =

∑
i yiβ

−i we get

Φ(γ) =
∑
k∈Z

∑
i∈Z

qk · pi+kβ
−i =

∑
k∈Z

∑
j∈Z

qk · pjβk−j =
∑
k∈Z

qkβ
k
∑
j∈Z

pjβ
−j = 0
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The reduction algorithm from B to A ⊂ B chooses an appropriate sequence of qi and for
x ∈ B∗ω computes

F (x)i = xi −
∑
k∈Z

qkpi+k

For suitable sequences of qi we get F (x) ∈ A∗ω. For this purpose we need polynomials whose
zeroth coefficient is sufficiently large. We say that a polynomial p ∈ Z[x] has a dominant
coefficient pn if pn ≥

∑
i̸=n |pi|. Then p(x)x−n is a polynomial with dominant zero coefficient.

Assume that β > 1 is a root of a polynomial p(x) =
∑r

i=l pix
−i, where l ≤ 0 ≤ r, with a

dominant zero coefficient, so p0 >
∑

i̸=0 |pi| = s. We construct an addition algorithm in the

alphabet A = [−a − s, a + s] where a = ⌈p0−1
2
⌉. Given inputs x, y ∈ A∗ω, the algorithm first

computes zi = xi+yi which is a word in the alphabet A0 = [−2a, 2a]. Then it performs a series
of reduction steps to a smaller alphabet until the reduced word in the alphabet A is attained.

Theorem 7.55 (Frougny et al. [18]) Let p be a polynomial with dominant zero coefficient
p0 >

∑
i̸=0 |pi| = s. Denote by a = ⌈p0−1

2
⌉. If B = [−b, b], where b > a + s, then the reduction

algorithm w 7→ z given by

zi = wi −
∑
j∈Z

qi+jpj, where qi =

{
0 if |wi| ≤ a
sgn(wi) otherwise

reduces a word from B∗ω to a word in alphabet C∗ω, where C = [−c, c] and c < b.

Proof: Since the subtraction of
∑

j qi+jpj does not change the value of the expansion, we have
only to show that the result z belongs to a smaller alphabet. We have |qj| ≤ 1. If |wi| ≤ a then
qi = 0 so |zi| ≤ |wi|+

∑
j ̸=0 |pj| ≤ a+ s < b. Assume a < wi ≤ b. Since p0 ≤ 2a+ 1 we get

zi = wi − p0 −
∑
j ̸=0

qi+jpj

≥ wi − p0 − s ≥ (a+ 1)− (2a+ 1)− s = −a− s > −b
zi ≤ wi − p0 + s ≤ b− p0 + s < b

so |zi| < b. If wi < −a, the proof is analogous.

Thus the repeated application of the reduction algorithm from Theorem 7.55 to w = x+ y,
where x, y ∈ A∗ω gives finally a word of A∗ω.

Theorem 7.56 (Frougny et al. [18]) An algebraic number α > 1 is a root of a polynomial
p ∈ Z[x] with a dominant coefficient iff |γ| ̸= 1 for each conjugate γ of α.

Proof: If p(α) = 0 and γ is a conjugate of α with |γ| = 1 then p(γ) = 0 and for each k ≤ deg(p)
we have

|pk| = |pkγk| =

∣∣∣∣∣∑
j ̸=k

pjγ
j

∣∣∣∣∣ ≤∑
j ̸=k

|pj|

so no coefficient is dominant. Conversely let

p(x) = −p0 − p1x− · · · − pn−1x
n−1 + xn =

∏
i<n

(x− αi)
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be the minimal polynomial of α, so pi ∈ Q and α = α0, α1, . . . , αn−1 are the conjugates of α.
Since p is irreducible, we have αi ̸= αj for i ̸= j. Assume that |αi| ̸= 1 for each i. For each
m > 0 consider the polynomial

q(m)(x) =
∏
i<n

(x− αm
i ) = −q(m)0 − · · · − q(m)n−1x

n−1 + xn.

Then ∑
i

αm
i = q(m)n−1∑

i<j

αm
i α

m
j = −q(m)n−2

∑
i<j<k

αm
i α

m
j α

m
k = q(m)n−3

...

αm
0 · · ·αm

n−1 = (−1)n+1q(m)0

For

M(α) =


0 1 0 · · · 0
0 0 1 · · · 0

. . .

0 0 0 · · · 1
p0 p1 p2 · · · pn−1


we have det(xI −M(α)) = p(x), so the eigenvalues of M(α) are αi, and the eigenvalues of
M(α)m are αm

i . It follows q(m)(x) = det(xI −M(α)m), so q(m) ∈ Q[x]. Reorder now the
αi so that |α0| ≥ |α1| ≥ · · · ≥ |αn−1| and let k be the first index with |αk| < 1. If |αi| > 1
for all i, then we set k = n. For each subset {i0, i1, . . . , ij} ⊆ {0, 1, . . . , n − 1} different from
{0, 1, . . . , k − 1} we have∣∣∣∣ αi0 · · ·αij

α0 · · ·αk−1

∣∣∣∣ < 1, ⇒ lim
m→∞

∣∣∣∣ αm
i0
· · ·αm

ij

αm
0 · · ·αm

k−1

∣∣∣∣ = 0 ⇒ lim
m→∞

∑
j ̸=k |q(m)j|
|q(m)k|

= 0

so q(m)j is a dominant coefficient of q(m) for sufficiently large m. Thus the polynomial
q(m)(xm) has a dominant coefficent and a root α.

Theorem 7.57 (Frougny et al. [17]) Let β > 1be an algebraic number which has a conju-
gate γ with |γ| = 1. If 0 ∈ A ⊂ Z is an alphabet and B = A + A then there exists no parallel
reduction from B∗ω to A∗ω.

Proof: Assume by contradiction that the reduction is performed by a sliding block code
F (x)i = f(x[i+l,i+r]), where f : Br−l+1 → A is a local rule with l < 0 < r. Denote by

S = max


∣∣∣∣∣∣
max(−l,r)∑

j=0

ajγ
j

∣∣∣∣∣∣ : aj ∈ A
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If γk = 1, then the minimal polynomial of β divides xk − 1 which is impossible since β > 1.
Thus γ is not a root of unity. It follows that there exists an infinite number of indices i with
ℜ(γi) > 1

2
, and there exists m > 0 and {εj ∈ {0, 1} : j ≤ m} such that ℜ(

∑m
j=0 εjγ

j) > 3S.
Set

T = max

{∣∣∣∣∣ℜ
(

m∑
j=0

ajγ
j

)∣∣∣∣∣ : aj ∈ A
}

so T ≥ 3S. Take xj ∈ A such that T = |ℜ(
∑m

j=0 xjγ
j)| and set x =

∑m
j=0 xjβ

j. Thus
T = |ℜ(φ(x)|, where φ : Q(β)→ Q(γ) is the field homomorphism with φ(β) = γ. The sliding
block code yields zj = F (x+ x)j ∈ A such that

x+ x =
−1∑

j=−r

zjβ
j +

m∑
j=0

zjβ
j +

m−l∑
j=m+1

zjβ
j

φ(x) + φ(x) =
−1∑

j=−r

zjγ
j +

m∑
j=0

zjγ
j +

m−l∑
j=m+1

zjγ
j

We get

|ℜ(φ(x))|+ 3S ≤ |ℜ(φ(x))|+ |ℜ(φ(x))| = |ℜ(φ(x) + φ(x))|
≤ |ℜ(

∑r
j=1 zj−r−1γ

j)|+ |ℜ(
∑m

j=0 zjγ
j)|+ |ℜ(

∑−l
j=1 zj+mγ

j)|
≤ S + |ℜ(φ(x))|+ S

and this is a contradiction.

Corollary 7.58 If β > 1 is an algebraic number, then there exists an alphabet A = [r, s] and
a parallel addition algorithm F : A∗ω × A∗ω → A∗ω iff β has no conjugate γ with |γ| = 1.

The problem of finding the smallest alphabet A for which there exists an addition algorithm
is treated in Frougny et al [19]. For the golden mean β =

√
5−1
2

we get q(x) = x4− 3x2+1 with
dominant coefficient q2 or q(x) = −x2+3−x−2 with dominant coefficient q0. Thus p0 = 3, s = 2,
a = 1, so we get an addition algorithm in the alphabet A = [−3, 3]. The algorithm subtracts
the word 10301 at any position i with wi > 1 and adds it at any position i with wi < −1.
In this way the algorithm successively reduces a word in alphabet [−6, 6] to alphabets [−5, 5],
[−4, 4] and [−3, 3]. There exists also a more sophisticated addition algorithm in the alphabet
[−1, 1] (see Frougny et al [19]).
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Chapter 8

Transcendent and iterative algorithms

Transcendent functions such as ex or sinx can be expressed by power series, so they may
be approximated by polynomials. However, better approximations can be obtained from a
sequence of rational functions called Padé approximants (see Wall [67], Baker and Graves-
Morris [2] or Jones and Thron [27]). Exact real algorithms for transcendent functions are based
on these approximations.

8.1 Padé approximants

Padé approximants are rational functions derived from a power series f(x) = c0+c1x+c2x
2+· · ·

which is treated as a formal power series: the questions of convergence are postponed. Formal
power series can be added, subtracted and multiplied and they form a ring. The order λ(f) of
a formal power series f(x) =

∑
n≥0 cnx

n is the least n such that cn ̸= 0. Clearly

λ(f + g) ≥ min{λ(f), λ(g)},
λ(fg) = λ(f) + λ(g).

A rational expression is a pair (p, q) of polynomials. Rational expressions are equivalent
((p0, q0) ∼ (p1, q1)) if p0q1 = p1q1. For each rational expression r = (p, q) there exists a unique

rational function R(x) = P (x)
Q(x)

such that (P,Q) ∼ (p, q). R is obtained by cancelling the common
factors of p and q.

Definition 8.1 Let f be a formal power series and m,n ≥ 0 integers. We say that a rational
expression rm,n(x) = (pm,n(x), qm,n(x)) is the Padé approximant expression of f of order
(m,n) if deg(pm,n) ≤ m, deg(qm,n) ≤ n and λ(fqm,n − pm,n) ≥ m + n + 1. A regular rational

function Rm,n(x) =
Pm,n(x)

Qm,n(x)
is the Padé approximant of f of order (m,n) if it is equivalent

to a Padé approximant expression of f of order (m,n).

Proposition 8.2 Each formal power series has Padé approximants of all orders. Two Padé
approximant expressions of the same order are equivalent.

Proof: Let f(x) = c0 + c1x + c2x
2 + · · · . We search for polynomials p(x) = a0 + · · · + amx

m,
q(x) = b0 + · · · + bnx

n, such that λ(fq − p) ≥ m + n + 1. This condition gives a system of

159
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Figure 8.1: Padé approximants of orders (m,n) with 0 ≤ m,n ≤ 3 (thick) of the exponential
function (thin) ex = 1 + x+ x2

2!
+ x3

3!
+ · · · .

equations for the unknowns ai and bi:

c0b0 = a0

c1b0 + c0b1 = a1
...

cmb0 + cm−1b1 + · · ·+ c0bm = am

cm+1b0 + cmb1 + · · ·+ cm−n+1bn = 0

cm+2b0 + cm+1b1 + · · ·+ cm−n+2bn = 0

...

cm+nb0 + cm+n−1b1 + · · ·+ cmbn = 0.
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0 1 2 3

0 0
1

x
1

x
1

3x−x3

3

1 0
x

x
1

x2

x
3x−x3

x

2 0
x2

3x
3+x2

3x
3+x2

15x+4x3

15+9x

3 0
x3

3x
3+x2

3x2

3x+x3
15x+4x3

15+9x

0 1 2 3

0 0
1

x
1

x
1

3x−x3

3

1 0
1

x
1

x
1

3x−x3

3

2 0
1

3x
3+x2

3x
3+x2

15x+4x3

15+9x

3 0
1

3x
3+x2

3x
3+x2

15x+4x3

15+9x

Table 8.1: The Padé approximant expressions (left) and Padé approximants (right) of f(x) =
arctan(x) = x− x3

3
+ x5

5
− x7

7
+ · · · .

where ck = 0 for k < 0 and bk = 0 for k > n. The homogeneous system of the last n equations
in n+1 unknowns b0, . . . bn has a nonzero solution and the first m+1 equations then determine
the ai, so we obtain p, q with λ(fq− p) ≥ m+ n+1. Assume that p1, q1 are other polynomials
of degree at most m,n such that λ(fq1 − p1) ≥ m + n + 1. Then λ(fqq1 − pq1) ≥ m + n + 1
and λ(fqq1 − p1q) ≥ m + n + 1. Since fqq1 = fq1q, we get λ(pq1 − p1q) ≥ m + n + 1. Since
this is a polynomial of degree m+ n, we get pq1 = p1q.

If c0 ̸= 0 ̸= c1 then

R0,0(x) = c0
1
, R1,0(x) = c0+c1x

1

R1,0(x) =
c20

c0−c1x
, R1,1(x) =

c0c1+(c21−c0c2)x

c1−c2x

Padé approximants of the exponential functions are all different, so Rm,n = Pm,n

Qm,n
= pm,n

qm,n
(Figure

8.1). In the power series of arctan x there are only odd powers of x and the relation between Rm,n

and rm,n is more complicated (see Table 8.1). Note that the Padé approximants Rm,n = Pm,n

Qm,n

do not necessarily satisfy the condition λ(fQm,n − Pm,n) ≥ m + n + 1. For example for the
Padé approximant R0,1(x) =

0
1
we have λ(fQ− P ) = λ(f) = 1. If some powers are missing in

the power series f , then the Padé table contains square blocks of identical rational functions:

Theorem 8.3 (Block Theorem) Let f be a formal power series and let R = P
Q

be a regular

rational function with deg(P ) = m ≥ 0, deg(Q) = n ≥ 0, λ(Qf − P ) = m + n + r + 1, where
0 ≤ r. Then Ri,j = R iff m ≤ i ≤ m+ r and n ≤ j ≤ n+ r. Moreover, rm,j = (P,Q) = ri,n in
this case.

Proof: If i < m or j < n then deg(Pi,j) < m or deg(Qi,j) < n, so Ri,j ̸= R. Assume that
Rm+i,n+j = R for some i, j ≥ 0 such that either i > r or j > r. Then rm+i,n+j = (PS,QS),
where S is a polynomial which satisfies deg(PS) ≤ m+i, deg(QS) ≤ n+j so deg(S) ≤ min{i, j}.
On the other hand we have λ(fQS−PS) ≥ m+n+ i+ j+1. Since λ(Qf−P ) = m+n+r+1,
we get deg(S) ≥ i+ j − r which is either greater than j if i > r or greater than i if j > r. This
is a contradiction, so we have proved that if Ri,j = R then m ≤ i ≤ m+ r and n ≤ j ≤ n+ r.
Since

deg(pm+i,n+j) ≤ m+ i,

deg(qm+i,n+j) ≤ n+ j,

λ(fqm+i,n+j − pm+i,n+j) = m+ n+ r + 1 +min{i, j} ≥ m+ n+ i+ j + 1

we have rm+i,n+j = (pm+i,n+j, qm+i,n+j) = (P (x)xmin{i,j}, Q(x)xmin{i,j}) for 0 ≤ i, j ≤ r.
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Figure 8.2: Padé approximants of orders (m,n) with 0 ≤ n,m ≤ 4 of the function f(x) =
arctan(x)

x
= 1− x2

3
+ x4

5
− x6

7
+ · · · (thin).

The non-square rectangular first column in Table 8.1 right does not contradict Theorem
8.3 since for R0,0 = 0

1
we have deg(0) = −1. To avoid such a case we usually assume that

c0 ̸= 0, so R0,0 =
c0
1
(see Figure 8.2 for the Padé approximants of arctanx/x). The size r of the

block in Theorem 8.3, may be infinite and then Qf − P = 0, so f = P
Q

is a rational function.

Conversely, if f = P
Q
, then r is infinite. If f is not a rational function, then for each m0, n0 there

exist m1 > m0, n1 > n0 such that Rm1,n0 ̸= Rm0,n0 ̸= Rm0,n1 . Thus we get infinite sequences of
different Padé approximants with increasing indices mi, ni, which form staircases in the Padé
table.

Rm0,n0 , Rm1,n0 , Rm1,n1 , Rm2,n1 , Rm2,n2 , Rm3,n2 , . . .

Rm0,n0 , Rm0,n1 , Rm1,n1 , Rm1,n2 , Rm2,n2 , Rm2,n3 , . . .

These sequences of Padé approximants can be expressed by continued fractions
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n0

n1

m0 m1

P0
Q0

P1
Q1

P2
Q2

n0

n1

m0 m1

P0
Q0

P1
Q1

P2
Q2

Figure 8.3: Square blocks in the Padé table (thin) and the Padé approximents (thick) from
Theorem 8.4 (left) and Theorem 8.5 (right)

Theorem 8.4 Let f be a formal power series which is not equal to any rational function and
let Rm0,n0 = P0

Q0
be its Padé approximant of order m0, n0. Assume that either n0 = 0 or

Rm0,n0−1 ̸= Rm0,n0. Let m1 > m0 be the first integer with Rm0,n0 ̸= Rm1,n0 =
P1

Q1
and let n1 > n0

be the first integer with Rm1,n0 ̸= Rm1,n1 =
P2

Q2
(see Figure 8.3 left). Then[

P1 P2

Q1 Q2

]
=

[
P0 P1

Q0 Q1

]
·
[
0 axk

1 β

]
where a ̸= 0, k ≤ n1−n0 and β is a polynomial of degree at most max{0, (n1−n0)−(m1−m0)}.
In particular if (m1, n1) = (m0 + 1, n0 + 1) then k = 1 and β = b is a constant.

Proof: Since P0Q1 − P1Q0 ̸= 0, we use the pseudoinverse of [P0 P1

Q0 Q1
] to compute[

A B
C D

]
=

[
Q1 −P1

−Q0 P0

]
·
[
P1 P2

Q1 Q2

]
=

[
0 P2Q1 − P1Q2

P0Q1 − P1Q0 P0Q2 − P2Q0

]
Since either n0 = 0 or Rm0,n0−1 ̸= Rm0,n0 , (n0,m0) belongs to the upper row of a square
block of equal elements. By Theorem 8.3, all elements of the first row have the same Padé
approximant expression, in particular rm0,n0 = rm1−1,n0 , which implies λ(P0− fQ0) ≥ m1 + n0.
Similarly, Rm1,n0 belongs to the first column of a square block of equal Padé approximants, so
rm1,n0 = rm1,n1−1 and λ(P1 − fQ1) ≥ m1 + n1. Since λ(P2 − fQ2) ≥ m1 + n1 + 1,

λ(C) ≥ min{λ(P0Q1 − fQ0Q1), λ(fQ0Q1 − P1Q0)} ≥ m1 + n0,

λ(B) ≥ min{λ(P2Q1 − fQ1Q2), λ(fQ1Q2 − P1Q2} ≥ m1 + n1,

λ(D) ≥ min{λ(P0Q2 − fQ0Q2), λ(fQ0Q2 − P2Q0} ≥ m1 + n0.

Thus the orders of all B,C,D are at least m1 + n0. For the degrees we get deg(C) ≤ m1 + n0,
deg(B) ≤ m1 + n1, deg(D) ≤ max{m1 + n0,m0 + n1}. Thus C = cxm1+n0 , B = bxk with
k ≤ m1 + n1. Since C = det[P0 P1

Q0 Q1
], we have [P0 P1

Q0 Q1
]−1 = [ Q1/C −P1/C

−Q0/C P0/C
] and

[
P1 P2

Q1 Q2

]
=

[
P0 P1

Q0 Q1

]
·
[
P0 P1

Q0 Q1

]−1

·
[
P1 P2

Q1 Q2

]
=

[
P0 P1

Q0 Q1

]
·
[
0 B/C
1 D/C

]
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It follows B/C = axk with a ̸= 0, k ≤ n1 − n0 and β = D/C is a polynomial with deg(β) ≤
max{0, (n1 − n0)− (m1 −m0)}.

Theorem 8.5 Let f be a formal power series which is not equal to any rational function and
let Rm0,n0 = P0

Q0
be its Padé approximant of order m0, n0. Assume that either m0 = 0 or

Rm0−1,n0 ̸= Rm0,n0. Let n1 > n0 be the first integer with Rm0,n0 ̸= Rm0,n1 =
P1

Q1
and let m1 > m0

be the first integer with Rm0,n1 ̸= Rm1,n1 =
P2

Q2
(see Figure 8.3 right). Then[

P1 P2

Q1 Q2

]
=

[
P0 P1

Q0 Q1

]
·
[
0 axk

1 β

]
where a ̸= 0, k ≤ m1−m0 and β is a polynomial of degree at most max{0, (m1−m0)−(n1−n0)}.
In particular if (m1, n1) = (m0 + 1, n0 + 1) then k = 1 and β = b is a constant.

The proof is analogous to the proof of Theorem 8.4. If the Padé approximants are all
distinct, we can proceed along the diagonal R00 =

c0
1
, R10 =

c0+c1x
1

, R11, R21, R22, R32, . . .

f(x) =

[
c0 c0 + c1x
1 1

]
·
[
0 a2x
1 b2

]
·
[
0 a3x
1 b3

]
· · ·

=

[
1 c0
0 1

]
·
[
0 c1x
1 1

]
·
[
0 a2x
1 b2

]
·
[
0 a3x
1 b3

]
· · ·

= c0 +
c1x

1 +
a2x

b2 +

a3x

b3 + · · ·

Alternatively we can express f as a continued fraction whose partial convergents are R00 =
c0
1
,

R01 =
c0

1−(c1/c0)x
, R11, R12 . . .:

f(x) =

[
c0 c20
1 c0 − c1x

]
·
[
0 a2x
1 b2

]
·
[
0 a3x
1 b3

]
· · ·

=

[
0 c0
1 1

]
·
[
0 −c1x
1 c0

]
·
[
0 a2x
1 b2

]
·
[
0 a3x
1 b3

]
· · ·

=
c0
1 −

c1x

c0 +

a2x

b2 +

a3x

b3 + · · ·

Theorem 8.6 Let f be a formal power series which is not equal to any rational function. Let
Rm0−1,n0−1 ̸= Rm0,n0 =

P0

Q0
, Rm0,n0 ̸= Rm0+1,n0+1 =

P1

Q1
, Rm0+1,n0+1 ̸= Rm0+2,n0+2 =

P2

Q2
. Then[

P1 P2

Q1 Q2

]
=

[
P0 P1

Q0 Q1

]
·
[
0 axk

1 β

]
where a ̸= 0, k ≤ 2 and β is a polynomial of degree at most 1.

Proof: We have λ(P0−fQ0) ≥ m0+n0+1, λ(P1−fQ1) ≥ m0+n0+3, λ(P2−fQ2) ≥ m0+n0+5.
For the matrices C = P0Q1 − P1Q0, B = P2Q1 − P1Q2, D = P0Q2 − P2Q0 from the proof of
Theorem 8.4 we get

λ(C) ≥ min{λ(P0Q1 − fQ0Q1), λ(fQ0Q1 − P1Q0)} ≥ m0 + n0 + 1,

λ(B) ≥ min{λ(P2Q1 − fQ1Q2), λ(fQ1Q2 − P1Q2} ≥ m0 + n0 + 3,

λ(D) ≥ min{λ(P0Q2 − fQ0Q2), λ(fQ0Q2 − P2Q0} ≥ m1 + n0 + 1.
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Since deg(C) ≤ m0+n1+1, deg(B) ≤ m0+n0+3, deg(D) ≤ m0+n0+2, the result follows.

If in the Padé table all approximants are distinct, then we can express the formal power
series f as a continued fraction whose partial convergents are R00 =

c0
1
, R11(x) =

c0+(c1−c0c2/c1)x
1−(c2/c1)x

,
R22 . . .

f(x) =

[
c0 c0c1 + (c21 − c0c2)x
1 c1 − c2x

]
·
[
0 a2x

k2

1 β2

]
·
[
0 a3x

k3

1 β3

]
· · ·

=

[
0 c0
1 1

]
·
[
0 −(c21/c0)x
1 c1 + ((c21/c0)− c2)x

]
·
[
0 a2x

k2

1 β2

]
·
[
0 a3x

k3

1 β3

]
· · ·

=
c0
1 +

−(c21/c0)x
c1 + ((c21/c0)− c2)x+

a2x
k2

β2 +

a3x
k3

β3 + · · ·

where ki ≤ 2 and deg(βi) ≤ 1. These expressions do not say anything about the convergence
of these continued fractions nor about the convergence of the original formal power series f .
Nevertheless, if convergent, the convergence is usually faster and has wider definition domain
than the formal power series. For example for the exponential function we get a continued
fraction which converges for every x ∈ R and its partial convergents form a staircase R00, R10,
R11, R21, · · · in the Padé table.

ex =

[
1 1
0 1

]
·
[
0 x
1 1

]
·
[
0 −x
1 2

]
·
[
0 x
1 3

]
·
[
0 −x
1 2

]
·
[
0 x
1 5

]
·
[
0 −x
1 2

]
· · ·

= 1 +
x

1−
x

2+
x

3−
x

2+
x

5− · · ·−
x

2+
x

(2n+ 1)− · · ·

Alternatively we get a continued fraction which converges for every x ∈ R and its partial
convergents form a staircase R00, R01, R11, R12, · · · in the Padé table. The two expressions for
ex are related by the formula ex = 1/e−x.

ex =

[
0 1
1 1

]
·
[
0 −x
1 1

]
·
[
0 x
1 2

]
·
[
0 −x
1 3

]
·
[
0 x
1 2

]
·
[
0 −x
1 5

]
·
[
0 x
1 2

]
· · ·

=
1

1−
x

1+
x

2−
x

3+ · · ·+
x

2−
x

(2n+ 1)+ · · ·

Using Theorem 8.6 we get a continued fraction which converges for every x ∈ R and its partial
convergents form the main diagonal R00, R11, R22, R33, · · · in the Padé table.

e2x =

[
1 1
0 1

]
·
[
0 2x
1 1− x

]
·
[
0 x2

1 3

]
·
[
0 x2

1 5

]
·
[
0 x2

1 7

]
· · ·

= 1 +
2x

1− x +

x2

3 +
x2

5 +
x2

7 + · · ·+
x2

2n+ 1+ · · ·
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Many other convergence results have been obtained - see Wall [67] or Jones and Thron [27].

(1 + x)a =
1

1−
ax

1 +
(1 + a)x

2 +
(1− a)x

3 + · · ·+
n(n+ a)x

2n +
n(n− a)x
2n+ 1 + · · · x > −1

ln(1 + x) =
x

1+
x

2+
x

3+
4x

4 +
4x

5 + · · ·+
n2x

2n +
n2x

2n+ 1+ · · ·
x > −1

tanx =
x

1−
x2

3 −
x2

5 − · · ·−
x2

2n+ 1− · · ·
− π

2
< x <

π

2

tanh x =
x

1+
x2

3 +
x2

5 + · · ·+
x2

2n+ 1+ · · ·
x ∈ R

arctanx =
x

1+
x2

3 +
4x2

5 + · · ·+
n2x2

(2n+ 1)+ · · ·
x ∈ R

arg tanh x =
1

2
ln

1 + x

1− x
=
x

1−
x2

3 −
4x2

5 − · · ·−
n2x2

(2n+ 1)− · · ·
− 1 < x < 1

8.2 Algebraic tensors

The approximation of transcendent functions by Padé approximants and continued fractions
leads to the concept of an algebraic tensor which is a function T : R× R→ R ∪ {0

0
} of two

real variables which is a rational function in the first variable and a Möbius transformation in
the second variable. An algebraic tensor of degree q ≥ 0 is given by

T (x, y) =
(T000x

q
0 + T010x

q−1
0 x1 + · · ·+ T0q0x

q
1)y0 + (T001x

q
0 + T011x

q−1
0 x1 + · · ·+ T0q1x

q
1)y1

(T100x
q
0 + T110x

q−1
0 x1 + · · ·+ T1q0x

q
1)y0 + (T101x

q
0 + T111x

q−1
0 x1 + · · ·+ T1q1x

q
1)y1

so

T (x, y)k =

q∑
i=0

1∑
j=0

Tkijx
q−i
0 xi1yj

In particular, an algebraic tensor of degree 0 does not depend on x and is a transformation
given by the matrix T = [T000 T001

T100 T101
]. For example, the unit matrix represents the projection

Id(x, y) = y. Given an algebraic tensor T of degree q, for each x ∈ R we get a transformation
T ∗x given by (T ∗x)(y) = T (x, y). For each y ∈ R we get a rational function T∗y of degree q
given by (T∗y)(x) = T (x, y). Thus

(T ∗x)kj =

q∑
i=0

Tkijx
q−i
0 xi1, (T∗y)ki =

1∑
j=0

Tkijyj

For a transformation P we get algebraic tensors (T ∗P ), (T∗P ), PT of degree q given by

(T ∗P )(x, y) = T (Px, y), (T∗P )(x, y) = T (x, Py), (PT )(x, y) = P (T (x, y))

algebraic tensors satisfy similar identities as bilinear tensors, e.g.,

T (x, y) = (T ∗x)y = (T∗y)x,

T (x, P ) = (T ∗x)P = (T∗P )
∗x,

T (P, y) = (T∗y)P = (T ∗P )∗y,

(T ∗P )∗Q = T ∗(PQ),

(T∗P )∗Q = T∗(PQ).
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For a function expressed by a continued fraction we have

f(x) =
a0x

b0 +

a1x

b1 +

a2x

b2 + · · ·
= lim

n→∞
(T ∗

0 x) · (T ∗
1 x) · · · (T ∗

nx)(i)

where Tn(x, y) =
anx
y+bn

. The composition of matrices T ∗
nx leads to a new kind of tensor product.

For algebraic tensors T, S we have (T ∗x)(S∗x)(y) = (T ∗x)(S(x, y)) = T (x, S(x, y)). Thus for
tensors T, S of degrees q, p we define the tensor T ∗ S of degree at most q + p by

(T ∗ S)(x, y) = T (x, S(x, y)).

Then

(T ∗ S)(x, y)n =

q∑
i=0

1∑
m=0

Tnimx
q−i
0 xi1S(x, y)m

=

q∑
i=0

1∑
m=0

p∑
j=0

1∑
k=0

TnimSmjkx
q+p−i−j
0 xi+j

1 yk

=

p+q∑
r=0

1∑
k=0

min(q,r)∑
i=max(0,r−p)

1∑
m=0

Tnim · Sm,r−i,kx
q+p−r
0 xr1yk,

where r = i+ j. Thus

(T ∗ S)nrk =
min(q,r)∑

i=max(0,r−p)

1∑
m=0

Tnim · Sm,r−i,k, 0 ≤ r ≤ p+ q

Proposition 8.7 Let T, S,R be algebraic tensors, P,Q matrices and x a vector. Then
1. T ∗ Id = Id ∗ T = T , Id∗P = Id, Id∗P = P
2. ((T ∗ S) ∗R) = (T ∗ (S ∗R))
3. (T ∗ S)∗x = (T ∗x) ◦ (S∗x)
4. (T ∗ S)∗P = (T ∗P ) ∗ (S∗P )
5. (T ∗ S)∗Q = T ∗ (S∗Q)
6. (PT ) ∗ S = P (T ∗ S)
7. (T∗P ) ∗ S = T ∗ (PS)
8. T ∗ (PS) = (T∗P ) ∗ S
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Proof: (Id ∗ T )(x, y) = Id(x, T (x, y)) = T (x, y), (T ∗ Id)(x, y) = T (x, Id(x, y)) = T (x, y),

((T ∗ S) ∗R)(x, y) = (T ∗ S)(x,R(x, y)) = T (x, S(x,R(x, y)))

= T (x, (S ∗R)(x, y)) = (T ∗ (S ∗R))(x, y)
((T ∗ S)∗x)(y) = (T ∗ S)(x, y) = T (x, S(x, y)) = (T ∗x)(S(x, y))

= (T ∗x)((S∗x)(y)) = (T ∗x) · (S∗x)(y)

(T ∗ S)∗P (x, y) = (T ∗ S)(Px, y) = T (Px, S(Px, y)) = (T ∗P )(x, S(Px, y))

= (T ∗P )(x, (S∗P )(x, y)) = ((T ∗P ) ∗ (S∗P ))(x, y)

(T ∗ S)∗Q)(x, y) = (T ∗ S)(x,Qy) = T (x, S(x,Qy)) = T (x, (S∗Q)(x, y))

= (T ∗ (S∗Q))(x, y)

((PT ) ∗ S)(x, y) = (PT )(x, S(x, y)) = P (T (x, S(x, y))) = P ((T ∗ S)(x, y))
((T∗P ) ∗ S)(x, y) = (T∗P )(x, S(x, y)) = T (x, P (S(x, y)) = (T ∗ (PS))(x, y)
T ∗ (PS)(x, y) = T (x, PS(x, y)) = (T∗P )(x, S(x, y)) = (T∗P ) ∗ S(x, y)

The image of intervals I, J by an algebraic tensor is defined by

T (I, J) = {T (x, y) : x ∈ I, y ∈ J} ∩ R.

Theorem 8.8 (Inclusion criterion) If T is a algebraic tensor, P,Q,R are regular matrices
and sgn(R−1T (P,Q)) ≥ 0 then T (P c, Qc) ⊆ Rc.

The proof is analogous to the proof of Theorem 5.31. We take the (q + 1)-linear tensor

S(x(1), . . . , x(q), y)k =
∑

i1,...,iq ,j

Tk,i1,...,iq ,jx
(1)
i1
, . . . , x

(q)
iq
yj

which is symmetric in the first q variables and S(x, . . . , x, y) = T (x, y). If sgn(R−1T (P,Q)) ≥ 0
then T (P c, Qc) ⊆ S(P c, . . . , P c, Qc) ⊆ Rc.

Theorem 8.9 Let {Tn : n ≥ 0} be a sequence of algebraic tensors and I, J intervals such that
Tn(I, J) ⊆ J for all n.

1. If for each x ∈ I, T ∗x is a contraction on J then there exists a limit

f(x) = lim
n→∞

(T ∗
0 x) · · · (T ∗

nx)(i).

2. If there exists a limit f(x) = limn→∞(T ∗
0 x) · · · (T ∗

nx)(i), then f(x) ∈ J .

Proof: For each x ∈ I and for each n we have (T ∗
nx)(J) ⊆ J , so both statements follow by

Proposition 3.43.

Definition 8.10 For an algebraic tensor T and a matrix P we write T ⊆ P if sgn(P−1T ) ≥ 0.

Lemma 8.11 Let T be an algebraic tensor and P,Q,R regular matrices. If P ⊆ Q and T ∗Q ⊆
R then T ∗P ⊆ R.
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Proof: R−1T ∗P = R−1T ∗(QQ−1P ) = (R−1T ∗Q)∗(Q−1P ), so sgn(R−1T ∗P ) ≥ 0.

Lemma 8.12 Let S, T be tensors and P,Q,R matrices. If T (P,Q) ⊆ Q and S(P,Q) ⊆ R then
(S ∗ T )(P,Q) ⊆ R.

Proof: We have

(S ∗ T )(P,Q) = ((S ∗ T )∗P )∗Q = ((S∗P ) ∗ (T ∗P ))∗Q = (S∗P ) ∗ T (P,Q)
= (S∗P ) ∗ (QQ−1T (P,Q)) = (S∗P∗Q) ∗ (Q−1T (P,Q))

= S(P,Q) ∗ (Q−1T (P,Q))

so we get sgn(R−1(S ∗ T )(P,Q)) = sgn(R−1S(P,Q)) · sgn(Q−1T (P,Q)) ≥ 0

8.3 The transcendent algorithm

To compute a transcendent function in an interval I = P c we expres it as a limit f(x) =
limn→∞(T ∗

0 x) · · · (T ∗
nx)(i), for some algebraic tensors Tn. This is possible if there exists an

interval J = Qc such that Tn(P,Q) ⊆ Q for all sufficiently large n. The algorithm uses states
(vertices) (X,Y, n, p, q) ∈ T(R) ×M(R) × N × B2, where X = T0 ∗ · · · ∗ Tn, and Y = Fu for
some i u−→ p.

Definition 8.13 Let (F,G, V ) be a sofic number system, {Tn : n ≥ 0} a sequence of algebraic
tensors and P,Q regular matrices such that Tn(P,Q) ⊆ Q for all n ≥ n0. The transcendent
graph has vertices (X, Y, n, p, q) ∈ T(R)×M(R)× N×B2. The labelled edges are

(X, Y, n, p, q) (a,λ)
−→ (X∗Hp,a,p′ , Y Hp,a,p′ , n, p

′, q) if p a−→ p′

(X, Y, n, p, q) (λ,λ)
−→ (X ∗ (T ∗

nY ), Y, n+ 1, p, q),

(X, Y, n, p, q) (λ,a)
−→ (F−1

a X,Y, n, p, q′) if p ̸= i, n ≥ n0, q a−→ q′,
Y ⊆ P, X∗Q ⊆ FaVq′

The first rule is the digit absorption of a letter from the input. The second rule is the tensor
absorption of the n-th tensor and the third rule is an emission of an output letter.

Proposition 8.14 Let (F,G, V ) be a sofic number system, {Tn : n ≥ 0} a sequence of algebraic
tensors and P,Q regular matrices such that Tn(P,Q) ⊆ Q for all n ≥ n0. Set Sn = T0∗· · ·∗Tn−1,

S0 = Id. If (Id, Id, 0, i, i) (u,v)
−→ (X, Y, n, p, q) is a path in the transcendent graph, then i u−→ p,

i v−→ q, Y = FuVp, and X = F−1
v S∗

nY . If p ̸= i then Y ⊆ P . If moreover q ̸= i then X∗Q ⊆ Vq,
or Sn(Y,Q) ⊆ FvVq.

Proof: The first digit absorption and the first tensor absorption yield

(Id, Id, 0, i, i) (a,λ)
−→ (Id, FaVp, 0, p

′, q) (λ,λ)
−→ (T ∗

0 (FaVp), FaVp, 1, p
′, q)

(Id, Id, 0, i, i) (λ,λ)
−→ (T0, Id, 1, p, q)

(λ,λ)
−→ (T ∗

0 (FaVp), FaVp, 1, p
′, q)

Assume by induction that the proposition holds for (Id, Id, 0, i, i) (u,v)
−→ (X, Y, n, p, q).

1. If (X, Y, n, p, q) (a,λ)
−→ (X ′, Y ′, n, p′, q) is a digit absorption, then Y ′ = Y Hp,a,p′ = FuaVp′ ,

X ′ = X∗Hp,a,p′ = (F−1
v S∗

nY )∗Hp,a,p′ = F−1
v ((S∗

nY )∗Hp,a,p′)

= F−1
v (S∗

n(Y Hp,a,p′)) = F−1
v S∗

nY
′
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If p ̸= i then Y ′ ⊆ Y ⊆ Vq. If moreover q ̸= i then Sn(Y,Q) ⊆ FvVq and therefore Sn(Y
′, Q) ⊆

FvVq by Lemma 8.11.

2. If (X,Y, n, p, q) (λ,λ)
−→ (X ′, Y, n+ 1, p, q) is a tensor absorption, then

X ′ = X ∗ (T ∗
nY ) = (F−1

v S∗
nY ) ∗ (T ∗

nY ) = F−1
v ((S∗

nY ) ∗ (T ∗
nY )) = F−1

v (S∗
n+1Y )

If q ̸= i then we have Sn(Y,Q) ⊆ FvVq, Tn(Y,Q) ⊆ Q, so (Sn ∗ Tn)(Y,Q) ⊆ FvVq by Lemma
8.12.
3. If (X, Y, n, p, q) (λ,a)

−→ (X ′, Y, n, p, q′) is an emission, then X ′ = F−1
a X = F−1

va S
∗
nY , X ′

∗Q ⊆ Vq′ ,
so Sn(Y,Q) ⊆ FvaVq′ .

Theorem 8.15 Let {Tn : n ≥ 0} be a sequence of tensors and P,Q regular matrices such
that Tn(P,Q) ⊆ Q for all n ≥ n0. Assume that for each x ∈ P c there exists a limit f(x) =

limn→∞(T ∗
0 x) · · · (T ∗

nx)(i). If (Id, Id, 0, i, i)
(u,v)
−→ is a path with infinite words u, v, then u, v ∈ ΣG

and f(Φ(u)) = Φ(v).

Proof: For every k there exists nk and mk such that

(Id, Id, 0, i, i)
(u[0,mk),v[0,k))

−→ (X,Y, nk, pk, qk),

so Snk
(Fu[0,mk)

Vpk , Q) ⊆ Fv[0,k)Vqk . Let x = Φ(u) ∈ P c and denote by

fn(x) = lim
k→∞

(T ∗
nx) · · · (T ∗

n+kx)(i).

Since Tn(P,Q) ⊆ Q for n ≥ n0, we get fn(x) ∈ Qc by Proposition 3.43 and Theorem 8.9. Since
x = Φ(u) ∈ Fu[0,mk)

Vpk we get f(x) = Sn(x, fn(x)) ∈ Fv[0,k)Vqk . Since Φ(v) ∈ Fv[0,k)Vqk , we get

f(x) = Φ(v).

To get a deterministic algorithm we need a selector which chooses at each step one of
the possible actions. A greedy selector chooses an emission whenever possible. If there is no
emission possible, the selector chooses either a digit absorption or a tensor absorption. To carry
out this decision, we use the concept of matrix convex hull of Proposition 5.24. Recall that the
(2× 2)-matrix T is the matrix convex hull of an (n× 2)-matrix T , if for each regular matrix Q
we have sgn(Q−1T ) ≥ 0 iff sgn(Q−1T ) ≥ 0.

Definition 8.16 The tensor convex hull T̃ of an algebraic tensor T is the bilinear tensor T̃
given by T̃ijk = (T−−k)ij. If deg(T ) ≤ 1 then T̃ = T .

Thus T̃−−0 is the matrix convex hull of the first q entries of T and T̃−−1 is the matrix convex hull
of the last q entries of T . Successive digit absorptions diminish both intervals T̃−−0 and T̃−−1,
but these intervals may remain apart since the contraction of the Q-interval do not increase.
Successive tensor absorptions on the other hand lead to greater contraction of the Q-interval
which result in smaller distance between the intervals T̃−−0 and T̃−−1. Thus a reasonable
selector for the transcendent algorithm is the balanced greedy selector of Table 5.3 applied to
X̃ of the state (X,Y, p, q, n), where y-absorption is replaced by tensor absorption.

Corollary 8.17 Let Tn be a sequence of algebraic tensors and P,Q regular matrices and n0 an
integer such that for each x ∈ P c, n ≥ n0, T

∗
nx is a contraction on Qc. Then for each path

(p, u) ∈ Σ|G| such that x = Φ(u) ∈ P c, the balanced greedy selector computes an infinite path
with output (q, v) such that

y = Φ(v) = lim
n→∞

(T ∗
0 x)(T

∗
1 x)(T

∗
2 x) · · · (T ∗

nx)(i)
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d X̃∗Q Y un vm

[0
1
, 1
1
] [1

0
, 0
1
] λ

0→ 0
0

[3
1
, −1
−3
, 5
3
, −3
−5

] [1
2
, 1
−2

] 0
0→ 0

[2
0
, 0
−2
, 3
1
, −1
−3

] [1
1
, 1
−1

] 0
1→ 1

[ 3
−5
, 0
−4
, 2
−6
, −2
−6

] [ 4
−1
, 2
−2

] 1
0→ 0

1

[ −1
−31

, −3
−21

, 1
−39

, −1
−9

] λ
0→ 0

[ −2
−31

, −6
−21

, 2
−39

, −2
−9

] 0
0→ 0

[ −4
−31

, −12
−21

, 4
−39

, −4
−9

] [ 3
−1
, 1
−1

] 0
1→ 1

2

[ −1808
−16636

, −160
−296

, −2640
−19532

, −192
−352

] [ 7
−4
, 2
−2

] 1
0→ 0

[ −452
−4159

, −940
−2885

, −660
−4883

, −1148
−3417

] 0
0→ 0

[ −904
−4159

, −1880
−2885

, −1320
−4883

, −2296
−3417

] [ 7
−4
, 5
−4

] 0
1→ 1

3

[ −90665024
−200750088

, −883840
−1345680

, −102683712
−227977096

, −1004160
−1530320

] 0
1→ 1

[ 19420040
−200750088

, −422000
−1345680

, 22609672
−227977096

, −478000
−1530320

] 1
0→ 0

[ 38840080
−200750088

, −844000
−1345680

, 45219344
−227977096

, −956000
−1530320

] [ 23
−16

, 10
−8

] 1
1→ 1

[ −531073520
−2976887688

, −13504000
−21530880

, −591561712
−3383035528

, −15296000
−24485120

] [ 43
−32

, 20
−16

] 1
0→ 0

[ −66384190
−372110961

, −165488990
−353507681

, −73945214
−422879441

, −187025182
−401922177

] 0
0→ 0

[−132768380
−372110961

, −330977980
−353507681

, −147890428
−422879441

, −374050364
−401922177

] 0
1→ 1

[ 106574201
−372110961

, −308448279
−353507681

, 127098585
−422879441

, −346178551
−401922177

] [ 43
−32

, 41
−32

] 0
1→ 1

input: u = 0010101101, p = 1, FuVp = [−167 −82
128 64

] = [−1.305,−1.281]
exp(2 · FuVp) = [0.0735, 0.0771]

output: v = 0001001, q = 1, FvVq = [ 17 10
256 128

] = [0.0664, 0.0781]

invariant matrix: Q = [0 1
1 1

]

Table 8.2: The transcendent algorithm with the exponential function in the binary signed
system of Example 4.3.
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Consider the computation of the exponential function according to

e2x =

[
1 1
0 1

]
·
[
0 2x
1 1− x

]
·
[
0 x2

1 3

]
·
[
0 x2

1 5

]
·
[
0 x2

1 7

]
· · ·

= lim
n→∞

(T ∗
0 x)(T

∗
1 x)(T

∗
2 x) · · · (T ∗

nx)(i)

where

T ∗
0 x =

[
1 1 + x
1 1− x

]
=

[
1 1
0 1

]
·
[
0 2x
1 1− x

]
, T ∗

nx =

[
0 x2

1 2n+ 1

]
We have det(T ∗

nx) = −x2, so T ∗
nx is decreasing (or singular for x = 0). As the invariant matrix

we take Q = [0 1
1 1

] with Qc = [0, 1]. The P matrix should not contain ∞ but can be arbitrarily

large. For a > 0 set P = [−a a
1 1

], so P c = (−a, a). Take n0 with 2n0 + 1 > a2. Then for each

n ≥ n0, Tn(P,Q) ⊆ Q, and T ∗
nx is contractive on Q for every x ∈ P c. Indeed

|(T ∗
nx)

•(y)| = x2(y2 + 1)

x4 + (y + 2n+ 1)2
≤ 2a2

(2n+ 1)2
< 1

Since and Tn(x, 0) = x2

2n+1
∈ Qc, Tn(x, 1) = x2

2n+2
∈ Qc, we get Tn(P,Q) ⊆ Q. A sample

computation of the algorithm is in Table 8.2. The first column gives the degree of the state
tensor, the second column gives its tensor convex hull.

For the function arctan x we have

arctanx =
x

1+
x2

3 +
4x2

5 + · · ·+
n2x2

(2n+ 1)+ · · ·
x ∈ R

=

[
0 x
1 1

]
·
[
0 x2

1 3

]
·
[
0 4x2

1 5

]
·
[
0 9x2

1 7

]
· · ·

= lim
n→∞

(T ∗
0 x)(T

∗
1 x)(T

∗
2 x) · · · (T ∗

nx)(i)

where

T ∗
0 x =

[
0 x
1 1

]
T ∗
nx =

[
0 n2x2

1 2n+ 1

]
The partial fractions are the Padé approximantsR00, R02, R22, R24 . . . of the function arctan(x)/x
multiplied by x (see Figure 8.2). We have det(T ∗x) = −n2x2, so T ∗

nx is decreasing (or singular
for x = 0). For a given interval P = [−a a

1 1
] take Q = [0 1

1 0
] and n0 with 2n0 + 1 > a. Then

Tn(P,Q) ⊆ Q, but T ∗
nx is not contractive on Q. However the composition

(T ∗
n−1x)(T

∗
nx) =

[
(n− 1)2x2 (2n+ 1)(n− 1)2x2

2n− 1 n2x2 + 4n2 − 1

]
is contractive on Q, so the algorithm works (see Table 8.3).

For the function ln(1 + x) we have

ln(1 + x) =
x

1+
x

2+
x

3+
4x

4 +
4x

5 + · · ·+
n2x

2n +
n2x

2n+ 1+ · · ·
x > −1

=

[
0 x
1 1

]
·
[
0 x
1 2

]
·
[
0 x
1 3

]
·
[
0 4x
1 4

]
·
[
0 4x
1 5

]
· · ·

= lim
n→∞

(T ∗
0 x)(T

∗
1 x)(T

∗
2 x) · · · (T ∗

nx)(i)



8.3. THE TRANSCENDENT ALGORITHM 173

d X̃∗Q Y un vm

[0
1
, 1
0
] [1

0
, 0
1
] λ

0→ 0
0

[1
2
, 1
−2
, 0
2
] [1

2
, 1
−2

] 0
0→ 0

1

[0
0
, 0
0
, 0
0
, 0
0
] [1

1
, 1
−1

] 0
1→ 1

[ 72
−72

, 12
−19

, 4
−1
, 8
−8

] λ
0→ 0

[ 36
−72

, 6
−19

, 2
−1
, 4
−8

] [ 4
−1
, 2
−2

] 1
0→ 0

2

[ 153
−192

, 19
−48

, 54
−120

, 9
−24

] 0
1→ 1

[ 57
−96

, −5
−24

, −6
−60

, −3
−12

] [ 3
−1
, 1
−1

] 0
1→ 1

3

[ 27608
−952392

, −704
−3264

, 10496
−87168

, −80
−384

] 1
0→ 0

[ 55216
−952392

, −1408
−3264

, 20992
−87168

, −160
−384

] 0
0→ 0

[ 110432
−952392

, −2816
−3264

, 41984
−87168

, −320
−384

] [ 7
−4
, 2
−2

] 1
0→ 0

[ 13804
−119049

, −29620
−68505

, 5248
−10896

, −2560
−7440

] 0
0→ 0

[ 27608
−119049

, −59240
−68505

, 10496
−10896

, −5120
−7440

] [ 7
−4
, 5
−4

] 0
1→ 1

[ −63309376
−172704072

, −947840
−1096080

, −643072
−17614848

, −81920
−119040

] [ 23
−16

, 10
−8

] 1
1→ 1

4

[ −64673315584
−119941739040

, −169256960
−205451520

, −5988784384
−9960752928

, −15165440
−17537280

] 0
1→ 1

[ −9404892128
−119941739040

, −133062400
−205451520

, −2016815840
−9960752928

, −12793600
−17537280

] [ 43
−32

, 20
−16

] 1
0→ 0

input: u = 001010110, p = 0, FuVp = [−43 −41
32 32

] = [−1.344,−1.281]
arctan(FuVp) = [−0.931,−0.908]
output: v = 010001, q = 1, FvVq = [−31 −14

32 16
] = [−0.969,−0.875]

invariant matrix: Q = [0 1
1 0

]

Table 8.3: The transcendent algorithm with the function arctanx in the binary signed system.
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where

T ∗
0 x =

[
0 x
1 1

]
T ∗
nx =

[
0 n2x
1 2n

]
·
[
0 n2x
1 2n+ 1

]
=

[
n2x n2(2n+ 1)x
2n n2x+ 2n(2n+ 1)

]
=

[
nx n(2n+ 1)x
2 nx+ 4n+ 2

]
We have det(T ∗

nx) = n2x2, so T ∗
nx is inreasing (or singular for x = 0). For a given interval

P = [−a a
1 1

] take Q = [0 1
1 0

] and n0 with 2n0 + 1 > a. Then Tn(P,Q) ⊆ Q and T ∗
nx is not

contractive on Q.

8.4 Arithmetical expressions

Arithmetical algorithms considered so far can be combined to algorithms which compute arith-
metical expressions like x2+arctan x or exp(x+y)/z. An arithmetical expression can be parsed
into a circuit which is an oriented graph whose vertices represent variables and either unary or
binary arithmetical operations. Unary operations are either Möbius transformations or rational
functions or transcendent functions. Binary operations are algebraic tensors.

Definition 8.18 A circuit is a finite oriented graph (C,E), where C is the set of vertices and
E ⊆ C × C is a set of edges. We assume the following properties

1. There are no loops (no paths from c to c for any c ∈ C).
2. The outdegree of each vertex is either 0, 1 or 2.

3. There exists exactly one vertex called root with indegree 0.

4. Each vertex (except the root) lies on a path which starts at the root.

5. The vertices with outdegree 1 are labelled either as unary or transcendent with a particular
transcendent function.

6. The edges c→ c′ and c→ c′′ of a vertex c ∈ C with outdegree 2 are ordered.

The leaves (vertices with outdegree 0) represent the variables, the vertices with outdegree 1
represent unary operations and the vertices with outdegree 2 represent the binary operations.
We say that a vertex c′ is an input to a vertex c if c→ c′ is an edge of the circuit. For example
the expression x2 + arctanx is represented by a circuit with states C = {0, 1, 2, 3} and edges
1 → 0, 2 → 0, 3 → 1, 3 → 2. Here 0 is the leaf which represents the variable x, 1 represents
the rational function x2, 2 represents the transcendent function arctanx, and 3 is the root and
represents the addition x+ y. A circuit represents an algorithm which computes at the root a
function of n variables, where n ≥ 1 is the number of leaves.

A circuit computes its function for a given a sofic number system (F,G, V ) with an initialized
graph G = (B,E, i). During the computation it updates its compound state which consists
of local states at vertices. A local state depends on the type of the vertex and has one of the
following forms:
(p u−→ q) (a finite path of the graph G) at leaves
(Y, p u−→ q), where Y is a matrix, at vertices of type unary
(X, p u−→ q), where X is an algebraic tensor, at vertices with outdegree 2
(X,Y, n, p u−→ q), where X is an algebraic tensor, Y is a matrix and n ∈ N, at vertices of type
transcendent.
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In all cases p u−→ q is a finite path of G which represents the result computed by the algorithm
at a given vertex c and not yet absorbed by vertices with input c. The path at a vertex may
be of length 0, consisting from a single state p ∈ B. This is the case in the initial compound
state whose all local states have the path i, the initial state of the graph G. A nondeterministic
computation of a circuit is represented by a circuit graph whose vertices are compound states
and whose edges are labeled by (n+1)-tuples (u0, . . . , un−1, un) ∈ (A∗)n+1 of n inputs ui (where
n is the number of leaves) and one output un. The change of state of the i-th leaf from p u−→ q
to p u−→ q v−→ r (i.e., to p uv−→ r) is an absorption edge with label (λ, . . . , v, . . . , λ). The change
of state of the root from p uv−→ r = p u−→ q v−→ r to q v−→ r is an emission edge with the label
(λ, . . . , λ, u). Thus in the circuit graph we have labelled edges

s λ,...,v,...,λ
−→ s′ ⇔ (p u−→ q)→ (p u−→ q v−→ r) at a leaf

s λ,...,λ,u
−→ s′ ⇔ (X, . . . , p u−→ q v−→ r)→ (X, . . . , q v−→ r) at the root

There are also edges with label (λ, . . . , λ) which do not absorb any input nor emit any output
but update the compound state by performing some steps of algorithms at particular vertices.
These edges are of two types: absorptions and emissions. If at some vertex we have path
p u−→ q and the algorithm at this vertex performs an emission q v−→ r, then the state is changed
to p uv−→ r. For example, consider a unary vertex c ∈ C with the input vertex c′. Assume that
state at c is (X, p u−→ q) and the state at c′ contains a path p′ u′

−→ q′ with source p′. If the
unary algorithm has an emission edge (X, p′, q) λ,v

−→ (F−1
v X, p′, r), then the state of c is changed

to (F−1
v X, p uv−→ r). Similarly, assume that c is a vertex with outdegree 2 and input vertices

c′, c′′. Assume that state at c is (X, p u−→ q), the state at c′ contains a path with source p′

and the state at c′′ contains a path with source p′′. If the binary algorithm has an emission
edge (X, p′, p′′, q) λ,λ,v

−→ (F−1
v X, p′, p′′, r), then the state of c is changed to (F−1

v X, p uv−→ r).
Analogously, an emission step of the transcendent algorithm changes the path at a vertex of
type transcendent.

Finally there are compound state changes produced by absorption edges at the individual
vertices. Let c be a vertex and let c1, . . . , ck be all vertices with input c. If the state of c
contains a path p u−→ q, then all vertices ci realize the absorption step with label p u−→ q and the
path of the state c is updated to q Thus if ci is a vertex of type unary with state (X, r v−→ s),
then this state is updated to (XHp,u,q, r v−→ s). If ci has outdegree 2 with state (X, r v−→ s),
then this state is updated either to (X∗Hp,u,q, r v−→ s) or to (X∗Hp,u,q, r v−→ s). We summarize
that for the vertices of type unary we have state changes

(X, p u−→ q)→ (F−1
v X, p uv−→ r) ⇔ (X, p′, q) λ,v

−→ (F−1
v X, p′, r),

(X, p u−→ q)→ (XHp′,u′,q′ , p u−→ q) ⇔ (X, p′, q) u′,λ
−→ (XHp′,u′,q′ , q

′, q)

provided p′ u′
−→ q′ in the input. For the vertex with outdegree 2 we have state changes

(X, p u−→ q)→ (F−1
v X, p uv−→ r) ⇔ (X, p′, p′′, q) λ,λ,v

−→ (F−1
v X, p′, p′′, r),

(X, p u−→ q)→ (X∗Hp′,u′,q′ , p u−→ q) ⇔ (X, p′, p′′, q) u′,λ,λ
−→ (X∗Hp′,u′,q′ , q

′, p′′, q)

(X, p u−→ q)→ (X∗Hp′′,u′′,q′′ , p u−→ q) ⇔ (X, p′, p′′, q) λ,u′′,λ
−→ (X∗Hp′′,u′′,q′′ , p

′, q′′, q)
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provided p′ u′
−→ q′ in the first input and p′′ u′′

−→ q′′ in the second input. For the vertex of type
transcendent we have state changes

(X, Y, n, p u−→ q)→ (F−1
v X,Y, n, p uv−→ r)⇔

(X, Y, n, p′, q) λ,v
−→ (F−1

v X, Y, n, p′, r),

(X, Y, n, p u−→ q)→ (X∗Hp′,u′,q′ , Y Hp′,u′,q′ , n, p u−→ q)⇔

(X, Y, n, p′, q) u′,λ
−→ (X∗Hp′,u′,q′ , Y

∗Hp′,u′,q′ , n, q
′, q)

(X, Y, n, p u−→ q)→ (X ∗ (T ∗
nY ), Y, n+ 1, p u−→ q)⇔
(X, Y, n, p′, q) λ,λ

−→ (X ∗ (T ∗
nY ), Y, n+ 1, p′, q)

provided p′ u′
−→ q′ in the input While the emission edges (and t-absorption edges in the case of

transcendent vertices) can be performed in any order, the absorptions must be done at each
vertex with a given input c (sequentially or concurrently) and then the path of c is updated
from p′ u′

−→ q′ to its target q′

The graph of a circuit with n leaves represents a nondeterministic algorithm for a (partial)
function of n variables f(x0, . . . , xn−1). If there is an infinite path with label (u0, . . . , un−1, un) ∈
(Aω)n+1 from an initial state which represents f , then Φ(un) = f(Φ(u0), . . . ,Φ(un−1)). To
obtain a deterministic algorithm, we have to use a selector which decides the sequence of
particular actions on the base of the compound state.

8.5 Iterative algorithms

Many numerical algorithms are based on the iterative method. From an approximate solution
is obtained a better approximation and this process is repeated. We say that x is a fixed
point of a real function f if f(x) = x. The n-th iteration fn of f is the composition of f with
itself n times: we have a recurrent formula fn+1(x) = f(fn(x)). The convergence of a sequence
xn = fn(x) to a fixed point of f is pictured in Figure 8.4 left. For an initial x0 we draw the
vertical from the point (x0, 0) at the x-axis to the point (x0, x1) on the graph of f . Then we
draw a horizontal line to the point (x1, x1) at the diagonal y = x, the vertical line to (x1, x2),
etc.

x0 x1 x2 g(x) x

f(x)

Figure 8.4: A stable fixed point (left) and the Newton iterative method (right).

Proposition 8.19 Let f be a real function with a fixed point a and assume that f has a
derivation at a with |f ′(a)| < 1. Then there exists δ > 0 such that for each x with |x− a| < δ
we have limn→∞ fn(x) = a.
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Proof: Take some q with |f ′(a)| < q < 1. By the definition of derivative as a limit there exists

δ > 0 such that for any x with 0 ̸= |x− a| < δ we have |f(x)−a
x−a
| < q, so |f(x)− a| < q|x− a| <

qδ < δ. By induction we get |fn(x)− a| < qnδ, so limn→∞ fn(x) = a.

We see from the proof that in a neighbourhood of the fixed point a, |fn(x)− a| is approxi-
mately a geometrical sequence with quotient |f ′(a)|.

Proposition 8.20 Let f : [a, b] → R be a real differentiable function and 0 < q < 1 be such
that |f ′(x)| < q for each x ∈ (a, b). If (f(a)− a)(f(b)− b) < 0 then f has a unique fixed point
c ∈ (a, b) and for each x ∈ [a, b], we have limn→∞ fn(x) = c.

Proof: By the internmediate value theorem, f has a fixed point in (a, b). If it has two fixed

points z, w in (a, b) then by the mean value theorem there exists x with f ′(x) = f(z)−f(w)
z−w

= 1
which is a contradiction. If c ∈ (a, b) is the fixed point, and x ∈ (a, b), then (by the mean value
theorem) |f(x)− a| < q|x− a|, so limn→∞ fn(x) = a.

Propositions 8.19 and 8.20 hold as well with the standard (Euclidean) derivation f ′(x)
replaced by the circle derivation f •(x). A classical iterative algorithm is theNewton iteration
algorithm for the solution of an equation f(x) = 0. If f is a differentiable real function and
a is an approximate solution, then we approximate the function f by its tangent at a, i.e.,
by the linear function ha(x) = f(a) + f ′(a)(x − a). We solve the equation ha(x) = 0 to get
x = g(a) = a−f(a)/f ′(a) (Figure 8.4 right). Thus for a given function f we iterate the function
g(x) = x− f(x)/f ′(x). If the iteration process converges to a fixed point x of g with g(x) = x,
then we have a solution of f(x) = 0. If f has a second derivation, then we get

g′(x) = 1− f ′(x)2 − f(x)f ′′(x)

f ′(x)2
=
f(x)f ′′(x)

f ′(x)2

Thus if a is a solution of f(x) = 0 then g(a) = a and g′(a) = 0. This means that in a
neighbourhood of the fixed point, gn(x) converge to a very fast: faster than any geometrical
sequence.

Consider the task of finding a fixed point of a real function to an arbitrary precision.
We assume that we have circuit (see Section 8.4) which computes the function f in a given
sofic number system (F,G, V ). Suppose that the assumptions of Proposition 8.20 are met,
so there exists an interval I such that f(x) − x have opposite signs at the endpoints of I and
|f •(x)| < q < 1 for each x ∈ I. There exists a path i u−→ p such that FuVp ⊆ I and FuVp contains
the fixed point of f . Since |f •(x)| < q < 1 in I, FuVp is f -invariant, i.e., f(FuVp) ⊆ FuVp. This
property can be verified by the circuit algorithm of f . It is satisfied provided there exists a path
of the form (X, i, i) u,u

−→ (Xu, p, p) in the circuit graph of f (here X is the compound state of the
circuit which represents f). Once we have such an f -invariant path i u−→ p, we can continue by
induction. There exists an edge p a−→ q such that FuaVq ⊆ FuVp is f -invariant, i.e., there exists
a path (Xu, p, p) a,a

−→ (Xua, q, q) in the circuit graph. In this way we construct (in infinite time)
an infinite path (X, i, i) u,u

−→ with f(Φ(u)) = Φ(u). In Table 8.4 we see the computation of the
stable fixed point of a hyperbolic Möbius transformation in the binary signed system.
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input matrix: [7 3
2 5

]

fixed points: 1.822875655532,−0.822875655532

u, p FuVp FuVp MFuVp
00, 3 [1 1

1 −1
] [1.0000,−1.0000] [1.4286,−1.3333]

001, 2 [2 4
2 1

] [1.0000, 4.0000] [1.4286, 2.3846]

0010, 1 [1 3
1 1

] [1.0000, 3.0000] [1.4286, 2.1818]

00100, 1 [3 5
2 2

] [1.5000, 2.5000] [1.6875, 2.0500]

001001, 4 [6 15
4 8

] [1.5000, 1.8750] [1.6875, 1.8429]

0010010, 1 [13 15
8 8

] [1.6250, 1.8750] [1.7424, 1.8429]

00100101, 2 [57 30
32 16

] [1.7812, 1.8750] [1.8066, 1.8429]

001001010, 1 [57 59
32 32

] [1.7812, 1.8438] [1.8066, 1.8309]

0010010101, 2 [233 118
128 64

] [1.8203, 1.8438] [1.8219, 1.8309]

00100101010, 1 [233 235
128 128

] [1.8203, 1.8359] [1.8219, 1.8279]

001001010101, 4 [466 935
256 512

] [1.8203, 1.8262] [1.8219, 1.8242]

0010010101011, 4 [932 1867
512 1024

] [1.8203, 1.8232] [1.8219, 1.8230]

00100101010110, 1 [1865 1867
1024 1024

] [1.8213, 1.8232] [1.8223, 1.8230]

001001010101101, 2 [7465 3734
4096 2048

] [1.8225, 1.8232] [1.8227, 1.8230]

0010010101011010, 1 [7465 7467
4096 4096

] [1.8225, 1.8230] [1.8227, 1.8229]

00100101010110101, 2 [29865 14934
16384 8192

] [1.8228, 1.8230] [1.8229, 1.8229]

001001010101101010, 1 [29865 29867
16384 16384

] [1.8228, 1.8229] [1.8229, 1.8229]

0010010101011010100, 1 [59731 59733
32768 32768

] [1.8228, 1.8229] [1.8229, 1.8229]

Table 8.4: The computation of the stable fixed point in the binary signed system.
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[37] P. Kůrka. Möbius number systems with sofic subshifts. Nonlinearity, 22:437–456, 2009.
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Notation

Aω the set of infinite words 10
C the complex plane 10
d stereographic projection 11

R the extended real line 25
Hp,a,q cut matrix 99
L upper length quotient 88
LD the language of forbidden set 10
LF,W expansion language 72
l lower length quotient 88
M•(x) circle derivation 49
nrm(M) norm of a projective matrix 64
Y the closure of a set 25
P c closed interval 96
P o open interval 96
Φ value mapping 69
Rn n-dimensional Euclidean space 25
R(M) rational expansion interval 119
S the unit circle 10
ΣD the subshift of forbidden set 10
SF,W expansion subshift 72
s(M) stable point 65
sz(P ) size of a projective matrix 98
trc(M) trace of a projective matrix 50
U(M) expanding interval 50
u(M) unstable point 65
V(M) contracting interval 50
XF convergence space 69
Y ◦ the interior of a set 25
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absorption 100
absorption state 101
admissible set 100
algebraic integer 142
algebraic number field 134
algebraic tensor 166
algorithmic mapping 95
algorithmic number 7
alhorithmic numbers 95
alphabet 9
angle distance 12
angle length 11
angle metric 47
argument 11

balanced greedy selector 109
ball 25
bijective 27
bimodular number system 125
binary continued fraction 131
binary graph 109
binary signed interval system 82
binary signed system 9
bounded 26
branching unary graph 103

Cantor middle third set 13
Cantor space 31
central perspectivity 43
chord metric 48
circle derivation 49
circuit 174
circuit graph 175
circular SFT 91
clopen 26
closed 26
closed interval 46
closure 25
commutative rings 112
compact 26
complex plane 10

complex sphere 54
computable ordered field 100, 141
concatenation 10
conformal 55
conjugated 139
connected space 26
continuous 10-12, 27
contracting 14
contracting interval 50, 62
contraction 34
contractive iterative system 34
convergence space 69
convergent sequence 26
convergents 20, 68
convex 144
convex combination 108
convex combinations 96
cover 27
cut matrices 99
cut matrix 99-100
cutpoints 77
cylinder 12, 30
cylinder interval 12

decadic number system 7
decadic signed system 8
decompression code 130
decreasing transformations 48
degree 112, 134
determinant 117
deterministic 41
diameter 26
diameter of a cover 27
differentiable curve 56
digit absorption 169
disc transformation 59
discrete group 93
discriminant 140, 144
distance of words 10
dominant coefficient 155
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edge subshift 39
elliptic 50
emission 100
emission state 101
Euclidean space 25
even subshift 38
expanding 14
expanding discs 61
expanding interval 50, 62
expansion 7, 72
expansion graph 76
expansion language 72
expansion subshift 72
extendable language 36
extended binary system 9
extended real line 8, 44
extension 32

factor 40
field embedding 139
finite automaton 37
finite field extension 134
finite simple continued fraction 20
finite state transducer 123
finitely generated 143
fixed point 50, 176
follower set 38
forbidden words 8, 35
formal power series 159
free Z-module 143

general continued fractions 68
generated 134
geodesic 57
greatest common divisor 112
greedy 101
greedy expansion 15, 145
greedy expansion map 146
greedy function 146
greedy partition number system 147

holomorphic functions 55
homeomorphic 27
homeomorphism 27
homogeneous coordinate 44
hyperbolic 50
hyperbolic distance 58
hyperbolic triangle 58
hyperbolic trigonometry 58

hyperbolic unit disc 59

ideal points at infinity 43
imaginary unit 10
Improper intervals 46
increasing transformations 48
initial compound state 175
initialized 41
injective 27
interior 25
interval 46
interval number system 75
isometric circles 61
iterative system 69

labelled graph 39
language 10, 35, 39
large bimodular system 127
lattice 144
lazy expansion 145
lazy expansion map 145
lazy function 145
lazy partition number system 146
leading coefficient 112
Lebesgue number 28
length of a word 10
length quotients 88
level curves 105
linear transformations 54, 152
local rule 40, 153
local threshold 122
lower contracting quotient 87

Möbius transformation 48
marginal matrices 105
marginal vectors 105
matrix convex hull 108
metric space 9, 25
minimal polynomial 134
modular group 93
modular number system 121
monic 112
morphism 40

negation matrix 97
negative binary system 19
Newton iteration algorithm 177
nondeterministic 39
nonnegative projective matrix 99
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norm 44, 117, 138
norm of a matrix 64
norm of a projective matrix 64
number system 69

occurrence one subshift 35, 38
open 26
open SFT partition 81
open almost-cover 72
open cover 27
open interval 46
open partition 77
order 35
ordered field 141
orientation 76

Padé approximant 159
Padé approximant expression 159
parabolic 50
parallel reduction 153
partition number system 77
perfect 31
period 10
periodic word 10
Pisot number 144
polygonal iterative system 90
positive sign 96
positively oriented 46
power basis 136
power space 29
preperiod 10
projective line 44
projective matrix 48
projective metric 47
projective plane 44
projective points 44
projective space 43-44
proper interval 46

rational expansion interval 119
rational expression 159
rational function 114
rational interval number system 120
redundancy 8
redundant 32
redundant sofic number system 84
regular 114
regular language 37
regular projective matrices 96

regular tensor 106
regular transformations 48, 65
restricted greedy partition number system 149
Riemannian metric 56
right-resolving 41

Salem number 144
selector 83, 101
set difference 26
shift map 35
signed continued fractions 71
simple continued fractions 22
simple field extension 134
singular point 105
singular transformations 65
size 46, 98
sliding block code 40, 153
small bimodular system 126
sofic 37
sofic number system 84
squarefree 135
stable point 65
standard binary system 9
stereographic projection 10, 45
Sturm chain 113
subcover 27
subsequence 26
subshift 10, 35, 39
subshift of finite type 35
subspace 25
subword 10
surjective 27
symbolic extension 25, 32
symbolic space 31
symmetric 114, 144
symmetric continued fractions 22, 72-74, 120

tensor absorption 169
tensor convex hull 170
ternary signed system 16
threshold 100
totally disconnected 31
trace 138
trace of a matrix 50
trace of a projective matrix 50
trajectory 72
trilinear 114

unary algorithm 100
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unary graph 100
unary selector 101
uniformly continuous 29
unit circle 10
unit disc 55
unstable point 65
upper contracting quotient 87
upper half-plane 55-56

value 7
value mapping 8, 12, 34, 69
variance 113

zero polynomial 112
zero transformation 65


