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Preface

Current computers work with real numbers in the floating point format and the numbers are
rounded up after each arithmetical operation. This usually works quite well but there are cases
in which the successive roundings yield wrong results. Exact arithmetical algorithms, on the
other hand, work with real numbers specified to an arbitrary precision. The precision of the
result depends on the precision of the operands. The theory of exact real computation is based
on the concept of on-line algorithms whose inputs and outputs are infinite expansions of real
numbers. The algorithms work in a loop in infinite time but each finite prefix of the output is
computed in finite time from finite prefixes of the inputs.

The theory of on-line algorithms has been developped by Weihrauch [68]. The idea of
on-line arithmetical algorithms has been suggested in an unpublished manuscript of Gosper
[21] and developped by Kornerup and Matula [34] and Vuillemin [66]. On-line arithmetical
algorithms are treated in the PhD thesis of Potts [55] and in the last chapter of the monograph
of Kornerup and Matula [33]. The on-line algorithms do not work in the standard decadic
or binary systems but they do work in redundant systems, for example in positional number
systems whose number of digits is larger than the base.

The present book is a theoretical treatment of arbitrary precision on-line arithmetical algo-
rithms in general Mobius number systems. To specify a Mébius number system, we start with
a finite alphabet A of digits and to each digit we associate a Mobius transformation. This is

a mapping of the form M (z) = %. For example in a positional number system with base
f > 1, the linear transformation F,(z) = % is associated to the digit a. Then we specify a

subshift ¥ C A% of admissible infinite sequences of digits and the value mapping ® : ¥ — R,
where R = R U {oo} is the extended real line. The value mapping ® should be surjective and
continuous. This means that each number z € R should have its symbolic representation (an
infinite sequence of digits) v € ¥ such that ®(u) = z. Continuity means that the prefixes ujq
of u of length n give with increasing n ever better approximations to ®(u) = x.

The first chapter is introductory and treats classical positional number systems and number
systems based on continued fractions. On these examples it is shown how the Md&bius trans-
formations are assocoated to the digits, how the value mapping ® : ¥ — R is constructed and
how symbolic representations of real numbers are obtained.

The second chapter treats redundancy as a topological concept and shows that for every
compact metric space X (in particular for the space X = R) there exists a redundant continuous
surjective mapping ® : ¥ — X, where X is a symbolic space. The property of redundancy
implies that each continuous mapping G : X — X has a symbolic representation, which is a
continuous mapping F' : ¥ — Y such that ® o F' = G o ®. In arithmetical algorithms, the
symbolic space ¥ is supposed to be a sofic subshift recognizable by a finite automaton, so the
rest of the chapter deals with sofic subshifts.

The third chapter explains basic ideas of projective geometry which gives insight into the
spaces connected with a number system. The extended real line R is identified with the one-
dimensional projective space P(R?) and the space of Mdbius transformations M(R) is identified
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with the three-dimensional space of projective matrices P(R?*?). The geometrical properties
of Mobius transformations are exposed with the use of hyperbolic geometry. Then we explain
the concept of representation of real numbers by a sequence of transformations: A sequence
M, of real Mébius transformations represents a real number z iff © = lim,,_, o, M, (2) for every
complex number z with a nonzero imaginary part. In particular, if ® : ¥ — R is the value
mapping of a number system and u = uguy - -- € X, then ®(u) is represented by a sequence of
transformations Fupn =Fuyo---0Fy

The fourth chapter exposes the theory of Mobius number systems and shows several methods
how to construct suitable subshifts ¥ C A“ and suitable value mappings ® : ¥ — R. A special
treatment is given to sofic Mobius number systems for which arithmetical algorithms work.
Several examples of sofic number systems are given.

The fifth chapter develops the calculus of bilinear tensors which represent binary arithmeti-
cal operations. Intervals are represented by projective matrices and operations with tensors and
intervals are based on matrix calculus. Based on this calculus we describe the unary algorithm
which computes a Mobius transformation and the binary algorithm which computes a bilinear
tensor.

The sixth chapter treats number systems whose matrices have integer entries. In particular,
modular systems have transformations with unit determinant. We show that if the unary
algorithm computes a transformation with integer entries in a modular number system, then
the norm of the state matrices is bounded, so the computation can be carried out by a finite
state transducer. On the other hand, Mobius transformations are the only rational functions
which can be computed by a finite state transducer.

The seventh chapter treats number systems with matrices whose entries are algebraic num-
bers. We review the theory of algebraic extension fields, algebraic integers and integral bases
and give classical results of Parry and Schmidt on positional number systems with algebraic
base f > 1 (so called S-systems introduced by Rényi [58]). Then we treat the algorithms of
parallel addition in positional number systems.

The eigth chapter treats algorithms which compute transcendent functions like €*, In x, tan x
or arctan z. We review the theory of Padé approximants and the representation of transcendent
functions by general continued fractions. We introduce the concept of algebraic tensor T'(x,y),
which for a fixed y is a rational function of x and for a fixed x is a Mobius transformation of y.
We define the transcendent algorithm which works with these algebraic tensors and we show
that it computes transcendent functions which can be expressed by general continued fractions.
Finally we treat algorithms which compute arithmetical expressions and iterative algorithms
which compute stable fixed points of real functions.

The treatment is elementary and self-contained. The basic prerequisite is linear algebra and
matrix calculus.

n—1"°



Chapter 1

Basic number systems

Real numbers are defined as cuts of rational numbers or as limits of Cauchy sequences of
rational numbers. Alternatively, the space of real numbers is characterized axiomatically by
the property of completeness: it is the smallest complete metric space which contains rational
numbers. A real number is usually given by its expansion in the decadic number system. But
a number should be distiguished from its representation in any number system. The concept of
number is geometrical or analytical, the representation of a number is a combinatorial concept.
A real number can have many representations in a number system.

1.1 The decadic system

In the decadic number system, a real number is represented by an infinite word (a string
of letters or characters) u = Su,Up,11 -+ U_1.UgUius - - -, where s is either the sign — or empty,
n < 01is an integer, u; € {0,1,2,3,4,5,6,7,8,9} are digits and . is the positional decimal point.
Such a word u represents the number

T = :I:iui S107 L

We say that « is the value of u or that u is an expansion of z and we write ®(u) = z. We
admit as expansions also finite words u = Su,u,41 - - U_1.UgUq - - - Uk, Which represent the same
numbers as infinite words with trailing zeros: ®(u) = :th:n u; - 10771 eg., ®(2) = £ or
O(—1.5) = _73 A finite prefix u, = SupUpqq -+ - u—1. Ul - - - up—1 of an expansion u of x with k

decimal places gives an approximation of x:

O(u) — P < 9.-107" = —°- __ —107"
| (U) (U\k)’ = ; 10k+1(1 _ 1_10)

This is essential, since neither people nor computers can handle infinite expansions but only
their finite prefixes. To determine a real number, we have to give a rule or an algorithm which
generates arbitrarily long prefixes of its expansion. Accordingly, we say that a real number
is an algorithmic number if there exists an algorithm which computes its expansion to an
arbitrary number of decimal places. Algorithmic numbers include all rational numbers, all
algebraic numbers, which are solutions of algebraic equations with rational coefficients, and
many transcendent numbers like 7 or e, which can be computed by power series.

The expansions are infinite words in the alphabet A = {0,1,2,3,4,5,6,7,8,9,.,—}, which
contains besides the decimal digits also the positional point . and the negative sign —. We
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denote by A* the set of finite words (sequences) of letters of A and by A“ the set of infinite
words. Not every infinite word of A“ represents a real number: the sign — can appear only
at the beginning and the decimal point . must occur exactly once. Thus the expansions must
satisfy certain syntactic rules, which may be expressed by a set of forbidden words

D={a—:acAU{u.: ue A}

This means that an expansion cannot contain as a subword any letter a € A followed by the
minus sign — and it cannot contain two positional points. Denote by ¥ the set of infinite
words which do not contain as a subword any forbidden word. We say that > is the subshift
with the forbidden set D. In the subshift > there are also words which do not contain any
positional point at all. We cannot forbid them, since we cannot detect this property in finite
prefixes. We assign the value infinity to such words provided they contain at least one nonzero
digit, and the value zero otherwise. We therefore extend the real line R by a point co at infinity
and obtain the extended real line R = R U {oco}. Then the value mapping ® : ¥p — R is
defined on the whole ¥,. Some arithmetical operations are extended to R. We have G =
for a # 0 and a & 00 = 00, & = 0 for a # oo. On the other hand, 8, 22, 00 £ 0o are undefined
(indeterminate) expressions.

The value mapping ® is surjective, i.e., each z € R has an expansion u € ¥p with ®(u) = z,
but it is not one-to-one. There are infinitely many expansions of oo and some finite numbers
have two different expansions, for example 0.999--.- = 1.000---. In fact a real number has two
infinite expansions iff it has a finite expansion:

Up, **U_1.Ug " * * Upy—1 Uy, = un“'u—l-UO"'um—lumooo"'

— un...u_l.uo..-um_l(um—l)ggg"'

This duplicity can be felt as an inconvenience but cannot be detected in finite prefixes and
cannot be avoided by forbidding finite words. In fact, such a duplicity or redundancy is
necessary to perform arithmetical operations on the expansions. If we are able to determine
real numbers x and y to an arbitrary precision, we would like to determine to an arbitrary
precision also their sum x + y or the results of other algebraic operations. This means that
the prefix of a length £ of (the expansion of) x + y should depend only on the prefixes of some
length ny of (the expansions of) the operands z and y. In the standard decadic system this
is not possible since the system is not redundant enough: the carries to the left propagate
through arbitrarily long intervals. Imagine that we try to add numbers % = 0.33333... and
% = 0.66666 ..., but we do not know in advance their exact values. We can only inspect
arbitrarily long prefixes of their expansions. Then we are unable to determine the first digit of
the sum. The first digit would be zero if u; + v; < 9 for some ¢ or 1 if u; + v; > 9 for some 1.
In our case neither alternative ever happens so we are never able to determine the first digit of
the result.

1.2 Redundancy

To perform arithmetic operations on the expansions of real numbers, we need redundant po-
sitional systems, in which the number of digits is greater than the base. For example, the
decadic system can be extended with a digit which represents 10. Another possibility is the

decadic signed system with digits A = {5,4,3,2,1,0,1,2,3,4,5}, where 7 stands for —n.
This system has 11 digits - one more than the base 10, and it has an additional advantage that
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.001022222011110012102222 . . .
.022112221111200022221122 . ..
.023134443122310034323344 . . .
11123221121111013121232. ..
1121210120111102120212 . ..

SRR
|

Table 1.1: Addition in the extended binary system

the negative numbers can be expressed without the — sign. Many numbers have an infinite
number of expansions, e.g.,

g = 0.5555 - = 0.55" = 0.455" = 0.4455" = 0.44455" = - - -

In computer arithmetic, positional system with other bases than 10 are frequently used.
The standard binary system has base f = 2 and digits A = {0,1}. Because the number
of digits is the same as the base, there is no properly working addition algorithm either. The
extended binary system has digits {0,1,2} and the binary signed system has digits
A ={1,0,1} representing —1,0, 1. In both these systems arithmetic operations are algorithmic.
The result can be evaluated to an arbitrary precision provided we know with sufficient precision
the operands.

Denote by |a| € Z the integer part of a real number a € R, so a — 1 < |a] < a. Denote
by mody(n) € {0,1} the parity of an integer n € Z, so mody(n) = 0 iff n is even. We have
n = 2| %] + mody(n) for each n € Z. To add two numbers x = Y ° ;271 y =37 y;27""!
in the extended binary system, we first add them componentwise, so we obtain u; = x; + y; €
{0,1,2,3,4} for i« > n and u; = 0 for i < n. Then we perform the carries to the left and
determine v by

v; = LUZQHJ + moda(u;),

sov; €{0,1,2,3} and v € {0,1,2,3}* represents the same number as u:

i v - 270 = i [ 4L ] 9—i=l 4 i mody(u;) - 2771
i=n—1 i=n—1 i=n
= (2 %) +mody(w)) 27 =Y w27

We perform the carry operation once more and obtain z; = [ “4+] + mods(v;) € {0,1,2}. Thus
Yooz 27 =37 (x; +y;) - 277! and 2 depends only on ;0 = ;%4122 and
Yjii+2] = Yi¥i+1Yir2. The algorithm has an additional advantage that it may be performed in
parallel in all positions ¢ simultaneously. This may be much faster than the serial addition. An

example can be seen in Table 1.1. Parallel addition is treated in more detail in Section 7.7.

1.3 Symbolic spaces

The principle that finite prefixes of the expansions approximate the expanded numbers can be
expressed by the concept of continuity. We regard the set of infinite expansions as a symbolic
metric space. An alphabet A is a finite set with at least two elements, which are referred to
as lettres. Words of A are finite or infinite sequences u = ugu; . .. of letters of A. We denote by

A" ={u=wug---up_1: u; € A}
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the set of words of length n. In particular, A° = {\} consists only of the empty word A. Denote
by A* = J,~o A" the set of finite words, by A" = J, ., A" the set of nonempty finite words,
and by

AY ={u=upuy---: u; € A}

the set of infinite words. The length of a word u = ug...u,_1 € A" is denoted by |u| = n
and |u| = oo for u € A¥. We say that v € A* is a subword of u € A* U A¥ and write v C u,
if v = up ;) = u;---uj— for some 0 < i < j < |ul. The concatenation of words u,v € A* is
written as uv, so (uv); = u; for ¢ < |u| and (wv)4; = v; for ¢ < |v|. The concatenation of
u € AT with itself n times is written as ™ and the infinite concatenation of u with itself as
u® € A¥. We say that u € A¥ is a periodic word if u = vw® for some preperiod v € A* and
period w € A'. Given a set of forbidden words D C A", we denote by

YXp = {ueA”: YvCu,v ¢ D}
Lp = {ueA": YvCu,v¢g D}

the subshift and language of D, and by L}, = Lp N A". The distance of words u,v € A
is defined by
d(u,v) = 27" where n = min{k > 0: up # vi}.

Then d is a metric on A“. For example, in the binary alphabet we have d(0100...,0110...) =
272 =1and d(0...,1...) =27% = 1. Thus u,v € A“ are close, if they have a long common
prefix:

d(u,v) < 27" & ) = Vo) < d(u,v) <27

o
> =

T/0

Figure 1.1: The stereographic projection

With the metric d, A“ and its subspaces ¥p are turned into metric spaces. A mapping
® : ¥p — R is continuous at u € ¥p, if for every € > 0 there exists § = 27% such that for
every v € Xp with d(u,v) < ¢ we have |®(u) — ®(v)| < e. If the range of ® is the extended
real line R = R U {c0}, then the Euclidean metric d.(z,y) = |v — y| does not work. Since
the extended real line does not distinguish positive and negative infinity, it is topologically
equivalent to a circle. Consider the unit circle

S={z=z4+iwyeC: |z|=v22+y>=1}

in the complex plane C and project the point z € R on the real line to S by the ray from the
imaginary unit ¢ (see Figure 1.1). This mapping is called the one-dimensional stereographic
projection. The line which joins z € R with i has parametric equation z(t) = tz+(1—t)i. The
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equation 1 = |z(¢)|*> = t*22 + (1 — t)? gives t =0 and t = ﬁ, so the stereographic projection
d:R — S is given by

2 2 1)
a(z) = 22+ (- 1)i

2241

and d(oco) = i. Zero is projected to d(0) = —i, and 1, —1 remain fixed: d(1) =1, d(—1) = —1.
The inverse stereographic projection is given by d~'(x + iy) = = a—1(i) = oo.

In the extended real line we have more intervals than in R. Besides standard closed intervals
[a,b] ={r € R: a <x <b} CR, where a < b, we consider infinite intervals

9

[a,00] = {x€R: a<a}U{0}
[00,b] = {zeR: x<b}U{o0}
[a,b) = {z€R: a<zorz<b}U/ oo},

where b < a are real numbers. We define the angle length of these intervals as the length of
the counterclockwise arc from d(a) to d(b), which is the argument of d(b)/d(a). Recall that
the argument of a nonzero complex number z = x + iy = r(cos ¢ + isin ) is arg(z + iy) =
¢ € [0,27). We have a formula

i) {0 if 2>0,y=0,
arg(r +1y) = 4 2arccotg——L—— otherwise
Vol ty?—a

Since |d(b)/d(a)| = |d(b)|/|d(a)| = 1, the formula simplifies. If |z 4 iy| = 1, then arg(z + iy) =
2arccotg 2. We have

ab)  2b+i(b?* —1) a?+1

d(a) b2 +1 2a+i(a® — 1)
a®+1 (20400 —1))(2a —i(b® — 1))
CES 402 + (a% —1)2

4ab+ (a* —1)(b* — 1) + 2i(a(b* — 1) — b(a* — 1))
(a2 +1)(b>+1)
(@+1)0*+1)—2(b—a)*+2i(b—a)(ab+1)
(a2 4+ 1)(b*+1)

We define the length |[a, b]| of [a,b] C R by

1 ab) 1 2(b—a)(ab+1)
[la,b]] = 5, AI8 aa) " 7Tarccotg 20— a)
1 ab+1
= —arccotg
T b—a

If one of the endpoints is co we get from the limit
1
[a,00]] = —arccotg(a),
T
1
|[oo,b]| = —arccotg(—b).
7T

Thus for example [[0, 1]| = 1, [[0,00]| = % and |[0, —1]| = 3 (see Figure 1.2).

1
1 4
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o o =} (=}
S S S S
1/1 1/1 1/1 1/1
5 5 5] S
P = - P

Figure 1.2: Intervals and their length (from left to right): |[0, 1]| =
I[1,0]] = 3.

T I[L00]| = 4, 1[0, 00] = 3,

We define the angle distance d,(a,b) of a,b € R as the length of the shorter of the two
intervals with endpoints a, b:

lab + 1]
b—al

1
da(a7 b) = min{\ [CL, b] ‘7 Hbv CLH} = ;arCCOtg

A mapping ® : ¥p — R is continuous at u € ¥p, if for every € > 0 there exists § = 27* such
that for every v € ¥p we have d,(®(u), (v)) < e whenever d(u,v) < 4.

1.4 Positional systems for bounded intervals

We consider a positional system with base 5 > 1 and a finite set of digits which form a
contiguous interval A = [r,s] = {r,r +1,...,s — 1,8} C Z of integers. First we consider
number systems for bounded intervals. In this case, the positional point is not needed. Thus
we have the value mapping ¢ : AY — R defined by

The value mapping is defined also for nonempty finite words by

ul—1

O(u) = Z w7 ue AT
i=0
If u,v € AY and u; < v; for all 4, then ®(u) < ®(v), and the inequality is strict if u; < v; for
some ¢. Thus the value map is increasing. Define the cylinder
[u] ={v e A% : vou) = u}

of a finite word u € A* as the set of infinite words whose prefix is u. The minimum and
maximum of the set ®([u]) is ®(ur®) and P(us®) respectively. Define the closed cylinder
interval W, by

W = [@(ur), ®(us”)] = [B(u) + g5, ®(1) + sy u € A"
In particular for the empty word we have Wy = [®(r*), ®(s*)] = [555, 527]. We show that the

mapping ¢ : AY — W), is surjective provided s —r > § — 1:

Lemma 1.1 Ifr—s> 3 —1 then W, =,y Wua for each u € A*.

a€A
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Proof: The condition W, = Uae 4 Waa is satisfied if the neighbouring intervals Wq, Wy o041
overlap, i.e., if the left endpoint of W, 441 is smaller or equal than the right endpoint of W,,.
Since ®(ua) = ®(u) + af " for |u| = n, this means

a—+1 r a S
) <o
W e ¥ g = P e ey
which is equivalent to s —r > [ — 1. 0

Proposition 1.2 Let § > 1 be a real number, r < s integers, and A ={a € Z: r < a < s}.
Then @ : A¥ — R defined by ®(u) = > "2 w571 is continuous and

O([u]) € W = [(u) + go5—, (W) + 73]

foranyuw € A" If s —r > B —1, then ®([u]) = W, and ® : AY — Wy = [755, 55] is
surjective, i.e., any x € Wy has an expansion u € A with ®(u) = x.

Proof If uw € A* then ®(Ju]) C W, and the Euclidean length of W, is ®(ug”) — ®(up®) =

which converges to 0 as |u| — oco. This shows that ® is continuous:

5‘“'(1 B)’
d(u,v) <27 = [Bu) — D) < o
pr(B—1)
Given x € W, = [~ R 727, we construct its expansion v by induction using Lemma 1.1. Since

Wy = UaeA W, there exists ug with o € Wy,. If uj,) has been constructed and z € I/Vu[0 )
then there exists u,, such that =z € VVU[0 i) Since x € W, (o .m) implies |z — D (ujo,n) )| < 6"(5 Ty

we get © = D(u). 0

If s—r > [ —1 then the system is redundant and a number may have many expansions. If
s—r < f—1, then ®(A¥) is a Cantor set included in [ﬁ, ﬁ], and @ is one-to-one. If § =3
and A = {0,2}, then ®(\) is the Cantor middle third set (see Figure 1.3) obtained from
the unit interval [0, 1] by deleting successively the middle thirds of remaining intervals:

The digits in the alphabet A = {0,2} are not contiguous. With contiguous digits A = {0,1}
we get @([A]) € [0, 5], @([0]) € [0, 5, ®([1]) € [, 5], ete., so

= Y92 = 1Y ¢ 3792

®(A%) = [0, 3]\ (5: )\ (f5: )\ (Fo ) \ -+

|
|
wIN |
|
ol !
|00 |
—_

Figure 1.3: The Cantor middle third set

An expansion of an number x € W) can be found by an algorithm which is implicit in
Proposition 1.2. There is, however a better algorithm based on an iterative method. For
u € A¥ and a € A we have

Q(au) =

EI@

%Z ws™ = 2 o),
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2elos] = W = w=0 < ze05] =W,
%E [%,%] = Wo = uy =1 « F0_1<%):%€ [%,1]:W1
% & [%, %] = Who = uy=0 <« Fl_l(%) = % € [O, %] =W,
% S [%7 %] = WOlOO = u3=0 <« FO_I(%) = % € [0, %] = Wo

Table 1.2: The expansion of 2 in the binary system according to Proposition 1.2 (left) and
according to Proposition 1.4 (right).

where F,(z) = wTJg“ The value mapping ® can be derived from the system of real functions
{F,:R — R: a€ A}. For a finite word u € A" we denote by F, = F,, 0---0F,  the
composition of mappings F,,, and F\ = Id is the identity mapping. Then F,, = F, o F, for
each u,v € A*.

Proposition 1.3 For A=r,s|, 8> 1, F,(x) = 2"# we have
O(uv) = F (P(v)) forue A*, v e A*U A¥

Wy = Fu(Wy) for u,v € A*

Fu(x) = ®(u) + 55 forue A, z € R,

P(u) = limy o0 Fuyy,, (2) foru e A¥, z € R

{@(u)} = Nyso W, foru e A®

Proof: 1. The statement holds trivially for u = A. If it holds for u, then ®(auv) = F,(®(uv)) =
FFu(@(v)) = Fuu(®(v)).

2. Wy = [@(uvr?), ®(uvs?)| = [F,®(vr?), F,®(vs¥)] = F,(W,).

3. The statement holds trivially for |u| < 1. For |u| > 1 we use Fy(z +y) = Fo(z) + § to get
Fou(x) = Fo(Fu(x)) = Fu(®(u)) + Q\fT = ®(au) + ﬁ

4. follows from 3.

5. We have ®(u) € [®(ujpn))] € Wy, Since the length of these intervals converges to zero,
the intersection contains a unique point ®(u). 0

SARSENCIS N

The mappings F, are contracting, i.e., they contract the Euclidean distance by the factor
B: |Fy(z) — Fu(y)| = | — y|/B. The inverse mappings F, '(z) = Sz — a are expanding, they
expand the distances by the factor S.

Proposition 1.4 Assume that r —s > f—1 > 0. A word u € A% is an expansion of
x = x9 € W, iff there exists a sequence of numbers x; € W,,, such that x; 1 = F'(x;).

i

Proof: If z = ®(u), then € W,  for each n. If x = zo € Wy, then 2, = F, '(z) €

Fy 1(VVU[O’”]) = Wyy,» so by induction z; € Wy, . C W, for every © < n. Conversely, if
x, €W, ,then x, 1 = F, (z,) € F,, (W,,) = W, _,,, and by induction z; € W, , for every
i <mn, in particular x = xg € W, . It follows z = ®(u). 0

An example of an expansion process according to both methods of Propositions 1.2 and 1.4
is in Table 1.2. The iterative algorithm of Proposition 1.4 is better, since the inequalities involve
rational numbers with smaller numerators and denominators. Moreover, we see immediately
that the expansion process is periodic so the expansion of % is the periodic word (010)“. The
iterative expansion process is illustrated in Figure 1.4 which shows the graphs of mappings
F;'. Given g, we draw the vertical line from (z,0) to (2o, 1) = (20, F,,;' (20)), the horizontal
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line to (x1, 1) on the diagonal y = x, the vertical line to (x1, ), etc. In the standard binary
systems, the intervals W, intersect only in their endpoints, so most of the times, the expansions
are unique: we have two possibilities only if x,, = % In the binary signed system, on the other
hand, the neighbouring intervals W, overlap, so the expansion algorithm is nondeterministic.
When z,, € [—%, %], then we have two or three choices for x,.,. It follows that each number
(except 0 and 1) has an infinite number of expansions. There exist also deterministic expansion
algorithms with smaller expansion intervals. For example, the greedy expansion algorithm
takes always the largest possible letter. This is accomplished with the iterative algorithm which
uses semi-closed expansion intervals Wy = [—1,—3), Wy = [—3,0), Wi = [0,1]. Since these
intervals W, are pairwise disjoint and their union is the whole W), each z € W) has a unique
expansion £(z) € A¥ with ®(£(x)) = x. However, the mapping £ : W, — A“ is not continuous.

1 1
X2

S

F(;l Ffl X]_ F{l F(;l Ffl

X2

X2

0% % % 1 L% X2 1

Y W woow_ W

Figure 1.4: Expansions of real numbers in the standard binary system (left) and in the binary
signed system (right)

1.5 Positional systems for the extended real line

To obtain number system for the whole extended real line R, we extend the alphabet with a
digit 0 (which stands for oo) and associate to 0 the real function Fy(z) = Sz. For a word
u € [r,s]™ and m > 0 we define

®(0"u) = Zuﬁm 1

and Wgm,, = Fygn(W,,). For an infinite word u € {r,...,s}* we get

®(0"u) = lim @0 up,) Zu gL

n—00
>0

Thus the value of 0w is the same as the value of the word wug - - U1 U Ut 1 - - - With the
positional point before u,,. With the extended alphabet A = {r,... s, 0}, every real number
has an expansion provided s —r > 8 — 1 and r < 0 < s. The mapping ®, however, cannot be
defined on all words of A“ but only on the words of the form 0"'u, where u € [r,s]“. These
words form the subshift ¥p with the set of forbidden words D = {a0 : a € [r, s]}.
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Proposition 1.5 Let s —r > f—-1>0,7<0<s, A={r,...,50}, D={a0: r <
F5(z) = Bz and F,(z) = (v +a)/B forr < a < s. Define ® : Xp — R by &(
Y imo i, @(07) = 0o, Then @ : Xp — R is surjective.

IN

s},

a
0"u) =

Proof: From Proposition 1.2 we get

C({0"u s we {r,....s}}) = F([2(), ®(s*)]) = [, 551

—1° B—1

=

=W

and these intervals cover whole R. Since ®(0“) = oo, the mapping ® : ¥p — R is surjective. o

The mapping ¢ from Proposition 1.5 is not a reasonable number system, since it is not
continuous. The words 0”0 converge in A to 0° with value ®(0”) = oo, but ®(0"0~) = 0. To
make ® continuous, we must forbid words which contain 00, and possibly some other words as
well. Suitable subshifts depend on £.

1/0

1/ 2

1/6

16 [/

-1/2

-1/0
1 1111 1
0 26 6 2 0
0 AL,0.L1, 0

Figure 1.5: The ternary signed system: the cylinder intervals (left), the graphs of the inverse
mappings F; ' (right) and the intervals W, (bottom right).

Proposition 1.6 For the ternary signed system (Figure 1.5) with base B = 3, alphabet
A = {1,0,1,0} and forbidden words D = {10,00,10,00}, the map ® : ¥p — R is surjective

and continuous.

Proof: By Proposition 1.2, ®([1]) = [-3, —3], ®([0]) = [, 3], ®([1]) =[5, 3], so

O([0"1)) = [, =51, 2(0"'1)) = [¥5—, ).

27 2

Since ®(0”) = oo, we get

o(0") = |J @01 u{e@)yu | e0"1)
B, U SR U [ - E R U [=EE -2 U {oo}

= ¥ -5

The Euclidean length of ®([0"]) is infinite but its angle length is |®([0"])| = %arccotg%,
which converges to zero as m — oo. This shows that ¢ is continuous at 0“. At any other point,
® is continuous by Proposition 1.2. To show that ® : ¥ — R is surjective, set

Wy = [_%7_%]7 WOZ[ ; 1]7 Wi :[

T 676
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Then

Fﬁl(Wa) = WTUWOUWhCLE{T,O,l}
F'Wy) = WiUWsUWr

Thus for each a € A we have F,'(W,) = U{W, : ab € Lp}, and R = U{W, : a € A}.
The expansion algorithm of Proposition 1.4 works with a small modification. At each step we
check, whether the constructed word belongs to ¥p. Given x = 7 € R we construct a sequence
r, € R and u, € A as follows. Find uy with zq € W,,, and set z; = Fu_o1 (o). If u;—y, z; have
been already constructed, find u; with u;_yu; € Lp, 7; € Wy, and set x4, = F,, Y(x;). Then
u€¥pandz="F, (x,) € Fuomy (W) = W,y and the diameter of these sets converges to
zero, so ®(u) = x. O

In Figure 1.5 we see the cylinder intervals ®[u] (left) and the graphs of mappings F, ! of
the ternary signed system. We now generalize Proposition 1.6.

Proposition 1.7 Let A be a finite alphabet and D C A? a set of forbidden words. For each
a €A, let F, : R — R be a one-to-one continuous mappings and W, C R a closed interval.
Assume that | J,cy Wa =R, F; Y (W,) = U{Ws : ab € Lp} and that the angle length of intervals
F,(W,) converges to zero as the length of words ua € Lp converges to infinity. Then there exists
a continuous surjective function ® : Sp — R such that {®(u)} = (V20 Furp.) (Wan)-

[0,n)
Proof: If ab € Lp then W, C F, (W,), so F,(W,) C W,. For any u € ¥.p we get by induction

gFu Wug)gFu WUQ)gFuO(Wul)gWuo

[073)( [072)(

Since the length of these intervals converges to zero, they have a nonempty intersection which
contains a unique point ®(u), and the mapping ¢ : ¥p — R is continuous. We show that it
is surjective. For = x¢ € R there exists uy with zy € W If w, with x,, € W, has been
constructed, there exists u,41 such that w,u,y1 € Lp and x4 = F, 1($n) € Wy,,,- Thus
zo € Fuy,, (Wy,) for each n and therefore ®(u) = x. 0

In the binary signed system with 3 =2, r =1 = —1, s = 1, the subshift ¥ of Proposition
1.6 does not work, since ®(0"117) = 0 while 0"1T" converge to 0° with value ®(0”) = co. This
means that ® is not continuous at 0°. To make ® continuous, we forbid words 011" and 0T1¢.
One possibility is to forbid 011 and 011. To get a subshift with forbidden words of length 2,
we forbid 11 and 11.

Proposition 1.8 In the binary signed system with alphabet A = {1,0,1,0} and forbidden
words D = {10, 00, 10,00, 11,11}, the map ® : ¥p — R is continuous and surjective.

Proof: The smallest number in ®([1]) is ®(T°) = 5t + 2 + .-+ = —1, and the largest is
®(101¥) = F 4+ § + 5 + -+ = 7. We set Wy = [—1,—7] and similarly define other intervals
W, with ®([a]) C W,:

Wr = [®(17),®(101)] = [-1, 7]

Wo = [2(017), @(01%)] = [ 3]

W5 = [®(01017), ®(0101°)] = [, =]
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1/0 1/0

1/1 82

1/2 -

1/ 4 // //

-1/ 4

“1/2 9_pl

-1/1

-1/0 -1/0
1 111 111 1 1 2-38 -2 1
0 1240421 0 0 0 0
D =l 9 0 Ll 0

_ V543 -
f=5==

Figure 1.6: The binary signed system (left) and the system with an algeraic base
2.618 (right).

We have ®[0"] C Wy = [2772, —2""?], and the angle length of this interval converges to zero
as n — 0o. To show that ® : ¥ — R is surjective, consider the inverse images of intervals W,:

FoY (W) = [=1,3] =WruW,
FytWo) = [-1,1] =Wy uWou W,
F' (W) = [ 1 =Wouw;
F' (W) = [§—il=WuWwzuny
Thus ® : ¥p — R continuous and surjective by Proposition 1.7. 0

The base of a positional system need not be an integer, it may be any real number 5 > 1.
Taking 8 = @ = 2.618---, we get a redundant system with alphabet A = {1,0,1,0} and
forbidden words D = {10,00,10,00}, so we get the same subshift ¥p as in the case of the
ternary signed system. Using the equation 3? = 33 — 1 we can evaluate intervals W, according
to Proposition 1.2:

Wy = 3,38 — 8] = [—0.618, —0.146],
W, = [5—283,28—5]=[—0.236,0.236],
W, = [8—383,8—2]=[0.146,0.618],

B+26—2] WTUWOUWhaE{T,O,l}

2-

[

[
Wy = [3—p,8—3] =[0.382,-0.382],

-

(30 + 8,38 — 8] = W, U WU Wx.
Thus ® : ¥p — R is continuous and surjective by Proposition 1.7.

Positional number systems can have also negative base f < —1. Let r < sand A = [r,s] C Z
be an alphabet, and consider a number system without positional point with value mapping
P(u) = Y ,oquiB If u,v € A% are such that uy > vy and ugyq < vy for all i, then
P (u) < ®(v). It follows that the minimum of ®(A*) is

1 1
@((57’)”):(%+é)~<1+@+@+ ):‘;f—f;
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1/0

1/3

-1/6

-2/3

-1/0
1 211 1
0 3 6 3 0
0 1.0 0

Figure 1.7: The negative binary system with 3 = -2, A = {0,1,0}

Similarly we compute the maximum of ®(A%), so $(A¥) C W), = [ffjﬂ, géjj] For a € A we

get W, = F,WW, = [6(5;251) + %, Bfggﬁl) + %] Then W, is covered by W, if the left endpoint of

W, is smaller than the right endpoint of W, 1, i.e., if

sg+r a+1

rB+s
BEE-1 g

_rB+s L a
BEE-1) B

which holds provided s —r > — — 1.

<

Proposition 1.9 If s—r > - —1>0 and A= {r,...,s}, then & : AY — W) is continuous
and surjective.

To obtain a number system for R, we add digit 0 with mapping Fy(z) = Bz. Negative base
allows to express negative real numbers with nonnegative digits.

Proposition 1.10 For the negative binary system with base 3 = —2, alphabet A = {0, 1, 0}
and forbidden set D = {00, 10,00}, the value mapping ® : ©p — R is continuous and surjective.

Proof: We get ®([0]) = Wy = [—%, 1], ®([1]) = W1 = [-2,—1]. Using ®([0"1]) = Fgn (W) =
2n+1 2n—1 2n—2 n
Wiy we get W5, = [%7%]7 001 — [_g’_é]’ Wezn, = [_%’_2 3 ], Woan-1) = [2 3 72?

22n 2277,71

It follows W5 = U,ooWor1 = [5.—3], Wiy = [3,—3), so W = [T’_ |, Wgntr =

[22n 92n+1

307 73
continuous. To prove surjectivity, we consider inverse images:

] The angle length of Wg» converges to zero as n — oo, so ® : ¥p — R is

Fot(Wo) = Fit(Wh) = [-3,
F:I(W6> = [%’_

| =Wo U,
| =Wz U,

D= W

so F7Y(W,) = U{W, : ab € Lp}, and R = U{W, : a € A}. Thus ® : ¥ — R is continuous
and surjective and ®([u]) = W, for each u € Lp. 0
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1.6 Continued fractions

A quite different number system is based on continued fractions. A finite simple continued
fraction is an expression

TR LI !
U = U
Pttt T ]

U+ 1
S
Unp,
where u,, € Z and wu,, > 0 for n > 0. Infinite simple continued fractions are limits of finite
simple continued fractions. We can conceive simple continued fractions as a number system
with the infinite alphabet A=7Z = {...,—2,-1,0,1,2,...} of all integers. Denote by
Z = {ueZ: V¥n>0,u, >0}
L(Z) = {ueZ : Vn>0u, >0}
LNZ) = LZ)NnZ"
the sets of infinite and finite words of Z with all but the first element positive. For a € Z take
the mapping F,(z) = a+ <. For u € L"(Z) we get
1 1 1 1
U+ U+ -+ U1+

Fu(z) = Fyo0---0F, ,(r)=uy+

SO Ug + u—11+ u%—i- L F,(00). Define the convergents p, = p,(u), ¢, = ¢,(u) of an

Un—1

infinite sequence u € Z by ug + u—11+ u%—i- . unl,l = ZLT(Z;. Then

po =tuo, pr=1+wug, ... Pp=PpatUnPn

=1 q=u, o Gn = Qn-2 T UnQn—1
We extend this definition with p_; =1, ¢_1 = 0 to get the recurrent formula for all n > 0.
Proposition 1.11 Let u € Z be an infinite word and p, = p,(u), ¢, = qn(u) its convergents.
Then for n > 0 we have
1. Pn—19n—2 — Pn—2Qn—-1 = (_1)n
2. Pnln—2 — Pn—2n = (—1)"ttp.
3. FU[O’,L)<$) = (pn—lx +pn—2)/(Qn—lx + Qn—2)-

In particular FU[O,H)(OO) = zz:i; Fu[07n)<0) = ZZ:;

uoz+l pPox+p—1

Proof: For n = 1 we have pog_1 —p_1q0 = —1, p1g-1 —p-1q1 = —u1, Fy(x) =

Assume that the statement holds for n. Then : e
PnGn-1 = Pn-1Gn = (Pn—2+ UnPn-1)qn-1— Pn-1(qn—2 + UnGn-1)
= —(Pn-1@n-2 = Pn2qn-1) = (‘Unﬂ
Prt1@n-1 = Pn-1Gnt1 = (Pa-1 + Uns1Pn)@n-1 — Pn-1(Gn-1 + Un+1Gn)
= Unp1(Pnln-1 = Pn-1Gn) = (—1)" Mt pa
Fupnen(@) = Fup (i + 1) = BT = (et

PnT + Pn—1
qnT + qn—1
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Proposition 1.12 If u € Z, then for every nonnegative real number z > 0 there exist the
limits

¢(u) = lim F,, (2)= lim pn(u)

n—ro0 [0,7) n—oo qn (’U,)

If a € Z and uy > 0 then F,(®(u)) = ®(au).

—_1\n _1\n+1
Proof: We have 22=t — Pn=2 (=1 Pn _ Pn—2 _ (ZD"Tun
dn—1 qn—2 In—19n—2" qn qn—2 qnQn—2 ’
0 2 4 5 3 1
Po_Pz_Pi_ D5 _DPs_DPi
qo q2 q4 ds q3 q1

Since ¢, — 00 as n — 00, P, /¢, is a converging sequence. For each z > 0 we have

1
%L(Can + Qn—l)

P
an

Fu[0¢n+1) (Z)

which converges to zero as n — oo. O

To expand a real number into a simple continued fraction, consider intervals W, = [a, a + 1]
for a € Z. Then
FYW,) =1[1,00] = Wy UW,U---U{oo}

a

Given z € R we find its expansion as follows. Set xqg = x and construct sequences u,, x, by
induction: w, = |z, |, Tpi1 = Fu_nl(:cn) = 1/(zp — uy). If 2, > 0 for all n > 0, then we get an
infinite u € Z. If x, = 0 for some n, then we get a finite u € £(Z). This happens iff x is a
rational number.

1/0
1/1
o/ 1
-1/0
1 (0] 1 1
0 1 1 0
1 0 1

Figure 1.8: The number system of simple continued fractions with A = {1,0,1}, Fy(z) = v —1,
Fo(z) =1/z, Fy(x) =z + 1, D = {11,01,00,11}.

To get a number system with a finite alphabet, we decompose the expansion process into
elementary steps. To subtract the integer part, we add or subtract repeatedly one till the result
is in the unit interval (0,1). Thus we consider the alphabet A = {1,0,1}, mappings F, and
intervals W, given by

Fr(z) = -1, Fy(z) = 1/z, F(z) = x+1,
Wi = [00,0], Wy = [0,1], W, = [l,00].
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Then f_‘}_l(YVT) = WU W, Fot(Wo) =
D = {11,01,00, 11} then F, Y (W,) = U{W} :
apply Proposition 1.7.

Wi, F{Y(Wh) = Wy U Wy If we take forbidden words

ab€ Lp}, and R = U{W, : a € A}, so we can

Definition 1.13 The number system of simple continued fractions has the alphabet A =
{1,0,1}, transformations Fy(v) = v — 1, Fy(x) = 1/x, Fi(z) = x + 1, forbidden words D =
{11,01,00, 11} and the value mapping ® : ©p — R given by

1 1
(19001410120 -+) = ag+ — —
ar+as+---
1 1 1
B(1%001401%0 - --019-101¥) = ag+ — —
a;+as+--+ Qp_q

O(1T°) =0(1¥) = oo

Then ®(uv) = F,(®(v)) for each uv € Xp. The letter 1 can appear only at the begining of
a word u € Xp and any such word can be written as v = 1%001?101%20 - - -, where ag € Z and
an > 0 for n > 0. If ap < 0 then 1% stands for T *°. The sequence of a; may be finite with last
element a,, = co. Thus the sequences u € ¥p are in one-to-one correspondence with elements
of ZU L(Z). Since Fy(z) = 1/x is a decreasing function, a continued fraction is increasing in
its even entries and decreasing in its odd entries. If as; < by; and ag;y1 > be;yq for all 4, then
®(19001%101%20 - -+ ) < P(19001%10120- - - ) Using this fact we obtain the images of the value
function on cylinders (see Figure 1.8).

o([0) = [0.1],
O ([1%]) [ag, o], for ag > 0
O ([1%]) [00, ag + 1], for ag < 0
O([1%0]) = lao, a0 + 1]
O([1%°0 - - - 1%=101%"]) (2=, £2], for n odd
O([1%°0 - - - 1%=101"]) [E=, 2=, for n even
B([1900 - - - 1%-101%0)) @([1“00 - 1%101901])

Since the angle length of these intervals converges to zero with the increasing length of words,
the value mapping ® : ¥ — R is continuous.

There is another number system based on continued fractions. Using the fact that Fgy is
the identity, we replace a word u = 1001101 - - - of ¥p by v = 1%(010)*11%2(010)*s - - -. We
replace now Fy by Fyio(z) = x/(x + 1), which maps the unit interval [0, 1] to [0, cc]. To make
the system symmetric, we take also Fyqy(z) = x/(—x + 1) and apply it to the interval [—1,0].

Definition 1.14 The number system of symmetric continued fractions has alphabet A =
{1,0,0, 1}, transformations and intervals

FT(x) = l'—l,
WO = [OO,—l],

- @) = 5, R@) = z+1,
WO = [071]7 Wl = [1700}7

and forbidden words D = {00,01,10,11,01, 00, 11, 10}.
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1/0

1/1

0/1

-1/1

-1/0

ol
(N
RO
[y
ol

Figure 1.9: The number system of symmetric continued fractions with A = {1,0,0, 1}, Fy(z) =
r—1, F5(x) = 2, Fy(z) = %, Fi(z) =x+ 1, D = {00,01,10, 11,01, 00, 11, 10}.

1—x’ = 417

Then ED = {T, G}w U {Oa 1}w,
Fr W) = (W) = [=00,0] = Wy U W,

1

Fy Y (W) = FY(Wh) = [0,00] = Wy U WA,

Thus F7Y(W,) = U{W, : ab € Lp}, and R = U{W, : a € A}. A word u € {0,1}* can be
written as u = 1900112 ... where ag > 0 and a; > 0 for z > 0. The sequence of a; may be
finite if its last element a,, is infinite.

Proposition 1.15 The value mapping ® : Xp — R of the system of symmetric continued
fractions defined by

1 1
®<1a00a11a2..,) = aqy+— —
ay+ay+ -
A0 RA1TA 1 1
S(IV0"I™ ) = —qp— — —
al_a2_...

1 1
= — a0+_ N
a+as+- -

Proof: For the cylinder intervals we get (see Figure 1.9)

1 1

18 continuous and surjective.

Fu(x) = Qg+ — —_— U= 1%0(0%1 ... 1%n
a4t g+
1 1 1
Fu(SL’) = ap+ — — U= 190791 ... ()%2n+1
a1+...+a2n+1+x
Olu] = [P(u0?), P(ul¥)] = [Zz—:’ %]7 w = 190091 ... 1%2n
= w w — n P2n _ a a aon
Qlu] = [P(u0?), P(ul )]—[Zg—n’q;—j:]’ w = 190791 ... ()%2n+1

Thus ® : ¥p — R is continuous and surjective by Proposition 1.7. o
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Chapter 2

Symbolic dynamics

A number system consists of a continuous value mapping whose domain is a symbolic space
of infinite words and whose range is the extended real line. We say that the value mapping is
a symbolic extension of R. The properties of symbolic spaces and symbolic extensions are
treated in symbolic dynamics, which is based on the theory of compact metric spaces. See e.g.,
Hocking and Young [24] for an introduction to the theory of metric spaces.

2.1 Metric spaces

Definition 2.1 A metric space (X, d) consists of a set X and a metric d: X x X — [0, 00)
which gives the distance d(x,y) of points x,y € X. The following properties are assumed:

1. d(z,y) =0z =y,

2. d(x,y) = d(y,x) : symmetry,

3. d(z,z) <d(xz,y)+d(y,z) : triangle inequality.

We refer to elements of X as points. A classical example of a metric space is the n-dimensional
Euclidean space R" = {z = (z1,...,2,) : z; € R} with metric

de(:)s,y) = \/($1 - yl)2 +oot (xn - yn)2'

In particular, the set R of real numbers is a metric space with metric d.(z,y) = |z — y|. The
extended real line R = R U {00} is a metric space with the angle metric (see Section 1.3)

1 1
d.(z,y) = —arccotg 2y + 1

1
, do(x,00) = —arccotg|z|.
T ly — x| 0

If (X,d) is a metric space and Y C X, then d restricted to Y X Y is a metric on Y and we say
that (Y, d) is a subspace of (X, d). The ball with center z € X and radius r > 0 is the set

B.(x)={y e X : d(y,x) <r}.

In R, balls are open intervals B,(z) = (z — r,z + 7). The interior Y° and closure Y of a set
Y C X are defined by

Y° = {ze€X: Ir>0,B.(x) CY},
Y = {2€X:Vr>0DB.(zx)NY #0},

25
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SOYCYCY, X\Y=X\Y°and (X\Y)°=X\Y,where X\Y={zecX: zgVY}is
the set difference of Y from X. For example, if Y = [0,1) C R is a semiclosed interval, then
Y= (0,1) and Y =[0,1]. If Y, Z C X, then

(YNnZz)°
(YuZz)e
Ynz
YUuZ

Yen ze,
Yeu Z°,

U

N

=<1l

NnZ,
uZ.

A set Y C X is open, if Y = Y°, and closed if Y = Y. It follows that Y C X is closed iff
X \ 'Y is open. The interior of a set Y is the largest open set included in Y and the closure of
Y is the smallest closed set which includes Y. It follows from the triangle inequality that every
ball B,.(z) is an open set. A semi-open (or semi-closed) interval [a,b) = {xr € R: a < x < b}
is neither closed nor open in R. A set is clopen if it is both closed and open. The sets ()
and X are clopen in any metric space. If they are the only clopen sets, then we say that X
is a connected space. The Euclidean space R™ is connected. The union of two intervals
[0,1] U [2,3] is not connected, since [0, 1] and [2, 3] are its clopen sets.

A sequence {x, € X : n > 0} of points of X converges to a point x € X if for every € > 0
there exists ng such that d(x,,z) < ¢ for every n > ny. A sequence cannot converge to two
distinct points, so we write lim,,_,o, x, = x if x,, converge to = and say that {z,, : n >0} is a
convergent sequence. A subsequence of {z,, : n > 0} is any sequence {z,, : i > 0}, where
{n; : i > 0} is an increasing sequence of indices.

Definition 2.2 A metric space is compact if any its sequence has a converging subsequence.
A subset of a metric space is compact, if it is compact as a subspace.

The real line R is not compact, since the sequence x,, = n has no converging subsequence.
The open interval (0, 1) is not compact either since the sequence z,, = 1/n has in (0,1) no
converging subsequence: all its subsequences converge to zero, which is not in the space (0, 1).
A closed bounded interval [a, b] is compact in R. We show that a set Y C R" is compact iff it
is closed and bounded. We say that a set Y C X is bounded, if Y C B, (x) for some z € X
and r > 0. This happens iff the set has a finite diameter diam(Y") = sup{d(y,vy') : v,y € Y}.

Proposition 2.3

1. A compact subset of a metric space is closed and bounded.
2. A closed subset of a compact space is compact.
3. A subset of an Fuclidean space R™ is compact iff it is closed and bounded.

Proof: 1. Let Y C X be compact and assume by contradiction that it is not closed, so
there exists y € Y \ Y. For each n > 0 there exists y, € Y such that d(y,,y) < 1/n, so
lim, 0oy = y € X \ Y. Each subsequence of {Y,, : n > 0} has the same limit y. This
means that no its subsequence has a limit in Y. This is a contradiction. Assume that Y is
not bounded. Take any yo € Y. There exist points y, € Y such that d(y,, o) > n, and the
sequence {y, : n > 0} has no converging subsequence. This is a contradiction.

2. Let X be compact and let Y C X be closed. A sequence {y,, € Y : n > 0} has a subsequence
which converges to some y € X. Since X is closed, y € Y, so Y is compact.

3. Let Y C R be closed and bounded and z,, € Y. There exists an interval [ag, by] 2 Y. Denote
by ¢y = @ An infinite number of z,, belong either to [ag, co| or to [cg, bg]. In the former
case set [a1,b1] = [ag, o] and in the latter case set [a1, b1] = [co, bo]. Let ny be the first index
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with z,,, € [a1,b1]. We continue by induction. At each step k the interval [a, bg] is one half of
the interval [ax_1,bx—1] and contains an infinite number of x,. Let n; be the smallest integer
greater than ny_; such that x,, € [ag, bg]. Then {z,, : k > 1} converges to the common
limit of a, and b,. Since Y is closed, this limit belongs to Y, so Y is compact. If Y C R”"
is closed and bounded, and {x,, = (Tm1,...,Tms) : m > 0} is a sequence in Y, then for
each coordinate ¢ < n, {x,,; : m > 0} is a bounded sequence. There exists a subsequence
whose first coordinate converges, a subsequence of this subsequence whose second coordinate
converges, etc. Thus there exists a subsequence of {z,, : m > 0} which converges in each
coordinate. Since Y is closed, the limit belongs to Y. O

A cover of a space X is any collection U = {U; : ¢ € I} of sets U; C X whose union is
X. The index set I may be finite or infinite with arbitrary cardinality. If all U; are open, we
say that U is an open cover. If J C I and |J,.; U; = X, then we say that {U; : i € J} is a
subcover of /. The diameter of a cover is the supremum of the diameters of its elements.

Proposition 2.4 Let X be a metric space. The following three conditions are equivalent.

1. X 1is compact.

2. Every open cover of X has a finite subcover.

3. If{V, € X : n >0} is a sequence of closed nonempty sets such that V,,.1 C V,,, then the
intersection [ ),so Vn i nonempy.

Proof: 1 = 2: Assume that &Y = {U, € X : n > 0} is a countable cover which does not
have a finite subcover. Then there exist points =, € U, \ (Up U --- U U,_1). The sequence
{z,, : m > 0} has a converging subsequence limy_, ,, = . Since U is a cover, z € U, for
some n. Since U, is open, z,, € U, for each sufficiently large n;, and this is a contradiction. If
U is an uncountable cover, then its countable cover shoud be first found using the concept of
countable open basis (see e.g., Hocking and Young [24]).

2 = 3: Let ) # V.1 CV,, C X be nonempty closed sets and assume that their intersection is
empty. Then {U, = X \ V,,: n >0} is an open cover of X and has a finite subcover, so there
exists n such that X = UyU---UU, = X \ V,,. This implies V;, = () which is a contradiction.
3 = 1. Let {z, € X : n > 0} be any sequence of points and set V,, = {x;:7>n}.
Then V,41 C V, are nonempty and closed, so there exists x € (), V,. Since V; is closed,
By(x) N Vy # 0, so there exists ny such that x,, € Bi(z). In a similar way we show that there
exists ny > ny such that z,, € By/s(x). By induction we get a subsequence {z,, : k> 0} with
Ty, € By(x), s0 limy_,o0 2, = . O

A mapping F' : X — Y from a set X to a set Y assigns to elements z € X elements
F(z) e Y. If G : Y — Z is another mapping, then the composition Go F : X — Z is
defined by (G o F)(z) = G(F(z)). A mapping F' : X — Y is injective, if x # 2’ € X
implies F'(z) # F(2'). It is surjective, if for each y € Y there exists x € X with y = F(x).
It is bijective, if it is one-to-one and surjective. A bijective mapping F' : X — Y has the
inverse mapping F'~! : Y — X such that F~!(F(z)) = x for every x € X, so the compositions
F'oF =1Idx, F o F! = 1dy are the identity mappings on X and Y. If (X,dx) and (Y, dy)
are metric spaces, then we say that F': X — Y is continuous at x € X, if

Ve > 0,30 > 0,Va' € X, (dx(x,2") <6 = dy(F(z),F(2')) <e¢).

We say that F' is continuous, if it is continuous at every point x € X. We say that I is a
homeomorphism if it is bijective and both F' and F~! are continuous. Metric spaces X, Y
are homeomorphic, if there exists a homeomorphism from X to Y. For example, the function
F(z) = 1/x is a homeomorphism between the intervals X = (0,1) and Y = (0, 00).
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Proposition 2.5 A mapping F : X — Y beween metric spaces is continuous iff for every open
set U CY, the preimage F~'(U) = {x € X : F(x) € U} is an open set in X iff the preimage
F=Y(V) of every closed set V CY is a closed set.

Proof: Assume that F is continuous and let U C Y be an open set. If x € F~1(U), then
F(xz) € U, so there exists ¢ > 0 such that B.(F(x)) C U. By the continuity of F' in x
there exists 6 > 0 such that if y € Bs(x) then F(y) € B.(F(x)) € U. This means that
Bs(z) € F7Y(U), so F71(U) is open in X. Conversely assume that the preimage of any open
set is open. Given z € X and ¢ > 0, the ball U = B.(F(z)) is an open set, so its preimage
F~Y(U) is open in X. Since x € F~Y(U) there exists § > 0 such that Bs(z) C F~}(U) and this
is just the condition of continuity. If V' C Y is a closed set, then F~1 (Y \ V) =X\ F~}(V) is
an open set so F~1(V) is a closed set. O

Proposition 2.6 If X is a compact space and F : X — Y 1is continuous and surjective, then
Y is compact. If F is also injective (and therefore bijective), then F~':Y — X is continuous,
so F' is a homeomorphism.

Proof: Let {U; : i € I} be an open cover of Y. Then {F~'(U;) : i € I} is an open cover
of X so it has a finite subcover {F~Y(U;) : i € K}, and {U; : i € K} is an open cover of
Y. Thus Y is compact. Assume that F' is bijective. We show that for each closed set V C X,
(F~1)~1(V) C Y is a closed. Since V is a closed subset of a compact space, it is compact, so

by the preceding proof, (F~')~!(V) = F(V) is a compact set and therefore closed. O
The stereographic projection d(x) = % is a bijective mapping d : R — S. With the

angle metric on R and the Euclidean metric on S C C, d is a homeomorphism. Since S is a
closed and bounded subset of C ~ R?, it is compact and R is compact too.

21

Figure 2.1: The function f(z) = sup{r > 0 : Ja € A,B.(z) C U,} for the cover U =
{[0,2),(1,5),(3,6), (5,7]} of X = [0,7].

of a compact space X has a Lebesgue

Theorem 2.7 Any open cover U = {U, : a € A}
cU,.

number L > 0 such that Yz € X,3a € A, Br(z)

Proof: Let Y = {U, : a € A} be an open cover of X. If U, = X for some a € A, then any
L > 0 is a Lebesgue number of ¢. Assume therefore that U, # X for each a € A. Define a
function f : X — (0,00) by

fl)=sup{r>0: Ja€ A, B,(x) CU,} <
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We show that f is continuous: If d(x,y) < 6 and 0 < r < f(x), then there exists a € A such
that B,(x) C U,, B,—s(y) C Uy, so f(y) > r —§. Since this holds for any r < f(x), we get
f(y) > f(x) —§. Interchanging = and y we get f(z) > f(y) — 9, so |f(z) — f(y)| < § and
this proves the continuity of f (see Figure 2.1). By Proposition 2.6, a continuous image of a
compact space is compact, so f(X) C (0, 00) is compact and therefore closed. Since f(X) does
not contain zero, its minimum Ly = min f(X) is positive. If 0 < L < Ly, then L is a Lebesgue
number of . O

We say that a mapping F': X — Y is uniformly continuous if
Ve > 0,30 > 0,Vz,2' € X(d(x,2") <§ = d(F(z), F(2")) < e)

A uniformly continuous map is continuous. The map f : (0,1) — (0, 00) defined by f(z) =1/z
is continuous but not uniformly continuous.

Proposition 2.8 If F': X — Y is a continuous map and X is compact, then F is uniformly
continuous.

Proof: Pick ¢ > 0. For each x € X there exists ¢, > 0 such that if dx(y,x) < J,, then
dy(F(z),F(y)) < 5. Let § > 0 be a Lebesgue number of an open cover U = {B;,(z) : v € X}.
If y,z € X and dx(y,2) < 6, then there exists € X such that Bs(y) C By, (x), so both y, z
belong to Bs,(x) and therefore dy (F(y), F'(2)) < dy(F(y), F(x)) + dy(F(z), F(2)) < e. 0

2.2 The Cantor space

Recall that if A is an alphabet (a finite set with at least two elements), then the power space
A% is a metric space with metric

d(u,v) =27", where n = min{k > 0: wuy # vy}

Clearly d is symmetric, d(u,v) = d(v,u) and d(u,v) = 0 iff w = v. To show that d satisfies the
triangle inequality, let d(u,v) = 27", d(v,w) = 27™ and p = min{m,n}. Then ugy) = vy =
Wiop), S0 d(u, w) < 27P <max{d(u,v),d(v,w)} < d(u,v) + d(v,w).

To get insight to the topology of the power spaces A“, we show that these spaces are
homeomorphic to the Cantor middle third set

C= 0N E DG DN E DN G B

The set C' is obtained from the closed unit interval [0, 1] by deleting the open middle third

interval (%, %) and repeating this deleting procedure indefinitely with the remaining closed

intervals (see Figure 1.3). If we express the numbers x € [0, 1] in the ternary system z =
> >0 1,371, where u,, € {0,1,2}, then the interval (%, %) consists of points whose first digit is

up = 1. The endpoints of this intervals have two expansions: % =.10¥ = .02%, % =.20¥ = .12¢,
s0 [0, 1]\ (3, 2) consists of points which have ternary expansions with ug # 1. By induction, we

show that C' consists of points which have ternary expansions with digits u; € {0,2}.

Proposition 2.9 The Cantor middle third set C =[0,1]\ (5,2)\ (3, 2) \ (,3)- -+ is homeo-
morphic to {0, 1}
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Proof: Define @3 : {0,1}* — C by ®3(u) = 7,20 2u; - 3771 If d(u,v) = 27", then ujgn) =
V(o,n)» Un 7 Up, SO

1 .3—n-— 1
< 223 - —1 =3

|P3(u) — P3(v)| = i — ;)37

|®s(u) — P5(v)| > 2-3771—2 Z 3miml = 37!

i=n+1
This shows that @3 is bijective. If d(u,v) < 27" then |®3(u) — ®3(v)| < 37" and if |z — y| <
377! then d(®3'(z), ®3'(y)) < 27" This means that ®3 is a homeomorphism. 0

While the Cantor middle third set C' is obtained from the closed unit interval by deleting
the middle thirds, the unit interval is obtained from the Cantor middle third set by gluing the
endpoints of its cylinders. This is done by the mapping ®; o ®;' : C — [0,1] (see Figure 2.2
left), where ®3 : {0,1}*¥ — C'is the homeomorphism from the proof of Proposition 2.9 and
@, : {0,1}% — [0, 1] is defined by ®o(u) = > u; - 271, The mapping ®; o 5" defined on C
can be extended to a continuous mapping f : [0, 1] — [0, 1] which is constant on the intervals
deleted from the Cantor middle third set. This mapping is known as the Devil’s staircase (see
Figure 2.2 right).

001 2 1 2 71 8 1 11
1 9 9 3 3 9 9 1 7/8 -
34 —
— -— - 5/8 -
1/ 2 —_—
3/8 -
1/ 4 —_
1/8 |-
0 1 0/19121 2781
1 1 1993 3991

Figure 2.2: The mapping ®; 0 ®;' : C' — [0, 1] (left) and the Devil’s staircase (right)

Proposition 2.10 If A is an alphabet, then A“ is homeomorphic to {0, 1}*.

Proof: For A ={0,1,...,k}, kK > 2 define a bijective map ¢ : AY — {0,1}* by ¥(a) = 10 for
a < kand (k) = 1% If d(z,y) < 27" then d(¢(z),¥(y)) < 27" since the length of each 1(a)
is at least 1. If d(v (), (y)) < 275" then d(x,y) < 27 since the length if each ¢(a) is at most
k. Thus both ¢ and ¥ ~! are continuous. O

Proposition 2.11 If A is an alphabet and u € A*, then the cylinder
[u] = {w € AY : wp, = u}
of u is a clopen (closed and open) set.

Proof: If w € [u] then [u] = By-n+1(w) is an open ball (whose center is any its element), so [u]
is an open set. The complement A \ [u] = [J{[v] : v € A"\ {u}} is a union of open sets so it
is open and therefore [u] is closed. 0

We characterize the power spaces A by three topological properties.
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Definition 2.12

1. A metric space X is perfect if it has no isolated points, i.e., if

Ve e X,Ve >0,y € X,0<d(y,z) <e

2. A metric space X is totally disconnected if points can be separated by clopen sets, i.e., if

r#y = IW clopen,x € W,y € X \ W

3. A metric space is a Cantor space if it is compact, perfect, and totally disconnected.
Theorem 2.13 A metric space is a Cantor space iff it is homeomorphic to a power space A%.

Proof: 1. We show that A“ is compact. Let w, € A“ be a sequence of points and denote by
Wy € A the k-th letter of w,,. There exists zp € A such that the set Ng ={n € N: w,o = 2}
is infinite. Choose ng € Ny. There exists z; € A such that the set Ny = {n € Ny : w,1 = 21}
is infinite. Choose n; € N; with ny > ng and continue by induction. If n, € N, has been
already constructed then there exists zj41 such that the set Nyy1 = {n € Ny : wppi1 = 2541}
is infinite and we take nyy1 € N1 with ngq > ng. Then (wy, )05 = 20,4, S0 iMgo0 Wy, = 2.
2. We show that A“ is perfect: For w € A there exists z € A* with 29,y = wjo,n), 2n 7 Wy, SO
dw,z) =27"

3. We show that A“ is totally disconnected: For w # z there exists n such that w, # z,,
w e W = [wyy], 2 € A\ W. The converse proof that each Cantor space is homeomorphic to
{0,1}* can be found e.g., in Hockinkg and Young [24] or Kurka [35]. O

We say that a metric space X is a symbolic space if it is homeomorphic to a closed
subspace of A“. Symbolic spaces are compact and totally disconnected but not necessarily
perfect. For example, every finite metric space is a symbolic space. Continuous mappings
between symbolic spaces can be characterized combinatorially:

Proposition 2.14 A mapping F : AY — B* between symbolic spaces is continuous iff there
exists a sequence of mappings {fn : A¥» — A such that F(u), = fn(uog,)-

Proof: By definition, F' is continuous iff for every e = 27" there exists § = 27%* such that
dlu,v) <6 = d(F(u),F(v)) <e
Uok, = Vok, = F(Wom) = F()on

Thus F(u), depends only on uf,) and this dependence defines f,,. o

2.3 Redundant symbolic extensions

If we have a symbolic extension ® : X — R, we want to perform arithmetical operations on
symbolic representations of real numbers. A unary arithmetical operation like a linear function
g(z) = ax + b is a continuous mapping on R (with g(co) = 0o). Its symbolic extension is
a mapping f : X — X such that g(®(z)) = ®(f(x)) for each z € X. Symbolic extensions
of continuous mappings exist provided @ is redundant, i.e., if the images ®([u]) of cylinders
overlap in R. The redundancy encountered in Section 1.2 is thus a topological concept.
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Definition 2.15 We say that a continuous surjective mapping ® : X — Y s a symbolic
extension, if X is a symbolic space. We say that a continuous mapping ® : X — Y is
redundant, if for each continuous mapping V : X — Y there exists a continuous mapping
F: X — X such that Do ' = .

F F F
X — X X — X X" —= X
\lq’ él lé ‘I’"i l¢

v G G
Y Yy — Y Y —Y

If ®: X — Y is a redundant symbolic extension, then continuous self maps of ¥ can be
lifted to X. If G : Y — Y is a continuous mapping, then for G o ® : X — Y there exists a
continuous mapping I’ : X — X such that ® o FF = G o ®. We say that F' is an extension of
G by ®. This can be generalized to mappings of several variables:

Proposition 2.16 Let ® : X — Y be a redundant symbolic extension. Then for each con-
tinuous mapping G : Y™ — Y there exists a continuous mapping F' : X" — X such that
$oF =God" (see the diagram).

Proof: If X is a Cantor space, then X" is also a Cantor space and therefore it is homeomorphic
to X. Let H : X™ — X be the homeomorphism. For G : Y — Y we have a continuous mapping
g=God o H!': X =Y, so there exists a continuous mapping f : X — X with ®o f = g.
For F=foH: X"+ Xweget PoF =®ofoH=goH=God"oH 'oH=God". ¢

The redundancy implies surjectivity: If & : X — YV is redundant and y € Y, then for the
constant mapping ¥ : X — Y given by ¥(x) = y there exists a mapping F' : X — X with
$o F =V, soforany v € X, ®(F(x)) = ¥(z) = y. Since the continuous image of a compact
space is compact, only compact spaces can have symbolic extensions. In particular, the real
line R has no symbolic extension.

Example 2.17 1. The binary value map ®, : {0,1}* — [0, 1] defined by ®a(u) = >, us-27 !
18 a symbolic extension which is not redundant.

Proof: The mapping @, is clearly continuous and surjective. We show that it is not redundant.
Let c € (0,1) be an irrational number and consider the mapping g(x) = 4. Since c is irrational,
there exists a unique u € {0,1}* with ®3(u) = ¢. Assume that f : {0,1}* — {0,1}* is an
extension of g by ®5 and denote by a = f(u)y € {0,1}. Since f is continuous at u, there exists
n > 0 such that f([upn)]) C [a], so gPa([upn]) = Pof([ujpm]) € P2([a]). However, ¢ is an
inner point of ®s([ufon)]) and g(c) = 3, 80 gPa([uj,n)]) is included neither in ®,([0]) = [0, 3] nor

in ®5([1]) = [3,1]. This is a contradiction. D

Theorem 2.18 If X is a Cantor space and Y is compact metric space, then there exists a
symbolic redundant extension ® : X — Y.

Proof: We can assume X = {0, 1}*. There exists a finite open cover of Y of diameter at most
20 = 1. Repeating some of the sets if necessary, we can assume that its number of elements
is a power of 2. Thus there exists ny > 0, and an open cover Vy = {V,, : v € {0,1}"} of
X of diameter at most 1. Let A\g > 0 be its Lebesgue number. We continue by induction.
Assume that we have constructed an open cover Vi, = {V,, : u € {0,1}"} of diameter at most
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27% and Lebesgue number Ay > 0. There exists ng,; > ng, such that for each u € {0,1}"
there exists an open cover W(u) = {W,, : v € {0,1}*+17%} of V, with diameter at most
27k=1 There exists A\y41 < Ay which is a Lebesgue number of each W(u). Set Vi, = Vi, N W,
Then Viy1 = {Viw : uv € {0,1}™+1} is an open cover of Y with diameter at most 27%!
and Lebesgue number Ay > 0. If w € {0,1}™ and v € {0, 1}"+17"  then V,, C V,. For
u € {0,1}*, Ny Vi) # 0 has zero diameter and therefore contains a unique element

O(u) € ﬂ Vi

k>0

Then & : {0,1}* — Y is continuous and surjective. We show that @ is redundant. Let
U :{0,1}¥ — Y be a continuous mapping. Then V¥ is uniformly continuous and there exists
an increasing integer sequence {my : k > 0} such that

d(z,y) < 27™ = d(U(z), T(y)) < A

We construct a sequence of mappings fi : {0,1}"™ — {0,1}™ such that V([u]) C V}, ) for
u € {0,1}™. For u € {0,1}™ choose a point = € [u]. Then ¥([u]) C B,,(¥(x)) by uniform
continuity of W. Since Vy has Lebesgue number \g, there exists fo(u) € {0,1}" such that
By, (¥(2)) € Vi) Thus ¥([u]) € Vi Assume we have constructed f : {0,1}™ —
{0,1}™. For u € {0,1}™, v € {0,1}"™ 7™ we have ¥([uv]) C ¥([u]) € Vj (). Choose
r € [uv]. There exists w € {0,1}™+7™ such that ¥([uv]) C By,,,(¥(x)) C Vj, (uw and we
set frp1(uv) = fr(u)w. Define F': {0,1} — {0,1}* by F(u)jon,) = fr(Uom,)). Then F is
continuous. For each u € {0,1}* we have ¥(u) € V([ujo,m,)]) € Vo, ) = VF@p,,,- Since
PF(u) € Vi) we get ¥(u) = OF (u). 0

[O,nk) )

~—

N

If X is a metric space and Y C X, then Y is a metric space with the metric of X restricted
to Y. The closure and interior of a set V' C Y in Y usually differs from its closure and interior
in X. The closure of VinYis {y € Y : ¥r > 0,B.(y) NV # 0} = VNY, where V is the
closure of V in X. For the interior of V' in Y we get

inty(V)={yeY: Ir>0,B.(y) NYCV}=Y\YV\V

For example, intjy9([0,1]) = [0, 1): the point 0 is an inner point of [0, 1] regarded as a subspace
of [0,2].

Proposition 2.19 Let ® : AY — Y be a symbolic extension and assume that for every u € A*,
{inte(u)(®([ua))) : a € A} is a cover of ®([u]). Then ® : AY =Y is redundant.

Proof: For each integer k there exists A\; > 0 such that for each u € A*, the open cover
{inte () (®([ua])) : a € A} of ®([u]) has a Lebesgue number A;. We can assume that Apq < Ag.
If U : AY — Y is continuous, then it is uniformly continuous and there exists n; such that if
d(u,v) < 27" then d(¥(u),¥(v)) < A\x. We can assume that ngq > ng. Similarly as in the
proof of Theorem 2.18 we construct a continuous F': AY — A“ with ® o ' = V. O

Positional number systems for bounded intervals studied in Section 1.4 can be obtained
from contractive iterative systems. Recall that the diameter of a set Y C X is diam(Y) =

sup{d(z,y) : =,y € Y}

Definition 2.20 Let X be a metric space.
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1. We say that a mapping F' : X — X is a contraction if there exists an increasing continuous
function 1 : [0,00) — [0,00) such that ¥(0) = 0, ¢(t) < t fort > 0 and diam(F(V)) <
(diam(V)) for every set V C X.

2. A contractive iterative system over an alphabet A is a pair (X, F'), where X is a compact
metric space and F = {F, : X — X : a € A} is a system of contractions indezxed by the
letters of A.

3. For a finite word w € A" set F,, = F,, 0---0F,, . For the empty word set F = Idy,

Any contraction is continuous. We have F,, = F, o F, for any u,v € A*.

Theorem 2.21 Let (X, F') be a contractive iterative system over A. There exists a continuous
value mapping ¢ : AY — X such that

{@(w)} = Myso Fugy (X) foru e A“.

F (®(v)) = ®(ww) foru e A*, v e AY.

If u e A* then ®([u]) C F,(X).

(u) = limy o0 Py, (2) for any z € X.

¢ AY — X is surjective iff |J,c 4 Fa(X) = X.
If & : AY — X is surjective, then ®([u]) = F,(X) for each u € A*.

If every F, is injective and X = J,c4 Fu(X)°, then ® : A — X is redundant.

NS Srds Lo o~

Proof: 1. Since Fu[
nonempty. We have

(X) € F,, (X) are nonempty closed sets, their intersection is

0,n+1) [0,n)

diam(F,, (X)) < ¢(diam(F,

U[1,n)

(X)) < ¥*(diam(Fy, , (X)) < -+ < " (diam(X)).

Since lim,, o " (diam(X)) = 0, the intersection )
a unique point which is by definition ®(u).

2. Both F,(®(v)) and ®(uv) belong to all F,,  (X), so they are equal.

3. If uv € [u] then ®(uv) = F,(P(v)) € Fu (X), so ®([u]) C F,(X). Since diam(P([u])) <
diam(F, (X)) < ¢(diam(X)), ® : A — X is continuous.

4. Since ®(u), Fyy,,(2) € Fug,, (X), we get d(®(u), Fyy,,(2)) < ¢"(diam(X)). It follows
iy, 00 Fug,,) (2) = @ ().

5. For each u € A% we have ®(u) € F,(X), so ®(AY) C U,en Fo(X). If U,eu Fu(X) # X,
then @ is not surjective. Conversely, assume that (J ., Fu(X) = X. Then for every u € A*
we have (J,c 4 Fua(X) = Fu (Uuen Fa(X)) = Fu(X). Given z € X, there exists uo such that
x € Fu,(X), there exists u; such that = € F,,  (X) and by induction we construct u € A“ such
that z € F,,  (X) for each n, so x = ®(u).

6. If x € F,,(X) then v = F,(y) for some y € X and there exists v € A¥ with y = ®(v), so
r = ®(uv) and x € ®([u]).

7. Since ®([u]) = F,(X), by Theorem 2.19 it suffices to show that {intp, x)(Fu.(X)): a € A}
is a cover of F,(X) for each u € A*. Let x € F,(X), so x = F,(y) for some y € X. By the
assumption there exists a € A and € > 0 such that B.(y) C F,(X). Since F;!: F,(X) = X isa
homeomorphism, there exists § > 0 such that F;'(Bs(x)) C B.(y) C Fy(X), s0 Bs(z) C Fu.(X)
and z € intp, (x)(Fu(X)). 0

n>0 Fugg ) (X) has zero diameter and contains

0,n) (

Thus for example @5 : {0,1}* — [0, 1] is the value mapping of the contractive iterative

system F,(z) = ££% on alphabet A = {0, 1} while the mapping ® : {0,1,2} — [0, 2] defined by

®(u) = >, 427! is the value mapping of F,(z) = ££* on the alphabet A = {0, 1, 2}.
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2.4 Subshifts

The value mappings of number systems for the whole R are usually not defined on a whole
symbolic space A¥ but on some its subshift. Subshifts are treated in symbolic dynamic (see
e.g., Lind and Marcus [46] or Kurka [35]).

Definition 2.22 For an alphabet A and a set D C A* of forbidden words, denote by
Yp={u€A”: YveD: vZu}.

We say that a nonempty set > C A¥ is a subshift, if ¥ = Xp for some D C A*. If D C A* is
a finite set then we say that ¥p is a subshift of finite type (SF'T). The order of a SFT X
1s the smallest p > 2 such that there exists D C AP with ¥ = Yp.

To forbid a word u € A* is equivalent to forbidding words ua for all @ € A. Thus any SFT
has an order. For example the SFT 3901113 = 200,001,111} in A = {0,1} has order 3. Some
examples of SFT of order 2 in the alphabet A = {0,1} are

Spooa1y = {(01)%,(10)*},
2{10} = {Onlw n Z O} U {Ow}
2{11} — {O, 10}w

The subshift ¥g9,11y is finite, X1y is countable and Y1, is uncountable: any concatenation of
10 with 0 belongs to X(;1;. An example of a subshift which is not SF'T is the occurrence one
subshift of words which contain at most one occurrence of 1. Its forbidden set is D = {10"1 :
n > 0}. The shift map o : AY — A“ is defined by o(u); = u;41. Thus o(u) is obtained form
u by forgeting the first letter ug. The shift map is continuous since d(o(u),o(v)) < 2d(u,v).

Proposition 2.23 A nonempty set ¥ C A is a subshift iff it is closed and shift-invariant,
i.e., if o(w) € 3 whenever w € X.

Proof: If forbidden words do not occur in w then they do not occur in o(w), so ¥p is shift-
invariant. To show that X p is closed, we show that its complement is open. If u € A“\ Xp, then
for some i < j, uj; ;) € D, and no w € A¥ with wy jy = ujo ;) belongs to Xp, so [up ;)] € AY\ Xp.
This means that A¥ \ Xp is open and therefore ¥ is closed. Conversely assume that ¥ C A%
is closed and shift-invariant and set

D={ve A" : Yue X viZu}.

If w e X and v € D then v [Z u, so u € Xp. Thus we have proved ¥ C ¥p. If u € AY\ X, then,
since A“ \ X is open, there exists v = ujg,, such that [v] C A\ 3. Assume by contradiction
that v occurrs in some w € X, 80 v = Wy ;4,). Then o'(w) € X, but o'(w) € [v] € A\ ¥ and
this is a contradiction. It follows that v € D and therefore u € A“ \ ¥p. Thus we have shown
AW\ZQAW\ZD,SOE:ZD. O

Definition 2.24 The language of a subshift X C A% is the set of finite words which occurr
as subwords of infinite words of X:

LX)={ueA": Jz e X, ul z}.
We denote by L"(X) = L(X)NA™. If ¥ = Xp then we denote by Lp = L(Xp), LT = LpNA™.
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Some examples are

Loy = {0,1,01,10,010,101,0101,1010,...},
Luoy = {X,0,1,00,01,11,000,001,011,111,...},
Lay = {A,0,1,00,01,10,000,001,010,100,101,...}.

Definition 2.25 A nonempty language L C A* is an extendable language, if

1.vel foranyvCue€ L,
2. for any u € L there exists a € A such that ua € L.

The subshift of an extendable language L C A* is
S(L)={r € AY: Vn>0,z0,) € L}.

Proposition 2.26

1. If L C A* is an extendable language, then S(L) is a subshift and L(S(L)) = L.
2. If ¥ C A¥ is a subshift, then L(X) is an extendable language and S(L(X)) = X.

Proof: 1. Let L C A* be an extendable language. For n > 0 set X,, = {x € AY : x)9,) € L},
so S(L) = ()50 Xn- Since L contains words of any length, X, is nonempty. Since X, is a
finite union of cylinders, it is closed. Since X, C X,,, their intersection S(L) is nonempty
and closed. Clearly, S(L) is invariant, so it is a subshift. We show L£(S(L)) = L. If u € L,
|u| = n, then there exists u,, € A such that up, € L. Repeating this infinitely many times we
extend v to a point € A such that for any m, z(,,) € L. Thus z € S(L) and u € L(S(L)),
so L C L(S(L)). If u e L(S(L)), then there exists x € S(L) with v = x; ;) for some i < j.
Since xjo ;) € L and w is its subword, u € L. Thus £(S(L)) C L.

2. Let X C A“ be a subshift. If v C u € £(X), then u C x for some x € ¥ and therefore
v &z If u =24, then uzyy E @, so uz, € L(z). Thus we have proved that £(X) is
extendable. We show S(£(X)) = X. If x € X, then for any n, zp,) € L(X), so z € S(L(X)).
Thus ¥ C S(L(X)). Suppose that x € S(L(X)) and x &€ . Since A“\ ¥ is open, there exists n
such that [zp,)] C A\ X. Since z € S(L(X)), zjo,n) € L(X) and there exists y € ¥ such that
Yijj+n) = Tjony- Thus 0?(y) € [zo,,)] and this is a contradiction. Thus S(L(X)) C . 0

If 3 is a subshift and u € £(X) then we denote by
[uls = [u] NE ={w e X: wpu) = u}

For a fixed subshift 3 we often drop the index and write [u] instead of [u]s. We often consider
symbolic extensions ® : ¥ — R and in this case we have a generalization of the redundancy
test, whose proof is the same as that of Theorem 2.19.

Theorem 2.27 Let X C A¥ be a subshift and ® : ¥ — Y a surjective continuous map such
that for each u € L(X), {inteu)(®([ual)) : a € A,ua € L(X)} is a cover of ®([u]). Then ® is
redundant.
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2.5 Sofic subshifts

When we work with a subshift, we want to know whether an infinite word belongs to the
subshift or not. Since we can work only with finite prefixes of infinite words, we need a device
which reads successively letters of a word and stops (or signals an error) if the word read does
not belong to the language of the subshift. In the case of an SFT (and in a more general class
of sofic subshifts) such a test can be performed by a finite automaton. A finite automaton
is a device with a finite set B of inner states. When the automaton reads a letter a € A, it
changes its inner state according to a mapping ¢, : B — B. The change of state upon reading
a word u € A% is 8,(p) = 0u,(0ue(q)), SO Sugu, = Ouy © 8yy. For u € A™ we get analogously
Oy = Oy, , O+ 00y, If weset ) =Idp, then é,, = J,00,. Thus d, : B — B form an iterative
systems, but in contrast to iterative systems of Section 2.3, the mappings are composed in the
reverse order. We asuume that the automaton has an initial state i € B and a set of final
(accepting) states ' C B. A word u € A* is accepted if §,(i) € F'. We say that L C A* is a
regular language, if there exists a finite automaton (B, d, 1, F') such that u € L iff §,(i) € F.

If L is an extendable language and 6,(i) € F, then §,(i) € F for each prefix v of u: A
word can be accepted only if all its prefixes have been accepted. This property leads to a
simplification of the automaton since the rejecting states in B \ F' are not needed. We can
remove them and leave d,(p) undefined whenever 6,(p) € B\ F. Thus we get partial mappings
dq : B — B and we write 39,(p) when 4, is defined at p. The compositions §, : B — B are also
partial mappings which are defined on p € B provided all §,, are defined on 5u[0’i) (p).

Definition 2.28 An accepting automaton over an alphabet A is a triple A = (B, d,1), where
B is a finite set of states, §, : B — B are partial mappings and i € B is an initial state. The
language accepted by A is L, = {u € A*: 35,(1)}. A subshift X C A“ is sofic iff L(X) is a
reqular language iff there exists an accepting automaton A such that L(X) = L 4.

OC@)%lQl Oml

Figure 2.3: Accepting automata for SF'T

We represent accepting automata by oriented labelled graphs whose vertices are states of B
and whose edges are labelled by letters of A. The initial state is enclosed in a circle. There is
an edge p %, ¢ from p to ¢ with label a, if d,(p) = g. The SFT X0y = {071 : n > 0} U {0¥}
has an accepting automaton with B = {\,1}, dp(A) = A, 01(A) = 1, 6;(1) = 1 and initial
state A (Figure 2.3 left). The SFT 09,113 = {(01)¥, (10)“} has an accepting automaton with
B = {),0, 1}, initial state i = A, and transition function d,(\) = a, d,(a) = 1 —a for a € {0,1}
(Figure 2.3 right).

1
OC®—1> 1@ 0 OC@)%@#lo

Figure 2.4: Accepting automata for sofic subshifts
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We give examples of sofic subshifts which are not SF'T. The occurrence one subshift
in the binary alphabet A = {0, 1} consists of words which contain at most one occurrence of
the letter 1, so its forbidden set is D = {10"1 : n > 0}. Its language is accepted by the
automaton with states B = {\, 1}, initial state A and transition function do(\) = A, d1(\) = 1,
do(1) =1 (see Figure 2.4 left). The even subshift in the binary alphabet A = {0, 1} consists
of words which do not contain an odd number of zeros between two ones, so its forbidden set is
D = {10*""'1: n > 0}. Tts language is accepted by the automaton with states B = {\, 1,10},
initial state A and transition function dg(A) = A, d1(A) =1, 6;:(1) = 1, dp(1) = 10, dp(10) = 1
(see Figure 2.4 right).

Definition 2.29 Given a subshift ¥ C A“, the follower set of u € A* is
Fo={veA: we X}
Given an accepting automaton A = (B, 4,1), the follower set of p € B is
Fp={veAY: Vn, 3oy, (p)}

Clearly F, # 0 iff u € £(X). For the empty word we have Fy = 3. For the subshift 13
there are just two follower sets: for each word u € {0, 1}* we get Fyo = 2, Fur = {0u: u € X}.
For the occurrence one subshift we have also two follower sets: F, = ¥ provided 1 [Z u and
Fu = {0} otherwise.

Proposition 2.30 Ifu,v € A*, a € A and F, = F,, then Fuy = Fpa.

Proof: Assume If w € F,, then uaw € L(X), so aw € F,, aw € F,, and w € F,,. 0

Theorem 2.31 X is a sofic subshift iff the set {F, : u € A*} of its follower sets is finite.

Proof: If ¥ = ¥4 with A = (B,4,i) and u € L(X), then F, = F, where p = 0,(i) € B. Since
B is a finite set, {F, : u € L(X)} is finite too. Conversely assume that B = {F, : u € L(X)} is
a finite set. We construct an accepting automaton A = (B, 9, F)) with initial state i = F) = 3.

Define the transition function by d,(F,) = Fue provided uwa € L(X), otherwise 6,(F,) is
undefined. By Proposition 2.30, this definition is correct. If u € X then d,, , (Fy) = Fuggnys SO
u € X 4. Conversely, if 36, (Fx) for each n, then up) € L(X), so u € X. D

The construction of an accepting automaton is particularly simple for subshifts of finite
type. If ¥ C A¥ is a SFT of order p > 2, then an infinite word u € A% belongs to X iff
Upnntp) € L(X) for each n. It follows that for u,v € A* with |[v| > p — 1 we have F,, = F,
so {F, : |v] < p—1} is the set of all follower sets. Some of these sets, however, may coincide.
This can be tested by a simple criterion: F,, = F, iff for all w € A* with |w| < p, uw € L(X)
iff vw € L(X).

2.6 Labelled graphs

Let A = (B,0,i) be an accepting automaton. We say that a state p € B is reachable, if
0, (1) = p for some u. In an accepting computation, only the reachable states appear, so we can
remove all nonreachable states without changing the accepted language:



2.6. LABELLED GRAPHS 39

Proposition 2.32 Let A = (B,d,1) be an accepting automaton whose every state is reachable.
Then for each u € A* we have 39,(1) iff Ip € B, 3o, (p).

Proof: If §,(p) = ¢, and 9,(i) = p, then 6,,(i) = g so vu € L(X) and u € L(X). 0

In an accepting automaton whose only states are reachable, the initial state state need
not be distinguished, since an accepting process can start at any state of B. The automaton
is thus reduced to a partial iterative system o, : B — B. The accepted language of § is
Ls={ue A*: Ip,30,(p)}. Since the computation may start at any state, we say that such an
automaton is nondeterministic. A nondeterministic automaton may have fewer states that
the deterministic one. For example if we remove from the accepting deterministic automaton
of the even shift the initial state A\, we get a nondeterminsitic automaton which accepts the
same language. Its states are B = {1,10}, and transition function is given by d6;(1) = 1,
do(1) = 10, 09(10) = 1 (see Figure 2.4 right). We show that conversely, a language accepted by
a nondeterministic finite automaton is accepted also by a deterministic automaton (Theorem
2.35), but its number of states may be much (exponentially) larger. A nondeterministic finite
automaton can be equivalently described by a finite labelled graph.

Definition 2.33

1. A labelled graph over an alphabet A is a pair G = (B, E), where B is a finite set of
vertices and E C B x A x B is a set of labelled edges.

2. The source and target maps s,t : E — B are the projections s(p,a,q) = p, t(p,a,q) = q.
We assume that ¥p € B,3e € E,s(e) = p. The labelling map € : E — A is the projection
Up,a,q) = a.

3. The edge subshift ¥q) of G is X = {u € E¥: Vi > 0,t(u;) = s(uiy1)} € E¥.

3. The subshift of G is ¥g = {{(u) : u € Xig} C A¥.

4. The language of G is Lo = L(3¢q).

Note that ¥jg is a SFT of order 2. A path is a finite or infinite word v € E* U E* such
that t(u;) = s(ujy1). A finite path is equivalently described by a pair (p,u) € B* x A*
such that |p| = |u| + 1 and (p;,u;,piv1) € E for all i@ < |u|. An infinite path is a pair
(p,u) € BY x AY ~ (B x A)“ such that (p;,u;,pir1) € E for all i. Thus the edge subshift
may be equivalently defined as a subset of (B x A)“. The labelling map ¢ can be extended to
the continuous mapping ¢ : £ — A“ defined by £(u); = €(u;). It follows that Xg = £(X|q)
is compact and therefore it is a closed subset of A“. Since ¥ is also shift-invariant, it is a
subshift. Thus we have

Proposition 2.34 If > C A¥ is a sofic subshift, then there exists a labelled graph G such that
Y =13

Proof: Given an accepting automaton A = (B,d,1), we construct the labelled graph G =

(Bo, E'), where By = {d,(1) : uw € A*} is the set of reachable states and E = {(p,a,q) €
B()XAXB(]I 6a(p)IQ} o

Proposition 2.35 Any subshift of any labelled graph is sofic.
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Proof: Let G = (B, E) be a labelled graph, let Q@ = P(B)\ {0} be the set of nonempty subsets
of B. Define transition functions 9, : ) — @) by

0o(M)={qe@Q: Je€ E, s(e) € M,t(e) =q,l(e) =a},

provided 6, (M) is not empty, otherwise d,(M ) is undefined. The initial state is B € ). We show
that (Q,d, B) accepts L(X¢). If o — ¢y -+ == gu_1 =3 ¢, is a path in G, then g, € 6,(V),
s0 0,(V) # 0 and u is accepted. Conversely, if §,(V) # 0, then pick some ¢, € 0,(V). There

exists ¢,_1 € 5u[0’n_2] (V) such that ¢, 4 274 g, is a labelled edge in G. Continuing backwards,
we obtain a path in G with label u. 0

Definition 2.36 A morphism from a subshift > C A% to a subshift © C B is a continuous
mapping F : ¥ — O such that for every uw € ¥, o(F(u)) = F(o(u)). If F is surjective, we say
that © is a factor of 3.

g
[

M
T

g
—_—

)
g

)
Proposition 2.37 Any morphism F : ¥ — © C
that there exists r > 0 and a local rule f: L7(X)
T € M.

w @

“ 4s a sliding block code. This means

B such that F(x); = f(%[4r)) for every

1

Proof: Since F' is uniformly continuous, for ¢ = 1 there exists 6 > 0 such that if d(z,y) < J,
then d(F(x), F(y)) < 1. Take r > 0 with 27" < §. Then

Ty = Yoy = dz,y) <277 <§ = d(F(x),F(y)) <1
= F(x)o = F(y)o.

Thus F(x)o depends only on the first r letters of x, and there exists a local rule f : £L7(¥) — B
such that f(z,)) = F(x)o. Since F' is a morphism, we get

)y = o"(F(x))o = F(o"(x))o = [(0"(2)pm) = [(Tpnir). O

Theorem 2.38 (Weiss [69]) A subshift is sofic iff it is a factor of an SFT.

Proof: If ¥ is sofic, then ¥ = ¥ for some labelled graph G and ¢ : (Xg,0) — (X¢,0) is a
factor map with SFT X5 Conversely, let F': (¥,0) — (©,0) be a factor map, ¥ C A“ an
SFT and © C BY. Let p be the order of ¥, so u € ¥ iff uiyp) € L£(X) for all i. By Proposition
2.37, there exists a local rule f : £"(X) — B such that F(z); = f(2[+r). We can assume
r > p. Define a labelled graph G = (V, E), where V = L771(%),

E = {(au, f(aub),ub) € Vx BxV : a,be A,aub e L"(2)}
We show that Xg = O. If v = F(u) € © then we have a path

fugo,m)
—

Ufo,r—1) U1,y ) U rg1) "

with label v. Conversely, if we have such a path in (V, E) with label v, then uy;4,—1) € £(3),
sou € X and v = F(u). O



2.6. LABELLED GRAPHS 41

Definition 2.39 Let G = (B, E) be a labelled graph over A.

1. We say that G s initialized, if there exists i € B such that F; = Y, there is no edge with
target i and for each p € B\ {i} there ezists a path i “, p.

2. We say that G is right-resolving if (p,a,q), (p,b,r) € E and a = b implies ¢ = r, i.e., if
the edges with the same source carry different labels.

3. We say that G is deterministic, if it is initialized and right-resolving.

For any graph G there exists an initialized graph with the same language. We just add
to G a new vertex i and for any edge p %, ¢ we add a new edge i _¢, ¢. Alternatively, if we
allow edges with label A, we may add edges i A, p for each vertex p of G. The deterministic
graphs are exactly graphs of deterministic finite automata, so each sofic subshift is a subshift
of a deterministic graph. If G is an deterministic graph then there exists a continuous mapping
v : Xg — Yjg such that ¢(v(u)) = u for each u € Xg. For u € ¥¢, v(u) is the unique path
with source i and label u. Note that v is continuous but does not commute with the shift map,
so it is not a morphism.
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Chapter 3

Matrices and transformations

As we have seen in Chapter 1, an essential ingredient of a number system are its transformations
F, : R — R. These transformations are in all cases M&bius transformations of the form
M(z) = %. Their geometrical structure can be understood in the context of projective
geometry. The extended real line R = R U {oo} can be regarded as the one-dimensional
projective space. Mobius transformations are projective transformations of R and form a

three-dimensional projective space.

3.1 Projective geometry

Projective geometry (see e.g., Coxeter [9]) studies transformations which map lines to lines but
do not necessarily preserve distances or angles. While the Euclidean geometry studies geomet-
rical constructions with the compass and ruler, the projective geometry studies constructions
with the ruler alone.

S

TN W

P’

N —

Figure 3.1: Perspectivities between planes(left) and lines (right).

A paradigmatic example is a central perspectivity (see Figure 3.1 left). We have two
planes r and »’ in a three-dimensional space and a center of perspectivity S which lies neither
in 7 nor in 7. A point X of r is mapped to the intersection X’ of the ray SX with the
plane r’. A line ¢ of r is mapped to the intersection of the plane Sq with the plane »’. This
correspondence, however, is not defined everywhere. Some points in one plane do not have any
image in the other plane. For example the lines p and ¢ which intersect at A map to paralel
lines p/, ¢’ which have no intersection in r’. The point A of r has no image in »’. To make the
correspondence one-to-one, projective geometry extends the Fuclidean plane by ideal points
at infinity. The parallel lines p’ and ¢’ intersect at an ideal point A" of r'. Moreover, every
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line parallel to p’ intersects it at A’ since every such line is mapped to a line which passes
through A. The projective plane is obtained from the Euclidean plane by adding an ideal
point in every direction (determined by a set of mutually parallel lines). Each (ordinary) line
is extended by an ideal point. There is also an ideal line which consists of all ideal points. The
line s of the plane r is mapped to the ideal line of 7/, since the plane S's is parallel with r’.
Thus any two different lines (ordinary or ideal) intersect in a unique point and any two different
points determine a unique line on which these two points lie. The axiomatic of the projective
geometry is thus simpler and more symmetric than the axiomatic of the Euclidean geometry,
in which parallel lines do not intersect.

In a similar way we obtain the projective line - the projective space of dimension one.
Consider a plane with two distinct lines p and p’ and a point S of the plane, which lies neither
on p nor on p’ (Figure 3.1 right). The projectivity with the center S maps a point X of p to
the intersection X' of p’ with the line SX. To make the correspondence one-to-one, both lines
p and p’ are extended by a single ideal point at infinity. The point B of p projects to the ideal
point B’ of p’ and the ideal point E of p projects to the point £’ of p'.

There is another way to conceive a projective space without the cumbersome distinction
between the ordinary and ideal points. Each point of a projective line (ordinary or ideal) is
determined by a unique ray passing through S. If the ambient two-dimensional space is the
Euclidean vector space R?, we can assume that the center of perspectivity is the zero point
S = 0 = (0,0). A ray passing through 0 is then just a one-dimensional subspace of RZ2.
Similarly, points of a projective plane can be conceived as rays passing through a point S of
a three-dimensional Euclidean space, or as one-dimensional subspaces of the three-dimensional
vector space R?. The concept readily generalizes to any dimension.

Definition 3.1 The projective space P(R"™) of dimension n consists of all one-dimensional
subspaces of the vector space R". The elements of P(R™™!) are called projective points.
A projective line in P(R™) (for n > 2) is a linear subspace of R™™ of dimension 2. The
one-dimensional projective space is called the extended real line P(R?) = R = RU {oo}.

3.2 The extended real line

A one-dimensional subspace of R? is determined by any its nonzero point z = (2, 21) # (0,0).
We say that z is a homogeneous coordinate of the subspace {\z : A € R}. Two nonzero
points z, w determine the same subspace, if one is a nonzero multiple of the other iff the matrix
with columns z,w has zero determinant. We obtain an equivalence ~ on R?\ {(0,0)} given by
z~aw iff IN# 0,2 = \w iff det(z,w) = zw; — 21wy = 0. Thus we may conceive P(R?) = R as
the factor space R = (R?\ {(0,0)})/ ~. If we represent R by the line z; = 1 parallel to the z
axis, then the ray through a point 2 = (29, z1) with 21 7 0 intersects the real line at (2,1), so
it represents the number z—(l] € R. We write conventionally the homogeneous coordinate (zo, 1)
as 2, so the ideal point oo at infinity has homogeneous coordinate 3, where 2z # 0 (see Figure
3.2 top).

Of all homogeneous coordinates of a point z = 2 € R there are two which lie at the unit
circle

S={zeR*: 22+ =1}
They are (75, 1727), and (51, 774), where [|z|] = /28 + 2} is the norm of z. The projective line

=117 1|2 T=112 TI=]]
is thus obtaine %rom the unit circle by the identification of its opposite points. If z # oo, then
z has a unique homogeneous coordinate which lies at the upper semi-circle {z € S: 2z; > 0}.

Both its endpoints (—1,0) and (1,0) represent co (see Figure 3.2 bottom). If we stretch the
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NIw

N
Niw
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Figure 3.2: The homogeneous coordinates (top). The stereographic projection (bottom) doubles
the angles and reverses the orientation.

upper semicircle twice and glue its two endpoints, we get the full unit circle. This stretching
and gluing operation is realized by the stereographic projection introduced in Section 1.3.
We look now into geometrical properties of this transformation. The transformation takes a
point at the upper semicircle, projects it to the real line as in Figure 3.2 bottom left and then
to the unit circle as in Figure 3.2 bottom right. In this way we get a projection which doubles
the angles, reverses the orientation and maps the upper semicircle to the full circle.

S=(0, 1) S=(0, 1)

<
v =d(z)
7=(%, 0) 7=(z, 0)

@) OJI

-
v X=d(2)
>

\"\/

~

T=(0, - 1) T=(0, - 1)

Figure 3.3: The stereographic projection in the Cartesian plane

We consider the stereographic projection in the plane with the cartesian coordinates (zg, x1).
The real line is now identified with the z¢-axis with equation x; = 0. A point Z = (2,0) on
the xg-axis is projected to the intersection d(z) = X = (xg, 1) of the unit circle with the line
SZ. Here S = (0,1) is the north pole (see Figure 3.3). If t € [—7, 7] is the angle ZT'OX, then
X = (cos(t — 5),sin(t — §)) = (sint, — cost). The triangle OSX is equilateral with angle m —¢

t

at O and angles 5 at S and X. The triangle ST'Z is also equilateral with angles % at S and

T. In fact, ZOTZ = % € [5F, 3] is just the angle of the homogeneous coordinate ‘z—(l’ with the
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: : t L A z t _ 2z
z1-axis (see Figure 3.2 top), so tan 5 = 2, sin g = T €085 = \/7 It follows sint = %5,

so d(z) = (sint,—cost) = (;ﬁ,zz—j&), and d(co) = (0,1). In homogeneous

20 22021 22 — 23
d{ — | = 2 2702 2 |-
z1 5+ 21 25+ 2

From the similarity of triangies we get z : 1 =z : (1—y), so the inverse stereographic projection
is given by d~!(z,y) = . The parametrization of the unit circle by the variable t is the map

122
cost = 7 e
coordinates we get

t > e=2) = (sint, — cos t). This yields the parametrization t : R — R of R given by

int t sini
t(t) = a '(sint, — cost) = P tan = 2

14 cost 2_COS%

Here —3 a homogeneous coordinate of t(¢). The projection t is bijective
2

on every semiclosed interval [t,t + 27). In particular, t has the inverse t!(x) = 2arctanz on
the semiclosed interval [—m, 7).

An interval is a connected subset of R. We say that I C R is a proper interval, if it has
two distinct endpoints a,b € T\ I°. If a,b € I then I is closed and if a,b € R\ I then I is open.
Improper intervals are the empty set, singletons, their complements and the full interval R.
Given two distinct points a,b € R, there exist two proper open intervals I, J with endpoints
a,b € R which satisfy I NJ =0, I UJ = R. We distinguish these intervals by the order of a, b
and write them conventionally as I = (a,b), J = (b,a). A point 2 € R belongs to (a,b), if the
triple a, z, b is positively oriented, i.e., if det(a, z) - det(z, b) - det(b,a) > 0. This means that
d(x) belongs to the counterclockwise arc from d(a) to d(b).

Definition 3.2 The open interval and the closed interval with distinct endpoints a,b € R
are

(a,b) = {z € R: det(a,z) - det(x,b) - det(b,a) > 0},
[a,b] = {x €R: det(a,r)-det(z,b)-det(h,a) > 0}.
The size of an interval I = [a,b] or I = (a,b) is defined by

a-b . Clob() + Cllbl

1) = = .
SZ( ) det(b, (Z) albo — (Zobl

Note that the property = € (a,b) does not depend on the representation of a,x,b by homoge-

neous coordinates. For example we have 1 € (2,3), 1 € (3, 3), or 7 € (4, O) Definition 3.2

is compatible with the usage of Section 1.3. We have 2e[s8iff (a—xz)(z—b)(b—a)>0. If

a < b, this is equivalent to a < x < b. If b < a, this is equivalent to a < x or x < b. The length

of an interval I = [a, b] defined in Section 1.3 can be written in homogeneous coordinates as
aobo + a161

1 1
I — tg———m— = — t I).
|| = —arcco gaibo m—— —arccotg sz([1)

The length of small intervals can be estimated by their size.

Proposition 3.3 The length of an interval I C R is |I| =

—Larctansz(I). We havesz(I) > 1
iff |I] < 1 and in this case

1
2
1 1

T M= Tom
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Proof: We have arccotg v = I — arctanz for each z € R, so |I| =  — Larctansz(I). For
0 <y <1 wehave 0 < arctan(y) < 7, arctan’(y) = %H < 1,s0 % < arctany < y and
therefore g < lalretamy < Z Forz = i we have x > 1 and arctany = arccotg z, so

+ < Larccotg x < . This implies the estimate for |I]. O

Alternatively we obtain the length of an interval from the parametrization t : R — R of R.

Proposﬂslon 3.4 If I = [a,b] C R is a proper interval, a = t(t), b = t(s) and 0 < s —t < 2,
then |I| =

The proof is a simple verification.

3.3 Projective metrics

The angle 0 < ¢(z,y) < 7 between two nonzero vectors z,y € R™ can be obtained by
the cosine rule as p(z,y) = arccos W, where = -y = ) . x;y; is the scalar product and

||z|]| = V/x - z is the Euclidean norm. The angle between —x and y is m—p(z, y) = arccos T

Taking the smaller of these two angles we define the angle metric in the projective space
P(Rn+1) by

1 . 1 x-
o) = S min{p(o, )7~ pla )} = Favceos € o4

The formula does not depend on the choice of representing vectors: d,(Az, uy) = da(z,y) for
every nonzero \, . In P(R?) = R we use the formula arccosz = alreeotg\/lL_7 to get

1 vy + 1 lzy + 1]
do(z,y) = — arccos = —arccotg———
T \/(x2+1)(y2+1) m |z — 9|
1
do(x,00) = —arccotg|z|
T

Alternatively, we consider the projective metric which is based on the approximation
¢ =~ 2sin £. It is the distance of the normalized homogeneous coordinate x/||z|| from y/||y|| or

from —y/||yl|:

o(r,y)

dp(z,y) = min{Qsin ,ZSin%(x’y)}

= min{y/2(1 — cosp(z,y)), /2(1 + cos p(z,))}

(e

= in] N+l cova

The last equality follows from
e - lyll £ ll=l] - yll? = 2 |l=]1* - [lyl* £ 2 [J2l] - [lyl] - (2 - y)

= 2-[[zl[ - [lyll - (el - Myl £ (2 - 9)) -

r oy
||
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A simpler metric is obtained from the approximation ¢ & sin . Since sin ¢ = sin(m — @), we
define the chord metric by

o) =gt = VEE PG

In homogeneous coordinates in R, we get

_ | det(z,y)]

du(z,y) = — Lja@) - aw)))

[l Tyl 2
This follows from sin p(z,y) = sin w = 1[|d(x) — d(y)||. For z,y € R we get

[z —y|
VE2+ 1)+ 1)
1
VI —I—l.

Proposition 3.5 The three projective metrics are equivalent. We have d.(x,y) < dy(z,y) <
mdo(2,y) < 5d(x,y) and

de(z,y) =

do(z,00) =

da ) . d b
i T (®Y) o d(@y)

y—w dp(x7 y) y—z dc<x7 y)
Proof: For 0 < a < 7 we havesina < 2sin§ < a < 7-sina and lim, o 2521% = lim,_ % =
1. O
3.4 Transformations
A linear transformation of the vector space R? is determined by a (2 x 2)-matrix M = [%?g ]\]‘ﬁ]

The M-image of a column vector z € R? is Mz € R? defined by (Mz); = Z;ZO Mz

Mz — Moo Mor| |zo| _ [ Moozo + Moy
My My T1 Myoxo + Miymy

As a vector space, the space R?*2 of (2 x 2)-matrices is isomorphic to R?*, but R**2 has an
additional structure of matrix multiplication (M P);, = Z}ZO M;j - Pji. If det(M) = Moo My —
Mo My # 0, then M : R? — R? is bijective and the M-image of a one-dimensional subspace
of R? is a one-dimensional subspace of R?. This means that M determines a transformation
of the projective space P(R?) = R which is called a Mébius transformation. A nonzero
multiple AM of M determines the same transformation as M, so a Mdobius transformation is
determined by a projective matrix, i.e., by a one-dimensional subspace of R?*? which is a
point of the projective space P(R**?). We do not distinguish between a projective matrix and
its transformation. The determinant of a projective matrix is not a well-defined concept, since
det(AM) = A2 det(M). However, the sign of the determinant does not depend on A so we can
classify transformations according to the sign of their determinant:

M(R) = {M € P(R*®?): det(M) # 0} : regular transformations
M*(R) = {M € M(R): det(M) > 0} : increasing transformations
M~ (R) = {MeM(R): det(M) <0} : decreasing transformations
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IfM =1 Z] € M(R), then M : R — R is bijective and has an inverse M ' = [_dc ;b] =

[;d _ba] The composition of two transformations is again a transformation whose matrix is

obtained by matrix multiplication. Regular Mobius transformations thus form a group. If
M= I € M(R), z € R, then M(z) = 22t i particular M(=%) = oo, M(o0) = <.

d cxo+dry’ c
A transformation can be lifted by the parametrization t : R — R to a continuous function
M : R — R which commutes in the diagram M ot =to M:

M
e

o <

M
If M € M*(R) is increasing then M(t +2m) = M(t) +2m. If M € M~ (R) is decreasing then
M (t + 27) = M(t) — 2. The graphs of some lifts M can be seen in Figures 3.4 and 3.5.

The derivation of M in z € R is readily computed as M'(z) = (ad — bc)/(cx + d)*. If
|M'(x)| < 1, then, in a neighbourhood of z, M is contracting with respect to the Euclidean
metric d,(z,y) = |z —y|. If we work in R, we are rather interested in the derivation of M with

respect to the projective metrics.

Definition 3.6 The circle derivation of M € M(R) in x € R is defined by

o det(M) - [fe?
M) = hrap

Note that while the norm ||z|| depends on a particular homogeneous representation of z, the
ratio ||z[|/||M(z)|| does not. For M = [ Z], r € R we get

(ad — be)(x* + 1)

M.
(z) (ax 4+ b)? + (cx + d)?’
. ad — bc
M?(o0) = a?+ c?

Proposition 3.7 If M € M(R) is a transformation then

o g de(M (), M(2))

M*(z) = M'(t7'(z))

Proof: From det(M(y), M (z)) = det(M) - det(z,y) we get

o de(M(y), M(x) [ det(M(y), M) lyl|- [l
e de(y,7) v |det(y,x)] M Q)]|- M ()]
_ et OO AP

|| M ()]
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For t7!(z) = 2arctanz we have (t7')'(z) = =25 and t'(t7'(z)) = (1/t7})'(z). From M =
tLo Mot we get

Mt () =

2 det(M) 2*>+1
M2(z)+1 (cx+d? 2
det(M)(2? + 1)

- (ax 4+ b)? + (cx + d)? = M)

Using det(M P) = det(M) - det(P), we immediately get the chain rule:

det(M) - [|Px|]? ~det(P) - [
||M Pz|[? || Pl
= M*(Pzx)- P*(x)

(MP)*(z) =

Proposition 3.8 If M € M(R), I C R is an interval and qy < M*(z) < q1 for every x € I,
then qo|1| < |M(D)| < 1.

Proof: We use Proposition 3.4. Let I = [a,b], a = t(t), b = t(s) and 0 < s —1 < 27. By
the mean value theorem, there exists ¢ < x < s such that M’(m) = M(Sg:y(t) = |Mu(|[)|. If

@olI| > |M(I)|, or qi|I| < |M(I)| then |M'(z)| < go or |M'(z)| > ¢, which is a contradiction. o

Definition 3.9 The expanding interval and the contracting interval of a transformation
M € M(R) are defined by

UM) = {zeR: |M*(2)] <1},
V(M) = {zeR: |[(MY*(z)| > 1}.

b

4 18 tr(M) = a + d. Define the trace of a projective

The trace of a matrix M = [?
matrix M € M(R) by
_tr(M)? (a+d)?
~ det(M)  ad—bc

If M is decreasing then trc(M) < 0, otherwise tre(M) > 0. Increasing transformations are
classified into three kinds according to the number of their fixed points. We say that x € R is

a fixed point of M, if M(z) = 2. Every x € R is a fixed point of the identity Id = e

tre(M)

Proposition 3.10 A decreasing transformation M € M~(R) has two fized points. If M €
M*(R) is a nonidentical increasing transformation, there are three cases:

1. Iftre(M) < 4, then M has no fixed point. We say that M is elliptic.

2. If tre(M) =4, then M has one fized point. We say that M is parabolic.

3. If tre(M) > 4, then M has two fized points. We say that M is hyperbolic.



3.5. CONJUGATED TRANSFORMATIONS o1

1/0 : : : 1/0
2 1
1 M) = szr { 1/1+
o/ 1} { o/ 1}
M~ (z)
S1/14 s

U1 ot w1 wo CYMYo Tui ot w1 1o

[ M*(z) , (M~1)*(z)
2 2
—— \><’/\/
-1/0 -1/1 0/1 1/ 1 1/0 -1/0 -1/1 0/1 1/1 1/ 0
U(M) U(M)
V(M) V(M)

21‘—1—1

Figure 3.4: Mobius transformations and their circle derivations: M (x) = is parabolic with

UM) = (F.3), V(M) = (5, 3) (left), M(x) = 22 is elliptic (right).

1°0 )
Proof: If M = [* "] is not the identity, then x is a fixed point of M iff cz+(d—a)zoz,—bat = 0.
If ¢ # 0, this is a quadratic equation with discriminant

D = (a — d)* 4 4bc = tr(M)? — 4 det(M),

so D > 0 iff either det(M) < 0 (and then trc(M) < 0) or det(M) > 0 and trc(M) > 4. If

¢ = 0 then we have one solution z = % and the other x = . If d # a then M has two fixed

points and either det(M) < 0 or det(M) > 0 and trc(M) (a+d) > 4. If d =a, b+#0, then

M has a unique fixed point oo and trc(M) = 4@%2 =4 Itd=aq, b = 0, then M is the identical
transformation. O

Some graphs of transformations and their circle derivations can be seen in Figures 3.4 and
3.5. The extended real line is displayed in the arc metric as a finite interval from _Tl to %. In
other words, we use the function t(x) = tan § which maps R bijectively to (—,7) and the

graphs show the real functions M =t"'o Mot (—=m,m) = (—m, 7). The fixed points are the
intersections of the graphs with the diagonal y = z.

3.5 Conjugated transformations

Definition 3.11 We say that transformations P,Q € M(R) are conjugated if there exists
M € M(R) such that Q = M~'PM.

Conjugated transformations have the same dynamical properties. If Q = M~'PM, then Q™ =
M=1P"M for any n € Z. If z is a fixed point of P, then y = M~z is a fixed point of Q and

Q*(y) = (M H)(PM(y)) P (M(y) - M*(y) = (M~1)*(M(y)) - P*(x) - M*(y)
= P*(x).



52 CHAPTER 3. MATRICES AND TRANSFORMATIONS

1/0 : ‘ : 1/0
1/ 1+ t 111 M(z) =zt
M(z) = &t () =%
0/ 11 . 0/ 11
-1/ 1+ M=Yz) + U1y M~ (x)

U1 ot w1 wo “YY¥o w1 ot w1 wo
-1/0 -1/1 0/1 1/ 1 1/0 M'(x) (M_l)'(x)

\/ 1 2
° -3 —1\e i ., - . '
M*(z) (M) (x) -1/0 -1/1 o1 11 10

U(M) U(M) U(M)

V(M) V(M)
Figure 3.5: Mobius transformations and their circle derivations: M (z) = % is decreasing
with U(M) = (3, %), V(M) = (0,2) (left), M(z) = 5 is hyperbolic with U(M) = (—1,3),
V(M) =(0,2).

Conjugated transformations have the same trace. A direct computation shows that tr(PQ) =
> i PiQji = tr(QP). If Q@ = M~'PM, then tr(Q) = tr(PMM™") = tr(P). Since det(Q) =
det(P), we get trc(Q) = trc(P). We are going to show that two transformations of the same
orientation (increasing or decreasing) are conjugated iff they have the same trace by show-
ing that each transformation is conjugated to a canonical form which is either a similarity,
translation or rotation.

Definition 3.12 A similarity is a transformation Q,.(x) = rx, where 0 # r # 1.

Thus Q, = [£,?], det(Q,) = r and trc(Q,) = (r + 1)?/r. The fixed points are 0 and oo with
circle derivations Q2(0) = r, Q¢(00) = . The composition of similarities is again a similarity:
Qrt = Qr0Qy. If r <0 then Q, is decreasing, in particular Q_1(z) = —z. If 0 < r # 1 then @,

is hyperbolic.

Proposition 3.13 A decreasing transformation M € M~ (R) is conjugated to a similarity with
quotient —1 < r < 0. A hyperbolic transformation M € M™(R) is conjugated to a similarity
with quotient 0 < r < 1. If0 < |r| < 1, then M has un unstable fized point w(M) and
a stable fized point s(M) such that lim, o, M"(x) = s(M) for each x # w(M). Moreover,
Me*(u(M)) > 1, M*(s(M)) <1 and M*(w(M))- M*(s(M)) =1. If r = —1 then M?* = 1d.

Proof: Let a,b € R be the two fixed points of M and set P = [a,b] = 52, 2—(1’] Then P(0) =b
and P(00) = a, so P~'M P has fixed points 0 and oo. It follows P~'MP = Q, with 0 # r # 1.
From M = PQ, P! we get M*(b) = Q2(0) =r, M*(a) = Q2(c0) = 1/r, so M*(a) - M*(b) = 1.
If |r| < 1 then M*(b) < 1 and we have s(M) = b, u(M) = a. Since lim,,_,o @Q;n(x) = 0 for every
x # oo, we get lim,, o M™(z) = s(M) for every = # u(M). If |r| > 1 then M*(b) > 1 and
s(M) = a, u(M) = b. We get again lim,,_,.. M"(x) = s(M) for every = # u(M). A similarity
Q. with |r| > 1 is conjugated to @y, since for P(z) = —1/x we have P7'Q,P = Qy/,. Thus
M is conjugated to a similarity @, with —1 <r < 1. If r = —1 then tr(M) = 0so M = [? fa]
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and M? is the identical transformation. o

Definition 3.14 The translation and rotation with parameter t € R\ {0} are transforma-

tions with matrices . .
1 ¢ cos< sin:
t t 2 2

P R
01 sin g cos 5

We have T'"* = Tt o T%, R'"™® = R'o R*, and T° = R = Id. Moreover, R'"?"™ = R' (as

. . rsin 5 rsin & .
transformations, not as matrices). For x = 2 we have R'z = —2%, d(x) = (sin s, — cos s),
T COoS bl T COS 2

dR'(x) = R*d(x). A translation is parabolic and has a unique fixed point oo with circle
derivation (7%)*(coc) = 1. A rotation is elliptic and has no fixed point and the unit circle
derivation everywhere: (R")*(x) = 1. It follows that its contraction and expansion intervals are
empty U(R') = V(R") = (). A parabolic transformation is a translation iff its fixed point is co.
An elliptic transformation has no real fixed point but it has two complex fixed points. It is a
rotation iff its fixed points are ¢ and —1.

Proposition 3.15 A parabolic transformation M is conjugated to the translation T*(x) =z+1.
M has a unique fived point s(M) such that lim, .. M™(z) = s(M) for each x € R, and
Me*(s(M)) = 1.

Proof: Let s = s(M) be the unique fixed point of M. We take a transformation P with
the first column s and positive determinant. Then P(co) = s, and P"'M P is a parabolic
transformation with fixed point oo, so P"'MP = T" for some r # 0. From « +r = r(£ + 1)
we get T" = Q,T*Q;™', so T" is conjugated to T". o

Proposition 3.16 An elliptic transformation is conjugated to a rotation Rt with 0 <t < .

Proof: If M = [2,2] is elliptic, then ¢ # 0 and we can assume ¢ > 0. The transformation

cd
has no fixed point in R but it has two complex fixed points s = “_d+ V=D gy = “_d+ v—D

where D = (a + d)* — 4(ad — bc). The transformation P = [@, 4] satisfies det(P) > 0,
P(i) = s, P(—i) = u, so P"'M P has fixed points ¢ and —i. It follows that it is a rotation with
0 <t < 2m. Since R' is conjugated to R~ via Q(z) = —x, M is conjugated to a rotation with

angle 0 <t <. o

Y

Theorem 3.17 Two transformations from M™(R) are conjugated iff they have the same trace.
Two transformations from M~ (R) are conjugated iff they have the same trace.

Proof: We have trc(Q,) = @ If0 < |r|,|s| <1andr #s, then tre(Q,) # tre(Qs), so Q.
is not conjugated to Q,. We have trc(R") = 4cos? 5. If 0 < t < s < 7 then trc(R") # tre(R?®),

so R' and R® are not conjugated. o

L . t/2
A similarity can be written as @, = S* = [, e,Lt/Q], where t = Inr. Then S+ = St o S*
COSh% sinh%

and tre(S") = 2cosh £. The transformation S* is conjugated to | | with fixed points

sinh% ’ COSh%
—1,1 and the same trace 2 cosh % These formulas reveal a formal analogy of hyperbolic and
elliptic transformations.
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Definition 3.18 The similarity quotient sim(M) > 0 of a hyperbolic transformation and
the rotation angle rot(M) € (0, 7] of an elliptic transformation are defined by

tre(M) tre(M)

sim(M) = 2 argcosh (2 , rot(M) = 2arccos

Thus sim(S*) = ¢, rot(R") = t.

Proposition 3.19 For every increasing transformation M € M (R) there exists a system of
transformations (M*)er such that M° is the identity, M* = M and M**s = Mo M? for every
t,s € R.

Proof: If M = P~'S"P is hyperbolic, then M! = P~1S"P. If M = P~'T'P is parabolic,
then M' = P7'T*P. If M = P~'R"P is elliptic, then M* = P~'R"P. 0

3.6 Complex transformations

Mobius transformations can be aplied not only to real numbers but to complex numbers as well
and their geometric and dynamic properties are more apparent in this setting. The real and
imaginary parts of a complex number z = x +1y is denoted by R(z) = z, J(2) = y, the complex
conjugate of z is 7 = z —iy and its absolute value |z| = vz - Z = \/22 + y2. We consider general
Mébius transformations on the complex sphere (i.e., extended complex plane) C = C U {oo}
given by

b
M(2) = 0 M(=dfe) = 00, M(sc) = afe.
where a,b,c,d € C are complex numbers with ad — bc # 0. A complex transformation is

determined by a complex matrix M = [* Z] and if A # 0 is a complex number, then M and

AM determine the same transformation. Thus we have the space of complex projective matrices
P(C?*?) and the space of regular complex projective matrices

M(C) = {M € P(C>?): det(M) # 0}

For the special case of linear transformations M(z) = az + b we have |M(z) — M(w)| =
la| - |z — w], so a linear transformation is a similarity with respect to the Euclidean metric and
therefore preserves all shapes. In particular, the image of a line is a line and the image of a circle
is a circle. In a general complex transformation, the image of a line is either a line or a circle
and the image of a circle is either a circle or a line. Thus the group of complex transformations
creates a geometry, in which lines and circles cannot be distinguished. We show this property
first for the transformation M(z) = 1/z.

Proposition 3.20 The transformation M(z) = 1/z transforms lines and circles to either lines
or circles.

Proof: 1. If ¢ # 0 then the line {ct : ¢ € R} which joins 0 and c is transformed by M to the
line {t/c: t € R} which joins 0 and 1/c¢ (see Figure 3.6 left).

2. If ¢ # 0, then the line {¢(1 +it) : t € R} which passes through ¢ and is perpendicular to Oc
is transformed to the circle with center 1/2¢ and radius |1/2¢| which passes through 0 and 1/c.

Indeed we have
1 1

o(l+it)  2c

n—at| 1

C 2l L+t 2l
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1 I
C
~/ ; ]
3 3
-1 -1
Figure 3.6: Transformation 1/z in the complex plane
since |1 —it|* = 1+ ¢* = |1 + it|* (see Figure 3.6 center). Conversely a circle which passes

through 0 is transformed to a line.

3. If s e C\ {0} and 0 < r # 1, then {s(1 +ra): |a| =1} is the circle with the center s and
radius r|s| which does not pass through 0. Its image is the circle with center 1/s(1 — r?) and
radius 7/|s(1 — r?)|. Indeed

1 1 B rir 4+ af r

s(L+ra)  s(1—7r2)| |s(1—r2)| [147ral - |s(1 —r?)|

since [r +a| =7+ 1+ r(a+a) = |1 + ra| (see Figure 3.6 right). If r > 0 then the image of
the circle {ra : |a| =1} is the circle {2 : |o] = 1}. 0

Proposition 3.21 Any complex transformation transforms lines and circles to either lines or
circles.

Proof: Let M(z) = %. If ¢ = 0 then M is a linear transformation which transforms lines to

lines and circles to circles. If ¢ # 0 then

M(Z):ﬁer_—ad/C

=y F
c cz+d 0FiFa(2)

where Fy(z) = 2+ (b—ad/c)z, Fi(z) = 1/z, F»(z) = cz + d and all F; transform lines and

C
circles to either lines or circles. o

Another important geometrical property of Mobius transformations is that they are confor-
mal, i.e., they preserve angles. If two curves meet at angle o then the M-images of these curves
meet at the same angle a. The conformality is a general property of holomorphic functions,
(i.e., functions which have derivative - see e.g., Silverman [62]) at points ¢ where their derivation
f'(¢) is nonzero. In the neighbourhood of ¢ we get an approximation f(c+ z) ~ f(c) + f'(c)z
and the mapping z — f(c) + f'(c)z is a similarity.

An example of a complex transformation is d(z) = %, which extends the stereographic
projection to the extended complex plane (see Figure 3.7). Indeed for x € R we get our original
formula
ir+1 x—i 2z+i(z?—1)

d(z) = - - = 5
T+ x—1 x4 +1

Thus d maps the extended real line R = {z € C : 3(z) = 0} U {oo} to the unit circle
S={z¢e€C: |z] =1}. Since d(i) = 0, the upper half-plane U = {z € C: $(z) > 0} is
mapped to the unit disc D = {z € C: |z| < 1}.
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O
O

A -2-1 1 2 B
-1

=21
-3

Figure 3.7: The stereographic projection in the complex plane

3.7 Hyperbolic geometry

Increasing transformations M € M (R) map the upper half-plane U = {z € C: &(z) > 0}
onto itself and preserve the hyperbolic (noneuclidean) metric in U (see e.g., Beardon [4]).

Proposition 3.22 If M € M*(R), M(z) = %t and z € U, then M(z) € U and

cz+d’

(ad — bc) - I(2)

S(M(:) = T

Proof: We have

(az +b)(cz+d) aclz|* + bd + adz + bcz

M@ = i@ d ez + d|?

so if §(z) > 0 then (M (z)) = (ad — bc)(2)/|cz + d|* > 0. O

Definition 3.23 The hyperbolic metric on U is defined by the differential form

s — dz|  \/dx? 4 dy?

Cx

S(z) y

, where z = x + 1y.

The hyperbolic metric is a special case of a Riemannian metric which is determined by
a positive definite differential form. With a Riemannian metric, we can compute length of
curves. In the case of the hyperbolic metric, if z : [ty,t;] — U is a differentiable curve
z(t) = x(t) + iy(t), then the length of z is

Thus for example the curve z(t) = ¢+ ic maps R to the horizontal line through ic, so the length
of a horizontal line from a + ¢t to b + ci, where a < b is

b b_a

b
dt t
Lla+cib+ci)= | —= -

C C

C

a a

The curve z(t) = ¢+ it maps R to the vertical line through ¢, so the length of a vertical line
from ¢+ ai to ¢+ bi, where 0 < a < b is
b
dt
Lic+at,c+bi)= | —=

a

In(t)
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Proposition 3.24 Transformations M € M™(R) preserve the hyperbolic metric. If z : [to, t1] —
U is a differentiable curve, then L(M o z) = L(z).

Proof: For M(z) = %t we have M'(z) = 2=t If w = M (z), then by Proposition 3.22 we

N cz+d (cz+d)? -
get S(w) = “ED, dw = GG, and
|dw|  (ad —bc) - |dz| lcz+d>  |dz]
S(w) ez +d? (ad —be) - S(2)  S(z)

Definition 3.25 We say that a differentiable curve z : [ty,t;] — U is a geodesic, if its length
is shorter than the length of any other differential curve from z(to) to z(t1). We say that
z: R — U is a geodesic if each its restriction to a finite interval [ty,t1] is a geodesic.

Proposition 3.26 The vertical lines perpendicular to the real axis R = {z € C: R(z) = 0}
are geodesics of the hyperbolic metric.

Proof: Let z : [to,t1] — U be a differentiable curve with R(z(tg)) = R(2(t1)) and I(z(ty)) <
3(2(t1)). Then

L) / ORI “%dt

to y<t> to Yy 14
t1 ./
> / y'(t) & —In y(tl)_
w Y() y(to)
This is exactly the length of the vertical line joining z(¢y) and z(¢). o

Since the transformations of M*(R) preseve hyperbolic metric, they map geodesics to
geodesics. Since they are conformal, the image of a line perpendicular to R is a line or circle
perpendicular to R. Thus we have

Figure 3.8: The geodesic which joins z and w(left) and a hyperbolic triangle(right)

Theorem 3.27 The geodesics of the hyperbolic metric in U are either half-lines or semi-circles
perpendicular to the real line R.

There exists a unique geodesic which joins two different z,w € U. If R(z) = R(w) then it
is the vertical line. If #(2) # R(w) then the geodesic is the arc whose center S lies on the real
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line and has the same Euclidean distance from z and w (Figure 3.8 left). The length of this
geodesic, or the hyperbolic distance of z, w is given by

|z —w| + |z — w|

z,w) =In
oz w) = Ty

(see Beardon [4] for a proof). In particular we get o(c + ia,c 4 ib) = |In §|. Three distinct
points A, B, C' € U determine a unique hyperbolic triangle with vertices A, B, C. Its angles
a, 3,7 and the lengths of their sides a, b, ¢ satisfy the relations of hyperbolic trigonometry.
In the Euclidean geometry we have the sine and cosine rules which read

sina sinfB  sinvy a?+ b —c?
= = , COSY = ——
b c 7 2ab

a

In hyperbolic geometry we have

sinh a sinh b B sinh ¢

. . - . b
sin « sin (8 sin y
cosha - coshb — coshe

cosy =
" sinha - sinh b ’

cos « - cos 3 + cos 7y

coshe =

sin « - sin 8

Figure 3.9: A tessellation of the hyperbolic plane by equilateral triangles with angles 7/8 (left)
and concentric circles and radii in the hyperbolic upper half-plane (right).

ef—e” "

Since sinh x = ~ x, the sine rule of the hyperbolic geometry approximates for small
traingles the sine rule of the Euclidean geometry. We have two cosine rules. The first one
is an analogue of the cosine rule of the Euclidean geometry obtained from the approximation
coshx = % ~ 1+ % The second cosine rule computes angles from the sides. This is
impossible in the Euclidean geometry, since there exist similar triangles with the same angles
but differerent sides. In hyperbolic geometry there are no similar triangles. The sum of angles
of a hyperbolic triangle is always less then 7 and larger triangles have smaller sum of angles.
In fact we have the formula oo + § + v = 7 — P where P is the hyperbolic area of the triangle.
Thus for example there exist equilateral triangles with angles m/n for each n > 7, and they
tessellate the hyperbolic plane. One such tessellation can be seen in Figure 3.9 left. As another
visualization of the hyperbolic plane, Figure 3.9 right shows concentric circles with center ¢ and
hyperbolic radii which form an arithmetic sequence. Hyperbolic circles are FEuclidean circles

but their hyperbolic center need not coincide with their hyperbolic center.
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3.8 Disc transformations

The stereographic projection d : U — D = {z € C: [z| < 1} maps the upper half-plane to the
unit disc, and the lower halfplane C\ U to the exterior C \ D of the unit disc. To each real
transformation M = [* Z] € M(R) there corresponds a conjugated disc transformation

]\//T(z):do]\/[od_l(z):%zig,

where a = (a+d) + (b—c¢)i, B = (b+¢) + (a — d)i. A disc transformation preserves the unit

—~

circle: if z € S then M(z) € S. If det(M) > 0, then
det(M) = o) = |B]> = (a+ d)* — (a — d)> + (b — ¢)* — (b+ ¢)* = 4(ad — bc) > 0

and M preserves the unit disc. If det(M) < 0 then det(]\//.T ) < 0 and M maps the unit disc to
its exterior and the exterior of D to ID. Conversely, any complex transformation of the form
F(z) = 2258 with |B] # || preserves the unit circle since

T Bzta
Pty < et Bl lae"+ 5] _
|Bett +al |+ aett - e
If |[F(0)] = % < 1 then F preserves the unit disc, otherwise it maps the unit disc to its exterior.

The transformation M = d'o Fod = [* ’] € M'(R) has real coefficients a = —%(a);g(ﬁ)y

d
b = w, c = w, d = w. The hyperbolic metric on the upper half-plane

is mapped by the stereographic projection d : U — D = {z € C: |z| < 1} to a hyperbolic
metric on the unit disc. A circle perpendicular to R is mapped to a circle perpendicular to
the unit circle. Thus the geodesics of the hyperbolic unit disc are arcs or lines (diameters)
perpendicular to the unit circle. Some tesselations of the hyperbolic disc are shown in Figure
3.10.

Figure 3.10: Tesselations of the hyperbolic unit disc by equilateral triangles with angles 27 /7
(left) and by squares with angles 27/5 (right).

Proposition 3.28 The stereographic projection transforms the metric ds = |dz|/Sz on U to
the hyperbolic metric on the unit disc D given by

p 2|dz| 2,/ dz? + dy?
S = =

1— |22 1—a22—y2’
|1 — 2w

V= [2)(1 = w]?)

o(z,w) = 2argcosh
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: . - i (1— |2 ]2

Proof: If w = d(z) = 25, then z = ™! (w) = = - ZH — %, so $(z) = %
2

By differentiation we get dz = (21;12;[;”, so |dz| = %, and g’j) = %. For the proof of the

. .

(
formula for p(z,w) se Beardon [4

Since real Mobius transformations preserve the hyperbolic metric on U, the circle transfor-
mations preserve the hyperbolic metric on ID. This can be verified directly. If w = 2245 then

2 2 2 2 2 BZ"F&
_ (e*=181P)Nd=| 1 _ 2 _ (of*=[8")(A—2*) 2dw| __ _2|dz|
|dw‘ - |Bz+a|2 1 ‘w‘ - |Bz+al? » SO I—|w2 = 1—]z]2"
M(z)=z+1 M(:p):_x;rll

>

N

[T
L

NG °
N o -
PN ¥
M(z) = 32=i M(z) = Grietl M(z) =i
M(z) = 775 M(z) = 5= M(z) =iz
similarity translation rotation

Figure 3.11: The similarity Q%(a:) = Z (left), the translation 7" (z) = x + 1 (center) and the

rotation R™?(x) = 1L (right) in the upper half-plane (top) and in the unit disc (bottom)

N 5

2.7 \V 2 \
ST AN . \>

1/1-1/1 1/1

M(r) = =4t M) =+ M(x) = 2228
= _ (B+i)a+1—i 7 _ (4+i)z+1 Y3 _ (6+5i)z+3-2i
M(z) = (IFi)z43—i M(z) = Tatd—i M(z) = ©(3+2i)+6—5i

hyperbolic parabolic elliptic

Figure 3.12: Disc transformations

The dynamics of a similarity, translation and rotation can be seen in Figure 3.11. The

upper row shows the dynamics in the upper half-plane and the bottom row shows that in the

unit disc. In the upper half-plane, the similarity @) 1 (r) = § maps a semicircle with center 0
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and radius r (i.e., the geodesics joining —r to r) to the circle with center 0 and radius § and
leaves invariant every line passing through 0. The translation T%(z) = x + 1 maps a vertical
line {x +it : t > 0} to the vertical line {x + 141t : ¢t > 0} and leaves invariant every horizontal
line. The rotation R™/?(z) = }f—i maps a geodesic which passes through ¢ to a perpendicular
geodesic through 7. In the unit disc, the similarity maps the geodesic which joins d(—xz) with
d(x) to the geodesic which joins d(—x/2) with d(x/2). It leaves invariant every arc which joins
oo with 0. The translation maps a geodesic which joins d(z) with d(oco) to the geodesic which
joins d(z+1) with d(co) and leaves invariant every circle which passes through co. The rotation
maps each diameter to a perpendicular diameter. It leaves invariant every circle with center
0. The dynamics of the transformation from Figures 3.4, 3.5 can be seen in Figure 3.12. Since
these transformations are conjugated either to a similarity or to a translation or to a rotation,
we have in each case a family of geodesics mapped to one another and a system of invariant

curves perpendicular to these geodesics.

3.9 Isometric circles

For disc transformations we have an analogue of Proposition 3.7.
Proposition 3.29 If M € M(R) is a real MT, then |M*(z)| = \A//T’(d(x))]
Proof: Since ]\/Z(z) =doMod!(z)and (a ') (d(x)) =1/d (), we get

d(M(z)) - M'(z)  —2-M(z) (x—1i)

WA = et T w2
_ - lz — 2 A — 241 |ad — be|
M = ey M= e 1 @

lad — bel| - (2* + 1)
(ax +b)? + (cx + d)?

= [M*(z)]. o

az+f
Bz+a’

Consider a real transformation M € M(R), its disc conjugate M (2) = its inverse

M z) = agz f and their derivations

o — 18> _|8* 151 -1
Bz+@)? B <z+2>2
— a2 = 18> |82 151

M—l/z — nl —
OY@) = G =7 e %)

M(z) =

Note that |M(0)| = |M1(0)] = |2], [M(c0)| = |M~}(c0)| = |4]. M(c0) = 1/M(0) = 5. If
B # 0 then we have isometric circles K,;, K;,—1 and expanding discs D,;, Dj;—1 defined

=
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Ky = {z: M) =1} = {2 €C: [+ 3] =, /T-[3PI

Dy = {z: [M(2)]>1}={z€C: |2+ 2| <, /IL— 2]},

Ky o= {z: (M) ()| =1} ={z€C: [z+5]=,/lL-|5P},

Dy = {z: (M) >1}={2€C: |z+4|</lL- 5] }

All these circles and discs have the same radius r(M) = /1 — ]]\/4\(00)]2 If @« = 0 then both
Ky and K /-1 are the unit circles and Djy; and Dy,-: are the unit discs. For the expanding
interval and the contracting interval of a transformation M € M(R) we get by Proposition
3.29

UM) = {zeR: |M(a(z))] <1},

V(M) = {zeR: (M Y(a(x)| > 1}.
If either 8 = 0 or a = 0, then ]A/J\’(z)\ = 1 for every z in the unit circle, so U(M) and V(M)
are empty. Otherwise they are proper intervals and d(U(M)) = S\ Dy, d(V(M)) = SN Dys-1.

< |a| (left) and
My = M(o0) =

o~

|
decreasing transformations with 0 < |a| < |8/ (right). Here My = M(0) = 2

a _ _M(0) —1 _ /-1 - _
5 V= iy Me = M7 o0) =

Figure 3.13: Isometric circles of increasing transformations with 0 < |f|

=9l

Proposition 3.30 Let M € M(R) and ]\7(0) # 0 # ]\/4\(00), soa#0# [. Then
M(Ky) = Ky,

M(Dar) = €\ Dy .

M(C\ D) = Dy,

M(U(M)) = V(M),

V(M) < 5 < [U(M)],

[UM)[ +[V(M)] = 1.

S S fo o

Proof: 1. We have z € K iff [M'(z)] = 1iff |(M~1Y(M(2))| = 1 iff M(2) € K.

2.3. We have z € Dy iff [M'(z)| > 1iff (M1 (M(2))| < 1 iff M(2) & Dpr—.

4. We have x € U(M) iff |M*(z)| < 1iff |(M~)*(M(z))| > 1 iff M(z) € V(M).

5,6. Since the radii of Dy; and Djs-1 are the same, we see immediately [V(M)| < 1 < [U(M)],
[lUM)|+|V(M)| =1. 0
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Proposition 3.31 Let M € M(R), ( ) #0# M( ) and denote by Vi, Vi the d-images of
the endpoints of the expanding interval V(M) = (a~*(Vy),d " (V1)). Then

MeM*(R) = M(0)= "% |V(M)| = Larccos|M(0)|
MeM (R) = M(oo)= "% |V(M)| = Larccos | M(c0)].

Proof: Since ]/\4\(0)/]\7( ) = ||ﬁ||2 € R, the points 0, M(O) M\(oo) lie on the same line. The

triangles (0, M (0), V1) and (0, Vi, M (oo)) are similar since they have the same angle at 0 and
[M(0)] : [Vi] = [Vi] : [M{(c0)|. We distinguish two cases. If M € M*(R), then the triangle
(0, V1, M(c0) has the right angle at V4 since Vi|? + 1M (c0) — V4| = |M(c0)[2. Tt follows that
the triangle (0, M(O) V1) has the right angle at M(O) Thus Vj, ]/\/[\(0), V1 lie on the same line,
]/\/[\(O) = (Vo +V1)/2 and |V(M)| = L arccos |]\/4\(O)| (see Figure 3.13 left). If M € M~ (R) then
1M (00)| < 1 and (0, V4, M(co) has the right angle at V; since |V;|2 = |J/\/[\(oo) Vil + ]]/\4\(00)]2
Thus Vj, ]\//.7(00), V1 lie on the same line, ]\/4\(00) = (Vo +V1)/2 and |[V(M)| = L arccos \]\/4\(00)\

]

Proposition 3.32 Let M € M(R). Then

— 1—|M(0
min{|M*(z)|: z € R} = l/\( )| ,
1+ [M(0)]
_ 1+ |M(0
max{[M*(z)|: xR} = |—HMOI
1 —[M(0)]
so min{M*(z): v € R} -max{M*(z): v € R} =1.
Proof: If either ]\//7(0) =0 or M(O) = 00, then \M'( )] = 1 for all  and the claim holds.
Assume ]/\/[\(0) #0 # J/\/[\( ). Since V = Eg; = ﬂgi % = % is the closest point of S

to ]/\/[\(oo), ](]\//T_l)’(xﬂ attains its smallest value in S at V. Since the centres of Ky, and K1

have the same absolute value |M ! (c0)| = |]\7(oo)| = %, by Proposition 3.29 we get

max{|M*(z)|: z € R} = max{|(M V(z): €S}

oot a2 = 18] [lal = 18P
(M) (V)] = (%_002 (o] — 18])2
o + [B]| _ |1+ [M(0)]
lal =18l |1 —|M(0)|
Similarly
min{|M*(z)|: z €R} = min{|(M VY(z): z €S}
o o e = 18R] [l = 18P
= |[(M)(=V)] ((ij\l"" )‘ (o] + 18]
o~ 18]] _ 1= 17T@)l|
lal + 18l |1+ |M(0)]
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Proposition 3.33 If V(M) # 0, then M : U(M) — V(M) is a contraction (see Definition
2.20).

Proof: For t < |U(M)| set ¥p(t) = sup{|M(I)| : I CU(M),|I| =t}. Then ¥y (t) <t and
Wy is continuous. The function ), can be extended arbitrarily to a decreasing function on
0, 1] such that ¥y (t) <t for all ¢. 0

We have seen that |]\/Z (0)| characterizes the maximal and minimal contraction (circle deriva-
tion) of a transformation. An alternative characteristic is the norm of a transformation. The
norm of a matrix M = [* Z] is [|[M|] = Va2 + b2 + 2 + d2.

Definition 3.34 Define the norm of a projective matrix M = [ Z] e M(R) by

CME @Rt
~det(M) ad — be

nrm(M)

Thus the norm of a decreasing transformation is negative.

Proposition 3.35 If M € M(R) then |[nrm(M)| > 2, |[nrm(M)| = 2 iff either ]/\4\(0) =0 or
M (0) = o0, and

= o nrm(M)—2

IMOF = nrm(M) + 2’
nrm(M) = 2-%
L— M)

min{|M*(z)|: » € R} = %(|nrm(M)] —y/nrm?(M) —4)

max{|M*(z)|: = € R} — %(!nrm(M)]+s/nrn12(M)—4)

2 —~
r(M) = if M(0 0
(M) e V0 7
1 2 —
V(M = —arcsin if 0 £ M(0 00
v = - s 10 MT0) £

Thus |M(0)| < 1 iff nrm(M) > 2 and |M(0)] > 1 iff nrm(M) < —2.
Proof:
B

«

2 (b4 02+ (a—d)?  ||M|]2—2det(M) nrm(M) -2

|M(0)]? (a+d)?—(b—c)?  |IM||2+2det(M) nrm(M) +2

The other formulas follow from Proposition 3.32 by a simple algebra with the use of the formula

arccos ¥ = arcsin /1 — 2. 0
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Proposition 3.36

1. If M is hyperbolic then V(M) C U(M).

2. If M is parabolic, then V(M) C U(M) have a common endpoint.
3. If M is elliptic and V(M) # 0, then V(M) € U(M).

Proof: 1. If M is hyperbolic then u(M) € R\ U(M) and lim,, .. M ~"(z) = s(M~!) = u(M) €
V(M) so V(M) =M"1(U(M)) C UM) and therefore V(M) C U(M).

2. If M is parabolic, then its fixed point s(M) is an endpoint of both V(M) and U(M). Since
M is orientation-preserving, we get V(M) C U(M).

3. Suppose by contradiction that M is elliptic and M~*(U(M)) = V(M) C U(M). Then M~!
has a fixed point in U(M) and this is impossible. 0

3.10 Singular transformations

Besides regular transformations with nonzero determinant we consider singular transfor-
mations with zero determinant and the zero transformation 0 = | € R**2 which does

not belong to P(R**?). Denote by

OO]

M°(R) = {M € P(R**?) : det(M) = 0},
M(R) = P(R***)u {0}.
Thus M(R) is the set of all subspaces of R?*? of dimension at most 1. If M = [ "I is a singular

d
transformation, then one of its rows is a multiple of the other, say a = sc, b = sd, so M(x) =

whenever cx + d # 0. We say that s = s(M) is the stable point of M We have s(M) = ¢

[

provided ¢ # 2, otherwise s(M) = 2. For z = _7, we get M(z) = 2 € R and we say that

=4 — u(M ) is the unstable point of M prov1ded 2, otherwise u(M ) = =2. For example

for M = [* 7] we have s(M) = £, uw(M) = £. For M [0 Z] we have s(M) =2, u(M) = i

If s(M)=s and uw(M) = u, then M = [*o" 750“0] The stable and unstable point of the zero

S1u1  —S1U
transformation is defined by u(0) = s(0) = 2. The operation of inversion [ Z]*l = [_dc ;b] is
applied to singular or zero transformations as well and (x,y) € ['(M) iff (y,z) € T(M~1). If

M is singular, then s(M 1) = u(M), w(M~') = s(M), and MM~ is the zero transformation.

Proposition 3.37 Let P,QQ € M(R). Then PQ = 0 iff either P = 0 or Q = 0 or P,Q €
MY(R) and u(P) = s(Q). Otherwise PQ is singular provided either P or Q is singular and

)-

s(PQ) = P(s(Q)), u(PQ)=u(@) if PeM(R),QeM(R)

s(PQ)=s(P),  u(PQ)=Q ' (u(P)) if PeM(R),QeM(R)

s(PQ) =s(P),  u(PQ)=u(Q) if P.QeM(R),u(P)#s(Q)
P

Proof: 1. Let P € M(R),Q € M°(R). For each = # u(Q) we have PQ(z) = :
2. Let P € M°(R),Q € M(R). For each z # Q' (u(Q)) we have PQ(z) = P(Q(x)) = s(P).
3. Let P,Q € M°(R). For each z # u(Q) we have PQ(z) = P(Q(x)) = s(P). 0

~—

The projective space P(R**?) is a metric space with one of the equivalent projective metrics
da, dy, d. (see Section 3.3) and singular transformations appear as limits of regular transfor-
mations. Note that M(R) is an open set in P(R**?), so its complement M°(R) is a closed
set.
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Proposition 3.38

1. If M € M(R) is a hyperbolic transformation, then lim, .., M" = Q € M°(R) is a singular
transformation with s(Q) = s(M), u(Q) = u(M).

2. If M € M(R) is a parabolic transformation, then lim, .., M™ = Q € M°(R) is a singular
transformation with s(Q) = u(Q) = s(M).

3. If M is an elliptic transformation, then {M™ : n > 0} has no limit in P(R?*?).

Proof: 1.A hyperbolic transformation is conjugated to a similarity, so there exists P € M(R)

and 0 < r < 1 such that M = PQ,P~'. We have lim, ,,, Q" = Qo = [8 (1’] which has the

stable point 0 and the unstable point co. It follows that lim,, ., M"™ = PQyP~! has the stable
point s(M) and unstable point u(M).
2. A parabolic transformation is conjugated to the translation T'(z) = x + 1, so there exists

P € M(R) such that M = PTP~'. We have lim,,_,,c T" = Ty = [J ;] with s(Tp) = u(Tp) = §.

It follows that lim, ,,, M™ = PTyP~! has the stable and unstable point s(M). O

3.11 Representing sequences

If {M, € M(R): n > 0} is a sequence of regular transformations which has a singular limit
M € M°(R) then we may say that {M,, € M(R) : n > 0} represents s(M). There is a more
general concept of representation. Consider a sequence of hyperbolic transformations

En 0 _ En 0
Mon = {1—% 1] » Monir = [en—l 1] ’
where &, > 0 and lim,_,»o &, = 0. Then lim, ..o Mo, = [(1) (1)], lim,, oo Mopy1 = [01 (1)], SO

lim,, o M, does not exist. However, lim, o M,(z) = 0 for each z € R\ {—1,1}. If we
consider also complex z, then we find that lim, ., M,(z) = 0 for each z € C with nonzero
imaginary part. It turns out that this leads to a fruitful concept of representation which is
based on Proposition 3.39.

Proposition 3.39 Let {M, € M(R) : n > 0} be a sequence of transformations and v € R
such that lim,,_,, M, (0) = d(x). Then lim,_,, M,(z) = d(z) for each z € C with |z| # 1.

Proof: See Figure 3.13. Denote by S, the center of K;-1, S, the center of Ky, , and 7, their
radius. Since lim,,_, ]\/4\,1(0) = d(z) € S, we get lim, o7, = 0. Given z € C\ S there exists
ng such that for every n > ny we have z € D\ Dy, , so J/\/[\n(z) € Dj;-1. Since ]\//Tn(()) € Dy,
we get \J\//Tn(z) — Mn(O)\ <1y — 0,80 lim, o ]\//Tn(z) = d(x). O

Since d(z) = 0, we have lim,_, M"<l> = x iff im, o M,(2) = z for all z € C with
3(2) # 0. Here we use the convergence in C = CU{oo}. If z, € C, then lim,,_,, 2, = 0o means
lim,, o |2,| = 00. If z € C, then lim,,_,, 2z, = z is the convergence in the Euclidean metric.

Definition 3.40 We say that a sequence of transformations {M, € M(R) : n > 0}
bfinrepresents x € R if lim,, o M, (1) = z.

Theorem 3.41 Given a sequence {M, € M(R) : n > 0} and x € R, the following conditions
are equivalent:
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{M,, € M(R) : n >0} represents v € R.

Jz € C\ R, lim,, 0o My(2) = 2.

Vz € C\ R, lim, o Mn(z) = .

3z € C\ S, lim, o0 Mn( ) =d(z).

Vz € C\ S, lim, o Mn( ) =d(z).

For each open interval I C R with x € I we have lim,, o |M; Y (I)| = 1.

There ezists ¢ > 0 and a sequence of closed intervals I, such that x € I, lim,, o |In] =0,
and liminf, . |[MY(I,)| > ¢ for each m.

8. There exists a sequence {x, € R : n > 0} with lim,,_,o 7, = x and lim,,_,o(M;)*(z,,) = .

NS S oo~

Proof: 1 = 2 is trivial. _
2 < 4 and 3 < 5 follow from d(R) = S.

4 = 5: Assume that w € C\'S and d limy, o ]\/[n( ) = d(z). There exists a disc transformation
F such that F(O) = w, $0 limy,_y0 M, F(O) d(z) and by Proposition 3.39, limy,_,o M, F( )=
d(z) for each y € C\S. For each z € C\R we get lim,,_, Mn( ) = lim,, o0 M,FF- 1(2) = d(z).

5 = 6: By Proposition 3.35, lim,,_,., nrm(M,,) = oo, lim,_,o |V(M,,)| = 0, and lim,, ., |[U(M,,)| =

1. There exists ng such that for every n > ng we have V(M,,) C I, so U(M,) C M, *(I). and
lim,, o [M,71(I)| = 1.

6 = 7 is trivial: We can take for I,,, any intervals which contain x in their interior.

7 = 8: For each m there exists n,, and z,, € I, such that [M,1)*(z,,)| > ¢/|L|. It follows
that the radii of the isometric circles converge to zero: lim,, ;o r(M,,,) = 0. If ¢/|I,,| > 1 then

Ty € V(M, ) O Ly # 0 and |d(zp) — M, (0)] < 1(M, ). It follows limm,eo d(z,m) = d(z),

m

My, o0 Ty, = @, and limy, o My (2,) = 00.

8 = 1: From lim, , max{|( 1) ( | © 7 € R} = oo, we get lim, ,oo nrm(M,,) =
00, T, € V(M,), lim, , |V(M,)| = Thus |d(z,) — ]\/Zn(O)| < r(M,) and therefore
iy, yoe My (0) = d(2), limy,_yoe M, (i) = .

Proposition 3.42 Assume that {M, € M(R) : n > 0} is a sequence of transformations,
z,w € R, 2z # w and lim,,_,o M, (2) = lim, oo My, (w) =2 € R. Then lim,,_,, M, (i) = z.
an bn

Proof: Let M, = [, 2=]. We can assume that the matrices M, and vectors z, w are normed,

e, a2 +02+cl+d> =1, 22+ 23 = w2 +w? =1. Assume first = # o0, so z € R. Then

(andy, — bpcy) - (2owy — z1wp)

0= lim (M, (z) — M, (w)) = lim .
Jim (M (2) (w)) = lim, (Cnzo + dpz1) - (Cowo + dpwt)

Since z # w, either z # oo or w # 0o. Assume w # oo and take v = ww#i” Since |c,vo + dpvy| >
IR(chvo + dpvr)| = |cawo + dywi|, we get

(andy — bycy) - (2001 — 2100)

lim (M, (z) — M, = lim =
nggo< (2) () = o (cnzo + dnz1) - (cpvg + dpvy)
Thus lim,, o, M, (v) = z, and since I(v) # 0, we get lim,,_,o, M, (i) = x by Theorem 3.41.2. If
x = 00, then for the transformations P, = 1/M,, we have lim,, o, P,(z) = lim,,_,o P, (w) = 0,
so lim,, o P, (i) = 0 and therefore lim,,_,, M, (i) = occ. O
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Proposition 3.43 Assume that I C R is a proper closed interval and {M, : n > 0}
is a sequence of transformations such that M,(I) C I for each n. If there exists a limit
limy, 0o MoM; - -+ M, (i) = z, then x € I.

Proof: Assume by contradiction that =z € J = R\ I and denote by P, = My---M,,.
Then P,(I) C I, J =R\I C R\ P,(I) = P,(J) and P, !(J) C J. By Theorem 3.41.6,
lim,, o |P;1(J)] = 1 and this is a contradiction with P, 1(J) C J. O

A special case of a representation involve general continued fractions. Let {a, € R\{0} :
n > 1}, {b, € R: n > 0} be sequences of real numbers, The continued fraction

ay ag das a1
bo+— — — = by +
0 bl+b2+b3+"' 0 ag
by +
by + —
2 by +---
represents an infinite product of regular transformations [ o] - [0 wl 0 W] 0 7]+ The

n-th convergents p,,,q, are defined by p_y =1, ¢.1 = 0, po = by, @0 = 1, p1 = a; + boby,
q1 = bla cos Dp = QpPp_o + bnpn—h Gn = OnQn—2 + bnqn—1~ Thus

p-1 Po] _ 1 by
q-1 qo] 0 1
Pn—2 DPn-1 . 0 an- — —pnfl Pn
Gn—2 Gn-1 1 bn_ _anl qn
1 bO . 0 ai i 0 a2 0 an_ _ —pnfl Pn
0 1 1 bl 1 b2 1 bn_ N _Qn—l dn
Deﬁilition 3.44 We say that a general continued fraction by + §+4 3% b conperges to
€ R and write b+ §+y P2 P2y =1, iflim,Hoo[é blo] : [(1) e [(1] ] [(1] ol ==

Definition 3.44 is more general than the classical definition of convergence which requires
that p,/q, converge to x. If hmnao‘o 2—: = x, then by Proposition 3.42, b9—|— Z—i_i_ Z—;_i_ Zf%— L=
since the sequence converges to x in z = 0 and z = co. The converse implication, however, is

not always satisfied. A counterexample is a periodic continued fraction

21212

1+0+1+0+14+---
The transformation M = [ 3] - [} ] = [2 7] is hyperbolic, has the stable fixed point 1 and
the unstable fixed point 0, so lim,, ., M™(i) = lim,, [231 . (1)] [i] = 1. However, p,/q, do not
converge since ’q’;—: = %, % = 23: — 1, Even for this generalized convergence concept we

have a classical result on equivalence of continued fractions:

Proposition 3.45 Assume that by + z—i_,_ et Z—;_,_ ... = x s a convergent continued fraction
and let {r; : i > 1} be nonzero real numbers. Then

r1ay  Tra2Q2  T2T30a3

ribi+ raby 4 rsby +---

0 7rmap . 0 maz|  |ma ria1by |10 o ' 0 as
1 7“1[?1 1 b2 o 7’1b1 T1a2+7”1b1b2 N 1 b1 1 bz .

by +

|
B

Proof:



Chapter 4

Mobius number systems

A number system specifies the representation of real numbers by symbolic sequences, so its key
element is the value mapping ® : ¥ — R. Md&bius number systems are based on representations
of real numbers by sequences of Mdbius transformations, so the alphabet of the subshift >
consists of the symbols of the transformations. We have several means how to define suitable
subshift 3 and suitable value mapping ®.

4.1 Iterative systems

An iterative system over an alphabet A is a system F' = {F, € M(R) : a € A} of Mébius
transformations indexed by letters of A. For a finite word u € A", we denote by F, = F,, o
---o [, ,, the composition of F,, and by F) = Idg the identity. An iterative system can be
regarded as a mapping F : A* x R — R which satisfies F,, = F, o F,. Using the concept
of representation from Definition 3.40, we define the convergence space Xp C A% and the
value mapping ® : Xy — R by

Xp={uecAv: lim F, (i) e R}, @(u) = lim F,,  (3).

n—oo

Here i is the imaginary unit. Thus u € A“ belongs to X if the limit lim,, o0 Fuy ) (1) exists
and belongs to R.

Proposition 4.1 Let F' be an iterative system over A.

1. Forve A", u € AY we have vu € Xp iff u € Xp, and then ®(vu) = F,(®(u)).

2. For v € AT we have v* € Xp iff F, is either parabolic or hyperbolic or decreasing with
F?2#£1d. In this case ®(v*) = s(F,) is the stable fized point of F,.

Proof: 1 follows from the continuity of F;,.

2: If F, is elliptic, then all F (i) lie on a closed curve in U, so F,x(i) cannot converge to
a real number. Let F, be hyperbolic or parabolic, |v|] = p. For each 0 < m < p we have
limy 00 F(%,kwm))(i) = limy 00 FY Fyy ., (1) = s(F,), since the stable fixed point s(F,) attracts

all points of U. Thus ®(v¥) = s(F,). If F, is decreasing and F? # Id, then F? is a hyperbolic
transformation and ®(v*) = s(F?) = s(F,). O

Note that the set Xz need not be closed, so it need not to be a subshift. Moreover, the
value mapping ® : Xz — R can be neither continuous nor surjective.

Definition 4.2 We say that (F,¥) is a number system, if F' is an iterative system and
Y C Xp s a subshift such that ® : ¥ — R s continuous and surjective.

69
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Occasionally as in Section 1.4 we consider number systems for proper closed intervals I C R.
In this case we require that ® : > — [ is continuous and surjective.

0,10,00, 11,11} (left)
(right).

Example 4.3 The binary signed system (F,Xp) from Proposition 1.8 has alphabet A = {1,0,1,0},
transformations Fr(z) = 31, Fy(z) = £, Fi(z) = 2, Fy(z) = 2z, and the subshift Xp with
forbidden words D = {10, 00, 10,00, 11,11}.

A finite word of £Lp can be written as 0" u, where m > 0 and u € {1,0,1}*. If |u| = n then

Fyn, (z) = 2™ (%0 S “Z;l + 2%), so for u € {1,0,1}* we get

O(0"u) = lim Fyr, (i)=Y w,- 2"

n—00
n>0

Thus ¥p € Xz and @ : ¥p — R is continuous and surjective. Figure 4.1 left shows the values
of the disc transformations F\u(O) in the complex unit disc D = {z € C: |z| < 1}. The labels
u € At at F,(0) are written in the direction of the tangent vectors F’(0). Recall that for an
increasing transformation M € M™(R) there exists a family of transformations (M?");cg such
that M =1d, M' = M, and M*** = M" o M* (Proposition 3.19). In Figure 4.1, a point F,(0)
is joined to F,q(0) by the curve {F,F!(0): 0 <t <1}.

Example 4.4 The ternary signed system (F,Xp) from Proposition 1.6 has alphabet A =
{1,0,1,0}, transformations Fy(z) = 54, Fo(x) = £, Fi(x) = 2 Fy(x) = 3z and the subshift
Y p with forbidden words D = {10, 00, 10,00}.

For v € {1,0,1}* we get

O(0"u) = lim Fyn, ()= u, 3"

n—oo 0 %o
n>0

Thus ¥p C X and as proved in Chapter 1, ® : £, — R is continuous and surjective (see
Figure 4.1 right).
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-1/0
-1/0

T/T- -1/1

o o
- S
[ [

Figure 4.2: The system of signed continued fractions from Example 4.5 (left) and the system
of symmetric continued fractions from Definition 1.14 and Example 4.6 (right).

We modify the number system of simple continued fractions of Definition 1.13. Instead of
the decreasing transformation 1/ we take the increasing transformation Fy(z) = —1/x. When
we expand a number x > 1, we subtract 1 (apply F; '(z) = x — 1) till we get into the interval
[0,1).The we apply F, '(z) = —1/z, so we get a negative number smaller than —1. Then we
apply Ffl(x) =z + 1 till we get into the interval (—1,0]. The words 101 and 101 do not occur
in this expansion process.

Example 4.5 The system (F,Xp) of signed continued fractions consists of the alphabet
A = {1,0,1}, transformations Fr(z) = v — 1, Fy(x) = —1/x, Fi(x) = x + 1, and the subshift
with forbidden words D = {00, 11, 11,101, 101}.

Each word u € Lp can be written as u = 1?0010 --- 01", where a; € Z, aga; < 0 and
;a1 < 0 for i >0 (so a; # 0 for i > 0). If @ < 0 then 1* means 1 °. For the transformation

F, we get
1 ag 0 —1 0 —1 T
re = o 3]s
1 1 1 1

= ay— — — .
O ai—ay— - —an_1— (an + 1)

This is equivalent to a simple continued fraction which has either positive entries a1, —as, az, —ay, . . .

or positive entries —aq, as, —ag, .... For an infinite word u = 1%001*10120--- € ¥p we get a
converging sequence
1 1 1
®(u) = lim F} () =ap—— — —

n—oo [0,n a1—Qag—az— - -+
The sequence {a, : n > 0} may be finite if its last member is infinite. In this case we get

1 1 1 1
o(1%°0---01"01%) = ay— — — ,
ar—az— - —0p-1—0n

d(14) = (1) = oo
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Example 4.6 The number system of symmetric continued fractions of Definition 1.14
with the alphabet A = {1,0,0,1} consists of transformations Fy(z) = x — 1, Fy(z) = %

11—z’

Fo(z) = 5, Fi(x) = o + 1, and the subshift ¥p = {1,0}* U {0,1}* with forbidden words
D = {00, 61 10 11,01,00, 11, 10}.

As proved in Chapter 1, the value mapping ® is continuous and surjective

1 1

B(1%0011%2..) = ao+ — —
a1+ as +

a1 =a 1 1
OI°0"I™? ) = —ag— — —
ap — ag —

The transformations of the system are parabolic. Fy, F; have the fixed point oo, Iy, Fy have
the fixed point 0. The system has two symmetries. The transformation —x conjugates Fy to
F) and Fg to Fy. The transformation 1/x conjugates Fy to Fy and Fj to Fj.

4.2 Interval number systems

In Chapter 1 we define several number systems by means of the expansion process. In all
cases we have a SFT ¥ of order two and a system of closed intervals {W, : a € A} such
that F,'(W,) = U{W, : ab € £%}. Let us generalize this approach. Given an iterative
system F over A and a system of intervals {W, : a € A}, we may consider the subshift of all
expansions. A word u € A is an expansion of x € R iff z; = Fu[ )( x) € W,, for all i. It turns
out, however, that this does not always work properly. For example in the system of simple
continued fractions from Definition 1.13 with Fy(z) = 1/x, Wy = [0, 1], we get the expansion
0“ of 1, but 0 belongs neither to Xp nor to Xp: the sequence FjJ'(i) does not converge. A
remedy is to take for W, the open intervals Wy = (00,0), Wy = (0,1), Wi = (1,00). Since
Fy (W) NWy = 0, the word 00 is a forbidden and for a similar reason, the words 11, 01 and 11
are forbidden as well. Although W, do not cover R, the numbers 0, 1, 0o, which are not covered
by W, have expansions which are the limits of expansions of points in W,.

Definition 4.7 We say that W = {W, C R : a € A} is an open almost-cover if W, are
proper open intervals and \J,c,Wo = R. Let F = {F, € M(R) : a € A} be an iterative
system and let W = {W, CR: a € A} be an open almost-cover. A finite or infinite sequence
u € A*UA¥ is an expansion of x € R if z,, = Fu_[olm (x) € W, for eachn < |u|. The sequence
{z, : n > 0} is called the trajectory of x. We denote by W, the set of points with the
expansion u € A*.

Thus z € W, if for each i < n we have z; = F_

. )( z) e W, itz € F, (W,,). Forue Artl
we get

Wy =W N Foy(Wo, )N E, (W) NN F,

“o,n)

The expansion subshift Spy with the expansion language Lrw = L(Spw) is defined by

02)(

EF,W = {U ceA : W, # (Z)}a
SF,W = {u €AY ‘v’n, Wu[()’n) 7é (Z)}

As a convention we set W, = R. For u,v € A* we have Wy, = W, N F,(W,).
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Example 4.8 For the ternary signed system (F,Xp) from Ezample 4.4 we have transforma-
tions and intervals

Fr(z) = (x—-1)/3, Fo(x) = z/3, Fi(zx) = (z+1
Wi = (_%7_%>7 Wy = <_%’%>7 Wy = (é’_%)a Wg = (%7_%)

and we get Spyw = E{E,Oﬁ,lﬁ,ﬁ(}}-

Example 4.9 For the system of simple continued fractions of Definition 1.13 we have trans-
formations and intervals

Fr(z) = -1, Fy(x) = 1/, Fi(z) = z+1,
W = (00,0), W, (0,1), W, (1, 00).

and we get Spw = X11,07,00,17} -

Example 4.10 For the system of signed continued fractions from Definition 4.5 we have trans-
formations and intervals

Fi(z) = z—-1, Fo(z) = —1/z, Fi(x) = z+1,
WT = (OO,—l), WO = (—1,1) Wl (1,00)

and we get Spw = Yoo 11,17,70T,101} -

Example 4.11 For the system of symmetric continued fractions from Definition 1.1} we have
transformations and intervals

FT(:C) = x_la F6($) = % FO(x) = xi_Hv F1<:C> = $+17

1
WT = (OO,—l), Wﬁ = (—1,0), WO = (0,1), Wl = (1,00)
and we get Spw = {1,0}* U {0,1}~.

In the next Theorem 4.12 we give conditions which imply that (F, Spw) is a number system.
In the proof we work with the lengths of sets W, which are not necessarilly intervals. Each W,
is either a proper interval or a finite union of proper intervals. Define the length of a set Y C R
as the length of the shortest interval I such that Y C I.

Theorem 4.12 (Kurka and Kazda [44]) Let F' = {F, € M(R) : a € A} be an iterative
system and W = {W, C R: a € A} an open almost-cover such that W, C V(F,) for each
a€ A. Then

1. (F,Spw) is a number system, so ® : Spyw — R is continuous and surjective.
2. {P(u)} :_ﬂn>0 Wy for each u € Spy.

3. ®([u]) =W, for each u € Lrw.

4. If {W, : a € A} is a cover of R, then ® : Spw — R is redundant.

Proof: We use the angle metric d,, so if = (1(/),r(I)) is an interval with length |I] < 1,
then its length is the distance of its endpoints. For a proper interval I C R and 0 < ¢ < |I|/2
denote by

I~ =InB.((I)), IF" =TNB.(r(I)), IF =T\ (I°" UI).

WW,), ro = v(W,) the left and right endpoints of W,. Since F, are contractions
U(F,), there exists an increasing continuous function ¢ : [0,1] — [0, 1] such

Denote by [,
on F. Y W,)

Nl



74 CHAPTER 4. MOBIUS NUMBER SYSTEMS

that (0 ) =0,0 <y(t) <tfort >0, and |[F,(Y) < ¢(Y]) for each a € A and any set
Y C F, Y (W,). Given u € Srwy and m < n we have
F_l ](Wu[o,n]) g F’LL_[O{m]Fu[O,m)(Wum) = F_l(Wum) g U(Fu'm)

U[O,m Um,

For each n > 0 we get

W = FunFig (W)l < 00 F Wiy ) = 0 Fily, (W)
< P(F, W) < - S UM (EL (W )) < 0 (W,]) < 67(0).

Since ¥(t) < ¢ and the only fixed point of ¢ is zero, we get lim, 0 Wy, | = 0, so there exists
a unique point

2 € () Wagny € Wy N Foo(

n>0

We show that v € Xz and ®(u) = z. If a,b € A and F, '(l,) € W,, then F1(I) C W, for some
open interval I > a. Thus there exists € > 0 such that for any a,b € A,

)N--NE

“o,n)

(W,)-

FL) €W, = EJNWE) S W
Fi\ra) €Wy = EN(WET) C W

Denote by z, = Fzgoln) (), wo = x. Since v € Wy, we get , € F,, ! (W) € W,,. For

“lo,n)
the circle derivation we get

(Fo )" (@) = () (o) - (F,1) (1) -+ (F 1) (),

and each factor in this product is at least 1. If z, € W for an infinite number of n, then
hmn_wo(Fu[O1 ))‘(m) = oo and ®(u) = x by Theorem 3.41. Assume therefore that there exists
ng such that xn c W, \ We = W= UWeT for each n > ng. Let z, € Wg~. Since 2,41 =

o (n) &€ We | we get FoN () & Wiy, 80 Fpl(l,) € {lugsy Tunpy ) Since FH (W) N
Wun .. is nonempty, we get F, '(l,,) = ly,,, provided F,, is increasing and F, (L) = Tu,,,
provided F,, is decreasing. Similarly, if z, € WET, then F, '(r,,) = ry,,, provided F,, is
increasing and F, '(r,,) = l,,,, provided F,, is decreasing. It follows that there exists an
open interval I whose one endpoint is z, such that Fl; Olm(] ) N W,, is a nonempty interval
for each n. If FJ{&H)(I) C W¢ , then |F! oy, (DI = w_1(|FJ[01Yn)([)]), so there exists ¢ > 0
such that |F1;01n)(])| > ¢ for all sufﬁaently large n. By Theorem 3.41, ®(u) = z, so we

have proved Spw C Xp and {®(u)} = ()0 Wu. For each u € Spw and n > 0 we have
d(u) € Wy, ugoy» S0 for each u € Lpw we have ®([u]) C W,,. Conversely, if x € W, then there
exists a € A such that F,'(z) € W, and F,'(W,) N W, # 0, so Wy, # 0 and © € Wy, It
follows that we can extend u to an infinite word v € [u] such that x € W , for each m, so
x = ®(v). Thus we have proved ®([u]) = W,. This works also for W = R, SO <I> : Spw — R
is surjective. Since lim, o0 [P ([upn)]] = 0, ® : Sgw — R is continuous, so (F,Spw) is a
number system. If {W, : a € A} is a cover of R, then {inty—(W,,) : ua € Lpw} is a cover
of W, for every u € Lpy: If z € W, then there exists a € A such that F(x) € W,, so
xeW,NEF,(W,) =Wy, and ua € Lrpw. By Theorem 2.27, ¢ : Spyw — R is redundant. o

The system of symmetric continued fractions of Definition 1.14 is a number system
according to Theorem 4.12 since W, C V(F,) (see Figure 4.3). The circle derivations of the
inverse transformations F, ! can be seen in Figure 4.3 left. Since F{I(WT) = Fﬁ_l(Wg) = (00,0),
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3
1 0 0 1

[ B | Wa | V(E) [E(W)

il 71| (00, =1) (00, =3) | (0,0)

014 U] (=L0) | (=2,0) | (c0,0)

o[ [ 01 | (0.2) | (0,00)

1 [(1) }] (1, 00) (%700) (0, 00) % % % % %

1 0 0 1

Figure 4.3: The system of symmetric continued fractions from Definition 1.14 and Example 4.6
(left) and the circle derivations of is inverse transformations (F,!)® (right).

F_ (Wo) = FT'(W) = (0,00), Spw = {0,1}* U {O 1}“’ is a SFT Xp with forbidden words

= {00,01, 10,11, 01,00, 11, 10}. Note that 0 € Wiz N W, is a fixed point of both F; and Fy.
If the mtervals W, were assumed closed, any sequence in {0,0}* would be an expansion of 0.
With open W, the only expansions of 0 are 0“ and 0°.

For the system of signed continued fractions from Example 4.5, Theorem 4.12 cannot be
applied since Fy(x) = —1/x is a rotation, and V(Fy) = (). However, for the words of length 2
we get W, C V(F,) (see Figure 4.4). In the next Theorem 4.13 we show that a number system
is obtained in this case also.

Theorem 4.13 Let F = {F, € M(R) : a € A} be an iterative system and W = {W, C
R: a € A} an open almost-cover. Assume that there exists n > 1 such that W, C V(F,) for
each u € L}y, Then (F,Spw) is a number system and ®([u]) = W, for each u € Lpw. If
{W,: a € A} is a cover of R then ® : Spyw — R is redundant.

Proof: Consider the alphabet B = L%y, and the iterative system G over B given by G, = F,.
Then V = {W, : u € B} is an open almost-cover, so (G, Sg,v) is a number system by Theorem
4.12. Given v € A“, define @ € BN by @, = Uk, (k+1)n)- 1If u € Spw, then @ € Sg v, so
im0 Fugg iy (2) = QDG( ) for any z € U. In particular the condition is satisfied for each
z = F,(i), where v € A", Jo[ < n. If kn < j < k(n + 1), then Fy (i) = Fug,.,Fu Um’j)(z'k
s0 limj o0 Fuy (1) = P6(0), and Pp(u) = (). Thus Spw C Xp and @ @ Spw — R
is continuous, since lim,_ . ‘Wu[o,n)| = 0. Since V is an almost-cover, ®r : Spw — R is
surjective. By Theorem 4.12 we get ®r([u]) = ®g(@) = Vz = W, for each u € Lpy. If
{W, : a € A} is a cover of R, then {inty—(Wy,) : ua € Lrw} is a cover of W, for each
u € Lrw, so @p is redundant. 0

Definition 4.14 We say that (F, W) is an interval number system of order n > 1 over an
alphabet A, if F = {F, € M(R) : a € A} is an iterative system, W = {W, CR: a € A} is
an open almost-cover and W, C V(F,) for each u € L%y, We say that (F, W) is redundant,
if {W,: a € A} is a cover of R.

The system of signed continued fractions is an interval number system of order 2 with inter-
vals Wt = (o0, —1), Wy = (=1,1), Wi = (1,00). The ternary signed system from Proposition
1.6 and Example 4.8 is an interval number system of order 4. The following Theorem 4.15 is a
partial answer to the question whether for a given iterative system there exists a subshift which
forms with it a number system.
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blu [ F, W, V(F,)

2111\ [y A | (00,=2) | (00, -1)

T/10 [ é] (=2,-1) | (00, —3)

0101 [% 1] (=100 |(=2,0)

0(01|[° 1 |(0,1) (0,2)

L[ J (1,2 (5,00)

21115 3 | (2,00) | (1,00)

Figure 4.4: The second iteration of the system of signed continued fractions of Example 4.5
with alphabet B = {2,1,0,0, 1,2} = {11,10,01,01, 10, 11}.

Theorem 4.15 (Kuarka [37]) Let F' = {F, € M(R) : a € A} be an iterative system.

1. If there ezists a finite set B C A* such that {V(F,) : u € B} is a cover of R, then
®(Xr) = R and there exists a subshift = C A“ such that (F,X) is a number system.

2. If Upens V(Fu) # R then ®(Xp) # R, so there exists no number system with the iterative
system F'.

Proof: Item 1 is a consequence of Theorem 4.13. If x does not belong to the closure of the
union of all V(F,), then there exists an open interval I which contains z and is disjoint from
all V(F,). Given u € A%, then for each n we have |F,_ (I)| < |1, so Fy,, (i) cannot converge

to . Thus x & &(Xp). 0

To find an expansion of z € R in an interval number system (F, W), we find uy with = € W,
and repeat the procedure with z; = F, '(z). However, if some x,, = F’u[o1 )(:c) is an endpoint
of W, , then we are constrained in the choice of further w,, with m > n: if FU[n,m) is increasing
and x, = YW, ) then x,, cannot be r(W,, ) since we would get Wity = (). This is why during
the expansion process we should keep information whether an endpoint of W,,; has been visited.
For u € A* denote by o(u) € {—1,1} the orientation of F),, so o(u) = —1 if F, is decreasing

and o(u) = +1 if F, is increasing.

Definition 4.16 For an interval number system (F,W), define the expansion graph with
vertices (x,s) € R x {—1,0,+1} and labelled edges

o, (F7Yx),s-0(a)), ifv € W,

a, (F7Y2),—o(a)), ifv =1(W,), s <0,

o, (FY(z),+o(a)), ifv =r(W,), s > 0.

V)

Proposition 4.17 Let (F,W) be an interval number system, v € R, u € A“. Then u € Spw
and ®(u) = x iff u is the label of a path with source (x,0).

Proof: Let u be the label of a path (z,0) ¥o (xq1,s1) %, -+, s0 x,, = Fu_[olm) ceW,,. Ifs,=0
for all n, then z, € W,,, and x € W, = # 0. Thus u € Spw and ®(u) = . Let n be the
first integer with s,,1 # 0, so @, ¢ W,,. Then v € Wy, N Fy, (W), so Wy, . # 0 If
x, = Y(W,,) and o(u,) = —1 then s,41 = +1 and z,41 7£ 1( un+1) since otherwise no edge
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would lead out of (2,11, Sp+1). This implies W,
m > n we have

) = (). By induction we show that for each

0,n+2

O(u[n,m)) =-1 = S = +1, Tm 7& 1(Wum),
O(U[n,m)) =+l = sp=-1 2, 7é T(Wum).

In both cases we get Wig,,) # 0, and € Wy ). Thus u € Spw and ®(u) = z. If z,, = v(W,,,),
the proof is analogous. Conversely if u € Spw, ®(u) = x, then x,, € W, . If , € W,, for
each n, then we get a path with s, = 0. Let n be the first index such that =, ¢ W, , say
Ty, = YW,,). Given m > n then Wy, N Fp 1y (Wy,,) # 0 so we get

o(Uupm) = -1 = x5 #UW,,),
o(Upm)) =+1 = xp #r(Wy,,).

In the former case we set s,, = +1, in the latter case we set s,, = —1. This defines an infinite
path with label w. If x,, = r(WW,,, ), the proof is analogous. o

4.3 Partition number systems

If the intervals W, do not overlap, then we get an order on Sgy which corresponds to the order
on R. We say that an open almost-cover W = {WW, C R: a € A} is an open partition if
W, N Wy, =0 for a # b. An open partition is uniquely specified by its set of cutpoints

EW)={UW,): ae A}y ={r(W,): a € A}

Definition 4.18 We say that an interval number system (F,W) is a partition number sys-
tem, if W is an open partition and for each a € A we have oo € W, and oo & F,'(W,).

Examples of partition number systems are the system of simple continued fractions of Defini-
tion 1.13 or the system of symmetric continued fractions of Definition 1.14. The system of signed
continued fractions of Example 4.5 does not comply with Definition 4.18 since oo € F, ' (Wy).
However it can be modified to a partition number system if we take the alphabet A = {1,0,0,1}
with transformations Fy(z) = Fy(z) = —1/x, W5 = (—1,0), Wy = (0, 1).

When we work with partition number systems it is convenient to distinguish two infinities
—00 = —71 and +oo0 = % with the order on R extended by —oo < & < +o0 for every z € R.
Assume that the alphabet A = {0,1,..., s} of a partition number system respects the order on
R. This means that for the endpoints I, = (W,), r, = r(W,) we have

—OO:l0<T0:ll<7”1:l2<“'<7”s,1:ls<7’s:+00.
We define the order < on Spw by

w=<v & 3N, Upn) = Von), Un < Un, O(Upn)) = +1, or
N, Uo,n) = Vjon)s Un > Vny O(Uom)) = —1,
where o(u) = +1 if F, is increasing and o(u) = —1 if F,, is decreasing. For u = X we set

o(A) = +1, so up < vy implies u < v. We write u < v if u < v or u = v. Both inequalities <
and < are defined analogously between finite words of the same length. If u,v € Spyw and u < v
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then wjy,) = vjo,n) for each n. By Proposition 4.17, each z € R has at most two expansions.
If u e Spw, ®(u) = x and n is the first index such that z, = Fu‘[oln)(:v) is a cutpoint of the
partition then we have two possibilities for wu,, but all u,, with m > n are determined uniquely.
We denote the two expansions by £_(z) and &£, (z) and distinguish them by the requirement

Ei(o0) < E_(00), E_(z) R &4 (x) forx € R

If the orbit of x never visits any cutpoint then  has a unique expansion £(z) = £_(x) = ().
Thus E_(r,)0 = a = E.(l4)o, in particular £ _(00)g = s, E4(o0)g = 0. If u = £ (x) and
T; = F‘li (x), then either z; € W, or x; = r,, provided o(uj,) = +1 or z; = [, provided
o(up,y) = —1. For v = & (z) and z; = F, | (x) we have either z; € W, or z; = Y(W,,)
provided o(vj)) = +1 or z; = r(W,,) provided o(vy ;) = —1. It follows that if u € L%y, and
r € W, then

E(@)on) = E-(r(Wu))on) = E+(UWL))jon) = u.

Examples of expansions in partition number systems can be seen in Figures 1.8 or 1.9. If
z,y € W, < y and o(a) = +1 then F;'(z) < F,;*(y). This follows from the assumption
oo & W,, oo & F.1(W,). By induction we get for any u € Lpy,

z,y € W,z <y,o(u)=+1 = F'(z)<FE'(y)
r,y € Wy, z <y,o(u)=-1 = Fu_l(x)>F_1(y)

Proposition 4.19 Let (F,W) be a partition number system and x,y € R.
If v <y then &, (z) < E_(y).

Ei(oo) < E (z) X &4 (x) < E_(0).

If€ (x) < E_(y) or E4(x) < E4(y) then x < y.

Ifu € Ly and E,(v)pn) = u then v < r(W,).

Ifue Ly and u 2 E (), then  W,) < u.

SATREENCEEA R

Proof: 1. If z < y then u = &, (x) # £_(y) = v. Let n be the first integer such that u, # v,.
If o(ujo,n)) = +1 then z,, = Fu_[oln) (x) < Fu_[ol,n) (Y) = Yn, 50 Uy, < v, and u < v. If o(ujg,) = —1
then z, > y,, so u, > v, and u < v.

2. With the convention —oo < x < +00, the argument of the preceding proof works for —oo < =
and r < 4o00.

3. If & _(z) < £_(y), then x # y. From y < x we would get £, (y) < £_(z) < €_(y) which is a
contradiction. Thus x < y. The proof is similar if £, (z) < E4(y).

4. Assume by contradiction r(W,) < x. Then u = E_(r(Wy))j0,0) < E+(r(Wa))jon) = E+(2)[0,n)
which is a contradiction.

5. If < YW,) then £_(2)pn) = E-(UWu))on) < E+(UWL))0,n) = u which is a contradiction.

O

The language of the subshift Sgy is determined by the expansions of the endpoints ,, 7,
of W,. Before the proof of the next theorem note that open intervals I, J C R have nonempty
intersection iff max{1(/),1(J)} < min{r(1),r(J)}.

Theorem 4.20 Let (F,W) be a partition number system. Then
1. u € A" belongs to Lrw iff E4(Lu,)ojul—n) = 0™ (1) =X E_(Tu,)0,Jul—n) for each n < |ul.
2. u € A¥ belongs to Spw iff E+(ly,) 2 0™ (u) 2 E_(ry,) for each n.
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Here we set 0" (u) = upp,ju)) for u e A™.

Proof: 1. Assume that v € Lpy and choose some z € W,. For n < m = |u| we have
Ty = F[ajl) () € Wonwy € Wy, and either 0™ (u) = E_(xn)[0,ju|—n) OF 0™ (w) = E4(20)[0,ju/—n)- By
Proposition 4.19 it follows & (lu, )0, ju-n) = 0™ (®) =X E_(Tu,)0,jul-n).- Conversely assume that
u € A™ satisfies the condition. If m =1 then u € Ly is trivial. Assume that the statement
is true for all v with |v| < m. Since |o(u)| < m, we get o(u) € Lpw. By the assumption with
n = 0 there exist v,w € A™ ! such that ugv = & (luy)jom) = U = E_(rug)om) = uow. We
consider two cases. If o(ug) = +1 then by Proposition 4.19 we get

Er(Fuy (luo))pom-1) = v X 0(u) 2w = E_(F}(ru,)) om-1),
50 Fy H(lug) < v(Wogw), WWauy) < Fig'(1u,). Since F M(ly,) < F, ;' (ry,), we have
maX{Flz)l(luO), (Wow)} < 1rnin{lu’u_01 (Tug)s T"(Wow) }-
It follows Wy N Fyl(Wy,) # 0, so Wy, # 0 and u € Lpw. If o(ug) = —1 then
E(Fyy (o)) om—1) = v = o) = w = E(Fg (rug)) om—1),
50 Fy (lu) > W Wow)), T(Wow)) > Fool (ruy). Since F, H(lyy) > Fy ol (ry,), we get
max{ F.! (rug), UWow)} < min{F ! (L), "(Wo) }-

It follows that Wy N F l(Wy,) # 0, so W, # 0 and u € Lpw .

2. is an immediate consequence of 1. O

4.4 Sofic expansion subshifts
We characterize interval number systems whose expansion subshifts are of finite type or sofic.

Theorem 4.21 (Kurka [39]) Let (F,W) be an interval number system. Then Spw is an
SFT of order m + 1 iff

Va € AVu € LTy, WuNEN(W,) #0 = W, CF ' (W,))

In this case W, = F, W,

U(n—m,n

[O,n—m]( ]) for each w € Lpw with |u| =n+1>m.

Proof: The condition can be equivalently stated in the form that F,(W,) N W, # () implies
F,(W,) € W,. Let u € A" and assume that Ufiitm] € Lrpw for all © < n —m. Then

0 # Wiy = Wao N Fug(Way ), 80 Fug(Wy, ) € Wy and Wy = Fy (W, ). Tt follows

] [0,m] “aml
Wu = Wu[O,m] A Fu[()’m] (Wu[erl’n])
= Fuo(WU[l,m]) N Fu[o,m] (Wu[mﬂv”])

= FUO(Wu[l,n]) = FU[0,1]<WU(2,n]) = ...
= Fu[O,nfm](Wu(nfm,n]) # @
Thus u € Lpw, so we have proved that Spy is an SFT of order m + 1. Conversely, assume

that the condition is not satisfied, so let a € A, u € L}y, be such that W, N F;'(W,) # @ but
Wo & F; 1 (Wa), so W, \ F;H(W,) # 0. Since limy, o max{|W,| : v € Ly} = 0, there exists
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v € Ly such that W, C FY(W,) \ E,)(W,) = F,'(W, \ E,*(W,)), so F,(W,) C W, and
F,.(W,)nW, = 0. Tt follows W,, = W, N F,(W,) = F,(W,) # 0 but W, = W, N F,(W,) N
Fou(W,) = 0. Thus au € Lrw, ww € Lrw, and auv € Lrw, so Spw is not an SFT of order
m + 1. O

The condition of Theorem 4.21 means that each endpoint of F,!(W,) is an endpoint of some
W, where u € Ly, In particular Spyw is an SF'T of order 2 iff each endpoint of F7Y(W,) is
an endpoint of some W,,. In this case we have W, = Fuwm (W,, ) for each u € A™*L,

1 1 1

= = = 1 2 1 0 1 2 1
2 6 6 2 0 11 1 11 0

11 10 01 0] 10 11
1[ 1 1 Tl 1 1 1 1
0 \0 o/ 0
0 1 1 1 0111 0 1 0 1

2 6 6 2 % % % %

Figure 4.5: Expansion subshifts of finite type: the ternary system of Example 4.4 of order 2
(left) and the system of signed continued fractions of Example 4.5 of order 3 (right).

The ternary signed system (F,3p) of Proposition 1.6 and Example 4.4 has the expansion
subshift of order 2, since each endpoint of F),!(W,) is an endpoint of some W}, (see Figure 4.5
left). Indeed F{I(WT) = Fy*(Wo) = F7 (W) = (5, 1), Fﬁ_l(Wg) = (%,L). The system

232 6’ —6
of signed continued fractions from Example 4.5 has the expansion subshift of order 3: Each

endpoint of W, with |u| = 2 is an endpoint of some W, (see Figure 4.5 right).

Theorem 4.22 If (F,W) is an interval number system and {W, : a € A} is a cover of R,
then Spyw is not an SF'T.

Proof: By the assumption, {W, : u € L%} is a cover for each n. If x is an endpoint of
some F,H(W,), and m > 0 then there exists u € Ly, with z € W, so W, N FH(W,) # () but
W, € F,;1(W,). Thus Spw is not an SET of order m + 1. O

Thus interval number systems whose expansion subshifts are of finite type cannot be redun-
dant.

Theorem 4.23 (Kurka [39]) Let (F,W) be an interval number system with alphabet A. Then
the expansion subshift Spw is sofic iff there exists an open partition V = {V, C R: pe B}
such that if Fo(Vy) NV, N W, # 0, then F,(V,) C V, N W,. In this case, Spw is the subshift of
the labelled graph G g,y with vertices p € B and labelled edges p %, q < F,(V,) C V, N W,.

Proof: Let V = {V,, : p € B} be an open partition with the assumed properties and let
Po Mo py My --- Unslop, Unobe a path in the graph Grwy. Then V, NW,, # 0 and for each
k < n we have F,, (V.. "Wy, ) € Fu,(Vp.,) TV, NW,,. We get

Pk+1 Uk41 Pk+1
0 7 Fu[o,n)(v}an N Wun) c Fu[o,n_n(%nq n W'Ufnfl) c---C Fuo(‘/;H N Wul) c VPO n Wum
0 7é Fu[o,n)(‘/}nn A WUn) - Fu[o,nq)(Wun—l) M---N FUO(WUI) N Wuo - Wu[

0,n)’

Thus ujp,) € Lrw. On the other hand, assume that W, # () and let us construct a path in the
graph with the label u. There exists py € B such that () # V,,, N W, and there exists p; such
that

0 # Vo 0V (Vo N W) C Vo N (Vg MW,
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By the assumption, F,,(V,,) C V,, N W,,. Thus we have an edge py o p; and we get V,,, N
F1(W,) # 0. There exists py such that

uo
04V, NF (Vo NEN (W) C Vi NE (Vo NW,).

Thus we have an edge p; 4 py and V,, N F 1 (W,) # (). We continue by induction. Assume

U[o,2)

that we have constructed p, € B with V,, N F, L (W,) # 0. Then there exists pyy1 such that

U0, k)

0 # Vo ,NE SV, nE (W) CV,

U[O k) Pk+1

N F;Cl(vpk N Wuk)?
e N E L (W) # 0. We have constructed a path with
label u, so we have established that Sy is the subshift of the graph Grwv.

Conversely assume that Spy is sofic. Recall that the follower set of a word u € Lpw is
Fuo={veA: w € Spw}. Since Sy is sofic, the set {F, : u € Lpw} of follower sets
is finite. Given u,v € Lprw, then F, = F, iff Wy, # 0 & Wy, # 0 for any w € Lpw.
This is equivalent to F, '(W,)NW,, # 0 & F, Y (W,)NW, # 0 for any w € Lpw. Since
the length of W, tends to zero as |w| — oo, we get F, = F, iff F,;}(W,) = F,Y(W,), so
{F;Y(W,) : u € Lrpw} is a finite set. Each F,'(W,,) is either an open interval or a finite
union of open intervals. Denote by £ the finite set of all endpoints of all these intervals and
let {V, : p € B} be the open interval partition whose cutpoints are exactly £. Assume that
V, N W, # 0 and let z be its endpoint. Then z is either an endpoint of W, or an endpoint of
some (interval of) F,'(1W,) N W,. In the former case, F, !(z) is an endpoint of F, '(1V,), in
the latter case, F},!(x) is an endpoint of some interval of

so we have an edge py ™% pry+1 and V,

FW,nF*(W,) = F N EW)NWy) = F ' W

ua

Thus in either case, F; '(x) € &, so it is an endpoint of some V. This means that if V,NE; (VN
Wo) # 0 then V2 € FH(V, N W,). Thus we have proved that V' satisfies the conditions of the
theorem. o

If the conditions of Theorem 4.23 are satisfied, then we say that V = {V,, : p € B} is an
open SFT partition for (F,W).

Theorem 4.24 A partition number system (F, W) has a sofic subshift Spw iff E-(U(W,)) and
EL(W(W,)) are periodic sequences for each a € A.

Proof: The condition implies that £_(r(WW,)) and £, (r(W,)) are also periodic sequences. If all
trajectories of all edpoints of W, are periodic, then the points of these trajectories form a finite
set £ and we define V' = {V,,: p € B} as the open partition whose endpoints are the points of
E. Assume by contradiction that F,(V,) NV, N W, # 0 and F,(V,) € V, N W,. Then for one of
the endpoints z of V,NW, we have F, !(x) € V, and this is a contradiction since x belongs to a
trajectory of an endpoint of some W,. Conversely, let V' = {V},: p € B} be an open partition
which satisfies the conditions of Theorem 4.23. Assume by contradiction that an endpoint x of
some W, does not have periodic expansion u = €_(z) or u = £, (x). Let n be the first integer

such that =, = F, _[01 ](95) is not an endpoint of any V,, so there exists b € A such that z,, is

an endpoint of some V, N W}, and z,,4; € V, for some ¢ € B. Then x,, € F;(V,) NV, N W, so
F,(V,)NV,NnW, # 0, but F(V,) €V,N Wb and this is a contradiction. 0

Note that the binary signed system from Example 4.3 is not an interval number system. If
we take the cover Wy = (3, %5), Wy = (55, 3), Wo = (3£, 2), Wi = (3,3), then Spw € Xp.

1071 202
We obtain an interval number system with another cover:
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pla V, F 4V, | ¢ 1 1
0 9 <_3a_2) (_%a_l) 2 0 0
110 (_27_%> <_17_%) 3
1 T](-2,-3)|(-3,-2) |0
2|T|(-3,-1) | (-2,-1)|1,2

Tl(—1 23| (-1 _1
31(1’4><1’2)3’4 1 23 1 0o 1 32 1
411 (_%,_%) (_%,0) 5 0 12 2 é 2 21 0
501 (=10 | (0,1) |6,7,8 0 —I——1 _
510 (_%’O) (=1,0) |3,4,5 323131 0 131323
610 (0’%) (0’1) 6,7,8 112 14 2 1 241 211
61 (0.1) | (-1.0) [3.45 /AN ERYAN

1 3 1
It GD | ) |6 WHY 1 3
811 (2,1 (5.1) |78 0 0 0
3

o111 (L3) (1,2) 19,4 323131 0 131323
All (%72) (2,3) B 112142 1 241211
A0 () | G s M AL DKL
B|0| (2,3) (L,3) |9 323131 0 131323

_ 112 14 2 1 241 211
Cl0| 3,-3) | (5,-% |A4,B,C01 1 1

Figure 4.6: The open SFT partition and the labelled graph of the binary signed interval system
from Example 4.25

Example 4.25 The blnary signed interval system (F,W) has alphabet A = {1,0,1,0},
tmnsformatzonsF( ) =54, Fo(z) = 2, Fi(z) = 22, Fy(z) = 2z, and intervals Wy = (—2,0),
Wy = ( 2 72) Wy = (072) WO (§ %)

Since V(Fy) = (=2,0), V(Fy) = (22,2), V(FR) = (0,2), V(F) = (V2,—v2), we get a
number system by by Theorem 4.12. The expansion subshift Sgy is sofic. Its SF'T partition
V ={V,: p € B} has endpoints —3, =2, 22, =1, 2%, =1, 0, 1, 2,1, 3, 2, 3. Since W is a cover,
Srw is not a SF'T by Theorem 4.22. Indeed, each cylinder interval Wy. contains the endpoint
0 of V. The graph Gpw,v is given in Figure 4.6. Each row of the table gives all edges (p, a, q)

with source p € B and label a.

Proposition 4.26 Let (F, W) be an interval number system with sofic expansion subshift Sgw
and let V. ={V, : p € B} be its open SFT cover. Then

1. If p % qis a path in Grwy, then F,(V,) CV,NW, and F,(V,) CV,NW,.
2. o(F,) =V, = U{Fa(Vy) : p—>q}
3. ®([u]) = W, = U{Fu( q) 5 q)

Proof: 1. By the proof of Theorem 4.23 we have F,(V,) C V, "W, so F,(V,) C V,NW, C
V, N W,,.

2. If p 2, g, then F,(V,) CV,. If z € V,, then there exists a € A with z € W, and V, "W, # (.
There exists ¢ € B with F;'(z) € V,, so x € F,(V,) and p % ¢. Thus we have proved
V, = U{FL(V (Vo) : p % q}. We show ®(F,) = V,. For x € V, there exists p = py “o, p; with
F l(z) e Vp1 We continue in this construction and obtain an infinite path p = pg “o p; - --

uo - -
such that Fu[olm(x) €V, 50z € Fyy (Vo) € Wyp,,. Thus z € ®(F,), so V, C (F,).

Uo,n)
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Conversely, if x € ®(F,), let p=py “o p; %0, --- be an infinite path with ®(u) = x. For each
n we have F, (V,,) C V,, N Waigm # (). Choose an x, € V,, N W, then lim,, o0 z,, = T,

Ufo,n) -
so & € V,. Thus we have proved ®(F,) = V. o
3. If z € W,, then we construct a path p *, ¢ with z € V, C W, similarly as in the
proof of Theorem 4.23. The only difference is that we choose at each step pr with F! () €

Ulo,k)

V,. N F; 1 (W,). The opposite inclusion (J{F,(V,) : = ¢} € W, follows from 1. o

©[o,k)

Ulo,n)?

4.5 Sofic number systems

Proposition 4.26 has a partial converse. Let (F,3) be a number system with a sofic subshift
Y and let G = (B, E) be a labelled graph with ¥ = X5. Then the sets {®(F,) : p € B}
satisfy the same conditions as the sets Vp in Proposition 4.26, but they need not be intervals. If
they are intervals, then their endpoints can be obtained as ®-values of periodic paths and these
periodic paths are determined by selectors. A selector for a labelled graph G = (B, E) is a
mapping K : B — E which selects at each vertex p € B an outgoing edge K( ) = (p, a,q) with
source p. A selector K determines for each vertex p € B a path p = pg “0 p; “o --- defined
by po = p, K(p;) = (pi, usi, pi+1). This path is periodic, since there exist i < j with p; = p; and
then pitr = Pjsr, Uisk = Ujqp for all k > 0. We denote by K? = wup;(upj))” the label of the
path of K.

Theorem 4.27 Let F be an iterative system over A and let G = (B, E) be an A-labelled graph
such that (F,X¢g) is a number system. For p € B consider the closed sets V, = ®(F,). Then

1. V= UH{F.(V) : p-% q} for each p € B.

2. O([u]) = U{Fu(V,) : 4 q} for each u € L.

3. If all V,, are intervals then there exist selectors L, R, such that for each p € B either V, = R
or 'V, is a proper closed interval with (V) = ®(L?) and r(V,) = ®(RP).

Proof: 1. If p %, ¢ and u € F, then au € F, and F,(®(u)) = ®(au) € ®(F,) = V,, so
F,(V,) € V,. Conversely, if au € F,, then there exists an edge p -4, ¢ with v € F, and
B(au) = Fo(B(uw) € Fy(V,). Thus Vi = ULF,(V,) s p 2 a}.

2. If ¥ qgand v e F, then F,(®(v)) = ®(uww) € P([u]), so F,(V,) € ®([u]). Conversely, if
uv € [u] then there exists a path p %, ¢ ¥, and ®(uv) = F,(®(v)) € Fu(V,), so ®([u]) =
U{F.(V,) - & ¢} for each u € Lg.

3. Assume that each V}, is an interval and denote by By = {p € B : |V,| < 1} the set of vertices
whose intervals are proper. For p € By denote by I, =1(V,), r, = r(V,). Since [, € V,, by item
1, there exists an edge p 4, ¢ and = € V, with [, = F,(z). It follows that V is also a proper
interval and either x = [, provided F, is increasing or x = r, provided F, is decreasing. We
define the left selector L on p as L(p) = (p, a, q). Analogously there exists an edge p 2, s such
that F,(r,) = rs provided F, is increasing and F,(r,) = I; provided Fj is decreasing, and we
define R(p) = (p,b,s). If V, = R, we define L(p) and R(p) arbitrarily. Thus L, R are selectors
for G = (B, E). For p € By, there exists ¢ € By such that p % ¢ %, ¢ and L = wv®. For
every k we have ®(LP) = F,(s(F,)) = F,x(s(F,)) € ®([uv¥]). Depending on the orientations
of F, and F, we have either [, = F,(I,) = F,x(l;) € ®([uv*]) or I, = F,x(r,) € ®([uv¥]). Since
limy, o0 | P ([uv®])] = 0, we get ®(LP) = [, and similarly ®(RP) = 7. 0

If L, R are selectors from Theorem 4.27, then for each selector K and for each p € B we have
O(K?) € ©(F,) C [®(LP), P(RP)]. Since there is only a finite number of selectors for a given
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labelled graph, the left and right selectors L, R from Theorem 4.27 can be found effectively.
We define now a class of number systems with sofic subshifts whose sets ®(F,) are intervals.
We say that V = {V,, CR: p € B} is a closed interval cover, if each V,, is a closed interval and

Uyes = R.

Definition 4.28 A sofic number system of order n > 1 over an alphabet A is a triple
(F,G,V), where

F={F, e M(R): a € A} is an iterative system.

G = (B, E) is a finite A-labelled graph.

V ={V, CR: pe& B} is a closed interval cover of R such that V, = J{F,(V,): p % q}.
V, C U(F,) whenever p %, q and |u| = n.

If G = (B, E,i) is an initialized graph, then V; = R.

If {inty, (Fo(Vy)) © p % q} is a cover of V), then we say that (F,G,V) is a redundant
sofic number system.

S Srds Lo v~

Theorem 4.29 Let (F,G,V) be a sofic number system. Then

(F,Xq) is a number system, i.e., ¥ C Xp and ¢ : Xg — R is continuous and surjective.
O(F,) =V, for eachp € B

x = ®(u) iff there exists an infinite path (p,u) such that x € ( Fyy, (Vy,)-

O([u)) = U{Fu(V,) : 4 q} for each u € Lg.

If G = (B, E,i) is an initialized graph then ®(ju]) = U{Fu.(V,) : 1% ¢}.

If G = (B, E,i) is a deterministic graph and i %, q, then ®([u]) = F,(V,).

If (F,G,V) is a redundant sofic system then ® : ¥g — R is a redundant mapping.

NS Srds Lo

Proof: We assume that the order is n = 1, since the proof in the case of a general order is
similar. Thus we assume that V, C U(F,) whenever p ¢, ¢q. By Proposition 3.33 there exists
a real increasing function v : [0,1] — [0, 1] such that ¥(0) = 0, ¢(t) < ¢t for ¢ > 0 and for
each a € A and for each interval I C U(F,) we have |F,(I)] < ¢(|I]). Let u € ¥g and let
Po X0 p1 YL py ¥2 --- be an infinite path with label u. For 0 < m < n we have

Fu[m,n)(v;?n) C Fu[m,n—l)(‘/;)n—l) C---C ‘/;9771 - U(Fum—1)v
|Fu[o,n)<‘/pn)| = |Fu0Fu[1,n)<‘/pn)| < ¢(|Fu[1,n)(%n)|) < ¢2(|Fu[2,n)(‘/pn>|) <
< (VD).
Thus limy, o0 [Fuy,, (Vp,)| = 0. Since F, n+1)(Vn+1) C Fuy,y(Vp,), there exists a unique

point x € (1, Fuy,,(Vp,). Since Fyy (V) C Vi, by Proposition 3.8 there exist points
Tn € Fug . (Vi) such that

()" (@) = Voo l/1Fugg ) (Vo) | = Voo | /4" (1V2, ),

so lim, oo T, = =, lim,Hoo(F_[O1 ))'(:Un) = 00. By Theorem 3.41 we get ®(u) = z. Thus
we have proved ¢ C Xp. Since F,, (V,,) C V;)O, we get ®(F,,) C V,,. Conversely, we

Ulo,n)

construct for each © = 2y € V, a path p = py 24 p; Y, py “2 --- such that v = O(u).
If po “® p, has been already Constructed and z, = Fu[o1 )(x) € V,,, then we find an edge

Pn Yo poyr with z, € F, (V,,,,) and set x,11 = F,'(z,). Then z = ®(u), so we have
proved V, C ®(F,) for_each p € B. Since V is a cover, ® : ¥¢ — R is surjective. We
show that ® : s — R is continuous. For u € L} there exists a finite number of paths

Poj X prj; 4, - Unstop, s with label w. Set W, = U Vi; € U(F,,_,). Then ®(u) € F,(W,)
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and |F,(W,))| < ¥"(JU(F,,,_,)|) < ¢"™(1). Thus |®(u)| < 9"/(1) and therefore ® is continuous.
Thus we have proved 1,2,3.

4. If x € ®([u]) then there exists an infinite path with prefix p %, ¢ so x € F,(V,). Conversely,
if z € F,(V,), then u can be extended to an infinite path and = € ®([u)).

5. If x € ®([u]) then there exists an infinite path with prefix i %, ¢ so z € F, (V). Conversely,
if z € F,,(V,), then u can be extended to an infinite path and = € ®([u]).

6. is an immediate consequence of 5.

7. If € ®([u]), then there exists a path with label u and target p such that x € F,(V}), so
F;'(z) € V,. By the assumption there exists an edge p -9, ¢ such that F, '(z) € inty, (F,(V,))
so x € intp, v,)(Fua(Vy)) C inte(u) (®([ual)). By Theorem 2.27, ® is redundant. O

Note that the mapping ® : ¥ — R may be redundant even if the system (F,G,V) is
not redundant, This may happen in an interval number system (F, W) with a cover W, whose
expansion subshift Sg is sofic. Then {V}, : p € B} need not be a cover. However, the subshift
may have another graph G with another almost cover V' and (F,G, V) may be redundant.

OF

1
1———=0

plal V, [F (V)| g

T[T (00, -1)| (00,0) [1,0 0
010/ (-1,0) | (1,00) | 1 >1<
00| (0,1) |(co,—=1)] 1 1——=0
1] (L) | (0,00) |0,1 O

1

Figure 4.7: The labelled graph of Sgy for the system of signed continued fractions of Example
4.5

Consider the number system of signed continued fractions (F,Xp) = (F,Sgw) of Example
4.5 with forbidden words D = {00,11, 11,101,101} and intervals Ws = (oo, —1), Wy = (-1, 1),
Wy = (1,00). Its open SFT partition has alphabet B = {1,0,0,1} and intervals V; = (oo, —1),
Vo = (-1,0), Vo = (0,1), Vi = (1,00). The graph Gpgw,y is neither initialized nor right-
resolving: all edges with the same source carry the same label (see Figure 4.7) and we have

FA(VE) = 00,0l = [oo = 1JU[-1,0] = V5 U V5
Fo' (V) = [l,o0]=W1

Fo ' (Vo) = [o0,-1] =V

Ft(Vi) = [0,00] = [0,1] U [1,00] = VU VL.

The vertices of the deterministic labelled graph of ¥, are proper prefixes of the forbidden
words B = {\,1,0,1,10,10}. In figure 4.8 we give the left and right selectors constructed
according to Theorem 4.27, corresponding intervals V,, and their preimages by the labels of
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plal g | LT | R Ve | Fa(Vy) <1>
MO, L,1I0 T 1] 17 | 01¥ | [00,0] |00, —1] 1 140 _ 9,
A0[0|10T" [T01® | [1,-1] | [~1,1] A {
201,701 1|01 | 1% | [0,00 | [1,00] N0l ><
Tl0[T0|10T"| 1% | [1,00] | [~1,0] \\>1 0 N
1/0[10] T [T01¢ | [oo, —1]| [0,1] ! o

Figure 4.8: The deterministic graph of the number system of signed continued fractions.

ingoing edges. We have

Vi = [00,0] = [oo, =1JU [-1,0] = Fy(V7) U Fo(Vyp)
Vo = [1,-1] = [1,00]U[oc, 1] = F1(V1) U F7(V3)
Vi = [0,00] =1[0,1] U[1,00] = Fo(Vip) U F1 (V1)
Vip = [1,00] = F1(V1)

Vip = o0, —1] = Fi(1f)

The interval cylinders are obtained from the unique paths with source i = \: ®([1]) = FfV; =
(oo, —1], ®([0]) = FoVo = [-1,1], ®([1]) = F1V; = [1,00]. Thus g = ¥Xp and (F,G,V) is a
sofic number system.

Consider the binary signed system with alphabet A = {1,0,1,0} and forbidden words
D = {10,00, 10,00, 11, 11}. The vertices of the deterministic labelled graph are prefixes of the
forbidden words B = {\,1,0,1,0}. The graph together with the V-intervals is in Figure 4.9.
We have

Vi = R=F(Vp)UF(Vo) UF (V1)U Fy(Vp)

Vi = [=1,3] =[-1, -3 U[=35, 3] = F5(Vp) U Fy(Vo)

% = [_171] = [_17_5 U [_%7%] U [%’ 1] = FT(‘/T) UFO(VO) UFl(Vl)
Vi = [-51]=[-33uli1]=F(%)URW)

plalq] L] R'| V, F.V, y%\
0.0, T/ TIT T 01 [ [=15] [[=1,—4] | 1<l )
0,1,1/0/0| 1 1“1 [-1,1] | [-3,3] \%0/
0,1,0[1]1] 01| 1¢|[=51]| [1] R /

0[0|0] 101|101 | [%, -1 | [3, 3] @

Y Y 0

Figure 4.9: The deterministic graph of the binary signed system
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4.6 The contraction and length quotients

The speed of convergence of a number system is expressed by its length quotients which mea-
sure the dependence of the cylinder interval length on the word length. The length quotients
are related to the contraction quotients which measure the growth of the derivations of the
composite transformations. To develop the theory of these quotients we need the subadditive
Lemma 4.30.

Lemma 4.30 Let {a, : n > 1} be a sequence of real numbers such that anvpm < @+ a,,. Then
there exists a limit a = lim,, o %* and a < 2= for each m.

Proof: For a fixed m, let n = m - g, + r,, where ¢, = |[n/m] is the integer part of n/m, and
0 <7, <m is the remainder. Since a,, < @, - a, + a, , we get
Qy.,, A

. G, . On .
limsup— < a,, - lim — 4+ lim = —
n—oo T n—oo 1 n—oo 1 m

. a/TL . . a/m
limsup — < liminf —
n—oo 1 m—oo 1N

so the limit a = lim,, o, %* exists and a < %= for each m. 0

Proposition 4.31 Let (F,X) be a number system. Forn >0 set

q, = f{|E(P(v))|: uv e X, |u| =n}
Q. = sup{|F2(®(v))|: ww € X, |u| =n}

Then

1. 0<dn 9m < Qnim-

2.0< Qn+m < Qn ’ Qm

3. There exists the limit q = lim,,_,o {/d, called the lower contracting quotient of (F, ).
4. There exists the limit Q = lim,,_,, /Q,, called the upper contracting quotient of (F,Y).
5. For each n we have q, < q<Q < Q,

Proof: The function @, : ¥ — R defined by Q,(u) = [(Fy,,)*(®(c"(u))| is continuous and
positive. Since X is compact, the function has a positive minimum q,, and a positive maximum
Q.. Let www € X, |u| = n, |v| = m. Since F2 (P(w)) = EF(P(vw)) - F3(P(w)), we get
dn A < FJU((I)(QU)) < Qn ’ Qm7 SO Oy * Am < Antm, Qn+m < Qn ’ Qm We apply Lemma 4.30
to —Inq, and In Q,, to get the existence of limits q, Q with q, < q < Q < Q,. 0

Proposition 4.32 If (F,W) is an interval number system then
4 = min{F}(z): ue Ly, x € F, (W,)}
Q. = max{F;(z): ue L,z eF, (W)}

Proof: If uv € ¥ then F,(®(v)) = ®(uv) € ®([u]) = W, so ®(v) € F;1(W,). There exists
uv € X such that

Ao = F2(®(0) > min{F () : u€ Lhya € F, (W),
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Conversely, the minimum of all F*(z) on F,'(W,) is attained at some x € F,'(W,) with
u € Ly . Since W, = ®([u]), there exists uv € [u] with z = F;Y(®(uv)) = ®(v), so

min{F;(z) : u € Ly, v € F*W)} = E(®(v)) > qn

For Q,, the proof is analogous. u]

Proposition 4.33 If (F,G,V) is a sofic number system then

q, = min{F;(z): z €V, % q,|ul =n}
Q. = max{F;(z): z €V, % q, |ul =n}

Proof: There exists uv € ¥ such that |u| =n, q,, = F$(®(v)). There exists a path p %, ¢ %,
such that v € F,, ®(v) € ®(F,) =V,, so q, > min{F2(z) : v € V,, % ¢, |u| = n}. Conversely,
there exists a path p %, ¢ and x € V,, where F(z) attains its minimum. Since V, = ®(F,),
there exists a v € F, with x = ®(v), so min{F?(z) : = € V,, % q,|u| =n} > q,. For Q,, the
proof is analogous. O

Definition 4.34 Let (F,X) be a Mdbius number system. The lower and upper length quo-
tients are defined by

1, = min{|®u]|: ue L},
L, = max{|®[u]|: uve L}
1 = liminf {/1,
n—oo
L = limsup v/L,
n—oo

Proposition 4.35 For an interval number system (F, W) we have L < X/Q,, for each m > 0.

Proof: For each u € L}, we have |®([u])| = [W,| < |F,
n =km 4+ 7 with 0 < j <m. We get

(Wu,)|- For a fixed m let

[0,n)

|Wu| < |Fu[0’m)(Wu[myn]>| < Qm ’ |Wu[m’n]| << Qﬁ@ ’ |Wu[km’n]|
k

VWL < QT

where C' = max{|W,| : |u| < m}. Asn — oo, k — oo and the right-hand side converges to

VQum- o

Theorem 4.36 If (F,G,V) is a sofic number system and m > 0 then

Y, <1<L< 3/Q..
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Proof: For a fixed m denote by
Co = min{|F(Vg)| - % ¢, |ul < m}
Cr = max{|F.(Vo)]: % g, [u] <m}
Assume that p %, ¢ is a path in G and n = km + j, where 0 < j < m. Then
IEV)l < Qe [Fomu(Vo)l < -+ < Qo [Formuy (Vo) < Cr - QG

and similarly |F,(V,)| > Co - 4%, so

1 _k _k
Con . qﬁlm-i—] S n/’F ( )’ < Cn km+J

As n — oo, the left-hand side converges to ©/q,, and the right-hand side converges to /Q,,.

O

Example 4.37 For the binary signed number system of Ezample 4.3 we havel = L = 1

N

Proof: sz(a,b) =
VP c [_1’ 1]>

- t( - Form >0, ue {1,0,1}" we get ®[0"u] = Fgn,(V,) where [-1,1] C

2"[p(u) — 27" p(u) + 2771 C @[0"u] € 2™ [p(u) — 27, p(u) + 277

where ¢(u) = 37, w277, so [p(u )| < 1. On both sides we have an interval of the form

I, = [Fo=te Zanthu] where |a,| < 1,3 < b, < 1. We get sz(I,) = % an—t_p=n=l <

sz(I,) < 2" From the estimate 4‘52(1) < || < MZ(I) we obtain limy, . {/|I,| = 3, so

limy 0o ™4/ |®[0"u]| = . For 0" we have ®[0" 5 (Vg) = (222 272 with sz(®[0™]) =

1 1

; | =
2
2000 5o i §/|207]] = 1. Thus1=L = 1. ]

Proposition 4.38 For the system of symmetric continued fractions from Example 4.6 we have
1< 3520312, L=1.

Proof: The deterministic graph of the system has vertices B = {)\, 1,1} and edges

|
ol
|
ol

7780212

T
T

with intervals V; = [00, 0], Vi = [0, 00]. For u = (10)™ we have FJ} = [’%{;:1 , %], where f,, are

the Fibonacci numbers defined by fi = fo = 1, frye = fu + fn_1. It follows

201 = FiVi = [

s2(®[(10)"]) = fon(font1 + fon1) ® 0”@+ a1 /5,

where a = Y21 = 0.618, 50 lim,,_,0e %/ |CI>[(1O) || = a?, andl < a?. For u = 1" we have ®[1"] =
Fr (Vi) = [2, 3], with sz2(®[1"]) = nso & < |[®[1"]| < L. It follows lim, o {/|®[17]| = 1, so
1=1. O

B
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o
P N
@ AN
6 » . .
/e\. % J .,L\'\*
T/T- lﬁo ‘ 7% 171
g ’%Z
i1 o 1 1 Y Yo
0 1 1 1 0 2
3 1 N >
2_:—:#:—:_2 @ Q
=

Figure 4.10: The square interval number system with r = (v/2 — 1)2 and Wy, = V(F,) =
(1 —+/2,4/2 —1). The expansion subshift is the circular subshift with speed 1.

4.7 Polygonal number systems

Polygonal number systems consist of hyperbolic transformations whose fixed points form ver-
tices of a regular polygon. The parameters of these systems are the number n > 3 of vertices
and the similarity quotient 0 < r < 1 of the transformations. We denote by @,(x) = rz the
similarity with quotient r and by R, the rotation by angle %’r Forae A={0,1,...,n— 1},

we get
cos 7t sin 7% 0 [r 0]
. 5 r —
—gin T (cog Te 01
n n

Definition 4.39 The polygonal iterative system with n > 3 vertices and quotient 0 < r < 1
has alphabet A ={0,1,...,n— 1} and transformations F, = R*Q, R, *.

n

The transformations of the system are

. [ rcos® I 4 sin® I (1 — r) sin %% cos ¢
© (1 —r)sin 7% cos 7% rsin® I¢ 4 cos? T
[(1+7) — (1 —r)cos 22 (1 —r)sin 222
N I (1 —r)sin 222 (147r)+ (1 —7)cos 224

The expansion interval of @, is V(Q,) = (—/7, /) with the length

1—r 1 1—7r
= — arccos

21 m 1+7r

To get an interval number system we take an interval Wy = (—s, s) with s < /7 and

1
IV(Q)] = —arccotg
T

W, = Re(W) = (

ma : m™a ma : m™a
scos Tt +sin 7 scos T + sin 7 )

t A mTa 2 TQ Ta
ssm +COSn ssim - +cosn
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All W, have the same length |W,| = %arccos ;ii These intervals should overlap, so their

length should be larger than % This condition gives

1—cosZ

T
r>s>, —2% =tan —
Vrzsz 1—|—COS% 2n

which implies r > tan? 5. For example for n = 3 we get r > %, for n =4 we get r > 3—2v/2 ~

.

0.172 (Figure 4.10), and for n = 6 we get r > 7 — 41/3 ~ 0.072. Thus we have

Proposition 4.40 Ifn >3, A={0,1,...,n—1}, F, = R.Q, R, %, W, = R(—s,s), tan 5- <
s < /1 <1, then (F,W) is an interval number system.

3.1/1

A\ \
VL P
®,

o
=
[R=Y

Figure 4.11: The sexagon number systems with circular SFT with speed 1 and parameter
r=2—+/3 (left) and r = 1 (right)

We consider now polygonal systems (F,Y), with circular SFT ¥ which are symmetric with
respect to rotations and allow a limited speed around the circle. The circular subshift >; with
speed 1 allows only transitions to neighboring letters, so the forbidden words are

D ={abec A*: b ¢ {mod,(a —1),a, mod,(a+ 1)}}.

For example, with n = 4, the forbidden words are D = {02,13,20,31}. With n = 5, the
forbidden words are D = {02,03, 13, 14, 24,20, 30, 31,41,42}. The left and right selectors are
L(a) = mod,(a — 1), R(a) = mod,(a + 1), so L® = (0(n — 1)---21)*, R® = (012--- (n — 1))*.
For v = 012--- (n - 1) we get F, = QT(RHQTR;1)<R121QTR;2) e (R?z_lQrR}z_n> = (Qar>n
We have

rcosT rsinZt

Qar = |:_ . 7rn:| ) trC(QTRn) =

s = COS —
n n

(r+1)%cos® X
r

Thus tre(Q,R,) > 4 iff r? cos® L 4 2r(cos® L — 2) + cos? £ > 0. This quadratic inequality has
discriminant D = 4 sin? * and solutions

2—cos? L £2sin® T (1+£sinZ)?> 1£sinZ

2 T T 1 _en?r in™’
cos® I —sin” 2 I Fsin?
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1—sin =

fr>r,= Trsm ——2 then Q. R, is elliptic and X1 € Xp. If r = r, then @, R, is parabolic and if
r < r, then QTR is hyperbolic. The stable fixed point of @),.R,, is then

(I—r)cosT —/(147)2cos? L —4r

2sin T
n

ST,'n« =

The vertices of the deterministic automaton for 3; are the prefixes of the forbidden words
B ={\0,1,...,n—1}. For the V-intervals we get V, = R%Vj, where Vj = (=S, p, S;.n). The
value mapping ® : ¥ — R is surjective provided the intervals V, cover R, i.e., if the length of
Vb is at least %, ie., if

1—Cos— 1—cosZ
> n n

Srn p T
1+COSE Slnﬁ

or

\/(1+T)2COS2Z—4T§(3—T)COSZ—2

n n

The right-hand side of this inequality must be positive which gives the condition r < 3 —1;

For n = 3 we get r < —1 which is impossible so there exists no polygonal number system with
n =3 and ;. If n > 4 then the rlght hand side of the 1nequahty 1s positive, and we get after

2cos = 1—sin & 3 cos

—’“+1 Since Troim & 2 < —% 2 for n >4, we get

n

a little of algebra the condition r >

Proposition 4.41 Ifn >4, A={0,1,...,n— 1}, F, = R°Q, R, ¥ is the circular subshift
with speed 1 and

2cos T —1 1—sinZ
SRR
QCOS%—FI_ _1+Sln:—§

then (F,%4) is a number system.
Proof: The condition implies that the sets V, obtained by the selectors cover R. To show

that (F),3;) is a sofic number system we have to prove the condition 4 of Definition 4.28 that
V, € U(F,) provided _¢, g. This reads V,—y UV, U V41 € U(F,). This is satisfied provided

Vi = R,(Vo) € U(Fp) and this is equivalent with Vo C R,'(U(£)). Since U(Fy) = (=, =),
the condition reads
cos T — /rsinZ
Srin = sin Z 4 /rcos =
for all r» with QCZZ—+ <r< 1 +$£ This can be proved by elementray methods. O

In particular for n = 4 we get unique r = (v/2 — 1)? (Figure 4.10). For n = 6 we get
2-V3<r< % The systems with these extreme values are in Figure 4.11. To obtain
more convergent systems we take a smaller circular subshift 3/, with speed % The subshift
forbids the same words as 3; and moreover the words 012, 0(n — 1)(n — 2), 123, 10(n — 1) .. ..
For the right selector we get L° = v* with v = 01122---(n — 1(n — 1)0. For F, we get
F, = Q. (R,Q*R, " )(R2Q*R,?)--- (R 'Q*R}™) = (Q,R,Q,)". For each n > 3 there exist
sofic polygonal number systems with the subshift 3 /.
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4.8 Discrete groups

Regular transformations with a projective metric form the metric space MR) and the com-
position operation is continuous. Thus M(R) is a continuous group. An iterative system
F ={F, € M(R) : a € A} determines a subgroup of M(R): the smallest subgroup of M(R)
which contains all F,. We say that this is a discrete group, if it is discrete subspace of M(R),
i.e., if each its element is isolated (see Beardon [4], Katok [28]). An important example of
a discrete group is the modular group of transformations with integer coefficients and unit
determinant (see Section 6.3)

axr +b
cr +d
For example, the systems of signed continued fractions or symmetric continued fractions gener-
ate the modular group. Some polygonal systems determine discrete groups as well. We consider
discrete polygonal systems with 2n transformations which determine tesellation of the hyper-
bolic disc by regular m-gons. For F, = Ry,Q, R, we have F,F,,, = Id. A discrete system
occurs if the points Ag = 0, A; = Fn 1(0), Ay = Fg(n 1)(0),... form vertices of a regular
polygon.

Definition 4.42 Let n,m be integers with % + % < 1. The (2n,m)-discrete polygonal system
has alphabet A ={0,1,...,2n — 1} and transformations F, = RS, Q,R5,, where

1—\/1—sin2%/0052%
1+\/1—sin2%/c082%

MY (Z) = {M(z) =

a,b,c,d € Z,det(M) = ad — bc = 1}

T =Topnm =

1/0
1/0

1/1

T/T-

Figure 4.12: The discrete polygonal (4,5)-system with ry5 = VY52 0,346 (left) and the
(4, 6)-system with r,6 = 2 — /3 ~ 0.268 (right).

Proposition 4.43 The (2n, m)-discrete polygonal system generates a discrete group which sat-
1sfies
F.F,,, = 1Id,
FoFniiFogmyr)  Fln—1)(n+1) Ry,

mn—m

FobFy 11y Flim—1)n-1)y = Ry,
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(the additions are modulo 2n ).

Proof: Denote by Ay = 0 and A; = ﬁoﬁn_lﬁg(n,l) e ﬁ(i,l)(n,l)(O). We derive a condition on r
which implies that A, =0, so Ay, ..., A1 form the vertices of a regular m-gon, whose inner
angles at vertices A; are m/n. Denote by a = (0, F;(0)) the hyperbolic length of the sides of
the polygon, by S its center and by By the middle of the hyperbolic line AgA;. The hyperbolic
triangle SAgBy has angles 7~ at Ay, § at By and ~- at S. Its side has length AgBy = §. By
the second cosine rule and Proposition 3.28 we get

s s s us

1 :COShQZCOS%COS§+COSE:COSE

: s : T : T

= Sin = sin £ sin =

1— |F(O)|2 2n 2 2n

Since ]/7\0(0) = Z(IIT_:) we get

o 1— |F(0)] _ 1- \/1 — 1/ cosh?®(a/2)
1+ |F(0)] 1+\/1—1/cosh2(a/2)

and the formula for r follows. For the transformation G_ = FoF,_1Fym—1) - Fm—1)(n—1) We

have
G- = Qu(Ry, QR ™) - (R ™V VQuRy ) = (@R R

(We use R3" = 1d). We compute the trace
(r+1)? ,m(n—1) Lo T o T

tre(Q, Ry 1) = . - COS S 4 cosh? g - sin o= 4 cos —

Thus Q,Rj, " is an elliptic transformation with rotation angle rot(Q, R5, ") = 2= and therefore
(Q Ry~ =1d. Thus G_ = Ry™™. Similarly we get for

Gy = Q(REQ Ry -+ (R VM Q, Ry V) — (Q, Ry ym R = R

Note that ™™ = R™ R™ ™ = R~™ for m even and R™"t™ = Rntm Rmn-—m — Rn-m

1-VV6-2 0.346

for m odd. In Figure 4.12 left we see the (4,5) discrete system with 745 = ’ z
+ —

%

and the circular subshift 3, , with speed % and forbidden words
D = {02, 13,20, 31,012, 123, 230, 301, 032, 103, 210, 321}.

In Figure 4.12 right we see the (4, 6) discrete system with r45 = 2—1/3 ~ 0.268 and the subshift
with forbidden words

D = {02,13,20,31,0321,0123, 1032, 1230, 2103, 2301, 3201, 3012}



Chapter 5

Arithmetical algorithms

If (F,) is a number system with redundant value mapping ® : ¥ — R, then each continuous
mapping G : R — R can be lifted to a continuous mapping F : ¥ — ¥ such that Po F = Go ®
(Proposition 2.16). A mapping F' : ¥ — X is continuous iff there exists a sequence of mappings
{fu - L™(X) = A: k > 0} such that F(u), = fu(upn,)) for each v € ¥ and & > 0. If
there exists an algorithm which for each n computes f,,, then we say that F' is an algorithmic
mapping. In this case there exists an algorithm which computes F'(u) for each input word
u € Y. The algorithm successively reads letters of the input word u and when it reads the prefix
of u of length k,, it writes the letter F'(u), to the output. Thus the algorithm works in infinite
time but each finite prefix of the oputput is computed in a finite time from a finite prefix of
the input. Each algorithmic mapping is continouous but there exist continous mappings which
are not algorithmic (see Weihrauch [68])

Not every continuous mapping G : R — R has an algorithmic lifting. Assume that we
want to compute a unary arithmetical operatlon, or Mobius transformation G(x) = z;”j:s This

is possible if a,b, ¢, d are alhorithmic numbers and if the entries of the projective matrices
which define the number system (F,X) are algorithmic as well. This condition is satisfied if
all these entries are rational numbers (see Chapter 6) or algebraic numbers (see Chapter 6).
Moreover, the subshift > should be an algorithmic subset of A“. In the present chapter we
present arithmetical algorithms for sofic number systems (F, G, V') such that the entries of the
projective matrices Fj, and V), are either rational or algebraic numbers.

In this case there exist also algorithms which compute binary arithmetical operations like
addition or multiplication. There is, however, one difference with the unary arithmetical opera-
tions. Binary arithmetical operations are not defined everywhere. For example co+ 0o or 0- oo
are undefined expressions. If the addition algorithm is run on inputs which represent oo then
it never produces any output. With this exception, binary algorithms work similarly as unary
algorithms: Each finite prefix of the output is computed in a finite time from finite prefixes of
the inputs. The idea of such an online computation of arithmetic operations comes from an
unpublished manuscript of Gosper [21] and has been elaborated by Kornerup and Matula [34],
[33] and Vuillemin [66].

5.1 Intervals
In section 3.2 we determine a proper interval I = (a,b) by the ordered pair of its endpoints
a,b € R as (a,b) = {x € R: det(a,x)-det(x,b)-det(b,a) > 0} (Definition 3.2). When we work

with intervals in arithmetical algorithms, this notation is not convenient. For example, for a
decreasing transformation M € M~ (R) we get M (I) = (M (b), M(a)) so we have to distinguish

95
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the sign of det(M) when we map an interval by a transformation. A better possibility, which
leads to an efficient matrix calculus (see Kurka [40]), is to define the open interval with endpoints
a,b as the set {ayo + by1 : yo,y1 > 0} of convex combinations of a,b. The two disjoint

intervals I = (a,b) and J = (b,a) are then represented by the matrices P = [*° Z(l’] and

Q=1[ :Z(l’] (see Figure 5.1). The order of columns is arbitrary. Matrices [° Z(l’] and [ZT o]
represent the same interval. A nonzero multiple AP of P represents the same interval as P, so
proper intervals are represented by regular projective matrices, i.e., by the elements of the
projective space M(R). We get x € I iff x = Py for some vector y with positive sign: the
sign of y € R is the sign of the product yoy;: sgn(y) = sgn(yoy1) € {—1,0,1}. Thus z € I iff
sgn(P~'x) > 0. To get also improper intervals we apply this definition also to singular matrices

and even to the zero matrix 0 = [J 7] (the zero-dimensional subspace of the vector space R**?).

Denote b
’ M(R) = P(R**?) U {0}

the set of all subspaces of R**? of dimension at most 1. Recall that the (pseudo)inverse of a
matrix is defined by [? Z]_l = [flc _ab] If P is not regular then PP~ is the zero matrix. The
stable and unstable point of the zero matrix is by definition %.

Figure 5.1: The stereographic projection of intervals.

Definition 5.1 The open and closed intervals of a matriz P € M(R) are defined by

P° = {ze€R: sgn(P'z) >0},

P¢ = {xeR: sgn(P ') >0}
The left and right endpoints of P = [° Z;’] € M(R) are (P) = 2, v(P) = Z—(l’ provided
det(P) <0 and I(P) = %, v(P) = 2 provided det(P) > 0.

=4

Proposition 5.2 Let P = [ Z(l’] € M(R). Then

(%, 2) if det(P) <0,
poo— )2 if det(P) >0,
0 if det(P)=0,sgn(u(P)) <0
L R\ {s(P)} if det(P)=0,sgn(u(P)) >0
([, 2] if det(P) <0,
pe [f2,9] if det(P) >0,
{s(P)} if det(P)=0,sgn(u(F)) <0
[ R if det(P)=0,sgn(u(P)) >0
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In particular for the zero matriz we have 0° = (), 0° = R.

Proof: We have P~z = —Zéi?:iﬂﬁt, SO
det(a, z) - det(z,b) - det(b,a) = (apr1 — a120)(br1xo — boz1)(boas — brag)
= —(P'2); - (P '2)q - det(P)
det(b, z) - det(z,a) - det(a,b) = (P~ 'z);- (P 'x)-det(P)
and we get the statement for P regular. If P = [ 7*"] is singular with u = u(P) and
s = s(P) then

p-l,— | TS0 Souo| Lo _ ug(—5120 + S071)
—S1u1 Soui| x1  ui(—$170 + Sox1)

If sgn(u) < 0 then P° =0, P° = {s}. If sgn(u) = 0 then P’ =, P° = R. If sgn(u) > 0 then
P° =R\ {s}, P°=R. .
Denote by
R* = (0,00)={r €R: sgn(z) >0} =Id°
R™ = [0,00] = {z € R: sgn(x) >0} =1d°
Denote by = = [} °] the negation matrix. We have =~! = = and -z = 2 for x € R, so

sgn(z) > 0 iff sgn(—z) < 0. Moreover,

a b a b a —b
Gl O e el M R A
Thus multiplying by — from the left changes the signs of the bottom row and multiplying by —
from the right changes the signs of the right column.

Proposition 5.3 For P € M(R) we have (P=)° =R\ P°, (P-)° =R\ P¢, P°N (P-)° =0,
PeU (P-)° =R.

Proof: We have z € (P—)¢ iff sgn(—=P~'x) = sgn((P-)"'z) > 0 iff sgn(P~'x) < 0 iff x & P°
and similarly, z € (P-)° iff 2 ¢ P°. For P = [* "] we get P~lx = o=t (p—)=ly — doobn

—cxo+axy’ cro—ary’

so P°N (P=)° =0, P°U(P-)* =R. D

Definition 5.4 Define the sign of a matriz M € M(R) by

1 if 3AA£0,Vi, 5, AM;; >0
sgn(M) = 0 Zf =D\ # O,V’i,j, )\Ml] >0 and El?:,j, Mij =0
—1  if 3ij. k1, My <0< My

Proposition 5.5 If P,Q € M(R) then sgn(Q~'P) > 0 iff P° C Q° iff P¢ C Q°.

Proof: If P, @ are regular then P° C Q° iff P° C Q° since P° = P° U {1(P),r(P)}. If
sen(Q'P) > 0, z € P° then sgn(Q'z) = sgn((Q'P) - (P~'z)) > 0, so x € Q° and therefore

P¢ C Q°. Conversely assume by contradiction that P¢ C Q¢ and sgn(Q~'P) < 0. If P = [ Z]

then ¢ € P° C Q% 2 € P° C Q" so sgn(Q'%) > 0, sgn(Q~'2) > 0. This means that both
columns of Q~'P have nonnegative sign, and since sgn(Q~'P) < 0, they have the opposite
sign. It follows that sgn(Q~'P—) > 0 and therefore (P—)¢ C Q°. We get R = P°U (P—-)° C Q°
and this is a contradiction since @) is assumed to be regular. O
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Definition 5.6 For P,Q) € M(]R_) we write P C Q if sgn(Q~'P) > 0. The image of a set
I C R by a transformation M € M(R) is defined by

M(I)={yeR: Jze€l: y=Mz}={M(): z€I}NR.

If M is a singular transformation and I = {u(M)}, then M(I) = (). If I contains a point
different from w(M) then M (1) = {s(M)}. For the zero transformation we have 0(I) = () for
every set I C R.

Proposition 5.7
1. If P,Q € M(R) then P(Q°) C (PQ)°.
2. If P,Q € M(R) then P(Q°) = (PQ)°.

Proof: We use Proposition 3.37.

1. If P =0 then P(Q°) = 0.

2. If @ = 0 then (PQ)° = R.

3. Let P € M°(R), @ € M(R). Then P(Q°) = {s(P)}, s(PQ) = s(P), so either (PQ)¢ =
{s(P)}, or (PQ) =R B

4. Let @ € M°(R). Then either PQ =0 and (PQ)° =R or PQ € M°(R) and then u(PQ) =
u(@). If u(Q) > 0 then (PQ)° =R. If u(Q) < 0 then P(Q°) = {P(s(Q))} = (PQ)".

5. Let P,Q € M(R). We have y € (PQ)° iff sgn(Q'Ply) > 0 iff P~y € Q°. This is
equivalent to y = PP~y € P(Q°). o

Proposition 5.8 Let P,Q € M(R) be regular matrices.
1. If M € M(R) and sgn(Q~'MP) >0, then M(P°) C Q°.
2. If M € M(R) and M(P°) C Q°, then sgn(Q~'MP) > 0.

Proof: 1. If M = 0 is the zero matrix then M(P¢) = () C Q°. If M is singular then
sgn(Q 'MP) > 0 implies s(M) = s(MP) € Q° so M(P°) = {s(M)} C Q°. If M is regular
then sgn(Q~'MP) > 0 implies M (P¢) = (M P)° C Q° by Propositions 5.5 and 5.7.

2. If M is regular, then (MP)¢ = M(P¢) C Q° by Proposition 5.7. By Proposition 5.5 we get
sen(Q'MP) > 0. O

Proposition 5.9 Define the size of a regular projective matriz P = [ Z] € M(R) by sz(P) =
abted - Then sz(P) = sz(P°) (see Definition 3.2) and

lad—bc|
1
|P| = —arccotg sz(P) = = — — arctan sz(P)
T 2 7
%arctanﬁlm if sz(P) >0
= : if sz(P)=0
< arctan _t a1 sz(P) <0
For the length of small intervals we have an estimate
(P)>1<:)|P|<1:> ! <|P| < L
Z — — —
° 17 4osup) =" = T su(P)



5.1. INTERVALS 99

Proof: We use Definition 3.2 and Proposition 3.3. If det(P) < 0 then det( Z ) = —det(P) >

[
0. If det(P) > 0 then det([’ Z]) = det(P) > 0. In both cases we get | P¢| = L arccos %.

The rest of the proof follows from well-known trigonometric formulas. O

We have seen that a projective matrix can be regarded as a transformation, i.e., as a selfmap
of R or as an interval, i.e., a subset of R. We turn now to its third interpretation as an operator
on intervals. We say that M € M(R) is a nonnegative projective matrix if its sign is
nonnegative. If M is nonnegative and P = [ Z] € M(R), then by definition, PM C P, i.e.,

(PM)° C P° and (PM)® C P¢. For example if My = [(1) M=) é] then

_la a+b _la+b b
PMO_[C c+d]’PM1_[c—|—d d}’

If det(P) < 0 then PM, is a left part of P and PM, is a right part of P. Consider an interval
number system (F, W) over A. The intervals W, are assumed proper and open so we represent
them by matrices: from now on we assume that W, € M(R). For u € A" we have

Wo =W N E(W2) N Fyyy (W) N0 By (W),

02)(

If Spw is a SFT of order 2, then W, = F,, (W¢ ) = (Fy,,,Way,)° is an open interval (see

Theorem 4.21) which is represented by the matrix Fy,, W, . If u € Spw is an infinite word,

the intervals Wy, 8ive ever better approximation to ®(u). We can compute W, W0t 1) from
I/Vu[0 N by the cut matrices Hy, = W, 'E,W,. If ab € £ w then F,W, C W,, so Hy is a

nonnegative matrices and for u € £"+1 we get
Wu - WuoHuoul Hu1ug Tt Hunflun
Indeed Wy = FLF, W, = FHWGW;lFaWb = WyuaHap is obtained by ”cutting” W,, by Hgp.

For example for the number system of symmetric continued fractions of Definition 1.14 we get

Hao = [ 1, Ha =1} , fora e {0,1} and H;y = [ ], Hyg = [} ] for a € {1,0}. Thus

each interval W, = (£, 2) is divided into two intervals Wyo = (2, %) and W,; = (‘ﬁg, b) (see
Figure 5.2).

(0] ° 1 = 1
1 1 0
(0] e 1 e 1 = 2 = 1
1 2 1 1 0
o o — — o o — —

09 19 192 292 123 2=3<1

N
w
N
w
[
[N}
[N
[y
o

Figure 5.2: The cylinder intervals of the number system of symmetric continued fractions.

Similarly we can compute the intervals ®([u]) in a sofic number system (F,G,V). If G =
(B, E,i) is an initialized graph (i.e., u € Lg iff i %), then V; = R. For each noninitial state
p € B, V, is a proper closed interval which we represent by a matrix V,, € M(R). For an edge
(p,a,q) € E we define the cut matrix H,,, by

{Fqu if p=i

H, , : .
V;)lFqu if p#i

p,a,q —
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If p # i then F,V, CV,, so H,,, is a nonnegative matrix. For a path py, *o, p; “, ... %5l p,
we get
FV. = Voo Hpo oo Hpi e " Hpp_y 100 1 Do # 1,
o pn H, H,

po,uo,p1tdprur,pe T Hpn—l,un—l,pn if Po = 1.

5.2 The unary algorithm

Given a redundant sofic number system (F,G, V'), we consider the unary algorithm, which
computes a unary arithmetical operation x — Mz, where M € M(R) is a Mobius transfor-
mation The input is a path (p,u) € Xg and the output is a path (¢,v) € ¥ such that
®(v) = M®(u). The computation takes infinite time but each finite prefix (gpn), vjon)) of the
output path is computed in a finite time from a finite prefix (ppx,), ujo,,)) of the input path.

The algorithm works by searching a path in the labelled unary graph whose edges are
labelled by pairs (a,b) € (A U {A})? of input and output letters. An edge with label (a, \)
represents an absorption of a letter a from the input, an edge with label (A, b) represents an
emission of a letter b to the output. The label (u,v) € (A*)? of a finite path is the concatenation
of the labels of its edges. Such a path represents the change of state upon reading the word u
from the input and writing the word v to the output. We assume that the graph G = (B, F, 1)
is initialized, i.e., i € B and u € Y iff there is a path with source i and label u.

Definition 5.10 The unary graph of a sofic number system (F,G,V') with initialized graph
G = (B, E,i) is defined as follows: Its vertices are (X, p,q) € M(R) x B?, its labelled edges are
abSOTPtzon: <X7 p7 q) (a_,A)) (XHP,(Z,TW T7 Q)7 Zf p i) T
emission: (X,p,q) X9 (F,'X,p,r) if p#iq %X CFV,.

The test X C F,V, is evaluated by computing the sign of the matrix (F,V,)*X. Such a test
is algorithmic provided the entries of F,, V, and X belong to a computable ordered field
(see Section 7dfnordfield), for example to the field of rational numbers (see Chapter 6). Recall
that the cut matrix of an edge p %, ¢ is Hp .4 = F,V, provided p =iand H,,, = Vp_lFqu
otherwise. Define the admissible set of a vertex (X, p,q) € M(R) x B? by

A(X7p7Q)_{ {(aﬂ”)eAXB QLT,XQFQ‘/T} if p#i

A redundant sofic system (F, G, V') has a threshold 7 > 0 such that A(X,p, q) # ) whenever
p # i and |X| < 7. The threshold is the minimum of the Lebesgue numbers of the covers

{intye(Fu(Vy)) : p % g} of V5.

Proposition 5.11 If (X,i,i) “% (Y,p,q) is a finite path, theni *, p,i 2 q,Y = F;'XFE,V,,.
If p#i#qthenY CV,. If (X,i,i) “% is an infinite path and u,v € A*, then u,v € g and
X(®(u) = @(v).

Proof: In the initial state (X,i,i) no emission is aplicable, so the first edge must be an
absorption. If i %, @ is a path in G and (X,i,i) ) (XE,Vy,p, 1) A9 (Y, p, q) is a path in the
unary graph up to the first emission, then XF,V, C F,V,,so Y = F!XF,V, C V,. Assume that
the condition is satisfied for a path (X, 1,1) @ (Y, p,q). If (Y, p,q) Y (Z,r, q) is an absorption,
then Z =Y H,,, = F,'XF,VyHy o, = F,'XFuV,and Z CY CV,. If (Y,p,q) X9 (Z,p,7) is
an emission, then Z = F, 'Y = F, !X F,V,. Since Y C F,V,, we get Z C V. Let (u,v) € (A“)?
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be a label of an infinite path with source (X ,1,1). Then for each n there exists k,, and a path
(X,1i,i) “osntom) (v, 5o g.). Thus Fol XFuy, Voo € Vi, and therefore XF,V, C

U[0,kn) " Pn U[0,ky) * Pn
Fyp Voo We get X(®(u)) € (XF, Okn)\/;)n) (Fopgy Van )6, and @(v) € (Fyy,, Vg, )¢ Since the
length of these intervals converges to zero, we get (ID( ) = X(P(u)). o

A path (X, 1, i) to,%o (Xl,pl, q1) " (Xo, po, q2) “2%2 -+ in the unary graph projects to an
input path i %o, p; “, py “2 --. and to an output path i ¥, ¢; Y4 ¢ ¥2, ---. Some edges in
these projected paths are of the form p A, p. The unary graph represents a nondeterministic
algorithm for computing the symbolic representation of M. From each state (X, p,q) there
leads several absorption edges and none, one or several emission edges. To get a deterministic
algorithm, we consider a selector s which at each state chooses an emission, i.e., an element
of A(X,p,q) provided A(X,p,q) # 0. If A(X,p,q) = 0 then s chooses an absorption. This is
indicated by s(X,p,q) = x.

Definition 5.12

1. A unary selector for a sofic number system (F,G,V) is a mapping s : M(R) x B* —
(A x B)U{x} such that if s(X,p,q) = (a,r) € A X B then (a,r) € A(X,p,q).

2. If s(X,p,r) = x then we say that (X, p,q) is an absorption state of s, otherwise (X, p,q)
1s an emission state.

3. A selector s is greedy if s(X,p,q) € A(X,p,q) whenever A(X,p,q) # 0..

If all entries of matrices Fy, V, are integers, the state matrices X can be stored with integer
entries whose GCD (greatest common divisor) is 1 (see Chapter 6). After each step, the entries
of the state matrix X are cancelled by their common GCD. If the admissible set contains
more than one element, a reasonable selection is the choice of the edge p -4, p’ which gives
the smallest norm of the result £ 1X. A selector s determines for each input transformation
M € M(R) and input path (p,u) € ¥g a unique output path ©,,,(p,u) = (¢,v) € Xig U Lig
such that

(M, 1,1) 080 (X1, pr, q1) 28" (X2, P2, g2) "252 -+ -

is an infinite path in the unary graph. Here u;, v; may be empty, so they are not necessarily
the i-th letters of u or v. If s(X;, p;,¢;) = x, then u; # A\, v; = A If s(X;, pi, ¢;) # x then u; = A
and (v;, gi+1) = $(Xi, pi, ¢;). The image Oy 5(p, u) of an infinite path may be a finite path. In
redundant systems with a greedy selector, an infinite input yields an infinite output:

Theorem 5.13 If (F,G,V) is a redundant sofic number system, then for any greedy selector
s and an initial state matric M € M(R) the mapping O s+ Eig) — Xjg| s continuous. If
(¢,v) = Owrs(p,u), then M(2(u)) = @(v).

Proof: Since (F,G,V) is redundant it has a threshold 7 > 0 which is the minimum of the
Lebesgue numbers of {intV;(Fa(ch)) : p % qf. Thusif I C V2 and || < 7 then there exists
p % g such that I C F,(V;). We show that each infinite path of the selector contains an
infinite number of both absorptions and emissions. Assume by contradiction that (X, p;, ¢;) is
an infinite path which consists only of absorptions, so its label is (u, A) with u € ¥g. Since
lim,, o0 |F V;)n| =0, we get lim,, . | XoF, o) Vp.| = 0 by the continuity of Xy, and therefore
| XoFug, pn| < 7 for some n, which is a contradiction. Assume that there exists an infinite
path Cons18t1ng only of emissions. Then by Proposition 3.33 the length of the intervals X; grows
until it exceeds the length of any V,, and this is a contradiction. The rest of the proof follows
from Proposition 5.11. O
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X\ XHpuy F'X|p2plgtd
0 —=
3.00,0.33] | [ [, ) 00
= 1
0.71,—0.20] | 2 L[5 3] 0—1
0 =
[0.71, 1.40] b ok 7] A= 0
2 -5 7 a1
o T g [0.36,0.70] A 0—1
P =2 d 1 = 2 0-2 2 0
N[RO[0]0] BhAT [ [EL AT | [-0.29,0.40] [P 120
1 2 1 2 _ 1
é % [[11,?]] [[1;,%]] [—0.57,0.80] | [Z* 4t Y 11
27 9 9y 9 4 811 0O 1
i [é i] [é i] [0.24,0.80] | [£ B][2 9 11
ol =1 1|T] =2 2| g 054,080 | [ 7 5 01
101 27 4 0’3 3 121 0 1
00| 54 ] 21 0.08,0.60] | [ Sll5 ol 1—1
_ 1
. 1)1 [%1,51] %’%] [0.35,0.60] R A 11
L[5l 00] [5hs) | [64] | | [=0.30,0.20] 2 s 8 150
111 [l 2] [l Q] ) 0 L7740 )
=l o 12 | 4 [-0.60,0.40] | [ ][5 3] =1
0 [Z’:l] 1 1 [Z’E] [673] 2 011—14 32 0
000 1.2 | 2] [—0.09, 0.40] 2 O 2 00
— | = _ 1
DT 3] B | | [-018,080) | [ gll, ) 1=1
=1 11|77 |1=2 =1 2 2 — 1
2] (1) (1] [[71,?]] {2’3} 0.32,0.80] | 2 [0 1 01
219 1°3 - 0
212 =4 [~0.37,0.60] [311177 19660][3 ﬂ 1=0
— 0
[—0.37,0.28] | 2 UL S0 10
—234 178113 0 L
[—0.74,0.56] | [[2* 152 ) 0—1
94  3561[3 1 0
[0.07,0.56] | [[%%, 2592 1] 150
2 011 94 506 0
0.07,0.40] | [ )[4, 309 00
input matrix M = [? :1,)]
input: u = 0111111010, p, = 0, F,V,,, = 52 32| = [1.97266, 1.98047]
result: MF,V,, = [1170 1777 = [1.39120, 1.39373]
output: v = 0101100100, ¢, = 0, F,V,,, = [32 327 = [1.38672, 1.39453]

Table 5.1: The computation of the unary algorithm (right) in the binary signed system from
Figure 4.9 (left).
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If G is a deterministic graph then each word u € ¥ determines a unique path i %, with
label u. Thus there exists a continuous mapping O, : ¥ — X¢ such that ®Oy,, = M.
In Table 5.1 we give the graph of the binary signed system from Figure 4.9 (left) and the
computation of the unary algorithm in the system (right).

For a nonredundant system, the unary algorithm with a greedy selector need not work.
It may happen that ever smaller intervals X contain a point which does not belong to the
interior of any F,V,, so the condition X C F,V, is never met and the output remains finite. In
this case X is a subset of a union F,V,, U F;V,, of two neighboring intervals. Thus we know
that the output is either a or b and we may pursue both these possibilities in two parallel
branches. These two branches may coexist indefinitely, giving two output words v, w such that
O(M(u)) = ®(v) = ¢(w). It may also happen that at some later step one of the branches
ceases to represent an output with ®(M(u)) = ®(v) and is therefore closed. In these parallel
branches with states (X, p, ¢) we do not always have X C V but only 0 # XNV,. If ) = XNV,
then the branch is closed. On the other hand if X C V,, then the branch represents the correct
computation and the other branch is closed.

The nondeterministic algorithm based on these principles is given by the branching unary
graph in Definition 5.14. Since the two branches have different output words, we incorporate
the output word to the state. Thus a state (or a vertex of the graph) is (X,p,q,v), where
v € Lg is the output word. The edges are labelled only by the input letters. A vertex of the
graph is either a single state (X, p, ¢, v) or a pair of states ((Xo, p, qo,v), (X1, p, ¢1,w)) with the
same input vertex p. The initial state is (X,i,i,A). There are branching edges from a single
state to a pair of states and closing edges which close one of the branches. If the vertex is a
pair of states, an absorption is applied to both states simultaneously. On the other hand, an
emissions is applied only to one of the states.

Definition 5.14 The branching unary graph of a sofic number system (F,G,V) with de-
terministic graph G = (V, E,i) is defined as follows: Its wvertices are either (X,p,q,v) €
M(R) x B? x Lg, or pairs ((Xo,p, qo,v), (X1,p,q1,w)) of vertices. The labelled edges are

absorption: (X.p.q,v) & (XHpaw,p',q,v), if p&p
. (X07p7QO7U> (XOHpap'aplaq()vU) . /
absorption: a o ) a
P (X17p7q1aw) - (Xal,a,p’7pl7q17w) f b=7»
. o
sion. \ A (F-1X p.df L+ PFLg % ¢
€mission ( ap>Q7U) — ( a ,p,q,va) Zf @#Xﬂ‘/q g Fa‘/;]/,

: F7'X,p, qo,va) P W N LN
branching: X y, o Xop o, 4 40, 7 Al
ranching:— (Xpav) S gy gy Y X VA RV, URY,),

, Xo,D,qo, v .

closing: EX(I) 5 Z(l] w>) 2 (X, p g, w) if 0=XoNVy orX; CV,,
(X07p7QO7U> A

closing: 2, (Xo,p o) if 0= X1V, orXoCV,

(X1, p,q1,w)

To obtain a deterministic algorithm, we should define a selector which selects one of the
possible edges. The closing edges should be chosen whenever they are applicable: the branch
to be closed does not represent any possible output. A branching edge should be chosen if the
interval X becomes too small. One possibility is to define small open intervals V, ,, which
contain the common endpoints of F,V,, N F;,V,, and opt for the branching when X C V,, ,,. For
appropriate selectors, the input word u € ¥ yields an infinite path with label u. The words
v, w of the states of the path give either a single output v with ®(M(u)) = ®(v) or two output
words with ®(M(u)) = ®(v) = ®(w).



104 CHAPTER 5. ARITHMETICAL ALGORITHMS

5.3 Bilinear tensors

Binary arithmetical operations like addition or multiplication are obtained from bilinear func-
tions T' : R? x R? — R% While a linear function M : R?> — R? is a l-contravariant and
1-covariant tensor, a bilinear function is a l-contravariant and 2-covariant tensor given by
T(z,y)x = Z_}:o ;jl.:ozkijxiyj (see e.g., Bishop and Goldberg [6]). The tensor 7" determines a
function T : R x R — RU {2} defined by

T(z,y) (Toooo + Tor071)Yo + (Toorxo + To1121) 11
7 (Thoowo + Trr0w1)yo + (Thorxo + T11121) Y1
_ (ToooYo + Too1y1)zo + (To10Yo + To11y1) 21
(Tr00yo + Tr01y1)xo + (Th10Y0 + Th1191) 21
For example T(x,y) = x +y = 2450 A pongero multiple of a tensor defines the

T1Y1
same function on R X R, so tensors are conceived as points of the projective space P(R**%*2),

Denote by T(R) = P(R?*2*2) U {0} the set of all projective tensors of dimension at most 1.

We write tensors as (2 x 4)-matrices T = [foo oo Toor Tou] " Fop g tensor 7' and projective
Tioo Tizo Tior Tin

vectors z,y,z € R we have projective matrices T*z, T,y, 2T obtained by different kinds of
multiplication:

(T*2)i; = > Trigae, (Te)ii = Y Thigygs (2T)iz = > zThis-
i j k

Then (T*z)y = (T.y)r = T(z,y).

T(r,y)=r+y T(v,y) =y
1/0 ‘
o1t AN
1/0 .
T(x,y) = T(x,y) = L
10 -
+
11 | RN
o1 F oG _ N
1/0 LA SN
1 1 0 1 1 1 1 0 1 1
o 1 1 1 © © 1 1 1 ©

Figure 5.3: Level curves of bilinear tensors with marked positivity and negativity regions. The

straight lines in the last case follow from the formula {2REEERS. — tap (f 4 ).
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T(z,y)| Tz |det(T*z)| D, S(T)
vy | [0 2] 2t o] {Go)}
vy |5 ol w1 {(]5). (5 1)}
e B S B A I {(& D}
e L ) af et | -4 0

Table 5.2: Singular points of tensors

Bilinear tensors can be classified according to the number of their singular marginal matrices.
For a given tensor T consider the quadratic form

Toooxo + Toior1 Toowo + Lo

det(T*z) = det
( ) Thooro + 111021 Thonwo + Thiix

= Ax} + Broz, + Cai.

Denote by D,(T) = B? — 4AC the discriminant of det(7*x). If A= B = C = 0 then T*x is

singular for every € R. Assume that at least one of the A, B, C is nonzero. If D, < 0 then

T*z is regular for every x € R. If D, = 0 then there exists one point # € R with singular T*z.

If D, > 0 then there exist two points x with singular 7*z. If T*x is singular and y = u(7*z)
0

then T'(x,y) = ;. We say that (z,y) is a singular point of 7. Denote by S(T') the set of

singular points of a tensor (see Table 5.2). A tensor may be visualized by its level curves

T7Y(2) = {(x,y) €R": T(a,y) = 2}.

In singular points with 7'(z,y) = 2 the level curves intersect (see Figure 5.3).
For a tensor 7" and a matrix P we define tensors T* P, T, P and PT by

(T* ki — ZTIC])] iy (T P kzg - ZTkzq qj> PT kzg - Zpkr Tij -

Then (T*P)*x = T*(Pz), (T.P).y = Ti(Py). The operations with the first and second argu-
ment commute, so we adopt notations

T(z,y) = (TT2)y = (Ty)z,

T(z,Q) = (I"2)Q = (1.Q)"x,
T(Py) = (Luy)P = (T"P).y,
TPQ) = (I.P)Q=(1"Q).P

The multiplication from the left commutes with the multiplication from the right, so we
write PT*Q = P(T*Q) = (PT)*Q for P,Q € M(R). For vectors =,y € R we have (zT)y =

x(T.y), :L’(yT) = y(T*x). For a matrix M = [%‘;2 %ﬁ] we denote its left and right columns

by M_y = , M %, and the upper and lower row by M,_ = %—g?, M,_ = Mo g
(M_;); = M,], (M_) = M Similarly for a tensor T we denote by Tj__, T_,_, T__; the
marginal matrices obtamed from T' by fixing a coordinate, and 7_;;, Ty_;, Tr;— marginal
vectors obtained by fixing two coordinates. A simple algebra shows that the tensor T'(P, Q)
consists of T-images of the endpoints of P and Q:
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Proposition 5.15 For a tensor T and matrices P, () we have
T(P,Q)-i- =T(P-;,Q), T(P,Q)-—; =T(P,Q—;), T(P,Q)-ij = T(P-;,Q—;)-
Proof:

(T(P,Q)-i)k; = T(P,Q)kij = Y TepgPoiQqj = Y Thpg(P-i)pQqj = T(P-i, Q)iy
Pq Prq

and similarly in other cases. O

Definition 5.16 The image of sets I, J C R by a tensor T is defined by

I(1,J) = {T(z,y): € lye JINR
= {zeR: Jwel,yetz=T(zy)}

In arithmetical algorithms we verify whether the image T'(I, J) of intervals I, J is included in
a given interval K. We have an inclusion criterion which is formally similar to the criterion of
the inclusion of intervals. The sign of a tensor is defined similarly as the sign of a matrix: it is
nonnegative if there exists nonzero A such that all A\Tj;; are nonnegative.

Proposition 5.17 (Algebraic inclusion criterion) Let T € T(R) be a tensor and P,Q, R €
M(R) regular matrices. If sgen(R™'T(P,Q)) > 0 then T(P¢, Q) C R°.

Proof: Let z € P°, y € Q° and z = T(x,y) € R. Since P is regular, for u = Ptz we have
sgn(u) > 0 and z = Pu, so

(T2)Q = (T"(Pu))Q = (T"P)'u)Q = (T"P).Q) v = T(P, Q) u.

It follows sgn(R™(T*2)Q) = sgn(R~(T(P,Q)*u) > 0, so (T*z)(Q°) C R® by Proposition 5.8
and therefore z € R°. Thus we have proved T'(P¢, Q) C R°. O

Theorem 5.17 has a converse for regular tensors.

Definition 5.18 We say that T is a regular tensor, if for each z,y,z € R, the matrices 2T,
T*z, Ty are nonzero. Denote by T(R) the space of reqular tensors.

A tensor is regular iff its pairs of marginal matrices are linearly independent, i.e., if To__ # T _,
T o #T 1 andT_ _o# T__; are different points of the projective space P(R?*?). Examples of

100 0 01 1 0 " 0 1 0 0] (Jiies
regular tensors are [[ ] (multiplication), [ ; 5 5] (addition), or [[ | ] (division).
Proposition 5.19 If T is a regular tensor and M is a reqular matriz, then MT, T*M and
T.M are regular tensors.

Proof: If + € R, Mz € R and (T*M)*x = T*(Mz) is nonzero. Since T,x is nonzero,
(T*M),x = (T.x)M is nonzero. Since 2T is nonzero, z(T*M) = MT(2T) is nonzero (here M7
is the transposed matrix of M. Thus we have proved that T*M is regular. Similarly we show
that 7. M is regular. Since (MT).x = M(T,x), (MT)*x = M(T*z), 2(MT) = (zM)T, we get
that MT is regular. O
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Proposition 5.20 If T is a regular tensor then det(T*z) is a nonzero quadratic form.
Proof: Assume by contradiction that

det(T*z) = det {Toooxo + Tor0x1 Tohorxo + T0115U1}

Tiooxo + Tr10x1 Tio1wo + Thiia

is a zero quadratic form, so we have zero coefficients at 7 and z7:

Tooo Toor Tor0 Ton
det =0, det =0
|:T100 T1o1] {Tno T111]

It follows that there exist a;, b;, T;; such that

Ty — aoTooxo + boThor1 apToiwo + bl
a1Toozo + b1Tor1 a1To1zo + 011171

For the coefficient at zgz; we get (aghy — a1bo) + (TooT11 — ToiTho) = 0. If aghy — a1y = 0

then a1Ty__ = apTi__ so Ty__ and T)__ are linearly dependent. If Too77; — 161710 = 0 then
TywT_ g =TyT__1,80 T _gand T__; are linearly dependent. In both cases, T is not regular
and this is a contradiction. 0

Proposition 5.21 If T is a regular tensor, P,Q, R are reqular matrices and T(P¢,Q°) C R,
then sgn(R~'T(P,Q)) > 0

Proof: We show that for x € [0, o0] we have (T*(Px))(Q°) C R°. Indeed if z € (T*(Px))(Q°)
then there exists y € Q° such that z = (T*(Px))(y) = T*(Pz,y). Since Px € P°, we get z €
T(P¢,Q°) C R Since T is a regular tensor, 7*(Px) is a nonzero matrix and therefore M (z) =
R™Y(T*(Pz))Q is a nonzero matrix too. We can therefore norm it and assume that || M (x)||*> =
> M(x);; = 1. Since (T*(Px))(Q°) € R°, by Theorem 5.8 we get sgn(R™'(T*(Pz))Q) > 0
whenever T*(Px) is a regular matrix. By Proposition 5.20, det(7™*(Px)) is a nonzero quadratic
form, so there exist at most two = € [0, 00| such that 7*(Pz) is a singular matrix. Since each
M(z);; is continuous function of x € [0, 00|, there exists A such that AM (x);; > 0 for all 4, j
and z € [0, 00], so sgn(R™'T(P,Q)) > 0. O

The intervals P¢, Q¢ form a rectangle in R” whose vertices are (P_o,Q—0), (P-0,Q_1),
(P_1,Q-0), (P_1,Q_1). Since all MT are monotone, T'(P¢ Q°) is the image of the sides of
this rectangle. We have T(P_1,Q_o) € T(P¢,Q_o) NT(P_1,Q%), T(P_1,Q_,) € T(P~1,Q°) N
T(P¢,Q-1), T(P-9,Q-1) € T(P*,Q-1) NT(P-0,Q), T(P-0,Q-0) € T(P-0,Q°) NT(P*,Qo),
so T(P¢,Q_o), T(P-1,Q°), T(P°,Q_1), T(P-o, Q) are contiguous intervals.

Theorem 5.22 (Geometric inclusion criterion) If T is a reqular tensor and P,(Q) are reg-
ular matrices, then

T(P,Q°) =T(P°,Q_0)UT(P_1,Q°)UT(P,Q_1) UT(P_o,Q°)

Proof: The right-hand side Y = T'(P¢, Q_o)UT(P_1, Q°)UT (P, Q_1)UT(P_g, Q°) is a union of
contiguous intervals, so it is a (possibly full) interval which is included in T'(P¢, Q). Conversely
let z € T(P° (Q)°), so there exist x € P, y € Q° such that z = T'(z,y). Assume that 7"z is
regular. Then T'(z,y) is a linear combination of T'(x,Q_o) and T'(x,Q_1) which both belong
to Y. It follows that z belongs to Y as well. Assume that 7™z is singular. Since it has at most
one unstable point, either z = T'(z,Q o) € Y or z =T (z,Q_1) €Y. o
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Definition 5.23 For a tensor T' € T(R) and a matrix M € M(R) we write T C M if
sen(M~'T) > 0.

_ 10 1 0 1 _rl1 1 1 0 _ -1 0 1 0
T= [—1 0 1 1} T= [—1 0 1 1} T= [—1 1 0 0]
T=[% 3 T=[4 3 T=[

Figure 5.4: The matrix convex hull of a tensor

We are going to construct for a tensor 7" its matrix convex hull T which is a matrix such
that sgn(Q~'T) > 0iff sgn(Q~'T) > 0 for each regular matrix Q. Let u,v € R? be vectors with
det(u,v) > 0. This means that the counterclockwise oriented angle from u to v is less than
7 = 180°. We say that a vector w € R? is a convex combination of u and v, if w = uxg + vz,
for some g, x; > 0. This can be written as w = [u, v]x, where [u, v] is the matrix with columns
u,v and w, x are column vectors. Then we get

1 vy —v w
_ 1, 1 o| |wo
r o= [u,0]'w= TR [_u1 e 1 LUJ
_ 1 Wov1 — W1y | _ 1 det(w, v)
~ det(u,v) [uowr —wiwo]  det(u,v) |det(u, w)

so w is a convex combination of u,v iff det(u,w) > 0 and det(w,v) > 0. For a regular matrix
Q we have Q7 'w = Q u,v]z. Tt follows that sgn(Q*[u,v]) > 0 iff sgn(Q~*[u,v,w]) > 0.

Proposition 5.24 Let T be a (2 X n)-matriz with n > 3. There exists a (2 X 2)-matriz T_such
that sgn(Q'T) > 0 iff sgn(Q~T) > 0 for each reqular (2 x 2)-matriz Q. We say that T is a
matrix convex hull of T'.

Proof: If T is the zero matrix then 7T is also the zero matrix. Assume that T is nonzero. If
a nonzero column v of T is a negative multiple of another column v of T' then sgn(Q~T) > 0
for no regular matrix Q, so we can take T = [u,v] (see Figure 5.4 left). If a column u of T is
a nonnegative multiple of another column of 7', or if it is a convex combination of two other
columns of T', then we can omit it and obtain a (2 x (n—1))-matrix 7" such that sgn(Q~17) > 0
iff sgn(Q~T") > 0 for each regular matrix Q. We show that if n > 4 and no column of T is a
nonzero multiple of another column of 7', then a column of T is a convex combination of two
other columns of 7T'. Indeed for a column u of T there exist two different columns v, w of T" such
that sgn(det(u,v)) = sgn(det(u,w)). By a permutation of u,v,w we can attain det(u,w) > 0,
det(w,v) > 0, det(u,v) > 0, so w is a convex combination of v and v. Thus we successively omit
columns which are convex combinations of other columns till we get a matrix which cannot be
further reduced in this way. If this matrix has two columns we are done (see Figure 5.4 center).
If it has three columns u, v, w then they can be permuted so that det(u,v) > 0, det(v,w) > 0,
det(w,v) > 0 and sgn(Q~*[u,v,w]) > 0 for no regular matrix . Thus we can take for T any
singular matrix with sgn(u(7)) > 0, for example T = [0 %] (see Figure 5.4 right). O

Note that the matrix convex hull is not determined by 7" uniquely.
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def s(X,p,q,r):
if p==1or ¢ ==1i: return xy
for r <, r":
if sgn(V,;'F71X) > 0: return ¢
x, y=False False

for r ¢, r":
Y=V 'F'X
S0, 81 = sgn( o—),sgn(Y_q)
Sg, 53 = sgn( __0) sgn(Y__q)

if (s >0Vs >0)& (32<O\/53<O):x:True
if (s9>0Vs3>0)& (so0<0Vsy <0):y=True
if (z&y) V (—x & —y): return xy
if z: return x
if y: return y

Table 5.3: The balanced greedy selector for the binary algorithm

5.4 The binary algorithm

The binary arithmetical algorithm for the addition, subtraction, multiplication, division and
other bilinear functions works similarly as the unary algorithm by searching a path in the
binary graph. The states (vertices) of the binary graph consist of binary tensors and states
of the input and output paths.

Definition 5.25 The binary graph for a sofic number system (F,G,V) is defined as follows:
Its vertices are (X, p,q,7) € T(R) x B3. The labelled edges are

x — absorption: (X, p,q,r) @M (X H, .00 q,7), if p_%p
y — absorption: (X, p,q,r) (’\“)‘) (XuHyag,p:d,7), if ¢ % ¢

emission: (X, p,q,r) (““) (F,'X,p.g.r) if p#Fitq r o0,
X C Fa‘/r/;

The first rule is an x-absorption of a letter of the first argument, the second rule is an y-
absorption of a letter of the second argument, and the third rule is an emission of a letter
of the output. The label of an edge is a triple consisting of x-input, y-input and output. The
label of a path is the concatenation of the labels of its edges.

Proposition 5.26 If (X,i,i,i) %) (Y,p,q,7) is a finite path, then i % p, i ¥, ¢, i 2 r,
Y = FAX(FV,, E,V,). Ifp#i,q#iandr #1i, then Y C V,. If (X,i,i,1) %) is an infinite
path with u,v,w € A%, then u,v,w € Xg and X(P(u), ®(v)) = ®(w).

Proof: The first emission must be preceeded by an x-absorption and an y-absorption. If
(X,i,1,1) @) (Y,p,q,i) @M (Z,p,r) is the shortest path with an emission, then ¥ =
X(F,V,,E,V,) C F,V,, so Z = F,;'X(F,V,,F,V,) C V,. Assume that the condition is sat-
isfied for (X,i,i,i) 2 (Y,p,q,7). If (Y,p,q,7) @V (Z,p,q,7) is an x-absorption, then
Z=Y"Hyopy = F;'X(F,V,Hyop, F,Vy) = FA X (FuaViy, B,V,). TE (Y, p,q, 1) XN (Z,p, ¢, )
is an y-absorption, then Z = Y,H, ., = F,'X(F,V,, F,V,Hy0y) = Fng(FuV;),FwV}I). If
(Y, p,q,7) X (E-1Y, p,q,r') is an emission, then Y C F,V,, so F;'Y C V,. If u,v,w € A¥
and (u, v, w) is a label of an infinite path with source (X, 1,1, 1), then for each n there exist j,, k,
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such that (X, 1,1,1) (U10,5m) ¥10,kn) l0,m)) (Yo, Py Gn, 7o) isapath,so Y, = F ;! )X(Fu

0im Vs Fog o Vi)
Y, C V.., 80 X(Fyp, n)V s Fogsony Van) € Fugg ) Vi We get @(w), X (P ( ) d(v)) € wo’n)(Vn),

50 ®(w) = X(®(u), B(v)). 0

The binary graph represents a nondeterministic algorithm for arithmetic operations. To get
a deterministic algorithm, we use a selector s : T(R)x B*> — (Ax B)U{x, y,xy} which chooses an
admissible emission or an absorption. If s(X,r) = (¢,7") € A x B, then the algorithm performs
an emission with edge r _¢, r’. Otherwise the algorithm performs either an x-absorption or an
y-absorption or both. The simplest greedy selector chooses an emission whenever possible and
both the x-absorption and y-absorption if no emission is possible. But then it may happen that
the length of the x-intervals X__; becomes disproportionate with the length of the y-intervals
X_z‘_ .

4 X 4

r-——~>~>"=777"17

|
|
|
|
|
|
|
|
|
- L - - - ]

7 X

Figure 5.5: The x-absorption (left) and y-absorption (right)

In Table 5.3 we give in a Python-like syntax the balanced greedy selector which keeps
the length of x-intervals and y-intervals balanced. The selector choses an emission whenever
possible. If not it chooses either an x-absorption or an y-absorption or both. To choose a
convenient kind of absorption we consider all edges r _¢, 7’ and evaluate the tensor Y =
VIEZIX. If for some ¢,i,7, sgn(Y_ ;) > 0, and sgn(Y__;) < 0, then X ; C F.V,» but
X__; € F.V,» and we select an x-absorption to get a smaller interval Z__; = X__;H, ., in
the next step (Figure 5.5 left). If sgn(Y__;) > 0, and sgn(Y_;,_) < 0, then X__; C F.V,» but
X_;— € F.V,» and we select an y-absorption to get a smaller interval Z_,_ = X_;,_H,; » in the
next step (Figure 5.5 right). We select both x-absorption and y-absorption if both or none of
these two conditions is satisfied.

A sample run of the algorithm is in Table 5.4. It shows the convex closure X of the state
tensor, the state tensor X itself together with the matrices which act upon it and the input and

output paths. In the first step we start with the multiplication tensor X = [(1) 8 8 (1)], whose

marginal matrices are included in no F,V,, so both x-absorption and y-absorption are used.
The same situation occurs in the second and third steps. In the fourth step we get a tensor

with interval [0.56,3.00] which is included in F5Vs = [} '] so the emission of 0 is chosen. In
the next step with tensor X = [ % 2] we have X__; = [[§ 7] C FgVs = [} '] but
neither X_o_ = [;, {3 nor X_;_ = [’ '?Jis included in F5V5, so the y-absorption is closed to

get smaller X_;_ intervals.

In contrast to the unary algorithm, the binary algorithm in redundant systems is not guar-
anteed to produce an infinite output. This happens if we try to compute indefinite expressions
like 9 , 0-00 or oo+ co. In this case the algorithm reads ever longer prefixes of the input words
Wlthout producing any output. Nevertheless, in redundant systems the algorithm gives the
correct result whenever the computed result belongs to R.

Proposition 5.27 Let (F,G,V) be a sofic number system with initialized graph G and let
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X (X*H,).H, F'X| u v w

0.00,00] | [ o o UL 20 L A L1IAN20
0.12,-012] | [} 2 1 210 LB 190/0090
0.25,—0.25] | [} 3 ' 216 9.0 3 0L1]0L1
[0.56, 3.00] A A A% 0
0.28,1.50] | [;, [ 1% VLBl 1.9
028,112 15, o 5 G kG 151102,
0.49,0.04 2 N 01,1
~0.02,085 | [ 4 31 LG 3 02,0
015,069 | [y 5 5 5l'G Sk 4 1L 1j0,
045, 0.69] o 7 lhow s s o 141
[—0.10,0.38] [g (1)][;1521 22546 24526 14288] 120
[—0.20,0.75] [5561 12248 14228 giﬂ*[; g]*[g 411] LL11y
[<0.01,0.56] | [0 ys6 12 20 [ 2bly o) 151)02
[0'18’ 047] [g 2]'[2307458 1208284 2705438 1408204] 0 & 0
037, 0.94] o 7 lhon s o s 011
[-0-27,088] | [0, s 12 26l b olvlo 3 1L110L1
[_0'07’0'41] [(2J [1)][5(};186 1102284 4805916 2803458] 1 & 0
[-0.14,081) | [1py 512 aoas ol lo alely ] [ 150 T LT
[~0.14,0.40] o Wlois 20m 406 a0 050
[=0.29,0.80] | (154 1024 2ome 2008 5 aleh 5] |05 1) T50
0-23,0.80] | [535; soos soz sosel L okls 4 |1H1]01
056, 0.80] o 7 1lGtae mres sores 1asd) 031
[0'12’ 0'60] [332976658 156231824 166537844 ;15198;1]*[3 411]*[3 411] 1 L 011 L 0
0-12,0.44 o Wliomes sores sores soron 12,0
[0-24,0.88] | [igsss roma 16384 13mal o sils o [0S T] 0L 1

input tensor M = [} 0 7 ] (multiplication)

input: u = 1011111101101, p =1, F,,V, = [$;22 12207 = [0.747,0.747)

input: v = 001000100110101, ¢ = 1, F,V, = [0 5o = [2.105,2.113]

results M(F,V,, V) = [0 W5oomeo 050 sty _ [1573,1.572,1.575, 1573

output: w = 0110010010, r = 0, F,V, = [}); 52 = [1.566, 1.574]

Table 5.4: The computation of the binary algorithm in the binary signed system

111
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s be the balanced greedy selector. If T is a tensor and (p,u), (q,v) are paths of G such
that T(®(u), ®(v)) € R, then the binary algorithm computes an infinite path (r,w) such that
T(®(u), ®(v)) = ®(w).

Proof: It suffices to show that in the computed path there must be an infinite number of
emissions. If not then the output of the path is a finite word w. When all emissions are done
we have a state tensor X = F_'T(F,, ,Fy,,,). The length n of the x-input grows with
x-absorptions and the length m of the y-input grows with y-absorptions. We show that both
m and n grow to infinity. If not, from some step onwards, only one kind of absorptions is
chosen, say x-absorptions. This means that the length of X__; intervals converges to zero and
ultimately, since the system is redundant, these intervals are contained in some F,V,.. If the
intervals X_;_ are included in F_.V,,, then the selector choses the emission of c¢. If not then
the selector choose an y-absorption. Thus there is an infinite number of both x-absorptions
and y-absorptions. But then the length of the interval X¢ converges to zero and X has to be

included in some F.V,, so that an emission is available. o

5.5 Polynomials

With the binary algorithm, we can compute polynomial and rational functions. However, they
can be also computed directly. A polynomial is a complex function p(z) = po+p1x+- - -+ pz™,
where p; € C. If we define p(co) = oo, then p : C — C is a continuous function. Often we write
a polynomial as an infinite sum p(z) = .., piz’, where only a finite number of coefficients
p; are nonzero. The degree deg(p) of p is the largest n such that p, # 0 and its leading
coefficient is {(p) = pacg(p)- For the constant zero polynomial p(x) = 0 we set deg(p) = —1.
We say that p is a monic polynomial if its leading coefficient is ¢(p) = 1. Denote by Clz] the
set of all polynomials and by R[z| the set of polynomials with real coefficients. As algebraic
structures, both C[z] and R[z| are commutative rings with a unit. The addition, subtraction
and multiplication are defined pointwise by (p + ¢)(z) = p(x) + q(z), (p — ¢)(z) = p(z) — ¢(x),
(pg)(z) = p(z) - q(z). For the coefficients we get (p+ ¢)n = Pu + @n, (P — D0 = Pn — dn,
(P@)n = >y Pign—i- The multiplication of p € Clz] by a € C is (ap)(z) = a - p(z), or
(ap)n, = a - pn, so Clz] is also a vector space over C and R[z| is a vector space over R.

If r = pq, we say that p divides r and write p|r. A linear polynomial p(z) = = — a divides r
iff a is a root of r, i.e., if r(a) = 0. By the fundamental theorem of algebra, every polynomial
of positive degree has a real or complex root. It follows that each polynomial can be written as
p(r) =a(x—cy)™ -+ - (x—cpm)™™, where a, ¢; € C are complex numbers and r1+- - -+, = deg(p).
Polynomials can be divided with remainder: For every nonzero polynomials ¢, s there exist
unique polynomials ¢ (quotient) and r (remainder) such that ¢t = sq + r and deg(r) < deg(s).
Nonzero polynomials s, t have the greatest common divisor (GCD) p = ged(s, t) which is the
monic polynomial of highest degree which divides both s and t. If a polynomial divides both p
and ¢, then it divides also ged(p, ¢). The GCD of two polynomials can be found by the Euclidean
algorithm. If py, p; are given nonzero polynomials, there exists a unique sequence of polynomials
D2y -+ y Py Pnt1 such that n > 1, p;_1 = p;q; + pi1 for some ¢; € Clz], deg(pi+1) < deg(p;), and
Pni1(z) =0, 80 pp_1 = Pngn- Then p, is a constant multiple of ged(po, p1).

Proposition 5.28 If p,q € C[z]| are nonzero polynomials then there exist polynomials s,t such
that ps + qt = ged(p, q).

Proof: Set M = {ps+qt: s,t € C[z]} and let r be a nonzero monic polynomial of M with
the lowest degree. For each nonzero ps + qt € M there exist u,v with ps 4+ qt = ru + v and
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deg(v) < deg(r). Since v € M we get v = 0, so r divides all elements of M in particular p and
q. On the other hand if r divides p and ¢ it divides also r, so r = ged(p, q). 0

The derivation of a polynomial p(x) = pg + p1x + - - - + pua™ is

P () = p1+ 2pox + - - + npua™ L.

T/

For p(z) = (z — ¢)"q(z) we get p'(z) = r(z — )" 'q(z) + (x — ¢)"¢'(z). Thus for p(z) =
a(x —c)™ - (T — )™ we get

ged(p,p) = a(z — )t (2 — )™ L

The number of real roots of a real a polynomial can be determined by the Sturm Theorem
(see Waerden [65]). Define the variance w(ay, ..., a,) of a finite sequence of real numbers as
its number of sign changes. To get the variance, delete first all zeros, so

U}((Io, ey 1, 0, Ait1y - - - ,an) = ’lU(CL(), B ¢ 7 [P ¢ 7 I N ,an).
For a sequence which does not contain zeros we have
w(ag,...,a,) =|{i <n: aa <0}

Given a polynomial p(x) define its Sturm chain as a finite sequence p; of polynomials defined
by po = p, p1 = V', Pic1 = Pi¢i — Div1, where deg(p;y1) < deg(p;). Thus the Sturm chain is just
the Euclidean sequence of p, p" except that the remainders are taken negative. The last element
of the chain satisfies p,,—1 = Pm@m, S0 pm is a constant multiple of ged(p, p').

Theorem 5.29 Let p € R[x] be a real polynomial with the Sturm chain p = po,...,pm, let
a < b be real numbers which are not the roots of p. Then the number of roots of p (counted
without multiplicities) in the interval I = (a,b) is

{z el p(x) =0} =w(po(a),...,pm(a)) —w(po(d),...,pm(b))

Proof: Since p,, is a constant multiple of ged(p, p’), there exist polynomials r; with p; = r;p,.
Since p(a) 7é 0 7é p<b)7 we have pm(a) 7£ 0 7& pm(b)a TO(a) 7é 0 7£ TO(b)v Tm<a) - Tm(b) = L By

passing from p; to 7; the variations do not change: w(pg(a),...,pm(a)) = w(re(a),...,rm(a))
and similarly w(po(b), ..., pm(b)) = w(ro(b),...,rm(b)). If J C I is an interval in which no r;
has a root, then w(ro(c),...,rm(c)) is constant on J. We evaluate how w changes at ¢ € I in

which one of the r; is zero. If r;(c) = 0, with 0 < ¢ < m, then r;;;(c) # 0, since otherwise
we would get 7;12(c) = 0 and by induction r,,(¢) = 0 which is a contradiction. Thus both
rit1(c), ri—1(c) are nonzero and therefore they are nonzero also in some interval which contains
c. This implies that w(r;—1(x), r;(x), rit1(2z)) is constant in such an interval. Assume now that
ro(c) = 0. Then po(c) = 0 and p(z) = (x — ¢)¥s(z) for some k& > 1 and a polynomial s(x) with
s(c) # 0. We get p'(z) = k(x — o)*1s(z) + (z — ¢)*s'(z). If we divide p and p’ by (x — )L,
we get
so(x) = (x — ¢)s(x), s1(x) = ks(z) + (z — ¢)s'(x).

For z < ¢ we have sgn(so(x)) = —sgn(s(c)), sgn(si(z)) = sgn(s(c)), while for z > ¢ we get
sgn(so(x)) = sgn(s1(z)) = sgn(s(c)). Thus as = passes through ¢, w(sy(z), s1(z)) diminishes by
one. Since 7;(c¢) are nonzero multiples of s;(c), the same happens for r;. Thus for each root ¢
of p(z) in I, the variance w(ro(z), ..., m(x)) diminishes by one when z passes through ¢. o
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5.6 Rational functions

A rational function R : R — R U {3} of degree at most ¢ > 0 is a ratio of two polynomials
of degree at most ¢, or a function of the form

—1
- Rool’g + Roll’g 7 i R Roqaj({
= —~ .
Rlol’g + Rnl’g o e R qul’?

R(z)

A rational function is regular if the numerator and denominator polynomials are relatively
prime. In this case R(z) # 8 for every € R and R is a mapping R : R — R. We do not adopt
the assumption of regularity in general, since its verification would unnecessarily complicate the
transcendent algorithm of Section 8.3. For each rational function R there exists an equivalent
regular rational function r, which is obtained from R by cancelling the common factors of the
numerator and denominator of R. A rational function R of degree at most ¢ is given by a
2 x (¢ +1)-matrix R = (Ry;)k=01,j=0, ¢ S0 R(x)r = > 1, Rkixg_ix’i. If M is a transformation,
then both compositions RM = Ro M and MR = M o R are rational functions of degree at
most ¢, which is regular provided both R and M are regular. The composition M R is obtained
by the product of the matrices (M R)y; = Z;:O My;Rj;. To obtain the composition RM, let

1
Yi = ijo M, so

q
Ry = Z Riep(Moozo + Morx1)* P (Moo + Miyxq)?

p=0

g a—pr q_p . X . p p . . L.
= Y X (1) Mt X (1) 0wt

p=0 i=0 Jj=0

r

q q—1
q_p p —p—1 1 —r+1 r—1g —-r _r
= ZZ Z Rkp( ; )<r_i)Mg0p Mg, M, +M11 rg

r=0 =0 p=r—1i

where r =i+ j. Since 0 < i< qg—p, 0<j<p weget j=r—i<p<gqg—i Thus the
composition RM is defined by

r q—1
q—7p p —p—iq ri —ri g rr—i
(RM )y = Z Z Rkp( ; ) (7“ B z) Mgy "™ Mg, My "™ M7,

=0 p=r—1i

If S is a rational function of degree p, then Ro S and S o R are rational functions of degree ¢ - p.
Rational functions are obtained from tensors. A bilinear tensor 1" is symmetric if 7j;, =
Ty for each 4,7, k. For a rational function R of degree 2 there exists a symmetric tensor
T= [g(l’g g‘ig g‘ﬁﬁ g‘;z], such that R(z) = T(x,x). For each interval I C R we have
R(I)=A{R(z): xe€l} C{T(z,y): z,yec I} =T(,1I).

If P,Q are regular matrices and sgn(Q ' RP) > 0 then sgn(Q~'T(P, P)) > 0 and by Theorem
517 R(P°¢) C T(P¢, P°) C Q“.

To get the inclusion criterion for rational functions of degree 2 or more, we have to gener-
alize Theorem 5.17 to tensors of higher degrees. For example, trilinear tensors T'(x,y, z); =

> ija Thijiziy;z determine functions 7' R’ > RU {2}. For z € R we get a bilinear tensor 7™z
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and for matrices P, Q), R we get a trilinear tensors T*P, T'(P, @, R) defined by
(T*2)pjy = Z Thijizi
(T*Phriji = Y Thrjt Pri

T<P7 Qa R)kijl - Z TkrstPriQsztl
r,8,t
The image of intervals I,.J, K C R by a trilinear tensor 7 is

T, J,K)={T(x,y,2): v€l,ycJze K}NR.

Proposition 5.30 Let T be a trilinear tensor, P,Q, R, S reqular matrices. Ifsgn(S™'T(P,Q, R)) >
0, then T (P, Q°, R°) C S°.

Proof: Let sgn(S™'T(P,Q,R)) >0, z € P°, u= P~ 'z, so x = Pu and sgn(u) > 0. We have

(T2)(Q, R) = (T"(Pu))(Q, R) = (T"P)"u)(Q, R) = T(P,Q, R)"u

Since sgn(S™'T(P,Q, R)*u) > 0, we get by Theorem 5.17 (T*x)(Q°, R¢) C S¢. If y € Q°,
z € R® then T'(x,y,2) = (T*z)(y, z) € S¢, so T(P°,Q°, R°) C S°. O

For a rational function R of degree 3 there exists a symmetric trilinear tensor T' given by
Thiji = Rkv(i+j+l)/(i+?+l> such that R(z) = T'(z,x, ) for any x € R. Thus if sgn(Q 'RP) > 0
then R(P°) C Q°. More generally, a g-linear tensor Ty, ., of ¢ variables M 2@ e Ris

given by

.....

T(ZE(I),...,{E(q)>k = Z Tk,il 77777 Z‘q.ﬁUEP,...,LEE?.
If sgn(Q~'T(Py,...,P;)) > 0 then T(Pf,...,PS) € Q°. For a rational function R of order ¢
there exists a symmetric ¢-linear tensor 1" of ¢ variables such that R(z) = T'(z,...,z). We
obtain a simple criterion for the inclusion:

Theorem 5.31 Let R : R — R be a rational function and P, Q regular matrices. If sgn(Q ' RP) >
0, then R(P°) C Q°.
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Chapter 6

Integer vectors and matrices

When we compute arithmetical algorithms in a sofic number system, we perform arithmetical
operations with the entries of its transformations, intervals and vectors. These operations are
algorithmic, provided the entries of the matrices are rational numbers. Since we work with
projective matrices and vectors, we can assume that their entries are integers whose greatest
common divisor is 1. Then each projective tensor, matrix or vector with rational entries has
exactly two representations with coprime integers.

6.1 Determinant, norm and length
Denote by Z = {...,—2,—1,0,1,2,...} the set of integers and by
Q={zeZ?\{}: gd(z) =1}

the set of (homogeneous coordinates of) rational numbers which we understand as a subset of
R. Here ged(z) > 0 is the greatest common divisor of zy and x;. Each rational number has

exactly two representations in Q, z = 22 = =%. In contrast to the norm of vectors = € R, the

norm ||z|| = /2 + 22 of z € Q does not depend on the representation of z. We have the

cancellation map d : Z? \ {2} — Q given by d(z) = %. Denote by Z?*? the set of 2 x 2
matrices with integer entries and by
M(Z) = {M € Z***: gcd(M) = 1, det(M) # 0}.

Each matrix of M(R) with rational entries has exactly two representations M = [ Z] =[" :Z]
in M(Z). For x € Q we distinguish M -z € Z? given by (M - 1); = > Mijz; from Mz =
d(M-z) € Q. For M =[* "] € Z*?\ {0} denote by d(M) = [g;g gg], where g = ged(M) > 0
is the greatest common divisor of the entries of M. Thus we have the cancellation map d :
7?2\ {0} — M(Z). We distinguish the matrix multiplication M - N from the multiplication
MN =d(M - N) in M(Z). The determinant and norm of M = [* ] € Z*? are defined by

det(M) = ad — be, ||M|| = Va2 + b2+ 2 + d2
and do not depend on the representation of M in M(Z). We have
det(M - N) = det(M) - det(N), [[M - N[ < [[M]] - [|N]],

so|det(MN)|<|det( )| - | det(N)|, [|[MN]|| < [|M]|-||N]]|- ThepseudoinverseofM:[%,g]
is M~'=[L, =) =[=¢, L] We have M - M~' =det(M) -1d, MM~ =1d = [}, 9].

a

117
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Proposition 6.1 If M, N € M(Z), then g = gcd(M - N) divides both det(M) and det(N).

Proof: Clearly g divides M~!- M- N = det(M)- N. Since gcd(N) = 1, g divides det(M). For
a similar reason, g divides det(N). 0

Recall that by Proposition 5.9 the size and length of a matrix P = [? Z] € M(Z) are defined

by sz(P) = ‘Zi’ltgi', |P| =1 — Larctan sz(P) and we have an estimate

1 1
= — <P < —
_||_7r-sz(P)

1
P)>1e [Pl <>
wP)zlelPls = 705

Lemma 6.2 If P =[* "] € M(Z) is an integer matriz, then

max{|al, b, [c],|d[} < max{|ab + cd], Jad — bel},

V2 [det(P) -sa(P)| < [|P|| < 2-|det(P)| - max{[sz(P)|, 1},
|| P|] §|det(P)]-maX{L 1 }

|Pl> 1| P

Proof: If a = 0, then |bc| = | det(P)| # 0, and
0 < |bl, |c] < |be| = |ad — be|, |d| < |ed| = |ab+ cd|.

If b =0, then ad = det(P) # 0, and 0 < |al|,|d| < |ad| = |ad — be], |¢| < |ed| = |ab + cd|.
Similarly we prove the inequality if ¢ = 0 or d = 0. Assume now that all a, b, ¢, d are nonzero.
If sgn(ab) - sgn(ed) > 0 then |a| - |b| + || - |d| = |ab + cd|, so max{|al,|b|, ||, |d|} < |ab+ cd|. If
sgn(ab) - sgn(ed) < 0 then

sgn(ad) - sgn(bc) = sgn(abed) = sgn(ab) - sgn(cd) < 0,

so |a| - |d| + |b] - |¢| = |ad — be| and max{|al, |b], ||, |d|} < |ad — be|. Thus we have proved the
first inequality in all cases. From (a £ ) + (¢ = d)? > 0 we get

2 |det(P) - sz(P)| = 2|ab + cd| < ||P||%,

s0 \/2 - |det(P) - sz(P)| < ||P]]. If max{|al,|b],|c|,|d|} < K then ||P|] < 2K. Thus
lab + cd| < |ad — be|] = ||P|| < 2|det(P)|,
lab + cd| > |ad — be|] = ||P|| < 2|ab+ cd| = 2| det(P) - sz(P)|.

Thus ||P|| < 2-|det(P)| - max{|sz(P)|,1}. To prove the last inequality we distinguish three
cases. If |P| < 7 then @Zf‘;ccl' > 150 ab+cd > |ad — be|. From max{|al, |b], ||, |d|} < ab+ cd we
get by Proposition 5.9

12det(P)| _ |det(P)]
1P| < 2(ab+ cd) = 2 - s2(P) - | det(P)| < < |
m|P| P
If 1 < |P| < 1, then |arctan 22| < 2 5o |ab+cd| < |ad—bc|. It follows max{|al, |b], |c],]d|} <

jad — be|, so [|P|| < 2| det(P)| < M. 1f [P| > § then for the matrix Q = [* ~*] we have

de det(P
@I =1—1P[ 50 |Q] < 5 and ||P[| = ||QI] < M55 = L. :
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Lemma 6.3 If P € M(Z) and x € P°NQ, then
G- [lz|[*- [P[ - [det(P)| > 1.
2 If [P < then ||P]| < V3 ||z]] - |det(P)], and [sa(P)] < 3|2 - |det(P).
Proof: If |P| > 3, then the first inequality is satisfied trivially. Let P = [* ] and |P| < 3, so
ab+cd > 0. For z = £ we have P ly =" _ba] 2 =B where o = pc —aq, B = qb— pd. Smce

c q
r € P°, sgn(’B ) > 0. Replacmg x by £ - P if necessary, we can assume that o > 0 and 5 > 0.

Since |P| < 1, either ¥ & P¢or § ¢ P°. Assume first § ¢ P°. Then sgn(P~'-3) = sgn(=%) < 0,
so cd > 0. Slnce x 7& 5, we have ¢ # 0 and

qdet(P) = qad — gbc = (pc — a)d — (pd + B)c = —(ad + Bc)
so ald| 4+ Blc| = |ad + Be| = |gdet(P)]. Since «, 3, ]|c|, |d| are positive integers, we get
a+ [ <|gdet(P)|, |c+d| = |c| + |d| < |gdet(P)].

From a +b = ’%”dw we get

lpc| + a + |pd| + B

lq|

la +b| < < (|p| +1) - | det(P)].

Since ab + cd > 0 we get
1PI* < (a+0)* + (c+d)* < (([p| + 1)* + ¢%) - det(P)* < 3 ||z[|* - det(P)?

so we have proved ||P|| < v/3-||z||- | det(P)]|. It follows 4(ab+ cd) < 2||P||* < 6||z||? - det(P)?,
SO |Sz( )| = ‘ggji,d)| < 3. ||z|]* - |det(P)|. Similarly if 0 ¢ P then p # 0, sgn(P~'-9) =
sgn(-%) <0, so ab > 0. We get pdet(P) = —(ab+ Ba), so (a|b| + Bla|) = |pdet(P)|. It follows

a+pB< Ipdet( )|, lal + 6] < |pdet(P)],

lag| + [bg] + o+ 3

|p|

We get again ||P]|? < 3+ [|z]|? - det(P)? and [sz(P)| < 3 - ||||* - | det(P)].
The inequality 6 - ||z||* - |P| - | det(P)| > 1 is satisfied whenever |P| > 1. If |P| < 1 then by

Proposition 5.9 we get |P| > 4|SZ1(P)| > G et Py

c+d<

< (lgl + 1) - [det(P)].

O

6.2 Rational number systems

We consider number systems whose transformations have rational entries. By multiplying by
the common denominator, we can assume that F, € M(Z). In interval number systems (F, W)
or sofic number systems we assume also W, € M(Z) or V,, € M(Z). For interval number systems
with integer entries we use the concept of rational expansion interval

Definition 6.4 The rational ezpansion interval of M € M(Z) is defined by
R(M)={xcQ: (M Y*(x) > |det(M)|}.
Proposition 6.5 Let M € M(Z).
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R(M) C V(M) is a (possibly empty) open interval.
0,00 € R(M), so either R(M) C (00,0) or R(M) C (0, 00).
If M*(0) = det(M) then M(0) € {0,000}

If M*(00) = det(M) then M(oo) € {0, 00}
Ifr € R(IM)NQ, then || M~ (z)|] < ||z]|.

SARRREINCEEA R

Proof: Let M = [ Z].
1. R(M) is an interval by the proof of Proposition 3.31.

2. We have (M~1)*(0) = iei(r D < det(M), so 0 & R(M). We have (M~1)*(c0) = %) <
det(M), so oo & R( ).

3. If M*(0) = 998 — det(M) then M(0) = & € {0, 00}.

b2+ d2 -
4. If M*(c0) = de;% = det(M) then M(co) = ¢ € {0,00}.
5. If 2 € R(M) N Q then (M~1)*(z) = W > det(M), so [|M~1(z)|| < ||z||. !

Definition 6.6 We say that (F,W) is a rational interval number system of order n > 1,
if Fo, Wy € M(Z) for each a € A and W,, C R(F,) for each u € L}y .

The system of symmetric continued fractions of Definition 1.14 is a a rational number
system of order 1. Since all its transformations have unit determinant, we have R(F,) = V(F,).
For the same reason, the system of signed continued fractions from Example 4.5 is a rational
number system of order 2.

Theorem 6.7 A rational interval number system is neither redundant nor expansive.

Proof: Since 0,00 ¢ W, for any a € A, the system is not redundant. We show that Q,, =
max{Fy(z) : u € Ly, z € F'(W,)} = 1. Let u be any expansion of 0, and z,, = F,, | (0).
Then u; € {0,00} and (F,')*(z,) =1, 50 Q, = 1. D

Theorem 6.8 (Delacourt and Kiirka [12]) If (F, W) is a rational interval number system,
then each rational number x € Q has a periodic expansion and Spw is a SFT.

Proof: We prove the theorem for the order n = 1 since the case of a general order is similar.
Thus we assume that W, C R(F,). If u € Spw is an expansion of z € Q, then for z, =
Fu_[oln (x) € W, € R(F,,) we have by Proposition 6.5 ||x,.1|| < ||z,]| so there exists m > 0
and n > 0 such that x, = x,,. Then uy,, (u[mvn))w is a periodic expansion of . Thus each
rational number has a periodic expansion.

We show that Spy is a sofic subshift. Define by induction

E = {\{(W,),r(W,), a € A},
Eni1 = {F'(2): acAzeW,NE}

If z € W,NE,, then ||F; ' (z)|| < ||z|| by Proposition 6.5, so there exists n such that &, = &,.
Let V. = {V, C R : p € B} be the open interval partition with endpoints (V) = &,. If
V, N W, # 0, then both endpoints of F,*(V, N W,) belong to &y, so if V, N F, 1 (Vy nW,) # 0,
then V, C F,'(V, N W,). By Theorem 4.23, Spy is a sofic subshift and its labelled graph is
G = (B, E) with vertices B and edges p -2, q iff V, C F,*(V, N W,). This graph determines
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the SFT ¥iq € E¥ of order two such that (p,a,q)(r, b, s) € £|2G‘ iff ¢ = r. A path in this graph
is a pair (p,u) € B x A¥ such that p; %, p;41 for each i. This implies V,,, "W, # (. We have
a factor map 7 : ¥jg = Yg = Spw which is the projection 7(p,u) = u. We show that 7 is
bijective, i.e., that for each u € Sy there exists a unique p € B such that (p,u) € ¥g. For
a given u € Spy denote by z = ®(u) and z,, = F,J[(in) (r) € W,,. If x is irrational, then all z,,
are irrational and for each n there exists a unique p,, such that z,, € V,,, so (p,u) € Spwyv.
If x is rational then all z, are rational. Since z, € R(F,,), we have ||z,11|] < ||zn]]. If
z, € R(F,,) then ||z,41]] < ||zal|, so there exists only a finite number of indices n with
x, € R(F,,). Thus there exists ng such that for all n > ng, x, is an endpoint of R(F,,) and
therefore also an endpoint of W, . It follows that there exists a unique p,, such that x € V,,,
and V,, N W, # 0. For each m < n there exists unique p,, such that z,, € V, NW,  and

FJ[ jm) (Vp,, "Wy, )NV, # 0: either x,, is an inner point of V,,  or z,, is an endpoint of V,,
but for the other p/, with z,, € V,, NW,, we get F@i " Vo, " Wy, ) N V2 = 0. Thus the
projection 7 : g — Spw is bijective. Since a homomofphic image of a SFT is a SFT, Spw
is a subshift of finite type. O

6.3 Modular systems

Definition 6.9 A transformation M € M(Z) is modular, if det(M) = 1. We say that (F,X)
1s a modular number system, if ecach F, is a modular transformation.

The number system of signed continued fractions and the number system of symmetric
continued fractions are modular systems. For a modular transformation we have R(M) =
V(M), so a modular interval number system is rational. Thus if (F, W) is a modular interval
number system, then each rational number has a periodic expansion and Sg is a SF'T. On the
other hand a modular system is neither redundant nor expansive. Despite this fact, we show
that the unary algorithm works in modular systems for the Mébius transformations with integer
entries. For each input the algorithm gives an infinite output and the size of the state matrix
of the algorithm remains bounded during the computation. This implies that the algorithm
has linear time complexity and can be computed by a finite state transducer. We first prove
an auxiliary Lemma.

Lemma 6.10 Consider the unary graph in a modular sofic number system (F,G,V) of order
1.

1. If (X,p,q) *A (Y,r,q) is an absorption and p # i then |Y| < | X|.
2. If (X,p,q) 2% (Y,p,r) is an emission then |Y| > |X| and ||Y|| < || X]].

Proof: 1. Since H, ,, is a nonnegative matrix, we have Y = XH, ,, C X, so |Y| < |X]|.

2. Since V,, C U(F,), we have X C F,V, C V(F,) and |Y| > |X]|. For each 2 € X° we have
(F;7Y*(x) > 1 and therefore ||F;'(z)|| < ||z||. In particular this holds for both endpoints of
X which implies ||F, 1 X || < || X]]. O

In Theorem 5.13 we have proved that a redundant sofic system (F, G, V) has a threshold
and the unary algorithm with greedy selector computes a mapping Oy, : X — Xjg such
that if Oy 4(p,u) = (¢, v) then M®(u) = ®(v). Modular systems have a weaker property: they
have local thresholds.
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Proposition 6.11 A greedy selector in a modular sofic number system has a local thresh-
old. This means that for each X € M(Z) there ezists a threshold 7(X) > 0 such that in
the computation (X;, p;, q;) with initial state (X,1,1) each absorption state (X, pi,qi) satisfies
| Xi| = 7(X)

Proof: Set

C = 6 max{|UFV)I] [In(EV)I 2 7},
D = max{|det(V,)|: p € B}

Let (Xo, po, qo) M%) (X1, p1,q1) ™% - .- be a path in the unary graph computed by a greedy
selector s (here u;,v; € AU{\}). Since each F, is modular, and X; = Fv_[oleoFum’i) V., we get
| det(X;)| < D -|det(Xo)|. If (X, pi,q:) is an absorption state, then X; contains an endpoint z

of some F,V,, so by Lemma 6.3
CD - |det(Xo)| - |Xi| > 6 - [[«]]” - [ det(X;)| - | Xi] > 1.

Thus | X;| > 7(Xo) = zprbre

Corollary 6.12 In modular sofic systems, the unary algorithm with a greedy selector computes
for each M € M(Z) a continuous mapping O s - Lo — L such that @Oy o = MO.

Proof: By Proposition 6.11 each computation of the unary algorithm contains an infinite
number of both absorptions and emissions, so analogously as in Theorem 5.13 we prove that
the unary algorithm with a greedy selector computes for each M € M(Z) a continuous mapping
Onrs : Xja) — X)) such that if O 4(p,u) = (¢,v) then ®(v) = M(®(u). By Theorem 6.8, ¥
is conjugated to X, and we get the result. u]

We show now that in each computation of a greedy selector, the norm of the state matrix
remains bounded.

Theorem 6.13 (Delacourt and Kurka [12]) Let s be a greedy selector in a sofic modular
number system. Then for each X € M(Z) there exists a bound v(X) > 0 such that for each
computation (Xo,1,1) “0%° (X1, p1,q1) "8 (X2, p2,q2) - -+ we have || X;|| < v(Xo) for each i.

Proof: Denote by 7(Xj) the local threshold from Proposition 6.11. Let C, D be the constants
from its proof and set

L = max{|U(F,)|: a € A},
H = max{||Hpuqll: »-% ¢}

Each path (Xo,1,1) “o% (X1,p1,q1) “2% (X2,p2,q2) -+ of a greedy selector contains an infi-
nite number of both absorptions and emissions and | det(X;)| < D - |det(Xy)| for each 7. If
(X0, Pnyqn) is an emission state and (X, p;,q;) are absorption states for n < ¢ < m, then
1 Xn| < |Fu, Vool < [V(F,,)| < 3 and by Lemma 6.10,

1>L> | X > | Xpao| > > | Xl
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If ng is the time of the first emission, then |X,| < L for each n > ng. If n > ng, (X, pn,qn)
is an absorption state and (Xj, p;, q;) are emission states for n < i < m, then by Proposition
6.11, |X,,| > 7(Xo), so

| X,]] < M =D-|det(Xp)| - max{—— Xy T =}
M-H = [|Xpull > [[Xpall > - > |[Xn]].

Denote by v,(Xo) = max{||X;|| : 0 < i < n} and let ny be the time of the first absorption
with ny > ng. Then || X;|| < v(Xy) = max{M - H,v,,(X,)} for every i. O

A special case of Theorem 6.13 for simple continued fractions has been proved by Raney
[57]. Since there is only a finite number of matrices X € M(Z) whose norm ||.X|| does not
exceed a given bound, there is only a finite number of vertices (Xj, p;, ¢;) which appear in the
computation of the unary algorithm. This means that the computation of the unary algorithm
can be done by a finite state transducer which is a finite automaton with an output function.

6.4 Finite state transducers

Definition 6.14 A finite state transducer over an alphabet A is a quadruple T = (Q, 0, T,1),
where (Q,0,1) is an accepting automaton (Definition 2.28) and T : A x Q — A* is a partial
output function with the same domain as 6.

For each u € A* we have a partial mapping 7, : Q@ — A* defined by induction: 7)(p) = A,
Tua(P) = Tu(p)T(a,d,(p)) (concatenation). The output mapping works also for infinite words.
If w is a prefix of v, then 7,(p) is a prefix of 7,(p), so for each p € @ and u € A“ there exists a
unique 7,(p) € A" U A such that each 7, (p) is its prefix. A finite transducer determines a

labelled oriented graph, whose vertices are elements of Q. There is an oriented edge p (@Y ¢ iff
da(p) = q and Ta( ) = v. The label of a path is the concatenation of the labels of its edges, so
there is a path p % ¢ iff §,(p) = ¢ and 7,(p) = v.

It follows from Theorem 6.13 that for a given sofic modular system (F,G,V), a greedy
selector s and an initial transformation M € M(Z) there exists a finite state transducer 7 =
(Q,0,7,2) which computes M. The state set ) consists of the absorption states (X,p,q) €
M(Z) x B? such that ||X|| < v(M), where v(M) is the bound from Theorem 6.13. For
a given (X,p,q) € Q and a € A with p 2, py take the path (X,p,q) 2 (Xo,po,v0) 1%

At (X D, qn) such that (X, pi, ;) are emission states for i < n and (X, pn, gn) is an
absorption state. Then we define partial mappings 6 : @ X A — Q, 7 : Q x A — A* by
(X, p,q),a) = (Xn,Pn,qn) and 7((X,p,q),a) = vg---vy—1. If n =0 then 7((X,p,q),a) = A.
The initial state of the transducer is » = (M, i,1).

Definition 6.15 Let (F,G,V) be a sofic number system with an alphabet A and an initialized
graph G = (B, E,i). We say that a finite state transducer T = (Q,0,7,1) extends G if there
is a projection w : QQ — B such that (1) = i, and if 6(p,a) = q then m(p) 2 7(q) in G. We
say that T computes a real function g : R — R, if T extends G and for any u € Y¢g we have

v="T,(2) € Xg and ®(v) = g(P(u)).
If we define ©,(u) = 7,(2), then © : ¥ — X is a continuous function which satisfies 0, = ¢g®.

Corollary 6.16 For a modular sofic number system (F,G,V) with a deterministic graph G
and a transformation M € M(Z) there exists a finite state transducer which computes M.
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On the other hand, we show that Mobius transformations are the only functions which
are computable by finite state transducers in sofic number systems. This has been proved
in Konecny [31], who assumes that the function in question is differentiable and has nonzero
derivative at the fixed point of the transformations. A similar result has been obtained by
Kurka and Vavra [45] for the case of analytic functions. Recall that F, = {u € ¥¢: p %} is
the follower set of p € B.

Proposition 6.17 Assume that a finite state transducer T = (Q,6,7,1) computes a real func-
tion g in a sofic number system (F,G,V) with an initialized graph G. Then for every state
p € Q there exists a real function g, : V, — R such that if w € F, and 7,(p) = z, then
®(2) = g,(®(w)). We say that T computes g, at state p. If u,v € L(X), and p “Y q, then
90 = F, gp .

Proof: Assume that 2“9 p (“2) with w, 2 € ¥ and set g, = F;'gF,. Then
9p®(w) = FgF,@(w) = F, g®(uw) = F, @ (vz) = (2),

so T computes g, at p. If p @) ¢ 2 then F1g,F,®(w) = F,1g,®(uw) = F;'®(vz) = @(2),
so T computes F, 'g,F, at ¢ and is equal to g,. 0

Lemma 6.18 Assume that a finite transducer T = (Q, 0, T,1) computes a nonconstant rational
function g in a sofic number system (F,G,V') and let p “4 p be a path in T. Then F, and F,
are either hyperbolic or decreasing transformations.

Proof: By Proposition 6.17 7 computes at the vertex p a function g, : ®(F,) — R with
gpF, = F,gp. If g is rational, then g, is a rational function defined on the interval ®(F,) which
extends to a unique rational function defined on whole R. Since 7(p) %, 7(p) is a path in G, we
get u¥ € Xg, so F), is not elliptic. Since O(u®) = v¥ we get v¥ € X, so F, is not elliptic. We
show that neither F, nor F, is parabolic. We distinguish three cases. 1. If both F,, and F,, are
parabolic, they are conjugated to the translation T (x) = x + 1, so there exist transformations
fo, fi such that F, = foT' fy!, F, = fiT fi''. For the rational function h = f; 'g,fo we get

Tlh = Tlfl_lgpf() - flevgpfO = fl_lgpFufO = fl_lgpfOTl = hT17

so h(x + 1) = h(xz) + 1. Tt follows that the rational function ho(x) = h(z) — x is periodic:
ho(x +1) =h(x +1) —2 — 1 = h(zx) — x = ho(z). However, no rational function is periodic.
2. If F, is parabolic and F, is hyperbolic or decreasing, then there exist transformations fy, fi
such that F, = foT ' fy ', F, = fiQ.f; ', where Q,.(x) = rz and 0 # r # 1. For the rational
function h = f;'g,fo we get Q.h = hT*, which implies h(z +n) = h(x) - r™ for each integer
n. If r = —1 then A is a periodic function with period 2, which is impossible. If » # —1 and
h(z) # 0, then we get lim, o h(z + n) # lim,,_o h(z + n): one of these limits is zero and
the other is infinity. This means that h is not continuous at oo which is a contradiction. Thus
h(xz) = 0 for all x and g, is a constant function.

3. If F, is hyperbolic or decreasing and F;, is parabolic, then there exist transformations fy, fi
such that F, = f,Q,fy ', F, = fiT fi', where Q,(z) = rz and 0 # r # 1. For the rational
function h = f; g, fo we get T'h = hQ,, i.e., h(z)+1 = h(rz). For x = 0 we get h(0)+1 = h(0)
which is a contradiction. O
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Lemma 6.19 Let g be a real rational function of degree n > 2, and let Fy, Fy, Fy, F3 € M(R)
be hyperbolic or decreasing transformations such that Fog = gFy, Fog = gF3. Then Fy has the
same fixed points as Fy and F3 has the same fixed points as F.

Proof: There exist transformations fy, fi and rq,r; different from 0 and 1 such that Fy =
foQro fot, Fi = f1Q., fi*. For the rational function h = f;'gf, we get

Qroh = Quofo '9f1 = f3 ' Fogfs = fo 'aF1 fy = fo ' 9/1Qr, = hQyy,

so h(ri*z) = h(z)ry". The only rational functions which satisfy this equation are of the form
h(z) = pz". From deg(g) > 2 we get n > 2 and

fo ' Eafoh = [ Fagfi = fo 'gFsfi = hf{ ' Fafi.
Setting fo ' Fofo =[* U, fi'Fsfi = [ 2] we get
(apz™ + b)(Cx + D)" = p(cpx™ + d)(Ax + B)"

Comparing the coeficients at 2" and z*"~! we get aC"™ = pcA™, aC" D = pcA" 1B, so
pcA"D = aC"D = pcA"'BC, and pcA"'(AD — BC) = 0. Thus cA = 0 and it follows
aC = 0. Comparing the coeficients at z and z°, we get bCD" ! = pdAB" !, bD™ = pdB",
so pdAB"'D = bcD" = pdCB"™ and pdB" '(AD — BC) = 0. Thus dB = 0 and it follows
bD = 0. We have therefore proved cA = aC = dB = bD = 0. Since both matrices are regular,
either A=D=a=d=0o0or B=C =0b=c=0. In the former case, F5 and F3 would be
elliptic which is excluded by the assumption. Thus B = C' = b = ¢ = 0, so both f; ' F,f, and
fr1Fsf1 have the fixed points 0 and oco. It follows that F, has the same fixed points as I and
F3 has the same fixed points as F}. o

Theorem 6.20 (Kuarka and Vavra [45]) A rational function of degree 2 or more cannot be
computed by a finite state transducer in a sofic number system.

Proof: Assume that a finite state transducer 7 = (@, d, 7,2) computes a rational function h of
degree deg(h) > 2 in (F,G,V’). Then each vertex p computes a rational function of the same
degree. Take any infinite path + “% in 7. There exists a state p € () which occurs infinitely
many times in this path, so we have an infinite sequence of finite words u®,v® such that

- ((0) 4(0) 1) »M) (2) 4(2)
o () p (2T p T p

By Lemma 6.19, all F, ) with ¢ > 0 are either hyperbolic or decreasing and have the same fixed
points. It follows that ®(u) = F,«)(s), where s is one of the fixed points of F,). However,

the set of such points ®(u) is countable, while the mapping ® : ¥¢ — R is assumed to be
surjective. This is a contradiction. O

6.5 Bimodular systems

As an examples of a rational number system which is not modular, consider the bimodular
number system which extends the binary signed system and consists of all transformations
M =[* "] with det(M) = ad —bc = 2, tr(M) = a+d =3 and [|M|* =a®> + 0>+ >+ d* =6
(see Kurka [39]).
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Example 6.21 The bimodular number system has alphabet A = {0,1,2,3,4,5,6,7} and trans-
formations with matrices

T/

-1/0

T/T-

T/0°

Figure 6.2: The large bimodular system

There exists several number systems with transformations of Example 6.21. The small
bimodular system (F,R) is the interval number system with intervals W, = R(F,). They
form an almost-cover so (F,R) is a rational system with an SF'T expansion subshift Spy (see
Figure 6.1) of order 3 with forbidden words

D = {03,04,05,06,07,12,13,14,15, 16,20, 21, 25, 26, 27, 30, 34, 35, 36, 37,
40,41, 42, 43,47, 50, 51,52, 56, 57, 61, 62, 63, 64, 65, 70, 71, 72, 73, 74,
024, 175,246, 317, 460, 531, 602, 753}
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al F, R(F,) | F,"(R(F.)) | V(F.) | F,'(V(F))
o [ 3o | (0.3 (0,2) (51 | (5 00)
Lo | G (5.1) (0,2) (=1,3)
21 B9 13 (1,-3) (5,00) (3 —1)
31 3 )| (2,00 (5,00) (1,-3) (0,-2)
412 | (00,-2) (00, 5 (3,—1) (2,0)
5112 13- B=1) |0, %) (=1,—3)
6/ J1 (L3 | L3 | (=20 ] (=31
T A (=50 | (=200 | (=13 | (00,3)

Table 6.1: The transformations and intervals of the small and large bimodular interval systems

plalq L RP Vq F,V,
7,0,1]0]0 | (76543210)~ | (12345670)“ | [45, =] | [55, 5]
0,1,2| 1|1 |(07654321)~ | (23456701)* | X5, =2] | [=2, =5]
1,2,3 2|2 (10765432)~ | (34567012)“ | [=, F2] | [55, =5
2,3,4 |33 (21076543)~ | (45670123)~ | =5, =2] | [53, 52
3,4,5 | 4|4 |(32107654)% | (56701234)~ | [=2, 2] | [Z2, ]
4,5,6 | 5|5 | (43210765)% | (67012345)« | [=2, 5] | [52, ]
5,6,7| 6|6 |(54321076)~ | (70123456)« | [, =] | [55, 5]
6,7,0 | 7|7 |(65432107)~ | (01234567)~ | [Z, =] | [, =]

Table 6.2: The circular bimodular system with SF'T subshift of speed 1 and order 2

Its expansion quotient is Q = 2 and it is not redundant. The large bimodular system
(F,V) is an interval number system with intervals W, = V(F,) (see Figure 6.2). Its expansion
quotient is Q = 1 and it is redundant. Its expansion subshift is not SF'T but it is sofic with
the same SFT partition as (F, R), with endpoints 0, %, £.1,2,3, 00, =3, =2, —1, —%, and —%.
See Table 6.1 for the intervals of both systems. There is also an interval partition system with

endpoints
0,vV2-1,1,vV2+1,00,—vV2—-1,-1,—V2 + 1.

Then there is a redundant bimodular sofic system with the circular subshift »; with speed 1
and order 2 (see Section 4.7) with forbidden words

D = {abe A%: mods(a —b) € {2,3,4,5,6}
= {02,03,04,05,06, 13,14, 15,16, 17, 20, 24, 25, 26, 27, 30, 31, 35, 36, 37,
40,41,42,46,47,50,51,52,53,57,60,61,62,63,64,71,72,73,74,75}

The deterministic automaton has states B = {i,0,1,2,3,4,5,6,7}. The intervals V, together
with intervals Fi,V; are given in Table 6.2 and Figure 6.3. The system is not an interval number
system. If we take intervals W, = ®([a]), we get a different interval number system whose
expansion subshift is sofic but not of finite type.

If the unary algorithm is computed in a nonmodular system whose transfomattions have
integer entries then the determinant of the state matrix need not remain bounded. If X | F' €
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T/T-

Figure 6.3: The circular bimodular system (F, ;) with the circular subshift of speed 1.

M(Z) and Y = FX = d(F - X) then either det(Y') = det(F') - det(X) provided ged(F - X) =
1 or det(Y) = det(X)/det(F) provided ged(F - X) = det(F) and det(F) is a prime (see
Proposition 6.1). When the unary algorithm is computed in the large bimodular system, the
determinant and norm of the state matrix remain small most of the time so the unary algorithm
has asymptotically linear time complexity. This is due to the fact that some compositions of
the transformations are modular - see Proposition 6.22, whose proof is a simple verification.
A selector which takes advantage of this scheme in the large bimodular system takes a small
threshold 7 and applies an absorption whenever |XV,| > 7. If | XV,| < 7 then the selector
chooses the an emission of the letter a with the smallest norm of the matrix F,'X. If 7 is
sufficiently small then there are usually several possible emissions letters a and the smallest
norm of F, !X is achieved by cancellation of F; 1+ X by 2 (see Kurka [42], Kurka and Delacourt
43)).

Proposition 6.22 For the bimodular number system of Erxample 6.21, set Ay = {1,2,5,6},
Ay ={0,3,4,7}.

1. If ag € Ao, a; € Ay, then det(Fyy.,) = 1.

2. F14 = F27 = F50 = F63 = 1Id.

3. Both {V(F,) : a € Ay} and {V(F,): a € A1} are almost-covers.

While statistically, cancellations occur frequently in the large bimodular system, there are
exceptional cases in which they do not occur at all, so that the determinant and norm of the
state matrices steadily grows. We prove this results for general expansive number systems
whose transformations have determinants 1 or 2.

Lemma 6.23 Assume F' € M(Z) and | det(F)| < 2.
1. If |[F*(0)| > 1, then either F = [i iol], F(0)=0, or F=[* %!, F(0) = oo.

2 0
2. If |F*(00)| > 1, then either F = [ °) 3], F(oo) =0, or F = [(1) ", F(00) = co.

2

Proof: Let I/ = [ Z] If |[F*(0)| = % > 1, then |det(F')| = 2 since b, d cannot be both

zero. Thus b + d? < 2, so b,d € {—1,0,1} and either b = 0 or d = 0. It follows that either
F=[ 2Jor F=1[ % If |[F*(c0)] = [t~ 1, then | det(F)| = 2, a,c € {—1,0,1} and

2 a?+c?
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either F' = [iol U, or F = 2 0

Theorem 6.24 (Kurka and Vavra [45]) Let (F,G,V) be an expansive sofic number system
such that F, € M(Z) and |det(F,)| < 2 for each a € A. Then there ezists a transformation
M € M(Z) and an input word u € X such that in the computation of the unary algorithm on
mput matriz M and input word w, no cancellation ever occurs.

Proof: Denote by mod,; the modulo function whose value is 0 on even numbers and 1 on odd
numbers. The modulo function works on integer matrices as well. Choose any transformation
M such that M(0) = 0 and mody(M) = (%,2), e.g., M(z) = 25. Pick a word u € g
with ®(u) = 0 and assume that we have a finite automaton which computes M on u with
the result v, so ®(v) = 0. The computation of the automaton determines a path with ver-

tices (GrnmVpns Puns Qo )s Where Gy, = Fv_[ol,mM FU[o,m and in each transition we have either

Grm (unA) Grt1m of G (Avn) Grm+1- We show by induction that during the process no can-
cellation ever occurs: either det(Gpi1.m) = 2det(G,, ) or det(Gym+1) = 2det(Gpm). Denote
by @, = (0" () = Fy ®(u) = F | (0), s0 29 = 0 and y,, = F, | M®(u) = F; ' (0), so

yo = 0. Denote by H,, ,, = mods(Gy,,,). We show by induction that z,,y, € {0,000}, and H,, ,
is determined by x,, v, by the table

g

Y

Ty Ym | 0, 0,00 | 00,0
Ho (DD @D D)
If ©, = ym = 0, then (F,1)*(0) > 0 since the system is expansive, so by Lemma 6.23 either
Tups = 0 and then Hyypon = (£,9)- (2,971 = (2,9) . (1,8) = (2,8) ‘or 5., = o0 and then
Hyprm = (£,5) - (557 = (1.5) (5, 2) = (¢, 7). Similarly (F;1)*(0) > 0 so by Lemma
6.23 either 4,41 = 0 and then H, 1 = (2,2) - (2,9) = (%, 2), or yms1 = oo and then

olg O©
=

=l

Y

0’ a

Hpmir = (&,3) - (%,8) = (3, 9). Similarly in other cases: "o
(Imym) - <070> = (In—l-laym) - (070)7 Hn-l-l,m (T? %) (%7 %) = (%7 %)
= (In-i-laym) = (0070)7 Hn-i-l,m (g’ %) : ((g)’ %) = (§7 ((T)))
S G Sloe, A S S
(wmym) = (Oa OO) = (anrlvyWL) = (07 00)7 Hyi1m (é? §) (éa %) = (é? %)
= (Tnt1,Ym) = (00,00), Hpy1m (97 g) <§’ é) = (9’ g)
S G, wn szl
(xnvym) = (OO>O) = (anrlaym) i (050)07 gnJrlm (%7 %) : (ia %) : (%7 %)
- fben EUTARERY
= (@mim) = (00100, Homa = (21 (Bh = (1)
ny Ym+1) — ) ) n,m+1 0’0 0’1/ — \op>0
(xnvyn) = (O0,00) = (xn+1aym) = (0700)7 Hn+1m = (%7 %) ’ (iv 9) = (é? %)
= (Tn+1,Ym) z (00,00), Hpt1m (8’ 8) (8’ 1) z (Sa 8>
= (xnaym-i-l) (0070)7 Hnm+1 (1’d) (070) (071)
= (xmym-l-l) (OO’OO)v Hn m~+1 (%’ %) ’ (g’ %) = (%7 (l])

It follows that in all cases det(Gy,,,) = 2" det(G). If n+m # n' +m/, then G, # G
and the corresponding states of the automaton must be different. Thus the number of states
cannot be finite. o
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n | b(n) | p(n) u| c(u)|dc(u) v |d(v) | cd(v)
0 0] — 0 00 0 0 A A
1 110 1 01 1 1 A A
2 10 | 100 2 10 21 00 0 00
3 111|101 3 11 3 01 1 01
4 | 100 | 11000 00 001 00 || 10 2 10
5 | 101 | 11001 01 000 01 11 3 11
6 | 11011010 10 010 10 || 000 01 000
7] 11111011 11 011 11 |} 001 00 001
8 11000 | 1110000 22 101 221 010 10 010
9 1001 | 1110001 23 100 23 || 011 11 011
10 | 1010 | 1110010 32 110 32 | 100 23 100
1111011 | 1110011 33 111 33 || 101 22 101
12| 1100 | 1110100 000 001 00 || 110 32 110
00 -1 001 | 00100 001 || 111 33 111

Table 6.3: The binary and prefix codes (left) and the compression and decompression codes
(right)

6.6 Binary continued fractions

In modular systems both the unary and binary arithmetical algorithms are computed faster than
in nonmodular systems. But modular systems have the disadvantege of slow convergence: their
upper contraction quotient is Q = 1 We therefore modify the symmetric system of continued
fractions by coding words 01! - - - as sequences of binary representations of the integers a,,. We
represent the digits 0, 1 by numbers 2, 3, so we work with the alphabet A = {0,1,2,3} and the
subshift Xp = {0,1}*U{2,3}¥. For a € {0,1} we denote by @ = 1—a € {0, 1} its complement.
For integers n € Z and k > 0 we denote by |n|, = n mod k. Denote by b : N — {0,1}*
the binary code defined by b(0) = 0 and b(n) = u € {0,1}*"!, where 28 < n < 281 and
n = 2%ug + - -+ + uy. Define the prefix code p : {1,2,...,00} — {0,1}" U {1¥} by p(c0) = 1¥
and p(n) = 1%0u, where 28 < n < 2" |u| = k, and n = 2F + 2" lug + - - uy_y, so b(n) = lu
(see Table 6.3 left). Define the compression code ¢ : Xp — {0,1}* by

c(0%110%...) = 00p(ao)p(ai)p(az)---
c(1%0%1%.--) = 01p(ag)p(a1)p(az)---
c(203"12%...) = 10p(ao)p(a1)p(az) - -
c(3%23%...) = 11p(ao)p(a1)p(az)---

Here all a; are positive. The sequence {a,, : n > 0} may be finite if its last element is co. The
compression code is bijective and has an inverse decompression code d : {0,1}* — ¥ p. Both
codes are continuous in the Cantor topology, so they act also on finite words: For u € Xp,
c(u) € {0,1}* is the longest common prefix of all ¢(v) with v € [u] and the length of c(u) goes
to infinity with |u| — oo. Similarly, for v € {0,1}*, d(u) is the longest common prefix of all
d(v) with [u]. Thus dc(u) is a prefix of u and cd(u) is a prefix of u (see Table 6.3).

Both codes can be computed by transducers, which are infinite graphs whose labels are
pairs u/v of input and output words. The states of the compression transducer are (s,a,n) €
{0,1}? x N where s € {0, 1} is the sign, a € {0, 1} is the digit and n € N counts the number of
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digits. The initial state is i = (0,0,0). The transducer accepts on input either single letters, or
more generally words of the form a*, where a € A The transitions are

(0,0,0)  «/Lallalt=® e ), k),
(L%Ja |a|2,n) ak/IUng(i’C})J—UOgQ(”)J (L%Ja |a|2,n + kz) ifn >0
(1¢).Jala,n) /0o Ha), k) ifn > 0
For example we have a path
(0,0,0) 22/10% (1,0,2) 22 (1,0,3) ¥/ (1,1,1) /1 (1,1,6) 32 (1,1,7)

which yields ¢(2337) = 1010111. The inverse decompression code d = ¢! : {0,1}* — Xp is
computed by a transducer with states (s, a,b,n) € {0.1}3 x ({—1} UN), where s is the sign, a
is the digit, n is the count of the letters, b = 0 if the count increases and b = 1 if the count
decreases. The initial state is j = (0,0,0, —1) and the transitions are

(0,0,0,—1) s/ (5,0,0,0)
(5,0,0,0)  ¥2F¢  (5,a,0,1)
(5,a,0,n) Y@ta" (5.40,2n)ifn >0
(s,a,0,n) 0/ (s,a, ,2)1fn>1
(5,a,0,1) 92553 (5@, 0,1)
(s,a,1,n) YEta" (54 %) ifn>1
(s,a,1,n) 0/ (s,a ,5)ifn>1
(s,a,1,1) Y2sta?2s+a (530,1)
(s,a,1,1)  925f@  (5,@,0,1)

If we feed the decompression transducer with the word ¢(223") = 1010111, we get a path

(0,0,0,—1) 2 (1,0,0,0) %2 (1,0,0,1) Y2 (1,0,0,2) °2
(1,0,1,1) Y2 (1,1,0,1) Y3 (1,1,0,2) Y3 (1,1,0,4)

giving d(1010111) = 233* which is a prefix of 2337,

The binary continued fraction system (BCF) is defined by the value mapping ¥ = ®oc :
{0,1}* — R, where ® : ¥ — R is the value mapping of the CF system. We define the length
quotients similarly as in Mobius number systems with ® replaced by W. Moreover we define

the mean length quotient by
Ly=2" > |W|.

ue{0,1}m
Some values of these quotients are in Figure 6.4.

We now modify the general binary algorithm for the BCF system. Recall that we have

transformations with matrices Fy = [} ], Fy = [(1) B = U, Fy = [é ~/]. The graph

has vertices B = {A,0,1} and the intervals have matrices Vo = [} ], Vi = [/ U]. For the

1
L)
matrices H, = V F Ve we get

Hy=Hy=[ 1|, Hi=Hy=[ .
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VL [ VL. | VE.
0.500 | 0.500 | 0.500
0.500 | 0.500 | 0.500
0.468 | 0.500 | 0.528
0.446 | 0.535 | 0.620
0.433 | 0.527 | 0.600
0.424 | 0.540 | 0.654
0.417 | 0.533 | 0.630
0.413 | 0.540 | 0.668
0.409 | 0.535 | 0.647

© 00~ O Uk WS

Figure 6.4: The binary continued fractions (left) and the lengths of its cylinders (right)

For u € {0,1}" we set H, = H,,0---0 H, . The states of the modified binary graph are
(X,p,q,7), where X € T(R), p,q € {0,1}* x {—1,0,1,2,...} are states of the decompression
transducer, and r € {0,1}? x N is a state of the compression transducer. The initial state
s (T,j,j,1) where j = (0,0,0,—1) is the initial state of the decompression transducer and
i=(0,0,0) is the initial state of the compression transducer. The transitions are

(X,p,q,7) X (X*Fy,p',q,r)ifps <0,p 2y
(X,p,q;7) % (X,Fy,p,q,r)ifgs <0,¢ % ¢
(X,p,q,7) X (X*Hy,p,q,r)ifps > 0,p 20 pf
(X,p,q,7) % (X, Hy,p,q,r)ifgs>0,q ¢
(X,p,q,r) M (F,*X,p,q,7") if ps,q5 > 0,

X g FfVL%J, T‘ak_/f’?"/

If (7,j,j,1) “*% is an infinite path with infinite u, v, w € {0,1}*, then ¥(w) = T (¥ (u), ¥(v)).
We consider a selector s : T(R) — ATU{’x",y’, xy’ } which depends only on the state X € T(R).
It searches a letter a € A such that X C F VL% . If it finds such a letter, it finds the maxi-
mum k such that X C F, fVL% | and outputs a®. This can be done in [log, k| steps. If no such
letter exists then it finds one of the absorptions similarly as the selector of the general binary
algorithm (see Kurka [41]).



Chapter 7

Algebraic number fields

Arithmetical algorithms considered in Chapter 5 are based on the arithmetical operations with
the entries of the matrices of the number systemin question. If these entries are not integers
or rationals, we need arithmetical algorithms which work with them. Such algorithms exist for
algebraic numbers. Algebraic numbers can be represented by vectors of rational numbers, and
arithmetical operations with them are based on matrix calculus.

7.1 Polynomials with rational coefficients

Recall that a polynomial is a complex function p(z) = Y, piz’, where p; are complex numbers
and p; = 0 for i > deg(p). Polynomials can be added, subtracted and multiplied and they form
the ring C[x]. The subring of polynomials with real coefficients is denoted by R[z]. Similarly
we denote by Q[z] the ring of polynomials with rational coefficients and by Z[z] the ring of
polynomials with integer coefficients. The content of a polynomial p € Z[x] is the greatest
common divisor of its coefficients. A polynomial of Z[z] is primitive, if its content is 1. It is
irreducible if it cannot be written as a product of two polynomials of Z[x] of positive degree.
Similarly, a polynomial of Q[z] is irreducible if it cannot be written as a product of two
polynomials of Q[z] of positive degree.

Proposition 7.1 (Gauss) The product of two primitive polynomials of Z|x] is primitive.

Proof: Let p(z) = >, pir’, q(x) = >, iz’ r(z) = p(x)g(x) = >, rx’, and assume that k& > 1
is a prime number which divides the content of r. Let p,, be the first coefficient of p not divisible
by k and let ¢, be the first coefficient of ¢ not divisible by k. In the sum

Tntm = PnQm + Pn—19m+1 + Pnt1@m-1 + - -+

every term except the first is divisible by k. Since k|r, ., we get k|p,gm, so k divides either p,
or ¢,, which is a contradiction. O

Proposition 7.2 A polynomial r € Z[x] is irreducible in Z[z| iff it is irreducible in Q[z].

Proof: If r is irreducible in Q[z] then it is clearly irreducible in Z[z]. Conversely assume that
r is reducible in Q[z], so r = pq with p, ¢ € Q[z] of positive degree. Then we can write p = %s,
q= %t, where a, b are positive integers and s,t € Z[x] are primitive polynomials. Tt follows that

abr = st is a primitive polynomial, so ab = 1 and r is reducible in Z[z]. 0

133
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Proposition 7.3 An irreducible polynomial p € Z[x] does not have multiple roots.

Proof: If p(x) is in C[z] divisible by (z — a)?, where a € C, then (z — a) divides both p and
p € Z[x], so r = ged(p, p’) has positive degree. The Euclidean algorithm which computes ged
uses only field operations, so r € Q[z]. Thus p is reducible in Q[z] and this is a contradiction.
O

The irreducibility of a polynomial p € Z[z] can be tested algorithmically. We use the fact
that a polynomial of degree n is uniquely determined by its value at n + 1 distinct points. If
Co,C1, - - ., Cy are distinct complex numbers and ay, . .., a, are arbitrary complex numbers, the
unique polynomial of degree n which satisfies p(c;) = a; is given by the formula

p(ZE) _ Z ai(:c — CO) ce (;c — Ci,l)(gj — Ci+1) e (x _ Cn)

=0 (Ci - CO) ce (Ci — Cz’fl)(ci — ciJrl) e (Cz’ _ Cn) .

Let p € Z[z] and deg(p) = n. If p is reducible, then it has a factor r of degree at most [%].
To test whether p has a factor of degree m < [%], take m + 1 distinct integers co, ..., cm. We
have r(¢;)|p(¢;) and there is only a finite number of integers which divide p(¢;). Thus for each
sequence of integers b; which divide p(c;) we take the polynomial r which satisfies r(¢;) = b;
and test whether r divides p.

Definition 7.4 We say that o € C is an algebraic number if there exists a polynomial p € Q[z]
such that p(o) = 0. The degree of « is the smallest integer d such that there exists a polynomial
p € Q[z]| with p(a) = 0 and deg(p) = d.

Proposition 7.5 For an algebraic number o there exists a unique monic irreducible polynomial
p € Q[z] with p(a) = 0. We say that p is the minimal polynomial of a. If ¢ € Q[x] and
q(a)) =0 then p divides q.

Proof: Let p € Q[z] be a monic polynomial of smallest degree which satisfies p(«) = 0. Then
p is irreducible, since otherwise a would be a root of one of its factors. If g(a) = 0, then
x — «a divides in C[z] both p and ¢, so r = ged(p, q) has a positive degree and r(«) = 0. Thus
deg(r) = deg(p) and therefore p divides g. 0

7.2 Extension fields

Assume that K C C is a subfield of the field of the complex numbers. This means that if
x,y € K then the sum z + y, difference z — y, and product zy belong to K, and if y # 0 then
also x/y € K. The smallest subfield of C is the field Q of rational numbers. Each subfield K
of C contains Q as a subfield. If Q C K C L C C are two subfields, then L is a vector space
over K: If u; € L and a; € K then ), a;u; € L. If L as a K-vector space has a finite dimension
n, we say that L is a finite field extension of K and write n = [L : K|. In particular we
say that K C C is an algebraic number field if it has finite dimension over Q. If K is an
algebraic number field of dimension n, then each o € K is an algebraic number of degree at
most n. Indeed, the numbers 1, v, ..., a" are linearly Q-dependent, so there exist p; € Q with
Y i<n pia’ = 0. Given a field K C C and a set M C C then the intersection of all subfields
of C which contain M U K as a subset is the extension field K (M) of K generated by M.
In particular a simple field extension of K is by definition an extension K(«a) by a single
a € C\ K. See e.g., Ireland and Rosen [26] for an introduction to the theory of extension fields.
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Proposition 7.6 I[fQ C K C L C M C C are subfields of C and if L is finite field extension
of K and M is a finite field extension of L, then M 1is a finite field extension of K and
M :K|=[M:L]-[L:K].

Proof: Let {ug,...,u, 1} be a basis of L over K and let {vg,...v,_1} be a basis of M over
L. Then {u;vj : i <n,j <m} is a basis of M over K. 0

For example Q(v2) = {z¢ + 71v/2 : 2; € Q} and Q(V3) = {xo + 11V3 : 2, € Q}
are algebraic fields of dimension 2 and @(\/5, \/§) = {zo + T1V2 + 2oV3 + 13V6 ¢ w; € Q}
is an algebraic field of dimension 4. We show that Q(\/i, \/3) is a simple field extension.
For a = V2 + V3 we get o®> = 54 2v/6 so it is a root of an irredu01ble monic polynogmial

p(z) = 2% — 1022 + 1. Since o® = 11v2 + 9v/3, we get V2 = 2 _90‘ . V3 = Hooeo g0
QvV2+v3) = Q(v2,V3).

Proposition 7.7 If L C C is a finite field extension of K C L, then it is a simple field
extension of K. In particular, every algebraic number field is a simple field extension of Q.

Proof: we show first that for each o, € C\ K there exists v € C such that K(y) =
K(a, ). Let p, g be the minimal polynomials of a and  of degree n and m. Denote by
a = ap,aq,...,q,_ 1 the distinct roots of p and by 8 = Sy, ..., Bm_1 the distinct roots of ¢ in
C. There exists ¢ € Q such that a+c¢f8 # o +cB; forall 0 <i <n,0 < j <m. Set v =a+cp,
r(z) = p(y — cx). Then f is the only common root of r and ¢. Indeed if 5; is a root of r then
v —cfj # i, so p(y — ¢f;) # 0. It follows that ged(r,q) = x — 5. The coefficients of both r
and ¢ are in the field K() and the GCD is computed using only the field operations of K (7).
It follows 8 € K(v) and therefore « = v —¢f € K(v) as well. Thus K(v) = K(«, ). To prove
that L is a simple field extension of K, take any o € L'\ K. Then K(ap) C L. If K (o) # L,
take any a; € L\ K(ap), and so on. Since the dimensions of these fields increase, after a finite
number of steps we get L = K (o, ..., q,), so there exists a € L \ K with L = K(«). 0

Example 7.8 Fach algebraic number field of dimension 2 is of the form
Q(Vd) = {xo + z1Vd : xo, 1, € Q},

where d is a squarefree integer. This means that d is not divisible by any r* with r > 1. The
arithmetical operation in Q(v/d) are given by

(zo + 21Vd) £ (yo + 11Vd) = (w0 £ yo + (21 £ 41)Vd)
(o +21Vd) (Yo + 11 vVd) = (woyo + m131d + (zoyr + 2130) V)
1 on - $1\/_
To + z1V/d — xid

Proof: If [K : Q] = 2 and a € K \ Q then there exist rational a,b with o + aa + b = 0, so
= $(—a £ Va2 —4b), and K = Q(Vd) with d = a® — 4b. If d = r2c, then K = Q(y/c). o

We have seen that each element of Q(v/d) is given by a pair # = (z¢, 1) of rational numbers,
so Q(v/d) is isomorphic to Q2.
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Proposition 7.9 Let o be an algebraic number of degree n > 1. Then [Q(a) : Q] = n,
Q(a) over Q has the power basis {1,q,...,a" '} and Q(a) = {q(a) : q € Q,[x]}, where
Qnlz] = {q € Q[z] : deg(q) < n}.

Proof: Clearly a € {g(«) : ¢ € Q,[z]} C Q(«v). We show that {¢(a) : ¢ € Q,[z]} is a field.
Let p(z) = —po—p12 —  — pp_12™ ' + 2™ be the minimal polynomial of a.. If ¢, € Q,[z] then
q+r,qg—r € Q,lz], so {¢(a) : ¢ € Q,[x]} is closed with respect to addition and subtraction. For
the product we have gr € Qa,,_1[x]. Using successively the identity a" = po+pia+- - -+p,_1a" "
we reduce (gr)(«) to an expression which does not contain any power of a higher than n — 1.
Thus there exists s € Q,[z] such that (¢r)(a) = s(«). If ¢ € Q,[z] is a nonzero polynomial,
then ged(p,q) = 1. By Proposition 5.28 there exist s,t € Q[z]| such that ps 4+ gt = 1. Thus
1 =p(a)s(a) +q(a)t(a) = g(a)t(a). Using the identity a” = pg+pra+ -+ + pp_1a" ! we find
a polynomial r € Q,[z] such that r(a) = t(a), so r(a) = 1/g(«). Thus {g(a) : ¢ € Q,[x]} is
the smallest field which contains a and coincides with Q(«). As a vector space over Q, Q(«)
is generated by 1, , o2, ..., " ! Since these numbers are Q-independent, they form a basis,

so [Q(a) : Q] = n. 0

Let a be an algebraic number with minimal polynomial p(z) = —py—p1x—" - - —p,_1 2" 1 +2"
of degree n. A polynomial ¢ € Q[x] with degree deg(q) < n is determined by the vector of its
coefficients so Q(«) is isomorphic with Q™. A row vector or a (1 xn)-matrix z = [zg, ..., Z,_1] €
Q" represents the number § = >, _ z,0' = z-w € Q(«), where w = [1,q,... ;a1 T s a
column vector or a (n x 1)-matrix. Thus the isomorphism from Q" to Q(«) is given by z — x-w.
The addition and subtraction in Q(«) corresponds to the addition and subtraction in Q™ and
multiplication by a € Q in Q(«) corresponds to multiplication by a in Q": Fora € Q, x,y € Q"
we have (z +y) - w=2z-w+y-w, (ax) w = a(r-w). The product xy € Q™ which corresponds
to the product in Q(«v) is defined by (zy)-w = (z-w)(y - w). To obtain the product zy we first
multiply = and y as polynomials so we get a vector in Q**~!. This polynomial product can be
obtained by matrix multiplication x - B(y) where B(y) is an (n X (2n — 1))-matrix given by

B(y)i; = { 0 otherwise

For n = 3 we have
Yo v1 Y2 0 0

By)=10 w % y. O
0 0 wo y1 w

so x - B(y) = [zoyo, Toyr + T1Y0, ToY2 + T1y1 + Tay1, T1y2 + Tay1, Toye). Then we reduce the
polynomial x - B(y) to degree at most n — 1 using repeatedly the identity a™ = py + p1a +
-+« 4+ pu_1a™ L. This reduction is also represented by matrix multiplication. If m > n, then the
reduction of z € Q™ to w € Q™! is given by

w =20+ 21" 4 2,0 T (po F prat s paa™h),
so w = z - P(m) where P(m) is an ((m + 1) x m)-matrix given by
1 if =

Pty = § pponen i {0 jmrn <
0 otherwise
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The reduction of a vector z € Q*"~! to a vector of Q" is then represented by the ((2n — 1) x n)-
matrix P = P(2n —2)--- P(n+ 1) - P(n). For example for n = 3 we get

10 0 0 1 0 0
01 0 0 (1) ? 8 0 1 0
P=P4)-PB3)=10 0 1 0 0o 1l=10 0 1
00 0 1 Do P1 P2
0 po pr po| 0PLP2 pop2 Do+ pip2 p1+ D3

Thus the multiplication in Q" is given by xy = x - B(y) - P = y - B(z) - P. The division is given
by £ =x-(B(y) - P)~!. Here we write the matrix multiplication with dot -. For an algebraic
number field Q(v/d) of dimension 2 we have

_ {3/0 y1:|
dyi Yo

[960 1’1} B(y)-P = [l‘oyo +driyr Ty + $1?J0}

Yo y1i 0 !
B(y)-P = |7 % - lo
(y) {0 Yo y1:| d

o = O

Besides this vector representation of algebraic numbers there is also a matrix representa-
tion. It uses an (n X n)-rational matrix to represent an algebraic number of degree n and the
multiplication of algebraic numbers corresponds to the multiplication of matrices. Let K C C
be an algebraic number field of dimension n. Given § € K, the multiplication z — [z is a
linear mapping on the vector space K over QQ so it is represented by an (n x n)-matrix. Let
w = [wo,...,w, 1|7 be a basis of K over Q conceived as a column vector or a (n x 1)-matrix.
Then for each 8 € K there exists an (n x n)-matrix M, (3) such that Sw; = ., My, (8)iw;,
or fw = My(f) - w. This means that [ is an eigenvalue of M,,(f) and w is the corresponding
right eigenvector.

Proposition 7.10 Let w € K™ be a basis of an algebraic number field K, let M, (8) be the
matrix representation of B € K such that fw = M, (5) - w. Then for each 5,7y € K, a € Q we
have

1. M, (1) is the identity matriz.
My (B £ 7) = My(8) £ My(7),

My (aB) = CLM (8,

M, (8v) = (5) - My (v),
M,(1/8) = M,(B8)~" provided 3 # 0.

Proof: Multiplication by 1 is the identity mapping. Since (8 £ v)w = (M,(8) £ My (7)) - w,
we get M, (8 £7) = My(B) £ My(y). Since

(By)w =y(Bw) = yMy(B) - w = My(B) - (yw) = My(B) - My(7) - w,

we get My, (8y) = My (5) - My(y). Since My, (8) - My, (1/5) is the identity matrix, M, (1/5) =
Mw(6>_1‘ o

s Lo o

If K =Q(«) we denote by M,(3) the matrix representation of f € K by the power basis
w=[1,q,...,a" . By Proposition 7.10 we get

M, (Z ya) = yiMo(a)

<n <n
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so each M,(3) can be obtained from M,(a). Let p(x) = —py = p1x — -+ — pp_12™ ' + 2" be
the minimal polynomial of a. Since ao = o' and a0 =37, p;o* we get

1 if i<n—1,j=i+1

M,(a);; = p; if i=n-1
0 otherwise
Indeed for w = [1, a,...,a" T we have
o] O 1 0 - 07 [ 1]
a? 0o 0 1 --- 0 a
oaw = : = . : = M,(a) - w
an! o o0 0 --- 1 a2
| " ] [Po P1 P2t Pt _Oé"_l_

For an algebraic number field Q(v/d) of dimension 2 we have py = d, p; = 0, s0

M z(Vd) = [2 é}

_ To X1
M\/E($0+561\/C_l) = |:d331 $0:|

Indeed
To @1| | Yo Y| _ |10 g 0 1| _ | woyo+driyr  Toy1 + 2190
dl’l Zo dyl Yo 0 01 ! d 0 d(l‘oyl + lL‘lyo) ToYo + dl’lyl
While the matrices M,, () depend on the choice of the basis w, their trace and determinant
depend only on f.

Proposition 7.11 Let K be an algebraic number field. Then the trace Tk (f) = tr(My(8)),
and norm N (f) = det(M,(B)) of B € K do not depend on the basis w of K.

Proof: Let w = [wy, ..., w,_1]T, v = [vg,...,v,_1]T be two bases of K. There exists a regular
matrix A € Q" such that v; = 7. Ajw; orv=A-w, w=A""-v,s0

Br=A-Bw=A - Myu(B)-w=A-MyB) A" 0.
Thus M,(8) = A- M, (8) - A" and tr(M,(B)) = tr(My(B)), det(M,(B3)) = det(M,(B)). 0

For an algebraic a we write No(8) = Nog()(8), Ta(8) = Tg)(B). For example for a positive
squarefree number d € N we get

T\/E(iﬂo—i-l'l\/a) = 2$0,
N\/a(xg—i-xl\/a) = 27— daj.

If p(x) = —po = pr1x— - — pp_12™ ' + 2" is the minimal polynomial of c, then from M, (c)
we get Tp(a) = pu_1, Nuo(a) = (—1)"Tp,.

Proposition 7.12 Let K be an algebraic number field of dimension n > 1. For x,y € K,
a € Q we have Tk (ax) = aTk(x), Tk (x +vy) = Tk (x) + Tk (y), Nx(ax) = a"Nk(x), Ng(zy) =
Nk(z) - Nk (y).
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Proof: For each basis w of K we have M, (ax) = aM,(x), My(z +y) = My(z) + My,(y),
Mw(xy) = Mw('r) ’ Mw(y) o

A field embedding o : K — C of a field K C C is an injective mapping which preserves
the field operations, so o(x £ y) = o(x) £ o(y), o(zy) = o(x)o(y), and o(x/y) = o(z)/o(y)
provided y # 0. Any field embedding o fixes Q: for a € Q we have o(a) = a. It follows that
for any polynomial ¢ € Q[z]| and any § € K we have a(q(5)) = q(c(8)). Let a be an algebraic

number with minimal polynomial p(x) = —py — p1z — -+ — pp12”  + 2" If 0 : Qa) — C
is a field embedding, then p(o(«)) = o(p(a)) = 0. Thus o(«) is a root of p and o is uniquely
determined by o(«). Since there are n distinct roots a = ag, aq, ..., a,—1 € C of p, there are n

field embeddings oy, ...,0,-1 : Q(a) = C defined by o;(q(«)) = q(c;), and o is the identity.

We say that a; are conjugated to o = ao(a). Since p(z) =[], (z — o), we get

Z o; = Pnp-1
i
Z iy = —Pn-2

1<j
Z Qo = Pp—3
i<j<k
Oéo...an_l(aLO_i_...anl_l) — (_1>np1
ao .« e an_l = (—1>n+1p0

From the formula for M, (a) we get

Proposition 7.13 If « is an algebraic number of degree n with minimal polynomial p(x) =

—po — P1T — = Ppa L+ 2™ and conjugated roots o = au, . . ., 1 then
Ta(a) =Pn-1= Z Q;
<n
Na(a) = (=1)""'pg = [ J o
i<n
For example for & = oy = V/d we have oy = —v/d and o1 (z¢ + 21Vd) = 9 — 21V/d € Q(\/d),

so both 0g, oy : Q(v/d) — Q(v/d) are automorphisms. For @ = /2 we have a; = —%(_12+i‘/§),

ay = M, so 01(Q(a)) # Q(«). If «v is algebraic and 8 € Q(«), then § is algebraic too,
since 1,3, ..., " are linearly dependent over Q. The degree m of the minimal polynomial )

of 5 divides n, since Q(8) C Q(«).

Proposition 7.14 Let Q C K C L C C be algebraic number fields of dimensions [K : Q] = m,
IL: K] =k, [L:Q] =n=mk. Then for each embedding o : K — C there exist exactly k
embeddings og, . ..,05_1 : L — C which extend o, i.e., 0;(x) = o(x) forz € K.

Proof: Let 0 : K — C be a field embedding. There exists o € L \ K such that L = K(a).
The minimal polynomial p(z) = >",_, pia’ of a over K has degree k and coefficients p; € K. If
c € Cis a root of p, then

S o(p)o(c) = o (Zp> — 5(0) =0,

1<k i<k
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so o(c) is a root of g(x) = >, _, o(p;)z". Tt follows that ¢(x) has k distinct roots. If 7: L — C
is an embedding which extends o, then

0=r(pla) =) r(p)r(@)' =) olp)r(a) = 4(r(a))

i<k i<k

so 7(«) is a root of ¢(z) and 7 is uniquely determined by 7(«). Since ¢ has k roots, there exists
exactly k embeddings 7 of . O

Proposition 7.15 Let K be an algebraic number field of dimensionn > 1 and let o; : K — C,

1=0,1,...,n—1 be its distinct embeddings. If p € K is an algebraic number of degree m <n
with minimal polynomial q(x) = —qo — *+ — @1 2™ ' + 2™, then m diviede n and
n
Tk(B) = ;Uz’(ﬁ) = m dm—1,
Nk(B) = J]o:B) = (=1)" (—qo)=.
<n

In particular Tk (a) = na, Ni(a) = a" for a € Q.

Proof: Let K = Q(«), and assume that o, ...,0,_1 are distinct embeddings of Q(«) to C
such that the restrictions of oy,..., 0,1 to Q(5) are distinct embeddings of Q(3) to C. We
have fa’ =37, Mu(8)i;0’ and

> Likow(B)oj(a’) = or(B)or (e ZM )ijor(a?)

where I is the identity matrix. Define (n x n)-matrices S(a), N(8) by S(a)iy; = o;(a),
N(B)jk = Ljxog(B). Then S(a) - N(B) = My(S) - S(a) and N(f) is a diagonal matrix with
diagonal formed by ¢;(3). By Propositions 7.13, 7.14 we get

T(8) = t(Mo(8)) = r(N(B) = Y 05(8) = = > o3(8)

j<n j<m
n
= —qm-1,
m
Nk(B) = det(Mq(8)) = det(N(8)) = [ 05(8) = (] ] os(8) =
j<n j<m
= ((=D)"™*"qo)m = (=1)" - (—qo) ™
For a € Q we have m =1, qo = a, so Tk (a) = na, Nk(a) = (—=1)" - (—a)" = a". O
Proposition 7.16 Let K be an algebraic number field of dimension n and og,...,0,_1 the

distinct field embeddings of K into C. For a vector w € K™ define (n x n)-matrices S(w), 7(w)
by S(w);; = oj(w;), 7(w)ij = Tk (wyw;). Then

det(7(w)) = det(S(w))? = A(w)

1s called the discriminant of w.
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Proof:
ZO’k w;)og(w;) ZS JirS(w)f; = (S(w) - S(w)")s,
so T(w) = S(w) - S(w)T and therefore det(7(w)) = det(S(w))?. 0

Proposition 7.17 A vector w € K" is a basis of K over Q iff A(w) # 0.

Proof: If wy,...,w,—; are linearly dependent then ) ._ a;w; = 0 for some nonzero a € Q".
For each j we get Y., a;Tx(ww;) = Tk( ., aiww;) = Tk(0) = 0, so det(r(w)) = 0.
Conversely assume that w € K™ is a basis and det(7(w)) = 0. Then there exist nonzero a; such
that >, aTk(w;w;) =0. lf o =", a;w;, then T(aw;) = 0 for all w;. Since w is a basis of
K, we get Tk (af) =0 for all f € K which is a contradiction since Tk (1) # 0. 0

Proposition 7.18 Assume that w,v € K" are bases of K over Q and A is the transformation
matriz with v; = 3, Ajw;. Then A(v) = det(A)? - A(w).

Proof: By Proposition 7.12 we have

w(vvg) =Y > AnAp Ty (wpw) = (Ar(w)A");

k<n l<n

so7(v) = A-7(w) - AT and det(7(v)) = det(7(w)) - det(A)? O

7.3 Computable ordered fields

Definition 7.19 An ordered field is a pair (K, P), where K is a field and P C K is its
subset (of positive elements) which satisfies the following conditins:

1. For every x € K eitherx € P or —x € P or x = 0.

2. Ifx,y e P thenx+y € P and zy € P.

3. We say that (K, P) is a computable ordered field, if the operations of addition, sub-
traction, multiplication and division are algorithmic and if the set P of positive elements is
computable.

While R or Q together with its sets of positive elements are ordered fields, the field C of
complex numbers is not orderable. There exists no set P C C such that (C, P) is an ordered
field. On the other hand, each subfield of R is an ordered field with the order inherited from
R, If (K, P) is an ordered field, then the inequality is defined by x < y iff y —2z € P and z <y
ifr<yorx=uy.

Theorem 7.20 Fach real algebraic number field K C R is a computable ordered field.

Proof: The operations of addition, subtraction, multiplication and division are performed on
Q" and they are clearly algorithmic. It rests the inequality or the set of positive elements
P. Let K = Q(«) and let p be the minimal polynomial for a. Since all the fields o;(K) are
isomorphic, we must distinguish « from its conjugate roots. We can do it by specifying an
interval [ with rational endpoints such that « is the only root of P in I. This can be verified
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by the Sturm theorem 5.29. Given an element 8 = ¢(«) € Q(«) where ¢ € Q,[z], we have to
decide whether g(a) > 0 or g(a) < 0. If ¢ has no root in I, then g(a) > 0 iff ¢ is positive on
both endpoints of I. If ¢ has a root in I, then we take a smaller interval I; C I with rational
endpoints which contains « and repeat the test with I;. Since « is irrational we find finally an
interval which contains o but ¢ has no root in I. Then the sign of g(«/) is the sign of ¢ at any
endpoint of Ij. O

All arithmetical algorithms use only the field operations with the entries of the matrices F,
and V, and the comparisions.

Corollary 7.21 Let o be a real algebraic number and let (F,G,V) be a sofic number system
such that all entries of matrices F,, V, are in Q(«). Then all arithmetic algorithms work

properly.

7.4 Algebraic integers

Definition 7.22 An algebraic number « is an algebraic integer if its minimal polynomial
belongs to Z[z], i.e., if there exist p; € Z such that —py — pra — -+ — pp_1a™ L +a™ = 0.

Denote by Q the set of algebraic integers. For an algebraic number field K denote by Zx the
set of algebraic integers of K. For an algebraic number o denote by Z, = Zg(.) the set of
algebraic integers of Q(a). For o € C denote by Z(a) = {¢(«) : ¢q € Z[z]} the smallest ring
which contains a.

Proposition 7.23 If a is an algebraic number, then there exists a positive integer k € Z such
that ko is an algebraic integer.

Proof: Let p € Q[z] be the minimal polynomial of a. Denote by k& > 0 the GCD of the
denominators of the coefficients of p, so p(z) = (po + - - - + pp2™)/k for some p; € Z. Then p,«

Ve

is a root of ¢(x) = pop ' + pipl 2 4 -+ A PpooPn®”™ 2 + pugz Tt + 2" o

Proposition 7.24 Let d be a positive squarefree integer greater than 1.
1. If mody(d) = 2 or mody(d) = 3 then Z ;53 = {xo + zVd 2z, 11 € LY.

1. If mody(d) =1 then Z ;3 = {xo + 21 ‘/‘72_1 : xo,x1 € L}.

Proof: A number z = zy + 21V/d with z,z;1 € Q is an algebraic integer iff its minimal
polynomial 2% — 2z0x + 2§ — dx? has integer coefficients, iff T ;(x) = 229 € Z and N 5(z) =
x3 — da? € Z. Tt follows 4dx? € Z, so 4dz? € Z and since d is squarefree, 2z; € Z. For the
integers yo = 2x¢, y1 = 2x; we have 4|(y2 — dy?). If d = 4k + 2 then 4|(yg — 2y?). If d = 4k + 3
then 4/(y2 — 3y?). In both cases this is possible only if both yo,y; are even, so xg,z; € Z. If
d = 4k + 1 then 4|(y5 — y?) and yo, y must have the same parity. We get

+ Vid—1
513'0+£E1\/_:y0 y1+

9 9 Y1,

where 22 € 7 and y, € Z. 0
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Definition 7.25 A set M C C is a free Z-module if it is a group with respect to the addition,
ie.,ifr+y € M and x—y € M whenever x,y € M. A free Z-module M 1is finitely generated
if there exists m and wy, . .., w,—1 € M such that each x € M can be written as x = T;W;
with x; € 7.

<m

Proposition 7.26 o € C is an algebraic integer iff there exists a finitely generated free 7Z-
module M C C such that aM ={ax: v € M} C M.

Proof: If o € Q is an algebraic integer of degree m then Z(a) = {q(a) : q € Zy,[z]}. Indeed,
using the equality o = pg+ pra+ -+ p,_1a" "', we can find for any ¢ € Z(a) some r € Z,,(«)
with g(a) = r(a). Clearly aZ(a) C Z(«) and 1, v, ..., a™ ! are generators of Z(«a). Conversely
assume that M is a finitely generated module with aM C M. Let wy,...,w,,—1 € C be
generators of M. Then there exist C;; € Z such that aw; = Zj Cijwj. If w = [wo, ..., wy_1]"
is the column vector and C' is the matrix with entries Cj; then we have C'- w = aw, so w is the
right eigenvector of C' with the eigenvalue «. It follows that det(Iov — C') = 0, where I is the
identity matrix. Thus « is a root of a monic polynomial p(z) = det(/z — C') which belongs to
Z[z]. Tt follows that the minimal polynomial of « belongs to Z[z]. 0

Proposition 7.27 The set Q of algebraic integers is a subring of C.

Proof: Let a be an arithmetic integer of degree n and let 8 be an arithmetic integer of degree m.
Then Z(a, B) = {>_,; wija' 87 : @y € Z} is a finitely generated module, (a+83)Z(a, 8) C Z(a, B)
and (aB)Z(c, B) C Z(ev, ). Thus o+ € Q and o3 € Q. o

Corollary 7.28 For each algebraic number field K the set Zx = KNQ of its algebraic integers
18 @ TIng.

Definition 7.29 Let K be an algebraic number field of dimension n. We say that w € (Zg)"
is an integral basis of Ly if Ly = {x;w; : x; € Z}.

Proposition 7.30 If K is an algebraic number field then Zy has an integral basis.

Proof: By Proposition 7.23 there exists an algebraic integer a € K such that K = Q(«). Thus
there exist bases of K over Q which consist of algebraic integers. If w is such a basis then
Tr(w;w;) € Z are integers by Proposition 7.15, so A(w) € Z. Take a basis w € (Zg)" with
minimal absolute value of the discriminant A(w). We show that w is an integral basis. Since
w is a Q-basis for K, for each x € Zg there exist unique z; € Q such that x =), <n Tiw;. We
show that x; € Z. If not we can reorder w; so that xo ¢ Z. There exists m € 7Z such that
0<yo=mz9—m < 1. Take vg = v — mwy € Zi and v; = w; for i > 0. Then v € (Zk)" is a
basis for K. Since vy = yowo + T1wy + -+ + Tp_1W,_1, we get v = A - w where

-yo T1 T2 iUn—l-

0O 1 0 0
A=10 1 0

_0 0 0 1 |

Since det(A) = yo < 1, we get |A(v)| < |A(w)| by Proposition 7.18 and this is a contradiction.

]
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Corollary 7.31 All integral bases of an algebraic number field K have the same discriminant
which is called the discriminant A(K) of K.

The quadratic field Q(v/d) with squarefree d = 4k 4+ 2 or d = 4k + 3 has integral basis
w = [1,V/d]". For the discriminant we get

T(w) = [3 Qod] , A(@(\/g)) = det(7(w)) = 4d

If d = 4k + 1, then Q(v/d) has integral basis w = [1, @]T and discriminant

2 -1

T(w) = [_1 (d+ 1)/2} , A(@(\/c_l)) = det(7(w)) = d.

7.5 Pisot and Salem numbers

Definition 7.32 We say that a real algebraic integer o > 1 is a Pisot number if for all its
conjugates we have |o;(a)| < 1. A real algebraic integer o > 1 is a Salem number if for all
its conjugates we have |o;()| < 1 and there exists a conjugate with |o;(a)| = 1.

Each ordinary integer n > 2 is a Pisot number. The golden mean o = @ = 1.618 is a

Pisot number. Its minimal polynomial is p(z) = 2? — 2 — 1 and its conjugate is %‘F’ = —0.618.
The smallest known Salem number is the largest real root of the polynomial

7

pr) =20 +2" 2" 2% —2® — 2t — 2P+ 1

which is approximatgely 1.176. We are going to show that every algebraic number field contains
a Pisot number which generates it.

A lattice is a finitely generated subgroup L C R™ with pointwise addition. Thus a lattice
is aset L = {d> ,xv; : x; € Z} where v; € R" are linearly R-independent vectors. The
determinant of the lattice is the determinant of its matrix V;; = (v;); whose columns are the
vectors v;. The simplest lattice is Z" which is generated by the identity matrix /. We say that
a set X C R" is convex if for every z,y € X and 0 <t < 1 we have tz + (1 —t)y € X. We say
that X is symmetric if —x € X whenever z € X (see Micciancio and Goldwasser [51]).

Proposition 7.33 Let X CR" be a conver symmetric set with volume vol(X) > 2". Then X
contains a nonzero point of Z".

Proof: Consider a mapping f : X — R" given by f(x); = |x;]2 € [0, 2]. This mapping preserves
the volume and its image is included in a cube f(X) C [0, 2]" with volume 2". Thus there exist
different z,y € X with f(z) = f(y), i.e., y = & + 2u for some u € Z" with u # 0. Since X is
symmetric, we get —z € X and since X is convex we have u = $(z+2u—z) = 3(y—2) € X. o

Theorem 7.34 (Minkowski) Let L CR" be a lattice and let X C R™ be a symmetric convex
set with volume vol(X) > 2" - |det(L)|. Then X contains a nonzero point of L.

Proof: Let L = {) , x;v; : x; € Z} be a lattice generated by linearly independent vectors
v; € R™. Define the square matrix V by Vi; = (v;);. Then L = {V -2 : z € Z"} and
V-YL)=7Z". 1t X C R" is convex and symmetric then V~1(X) is convex and symmetric and
its volume is vol(X)/|det(L)|. Thus V~!(X) contains a nonzero point of Z" by Proposition
7.33, and therefore X contains a nonzero point of L. 0
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Theorem 7.35 (Salem) In each algebraic number field K there exists a Pisot number a € K
such that K = Q(«).

Proof: Let w € K" be an integral basis of Zx and let o0y, ..., 0,1 be the distinct embeddings
of K into C. We have a matrix S(w) defined by S(w);; = o;(w;). Take a lattice L whose
generators are the rows of S(w), so L = {>_, yi(oo(w;), o1(w;), ..., 0n_1(w;)) : y; € Z}. Then
A(K) = det(S(w))? = det(L)% For 0 < § <1, B> \/A(K)/d6" ! consider the set

X={xeR": |zo| < B,Vi>0,|z;] <}

Then the volume of X is 2"Bd"' > 2"|det(L)| so by Theorem 7.34 there exists a nonzero
x € LN X and there exist y; € Z such that z; = >, y;0;(w;). Since X is symmetric, we can
assume o > 0. Thus a = zg = yowo + - - + Yp—1Wn—1 € Zg, 0 < a < B, |o;(a)| = |z;] < § for
0 < j < n. By Proposition 7.15, [, o;(a) € Z\ {0}, and therefore @ > 1. Thus a € Zk is a
Pisot number. We show that K = Q(«). If not then m = [K : Q(a)] < n and a would appear
n/m times among the conjugates o;(«). However, this is not the case since |o;(a)| < 1 for all
1> 0. O

7.6 Positional systems

A positional number system for a bounded interval (see Section 1.4) is defined by a real base
B > 1 and a finite contiguous set of digits A = [r,;s] = {r,r+ 1,...,s — 1,5} C Z with
s—r>p—1.If s—r > [, then the system is redundant. The base [ need not be an integer.
The study of positional system with noninteger bases has been initialized by Rényi [58]. The
surjective and continuous value mapping ¢ : A¥ — [ﬁ, ﬁ] is given by ®(u) = >, w7
Thus we have a sofic number system whose graph has a single vertex A and edges A %, \ for
all a € A. For V, we get

V)\ = [b07bl] = [5117 ﬁil]

bo+a bita a T a S
F,(V\) = [Og ) 1;]:[3+5(571)7E+5(ﬁ71)’]

Among the expansions of x € [by, b;] we consider the smallest (in lexicographic order) which
we call the lazy expansion and the largest which we call the greedy expansion. The lazy
function Lg : [b, b1] — [bo, b1] and the lazy expansion map & : [by, b] — A“ are defined by

La() = Br—ax)
S(x);, = al(Liﬁ(x)), where
a(r) = min{fac€ A: ze€ F,(V))}

Proposition 7.36 If > 1, A=[r,s] CZ, s—r > [ —1 then
1. ay(z) = max{r, [fx — by ]}.

2. ®(&(x)) = x for every x € V),

3. &E(P(u)) 2 u for every u € AY.

Proof: 1. We have a;(z) = r iff x < bl% iff Sz —by < riff [z —0b] <r. Fora>r we
have a(z) :aiffbl*T“’l <z < bl% iff a—1< pfr—0b <aiff [fz—0b] = a, so we get
a;(z) = max{r, [fz — by ]}.
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2,3. We use Theorem 4.29. We have ®(u) = =z iff there exists a sequence z; € V) with
Tiy1 = F, '(2;). Since Lg(x) = F; ' (x) for a = ay(x), the result follows. 0

a

The lazy expansion map is in fact the left expansion in a partition number system (see
Definition 4.18 and Figure 7.1 left).

Definition 7.37 The lazy partition number system with base f > 1 and alphabet A =

[r,s] CZ is given by transformations Fy(x) = "”TJg“ and intervals
“ (ler;*l, blga) for r<a<s

Proposition 7.38 For the lazy partition number system (F, W) with base > 1 and alphabet
A = [r, s| we have

1. E_(x) = &(x), s0 E_(x); = ay(L(x))

2. E_(®(u)) <u for any u € A¥.

3. u € A belongs to Spw iff 0" (u) = E,(by — 1) whenever u, > p.

4. The subshift Spw is sofic iff E4(by — 1) is periodic.

Proof: Items 1,2 follow from a;(x) = min{a € A: z € W,}.

3. We use Theorem 4.20. For a € A we have £_(r,) = as”. If a > r then £, (l,) = a&; (b1 — 1),
for a = r we have £,(l,) = . If u,, = r, then the condition &, (l,) = ¥ < o™(u) X rs¥ =
E_(r,) is always satisfied. If w, > r then the condition &, (l,) = a&;(by — 1) <X 0™(u) <X as¥ =
E_(r,) is satisfied iff o™ (u) = E,(by — 1).

Item 4 follows from Theorem 4.24. =
bl ® ® b1
b0—|—1
b —1
bO Wr \ stl' Ws bor Wr WrJr Ws |
bo bl% MTSA by bo boJrTTH % by

Figure 7.1: The lazy function Lg and the lazy partition {W, : a € A} (left), the greedy function
G and the greedy partition {W, : a € A} (right) in a positional system with noninteger base

The greedy function G : [by, bi] — [bo, b1 and the greedy expansion map &, : [by, b1 —
A are given by
Ga(r) = Pr—ay(r)
E(x); = ay(Gh(x)), where
ag(x) = max{a€ A: z € F,(V))}

Proposition 7.39 If > 1, A=[r,s] CZ, s—r > [ —1 then
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o

1. ay(z) = min{s, |5z — by}
2. ®(&,(z)) =z for every x € V),
3. u = Ey(P(u)) for every u € AY.

Proof: 1. We have ag(x):siﬂ:bo%gxiﬂ?sgﬁx—bo iff s < |Bx —by]. For a < s we
haveag(x):aiffbi%§x<b4+ﬁ¢“iffa§ﬁx—bg<a+liff |Bx — by| = a, so we get

a,(z) = min{s, |8z — bo }.
2,3 follow from Theorem 4.29. 0

The greedy expansion map is the right expansion in a partition number system (see Figure
7.1 right)

Definition 7.40 The greedy partition number system with base § > 1 and alphabet A =

[r, 8| C Z is given by transformations F,(z) = ITJg“ and intervals

B
(b‘);s,bl) for a=s

W { (b0+a,bo+ﬁa+1) for r<a<s
a:

Proposition 7.41 (Parry [53]) For the greedy partition number system (F, W) with base >
1 and alphabet A = [r, s] we have

1 E0(2) = £(x), 50 & (2): = a,(G'(x))

2. u = EL(P(u)) for any u € A”.

3. u € A¥ belongs to Spw iff 0" (u) < E_(by + 1) whenever u,, < q.

4. The subshift Spw is sofic iff E_(by + 1) is periodic.

Proof: The proof is similar to the proof of Theorem 7.38. For a € A we have £,(l,) = ar®.
If @ < s then £ (r,) = aE_(by + 1), otherwise £_(rs) = s¥. If u, = s, then the condition
Ei(ly) = sr¥ =< 0™(u) % ¥ = E_(ry) is always satisfied. If @ = w, < s then the condition
Ei(ly) = ar” 2 0™(u) < a&_(by + 1) is satisfied iff o™ (u) < E_(by + 1). O

Wo Wi W, W W W,

TV, Ve Vi Vi WV, WV Vi

Figure 7.2: The -system with § = %

As an example consider the positional system with base § = %5 = 2.618 and alphabet
A =10,1,2]. The intervals W, of the lazy partition have endpoints 0, % =0.472, blT“ = 0.854,
by =2 =+5—1=1236. Since Fy '(by —1) = f—2 € W, and FrYB—2) =B —2, we get
E+(by — 1) = 01%, so the lazy subshift Spy is sofic. Its SF'T partition V = {V, : a € [0,5]} has
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endpoints 0, by — 1 = 0.236, %1 =0472, 6 —2=10.618, 1)1’%1 = 0.854, by = 1.236 and graph (see
Figure 7.2 left)

™[N0

The intervals W, of the greedy partition have endpoints 0, % =0.382, £ =0.764, and b, = % =
V5 —1=1.236. Since Fy; (1) =8 -2 € W, and F ' (B —2) = 8 — 2, we get £ (1) = 21, so
the greedy subshift Sgyy is sofic. Its SF'T partition has cutpoints 0, % =0.382, f — 2 =0.618,
% = (0.764, 1 and b; and graph (see Figure 7.2 right)

0,5]=Vo = R(VLhUViuV,UVs)
[5.6-21=Vi = R(lLuW)
B-2,31=V, = F(1UVj)
2.1=V; = RBUW)
[1L,h] =V, = F(VaUVEUV))
b1 Q Q b1
b0+1
bl_l..
bO Ws =I/Vs—1= Wp bO Ws 'WT—H > Wr
bg bits=1 bitr b b bot+s  botr+l
0 1,8 3 1 0 5 3 by

Figure 7.3: The lazy expansion function Ls (left) and the greedy expansion function G4 (right)
in a positional system with negative noninteger base

The positional system with negative base 5 < —1 and the alphabet A = [r, s] determines a

mapping ¢ : AY — [by, b1] where by = ng; and by = ;ﬁj, S0

Vi = [bo,ln] = [Sﬂir rﬁfs]

Fi(A) = [252 e
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For the lazy and greedy expansions we get the same formulas as for g > 1.

() = min{a € A: z € F,(V\)} = max{r, [fz — b ]}
() = Pz —alz),
&(x); = a(Ly),

) = max{a€ A: x € F,(V\)} =min{s, |[fz —by|}
) = Br—ay(w),
E(x); = ag(GiB).

=l

Indeed we have a;(z) = r iff bl% < ziff pr—0b < riff [fx —b] < r. Fora > r we
have a;(z) :aiffbl% << % iff a—1< Bz —>b <aiff [Bz—b] = a, so we get
a;(z) = max{r, [fx — by |} and similarly for a,(z). The lazy partition system has intervals

W (bl%,bl) for a=r
“ (blga,bﬁg_l) for r<a<s

The greedy partition system has intervals

(bo, bot2) for a=s
W, = %
¢ (b°+ﬁa+1, bo;“) for r<a<s

When we iterate the greedy function (with § > 1) then for all z < b; there exists ny such
that Gj3(w) € [bo, by + 1] for all n > ng. This is why the dynamics of the function Gz has been
studied in Rényi [58] on this restricted interval.

Definition 7.42 The restricted greedy partition number system with noninteger base
B > 1 is given by the alphabet A = [0, |3]], transformations F,(x) = ££% and intervals

B
=t

The value function ® is defined on the subshift Spy and its range is the unit interval [0, 1].

£ i a<|B]
) i a=8)

™

Y

Proposition 7.43 In the restricted greedy system with 3 > 1 we have u € Spw iff for each
k >0 we have o*(u) <X E_(1). The expansion subshift is sofic iff E_(1) is periodic.

Proof: We use Theorem 4.20. We have [, = a/f for 0 < a < n and r, = (a + 1)/p for
0<a<q=|8],r,=1. Wehave &, (l,) = a0” for each a € A, E_(r,) = a&_(1) for a < ¢ and
E_(ry) = E_(1). The condition &, (I,,) = o*(u) =X E_(r,,) yields
w, <b = w0 2ot u) L uE (1) & o (u) <€
up =0 = up0¥ < upo(u) X E_(1) & of(u) < E_(1)

(1)
Thus the condition is equivalent to o*(u) < £_(1) for all k > 0. o

Theorem 7.44 (Schmidt [61]) If 8 > 1 is a Pisot number then every x € Q(5) N[0, 1] has
a periodic expansion in the restricted greedy system with base 3.
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Proof: Denote by oy, ...,0,_1 the n distinct embeddings of Q(3) into C with oy the identity.
Let z € [0,1), m,, = GF(z), um = |BGF(x)], where Gg(x) = Bz — [Bx]. Since z, =
(Tmi1 + um)/B we get by induction for each m and j < n

xr = Zuiﬁ*ifl—l—xmﬁ’m

<m

T = xﬁm—Zulﬂm’i’l

Uj(‘rm) = Uj($)0j(ﬂ)m—Zuiaj(ﬁ)m—i—l

For j = 0 we have 0 < z,,, < 1. Since |u;| < §, for j > 0 we have

loj(zm)| < oj(z)| + 52 o5 (B)[" 1 < oy (z)| + e
<m

where n = max{|o;(5)] : j > 0} < 1. There exists an integer ¢ > 0 such that gz, is an
algebraic integer. Since 11 = %, — Uy, it follows that each ¢z, is an algebraic integer.
Let w = [wo,...,w, 1] be an integral basis for Zg. Thus for each m there exist integers
im0y« - - Tmmn—1 sSuch that z,, = %ij T, jw; and therefore oy (x,,) = %ij T 0 (w;) for

each k < n. Denote by S(w) the regular matrix S(w);x = ox(w;). Then

(00(Tm)s - ()] = 3[%,0, ] - S(w)
[Tmoy - s Tmn1] = qoo(Tm), .-y Tn1(Tm)] - S(w)™?

The right-hand side is bounded, i.e., there exists M > 0 such that |o;(z,,)| < M for all j <n
and all m > 0. It follows that the left-hand side is bounded too and there exists m and & > 0
such that x,,1x = x,,,. Thus x; is a periodic sequence and u; is a periodic sequence as well. o

Corollary 7.45 If 8 > 1 is a Pisot number, then both the lazy and greedy partition number
systems with base 5 have sofic expansion subshift.

Theorem 7.46 (Schmidt [61]) If 5 > 1 and each x € QN [0,1) has a periodic expansion in
the restricted greedy system with base (3, then [ is a Pisot number or a Salem number.

Proof: First we show that [ is algebraic. If 0 < ¢ < 1 is a rational number whose expansion
u € A% has preperiod m and period n > 0, then

q = Z w87+ 1 f;_n Z U gif

<m <n

which is an algebraic equation for 5. Assume by contradiction that 8 has a conjugate v = o(3)
with |[y[ > 1. If z € QN [0,1) then for z,,, = G}'(r) we get

r=> wf = ay,
<m
x — Z uy"l = o(my,) ™

<m

T — Z ui'y_i_l

<m

< max{|o(zpy)|: m >0} |y
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Since {z,, : m > 0} is a periodic sequence, the right hand side converges to zero, so x =
Yoo uiy~t. For each k there exists a rational x € Q such that % <z < % + # Its greedy
expansion u satisfies ug = 1, ug = -+ = u,—; = 0, and, as we have proved, z = > ° uy "1

It follows

-1 _ -1 - P | B o]
57 = = T ) S G R D

As k — oo, the right-hand side converges to zero, so we get 5 =~ which is a contradiction. o

To get a number system for whole R we add digit 0 and sometimes the sign digit —. The

transformations are
ta if g € [r, ]

B =
Fyx)=<X Bz if a=0
—x if a=-—
Suitable subshifts depend on g and A. We identify some simple SFT for symmetric alphabets
A=[-s,s]U{0}.
Proposition 7.47 Let 1 < 3 <2, A={1,0,1,0} and set
D = {a0: a€ {1,0,1}} U{10"1,10"1 : n < ng}, where
| =In(B-1)
e = { In 3 J '

Then (F,Xp) is a number system.

Proof: The value mapping ® : ¥p — R is clearly surjective and continuous at every x # oco.

We show that it is continuous at co. The smallest number in ®([1]) is z = ®(10"1) where
n =mng + 1. Since n > —InG-1 and therefore A > Lo we get

In B B—1
1 1 1 1 1
LA R B T
Similarly the largest number in ®([1]) is —z, so ®([0"]) = [#8™, —28™]. The angle length of
this interval converges to 0 as m — oo, so ® is continuous at oo. O

For @ < B <2 we get ng = 0, so the forbidden set is D = {10,00, 10,00, 11,11}. This
case includes the binary signed system of Example 4.3. All these systems are redundant.

Proposition 7.48 Consider a number system with 5 > 2 and symmetric alphabet A = [—s, s]
with s > 1. Assume that an integer sy < s satisfies ﬁ < 59 < 62—51 and define the forbidden

set D by D={a0: a € [—s,s]} U{0a: |a| < so}. Then (F,Xp) is a number system.

Proof: Set so = [3%7] + 1. The intervals [—s, —so], [so, s] have at least one element and 0Oa is
forbidden iff |a| < sg. The intervals

O({u€ s8] —s<uo<—so}) =[5 F + gpo) = (b —bo]
O({u€ [=s55": so<w<s}) = [% — 575 555] = [bo, bi]

do not contain zero since by > 0. This implies that & is continuogs at 0o. Since by < by, the
intervals [b, b1], [Bbo, Bb1], [3%bo, B2b1], . .. overlap and @ : ¥p — R is surjective. O

For sy = 1 we get the condition 2 < s+1 < 8 < 2s+ 1. A special case is the ternary signed
system from Example 4.4 with s =1, § = 3.
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7.7 Positional arithmetic

In positional number systems the arithmetical algorithms are simplified since these systems
consist of linear transformations of the form M(z) = ax +b. A Mobius transformation
M= Z] is linear iff M (0c0) = oo iff ¢ = 0. Linear transformations form a subgroup of M(R).

If the unary algorithm computes a linear transformation M (x) = az + b in a positional number
system, all F'MF, are linear transformations. Similarly if a binary algorithm computes a
bilinear tensor of the form T'(x,y) = Toxy + Tix + Toy + T3, then all compositions T*F,,, T, F,,
F'T are of this form. We show that in this case the arithmetical algorithms work with a
bounded delay. This means that there exists > 0 such that the prefix wy,) of the result
depends on the prefixes u(g,45), Vjo,n+s) Of the operands. Suppose we add two numbers in a
positional system from Proposition 7.47 or Proposition 7.48. If the operands are u = v =
0” then the addition algorithm does not give any output since co 4+ oo is an indeterminate
expression. If u = 0” and v has a prefix 0", then after reading the first letter of v different from
0, the algorithm starts writing 0 to the output and in infinite time outputs 0°. If the operands
are 0w, 0"'v, where u,v € [—s, s]™ do not contain 0, then the output is in the form 0"w, where
w € [—s,s]" and |w| + ¢ > min{|ul, |v|}. With multiplication, the situation is similar. Since
00 - 00 = 00, the inputs u = v = 0° yield 0% but the input v = 04, v = 0~ does not give
any output since 0 - oo is an indeterminate expression. In all other cases, the algorithm works
eventually with a bounded delay. To get this result we work with the Euclidean length of an

interval I = [a,b] C R which we denote by |I|. = b —a. If F, = #* is a transformation of a

positional number system, then |F,(I)|. = |I|./8 and |F; ' (I)|. = B|1|..

Lemma 7.49 Let T(z,y) = Toxy + Thx + Toy + T3 be a bilinear tensor, K > 0 and let
I,J C [-K, K] be bounded intervals. Then

T, J)]e < (ITol K+ |Th]) - e + (1To K + [T2]) - | J]e
Proof: If xg,z; € I, yo,y1 € J, then

T(w1,y1) — T(w0,90)| < |Tow1(yr — yo) + To(x1 — 20)yo + Ti(x1 — w0) + To(y1 — %o)|
< (|To| K + [Th]) - |21 — ol + (|To| K+ |T2]) - |y — yol

and the result follows. 0

Proposition 7.50 Assume that the binary algorithm works with a greedy selector in a re-
dundant positional number system from Proposition 7.47 or Proposition 7.48 with symmet-
ric alphabet A = [—s,s] U {0}. Assume that the initial tensor is of the form T(x,y) =
Toxy + Thx + Toy + T3. Then there ezists a delay 6 > 0 such that if (T,1,1,1) “** (X, p,q,)
and u,v € [—s, s]* (no prefizx of 0) then |w| + § > min{|ul, |v|}.

Proof: Since the inputs u,v do not contain 0, there exists K > 0 such that V},,V, C [-K, K].
Since |F,Vple = [Vple - 871U |FV, | = [V,|. - 871, there exists C' > 0 such that
T(EVy, EVle < (IT0|K +[Th)) - [Vile - 871+ (ITH| K + |To]) - [VyleS™
S O . max{ﬁ_‘u‘7 /8_|”|}
| X|. = |F;1T(Fu%, EV).<C- Blewl—min{jul, v}
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If |w|+d < min{|ul, |v|}, then | X|, < C- B~ There exists § such that C'- 372%1 is less than the
Lebesgue number (overlap) of the number system. It follows that if (7,1,1,i) ““** (X, p,q,T)
and |w| + 0 — 1 < min{|u/|, |v|}, then (X, p,q,r) is an emission state and the result follows. o

By Proposition 7.50, the addition in positional number systems works with a finite delay. For
certain algebraic and integer bases § and sufficiently redundant alphabets we have a stronger
result - the existence of a parallel addition algorithm with a delay 6 > 0. For given inputs
u,v € ¢ the algorithm computes w € Y such that ®(w) = ®(u) + ¢(v) and w; depends
only on uf4s) and vy (and not on the prefixes ufo,;) and vy ;). Assume that 8 > 1is a base,
A = [r,s] C Z is an interval of integers with 7 < 0 < s and ®(x) =Y, ;8 "' Forz,y € A¥
we have ®(z) + ®(y) = ®(z), where -

zi=vi+y, € A+ A={a+b: a,be A} = [2r,2s].

To obtain an addition algorithm for the alphabet A we have to reduce z € (A + A)* to w
in the alphabet A with the same value ®(w) = ®(z). However, because of the carry overs,
the expansion of w may start already at position —1. We consider therefore larger spaces of
symbolic sequences which start at arbitrary integer. Denote by

A = {rec A% Ik e Z, Vi< k,x; = 0}.

For each finite alphabet A C Z and § > 1 the value map &5 : A* — R is given by ®s(z) =
> ez if~". We consider a reduction from a finite alphabet B C Z to A given by a a sliding
block code. This is a mapping F' : B* — A* given by F(2); = f(%{t1,i+r) wWhere f :
A= s Ais a local rule which fixes zero, i.e., f(0,...,0) = 0.

Definition 7.51 Let 8 > 1 and 0 € A C B C Z be finite interval alphabets. We say that a
sliding block code F : B* — A* performs a parallel reduction if ®3(F(x)) = ®s(z) for
every x € B*.

Proposition 7.52 (Avizienis [1]) The Avizienis addition algorithm works for an integer base
B > 3 and alphabet A = [—a,al], where g <a< B —1. Given inputs z,y € A*, the algorithm
computes in parallel w; = x; +vy; and then determines the quotients q; and remainders r; by the
rule
w; < —a = ¢=-1, n=w+p
—-a < w; < a = ¢=0 r=uw
a < w; = ¢=1, mr=w—-p

The block code F : A* x A* — A™ defined by F(x,y); = 2 = ri+qit1 satisfies P(x)+Ps(y) =
Ds(F(x,y)).

Proof: We have x; + y; = w; = B¢; +r;. f n=min{i € Z : x; # 0 or y; # 0}, then

bp(x) + Psly) = D Bai+r)B = D (Ga+7:)87" = Dp(F(z,y))

>n i>n—1
We show that F(z,y) € A*. If —2a < w; < —a then
a<-2a+0<r<—-a+pf<a

Since |gip1| < 1 we get |z < a. If —a < w; < a, then |z = |w;| < a. If a < w; < 2a then
—a<a—0B<r;<2a—pf<a,so |z <|ri|+|g1] < a. Thus F(z,y) € A*. 0
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Proposition 7.53 (Chow and Robertson [8]) The Chow and Robertson algorithm works
for an even integer base = 2a and the alphabet A = |[—a,a]. Given inputs x,y € A*,
the algorithm computes in parallel w; = x; + y; and then determines the quotients q; and the
remainders r; by the rule

-3 < w < —a = ¢=-1, rn=w+p
—a < w; < a = ¢ =0, TP = W;
a < w; < B = ¢=1 rmn=w -4
w, = —a, w1 <0 = ¢g=-1 rn=a
w;,; = —a, wi1>0 = ¢=0, = —a
w; = a, Wi+1 SO = qz:07 T, = a
w; = a, wiy1 >0 = ¢ =1, ry=—a

The block code F' : A* x A* — A* defined by F(x,y); = z; = 1i+qit1 satisfies P(x)+Ps(y) =
Os(F(z,y)).

Proof: We have z; +y; = w; = Bq; + i, so ®3(F(x,y)) = Ps(z) + Ps(y). We show that
F(z,y) € A*. In each case we have |¢;| < 1. If |w;| <a—1or |w;| > a+ 1 then |r;| < a, so
|zi] < a. If w; =—a, wiz1 <0, then g1 <0and 2z, = a+ ¢y1 < a. If w; =—a, wiy; >0, then
¢iv1 > 0 and z; = —a + ¢;+1 > —a. The proof is similar for w; = a. o

For noninteger bases 5 > 1 we show that a sliding block code exists iff g is algebraic and
no conjugate of 3 lies on the unit circle in the complex plane.

Proposition 7.54 Let 0 € A C B C Z. If there exists a reduction from B to A then [ is an
algebraic number.

Proof: Let F(2); = f(2[i1,i++)), where f : A7 — Ais alocal rule. Choose b € B\ A and set
x=b" € BYC B*, sox; =0 for i <0. Denote by a = f(b,...,b) € A. Fory = F(x) € A™
we have y; = 0 for ¢« < —r and y; = a for i > —[. We get
—1-1
a

bB i gl

P Pya) = Dyly) = i . e
1= 2@ =) = 2w+ g
or b = (B—1)(y_1_18 +-+-+y_.B") = aBL. If n > [+1 is the largest integer with nonzero
Yn, We get an algebraic equation for 3 of degree n + 1. If all g, are zero, we get a = b/3'. Since

a # b, we have [ > 0 and we get an algebraic equation of degree . O

Assume now that § > 1 is an algebraic number which is a root of a polynomial p € Z[x].
This need not be the minimal polynomial of 3. The reduction algorithm presupposes special
properties of p which are not always satisfied by the minimal polynomial. If p(8) = 0, then
is also a root of x*p(z) for any integer k, and we assume p in the form

ple) =) pa ' =Y pa,
i=l €L

where p; € Z for [ < i <randp;, =0fori e Z\|[l,r]. If {g; € Z: i € Z} is a bounded
sequence of integers and y; = >, ., quPitx then for v = > y;,67" we get

() = DD BT =3 3 aenifT =) abt ) pifT =0

keZ i€ keZ je7 keZ JEZ
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The reduction algorithm from B to A C B chooses an appropriate sequence of ¢; and for

xr € B* computes
F(z)i =z — Z QkDi+k
ke

For suitable sequences of ¢; we get F(x) € A*. For this purpose we need polynomials whose
zeroth coefficient is sufficiently large. We say that a polynomial p € Z[x] has a dominant
coefficient p, if p, > >, 4n |pi|. Then p(x)x~™ is a polynomial with dominant zero coefficient.
Assume that 8 > 1 is a root of a polynomial p(z) = > i, p;a~", where [ < 0 < r, with a
dominant zero coefficient, so pg > >, [pi| = s. We construct an addition algorithm in the
alphabet A = [—a — s,a + s] where a = P’(’Tf‘q Given inputs z,y € A*, the algorithm first
computes z; = ; +y; which is a word in the alphabet Ay = [—2a, 2a]. Then it performs a series
of reduction steps to a smaller alphabet until the reduced word in the alphabet A is attained.

Theorem 7.55 (Frougny et al. [18]) Let p be a polynomial with dominant zero coefficient
Po > D i |pil = s. Denote by a = [22-1]. If B = [~b,b], where b > a+ s, then the reduction
algorithm w — z given by

B _J o if |wi| <a
Z = Wi = Z Gi+iPj» where g = { sgn(w;) otherwise
JEZ
reduces a word from B* to a word in alphabet C*, where C = [—c¢, c] and ¢ < b.

Proof: Since the subtraction of ) ; UitjD; does not change the value of the expansion, we have
only to show that the result z belongs to a smaller alphabet. We have |¢;| < 1. If |w;| < a then
g =050 |z] < |wi| + >0l <a+s<b Assume a < w; <b. Since py < 2a + 1 we get

Zi = wi_pO_ZQi+jpj
i#0
wi—pp—s>(a+1)—(2a+1)—s=—-a—s>—b

v

zi < wi—po+s<b—py+s<b

so |z < b. If w; < —a, the proof is analogous. o

Thus the repeated application of the reduction algorithm from Theorem 7.55 to w = = + v,
where =,y € A* gives finally a word of A*“.

Theorem 7.56 (Frougny et al. [18]) An algebraic number a > 1 is a root of a polynomial
p € Z[x] with a dominant coefficient iff |7y| # 1 for each conjugate v of .

Proof: If p(a) = 0 and 7 is a conjugate of a with |y| = 1 then p(v) = 0 and for each k£ < deg(p)

we have
ol = 71 = D’ | < Il
JFk J#k
so no coefficient is dominant. Conversely let
p(x) = —po —pr& — -+ — ppgx” '+ 2" = H(:c — )

<n
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be the minimal polynomial of «, so p; € Q and a = ag, ay, ..., ®,_1 are the conjugates of a.
Since p is irreducible, we have «o; # «; for ¢ # j. Assume that |o;| # 1 for each i. For each
m > (0 consider the polynomial

qg(m)(z) = H(x —a')=—q(m)g— - — q(m)nflmnfl ey
i<n
Then
Z Oélm - q(m)n—l
Z "ot = —q(m)y—2
i<j
Z a;na}nazn = q(m)n_s
1<j<k
of ol = (~1)"g(m)
For ] _
0 1 O 0
0 0 1 0
M(a) = )
o o0 0o --- 1
| Po P1 P2 " Pn-1]

we have det(z] — M(«)) = p(z), so the eigenvalues of M(«) are «;, and the eigenvalues of
M(a)™ are o". It follows q(m)(z) = det(xl — M(a)™), so g(m) € Q[z]. Reorder now the
a; so that |ag| > |aq| > -+ > |ap-1| and let k be the first index with |ag| < 1. If oy > 1
for all 4, then we set k = n. For each subset {igp,?1,...,4;} € {0,1,...,n — 1} different from
{0,1,...,k — 1} we have

Qo v Qs am...qm ' m).
- L <1, = lim |—" Y 1=0 = lim W -

m—00

ao...ak_l agl...azn'l

so g(m); is a dominant coefficient of ¢(m) for sufficiently large m. Thus the polynomial
g(m)(z™) has a dominant coefficent and a root «. O

Theorem 7.57 (Frougny et al. [17]) Let 8 > lbe an algebraic number which has a conju-
gate v with |y| = 1. If 0 € A C Z is an alphabet and B = A+ A then there exists no parallel
reduction from B* to A*“.

Proof: Assume by contradiction that the reduction is performed by a sliding block code
F(x); = f(%}it1,i4r), Where f: B! & Ais a local rule with [ < 0 < 7. Denote by

max(—1,r)
S = max Z ay'|: a; € A

Jj=0
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If 4% = 1, then the minimal polynomial of 3 divides z*¥ — 1 which is impossible since 5 > 1.
Thus ~ is not a root of unity. It follows that there exists an infinite number of indices ¢ with
R(7') > 3, and there exists m > 0 and {¢; € {0,1} : j < m} such that R -Loein?) > 3S.

Set
T = max{'?R (Z%‘Vj)‘ Da; € A}
=0

so T > 3S. Take z; € A such that T = [R(X" 297)| and set x = Y77 (x;37. Thus
= [R(¢(x)|, where ¢ : Q(8) — Q(v) is the field homomorphism with ¢(5) = 7. The sliding
block code yields z; = F(x + x); € A such that

r4+x = Zz]ﬁj—l—z,zﬁj—l— Z zjﬁj

Jj=-r j=m+1
o(z) +p(z) = Zm +Zm + Z 724
We get
R(p(z))[+35 < [Rlp(@))| + R(p(x))] = [R(e(z) + ¢(z))]
< R 2 ) + RS 297 + IR 2540m )

< S+ R(p(x))| + S

and this is a contradiction. o

Corollary 7.58 If 5 > 1 is an algebraic number, then there exists an alphabet A = [r,s] and
a parallel addition algorithm F : A* x A* — A* iff 5 has no conjugate v with || = 1.

The problem of finding the smallest alphabet A for which there exists an addition algorithm
is treated in Frougny et al [19]. For the golden mean 3 = ‘[ L we get q(x) = 2* — 32% + 1 with
dominant coefficient ¢y or ¢(z) = —x*+3—x~2 with domlnant coefficient ¢y. Thus pg = 3, s = 2,
a =1, so we get an addition algorithm in the alphabet A = [—3,3]. The algorithm subtracts
the word 10301 at any position 7 with w; > 1 and adds it at any position i with w; < —1.
In this way the algorithm successively reduces a word in alphabet [—6, 6] to alphabets [—5, 5],
[—4,4] and [—3, 3]. There exists also a more sophisticated addition algorithm in the alphabet
[—1,1] (see Frougny et al [19]).
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Chapter 8

Transcendent and iterative algorithms

Transcendent functions such as e® or sinz can be expressed by power series, so they may
be approximated by polynomials. However, better approximations can be obtained from a
sequence of rational functions called Padé approximants (see Wall [67], Baker and Graves-
Morris [2] or Jones and Thron [27]). Exact real algorithms for transcendent functions are based
on these approximations.

8.1 Padé approximants

Padé approximants are rational functions derived from a power series f(z) = co+c1x+cox?+- - -
which is treated as a formal power series: the questions of convergence are postponed. Formal
power series can be added, subtracted and multiplied and they form a ring. The order A(f) of
a formal power series f(z) =) .,c,2" is the least n such that ¢, # 0. Clearly

Mf+g) = min{A(f),A(9)},
Mfg) = M)+ Mg)-

A rational expression is a pair (p,q) of polynomials. Rational expressions are equivalent
((pos q0) ~ (p1,q1)) if pog1 = p1g1. For each rational expression r = (p, q) there exists a unique
rational function R(x) = ggg such that (P, Q) ~ (p,q). R is obtained by cancelling the common
factors of p and q.

Definition 8.1 Let f be a formal power series and m,n > 0 integers. We say that a rational
expression Tmn(T) = (Dmn (), ¢ma(x)) is the Padé approximant expression of f of order
(m,n) if deg(pmn) § , deg(gmn) < n and N fG¢mn — Pmn) = m+n+ 1. A regular rational

function Ry, n(x) = o n((x)) is the Padé approximant of f of order (m,n) if it is equivalent

to a Padé approximant expression of f of order (m,n).

Proposition 8.2 Fach formal power series has Padé approximants of all orders. Two Padé
approzimant expressions of the same order are equivalent.

Proof: Let f(x) = co + c1x + cox? + - - -. We search for polynomials p(z) = ag + - - - + apz™,
q(x) = by + -+ + byx™, such that A(fqg — p) > m + n + 1. This condition gives a system of

159
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1/ 0 (0,0) | (1'0) | ':0) | (3’0)

1/1 — 11 1]
0/1 * 1 / : : : /
-1/0 1 : : ; ; ; ; }
Y0 100,17 ey T ey o ey 7

1/1 + 11 11 11 L
o1 ¥ ‘ / ‘ ‘ ‘ /

-1/0 1 / : ; / ; ; ;
Voo 1w Al (22 Palst
11 ¢ I I -

0/1 1 : / ; V ; /
-1/0 . . . : : ! | ‘
Y0100, 3) / (1,3) / (2,3) / (3,3) /
1/1 + + 1 11 1l |
0/1 1 : / ; ; ; /
- 1 / 1 £ L 1 1 is 1 1 is L J{

N

-1/0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
i1 01 11 1 0 1 121 1 0 1 11 1 0 1 1
o0 1 1 1 o0 1 121 1 00 1 1 12 00 1 1 1 O
0 1 2 3
0 1 z+1 22 +22+2 23+322+62+6
1 1 2 6
1 1 z+2 x’+4x+6 346224182424
—x+1 —x+2 —2x+6 —6x+24
9 2 2z+6 22462412 34922 4362+60
2 —2x+2 2 —4x+6 2 —6x+12 3x2—24z+60
3 6 6x+24 3224242460 2341222 46024+120
—34322—62+6 —x34+6x2—18x+24 —23+922—362+60 —x3+1222—602x+120

Figure 8.1: Padé approximants of orders (m,n) with 0 < m,n < 3 (thick) of the exponential
. . 2 :
function (thin) e* = 1—|—(1:—|—%_|_§_?_|_..._

equations for the unknowns a; and b;:
cobp = ag

Clb0+Cob1 = a1

CmbO + Cm—lbl +--+ CObm = Qn

Cm—i—lbO + Cmbl +- Cm—n+lbn = 0

Cm—i—ZbO + Cm—i—lbl +F Cm—n+2bn = 0

CernbO + Cm+nflb1 +oe 4+ Cmbn = 0.
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0 1 2 3 0 1 2 3

0 x T 3r—z° 0 x T 3r—z°
0 1 1 1 3 0 1 1 1 3
119 =z z? 3z—a? 110 =z z 3z—a?

x 1 T x 1 1 1 3

0 3z 3z 15z+4z3 0 3z 3z 15z+4z3
2| = 21>

2 34z 3422 1549z 1 3+x2 3+a2 1549z
3|0 3z 3z2 15z+4x3 3]0 3z 3z 15z+4x3

3 3+x2  3x+ta3 1549z 1 3422 3+4z2 1549z

Table 8.1: The Padé approximant expressions (left) and Padé approximants (right) of f(z) =
arctan(x):x_§+%5_$_77+..._

where ¢, = 0 for £ < 0 and by = 0 for £ > n. The homogeneous system of the last n equations
in n+ 1 unknowns by, . . . b, has a nonzero solution and the first m + 1 equations then determine
the a;, so we obtain p, ¢ with A(fg —p) > m+n+ 1. Assume that p;, ¢, are other polynomials
of degree at most m,n such that \(fq; —p1) > m+n+ 1. Then A\(fgq1 — pg1) > m+n+1
and \(fqq1 — p1q) > m+n+ 1. Since fqq1 = fqiq, we get AM(pg1 — p1q) > m +n + 1. Since
this is a polynomial of degree m + n, we get pg; = p1q. 0

If ¢y # 0 # ¢; then

Roo(r) = <, Rig(z) = @tz
2 .
Rl,O(x> = Cof(:ilx’ R171(:L‘) = W

Padé approximants of the exponential functions are all different, so R,,, = Sm’" = Zm—’" (Figure

8.1). In the power series of arctan z there are only odd powers of = and the relation between R, ,,
and r,,, is more complicated (see Table 8.1). Note that the Padé approximants R,,,, =

Pm,n

Qm,n
do not necessarily satisfy the condition \(fQumn — Pmnn) > m +n + 1. For example for the

Padé approximant Ry(z) = ¢ we have A\(fQ — P) = A(f) = 1. If some powers are missing in
the power series f, then the Padé table contains square blocks of identical rational functions:

Theorem 8.3 (Block Theorem) Let f be a formal power series and let R = g be a reqular
rational function with deg(P) =m >0, deg(Q) =n > 0, A(Qf — P) =m+n+r+ 1, where
0<r. ThenR,j =R iff m<i<m+r andn <j<n+r. Moreover, rp; = (P,Q) =r;, in
this case.

Proof: If i < m or j < n then deg(P,;) < m or deg(Q;;) < n, so R;; # R. Assume that
Rytin+; = R for some i,7 > 0 such that either i« > r or j > r. Then 74 0+; = (PS,QS5),
where S is a polynomial which satisfies deg(PS) < m+i, deg(QS) < n+j so deg(S) < min{i, j}.
On the other hand we have A(fQS — PS) > m+n+i+j+1. Since A\(Qf —P) =m+n+r+1,
we get deg(S) > i+ j — r which is either greater than j if ¢ > r or greater than ¢ if j > r. This
is a contradiction, so we have proved that if R; ; = Rthenm <¢<m+randn <j<n+r.
Since

IN

deg(pm—l—i,n—‘rj) m + i,
deg(Qm+i,n+j)

M fOmsinti — Pmtintj) = m4n+r+1+min{i,j} >m+n+i+j+1

IA

n+j,

we have Tiinsi = (Pmsiniis Gmriney) = (P(z)a™3} Q(z)zmid}l) for 0 < i, 5 < r. o
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1/ 0 t t t } ;
(0,0) (2,0) 4, 0)
1/1 1 T
0/1
-1/1
-1/0
1/ 0 t + + + ;
(0,2) (2,2) (4,2)
1/1
0/1
-1/ 1 A
-1/0
1/0 : : : : :
0, 4) (2,4) (4,4)
1/1 4 bt o
0/1
-1/ 1 A
-1/0 _ — + ; ~ t ;
1 1 0 1 11 1 0 1 11 1 0 1 1
0 1 1 1 00 1 1 1 0 O 1 1 1 0
0 1 2 3 4
0 1 1 3—a? 3—a? 15—522+3z%
1 1 3 3 15
1 1 1 3—a? 3—a? 15—522+3z4
1 1 3 3 15
2 3 3 154422 15+4a22 105+40z2 —4a*
3+ax2 3+ax2 15+922 15+9x2 105-+75x2
3 3 3 15+4a2 15+4a2 105+40z2 —42*
3+a2 3+ 15+9z22 15+9x2 105+75x2
4 45 45 1054552 10545522 945473522+ 6424
4541522 —4a% 4541522 —4x% 105490224924 105490224+9z%  945410502242242%

Figure 8.2: Padé approximants of orders (m,n) with 0 < n,m < 4 of the function f(x) =
arcton(e) — 2 2l 2 ... (thin).

T

The non-square rectangular first column in Table 8.1 right does not contradict Theorem
8.3 since for Ryo = % we have deg(0) = —1. To avoid such a case we usually assume that
co # 0,80 Ryg =% (see Figure 8.2 for the Padé approximants of arctan z/x). The size r of the

block in Theorem 8.3, may be infinite and then Qf — P =0, so f = g is a rational function.

Conversely, if f = g, then r is infinite. If f is not a rational function, then for each mg, ng there
exist my > myg, ny > ng such that R, no # Rmgne 7 FBmo.ny- Thus we get infinite sequences of
different Padé approximants with increasing indices m;, n;, which form staircases in the Padé
table.

Rmo,’noa le,’noa le,nla RmQ,nlu ng,nga R’mg,nga e

Rmo,noa Rmo,nla le,nla le,nga Rmz,nga ng,nga e

These sequences of Padé approximants can be expressed by continued fractions
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Pl n
Qo 0
Fio P

o Qo Q1
P D
Q1 Q.| ™

P
m @
mo my mo my

Figure 8.3: Square blocks in the Padé table (thin) and the Padé approximents (thick) from
Theorem 8.4 (left) and Theorem 8.5 (right)

Theorem 8.4 Let f be a formal power series which is not equal to any rational function and

let Rigng = % be its Padé approximant of order mqg,ng. Assume that either ng = 0 or

Riono—1 # Rimgmo- Let my > myg be the first integer with Ry ng 7 By ng = % and let ny > ng
be the first integer with Ry, ny # Ry ny = % (see Figure 8.3 left). Then

P P |k A |0 ax®

Q1 Qo Q @i [1 7B
where a # 0, k < ny—ng and 5 is a polynomial of degree at most max{0, (ny —ng)— (m;—my)}.
In particular if (my,n1) = (mo+ 1,n9+ 1) then k =1 and 8 = b is a constant.

P P

Proof: Since Py(Q1 — P,y # 0, we use the pseudoinverse of [Qo o

| to compute

{A B} _ [Ql —Pll,[Pl Pﬂ:{ 0 PyQ1 — Qs
¢ D _QO PO Ql QZ POQl_PlQO POQQ_P2QO

Since either ng = 0 or Rpyne—1 # Rmgnes (R0,M0) belongs to the upper row of a square
block of equal elements. By Theorem 8.3, all elements of the first row have the same Padé
approximant expression, in particular r,,, n, = 7m,—1,n,, Which implies A\(Py — fQo) > my + ny.
Similarly, R,,, », belongs to the first column of a square block of equal Padé approximants, so
Tmrno = Tmym—1 and AM(Py — fQ1) > my + nq. Since A(P — fQ2) > my +ny + 1,

min{A(FQ1 — fQoQ1), A(fQoQ1 — PAQo)} > my + n,
ANB) = min{A(Q1 — fQ1Q2), A(fQ1Q2 — P1Q2} > my + ny,
AD) > min{A Q2 — fQuQ2), A(fQoQ2 — P2Qo} = my + np.
Thus the orders of all B, C, D are at least m; 4+ ng. For the degrees we get deg(C') < my + ny,

deg(B) < my + ny, deg(D) < max{m; + ng,mg +n1}. Thus C = ca™*™ B = bz* with

B Since € = det(fy B, we have [2 517 = [4/5, 1)5) and

p Rl [P PR [R P [P P
{Ql QJ B {Qo Ql}[@o QJ .|:Q1 Qz}
Py
2]

- o @l [l o

P
8
Y

1 D/C
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It follows B/C = az"* with a # 0, k < n; —ng and 3 = D/C is a polynomial with deg() <
max{0, (ny —ng) — (my —my)}. O

Theorem 8.5 Let f be a formal power series which is not equal to any rational function and

let Rigng = % be its Padé approrimant of order mg,ng. Assume that either mg = 0 or

Rio—1.no # Rmgmo- Let ny > ng be the first integer with Ry, ny 7# Rimgny = % and let my > my

be the first integer with Ry, ny # Ruyny = % (see Figure 8.3 right). Then

[Pl PQ} B [PO Pll . [0 axk]
Q1 Q2 Qo @] [1 B
where a # 0, k < my—myg and 5 is a polynomial of degree at most max{0, (m;—myg)—(n1—nop)}.

In particular if (my,n1) = (mo+ 1,n9 + 1) then k=1 and B = b is a constant.

The proof is analogous to the proof of Theorem 8.4. If the Padé approximants are all

distinct, we can proceed along the diagonal Ryg = £, Ry = CO“” , Ri1, Ro1, Roo, Rs3o, ...
f(x) {clo Co jtlclx} . [O an] (13.’13':| 3

_ {1 co] _ [O clx] [O A2 [0 agx] B
0 1 1

o 1T a2 azx

= ¢ T+b_2—|—b_3—|— o

Alternatively we can express f as a continued fraction whose partial convergents are Roo = ¢,

R[)l - Rlla ng Ce e
2
| & ' 0 asz . 0 asx
f(l’) - |:1 CO—C1$:| |:1 bQ:| [1 b3:|

10 ¢ ' 0 —cx ' 0 asx . 0 asx
T 1) |1 e 1 by L b3

CO Cll' CLQJ] CL3£L’

1 - ¢y + b2 + b3

co
1—(c1/co)z’

Theorem 8.6 Let f be a formal power series which is not equal to any rational function. Let
Rmo—l,’no—l 7& Rmo,no = %7 Rmo,’no 7& Rmo-‘rl,’no-i-l = %7 Rm0+1,n0+1 7é Rm0+2,n0+2 = % Then

[Pl PQ] B [PO Pl} _ lo aajk]
Q1 Q2 Qo 1 g
where a # 0, k <2 and B is a polynomial of degree at most 1.

Proof: We have A\(Py—fQq) > mo+no+1, A(P1—fQ1) > mo+no+3, AN(Po— fQ2) > mo+ng+5.
For the matrices C' = P()Ql - PIQO’ B = PQQl - PlQQ, D = P()QQ - PQQO from the pI’OOf of
Theorem 8.4 we get

A(C) min{ A(Fo@Q1 — fQoQ1), A(fQoQ1 — P1Qo)} > mo +no + 1,

AMB) = min{MPRQ1 — fQ1Q2), A\(fQ1Q2 — PiQ2} > mo + no + 3,

AD) > min{A(FPQ2 — fQuQ2), A(fQuQ2 — P2Qo} > my +np + 1.

v
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Since deg(C) < mg+ny + 1, deg(B) < mg+np+ 3, deg(D) < mg+ ng + 2, the result follows. o

If in the Padé table all approximants are distinct, then we can express the formal power

series f as a continued fraction whose partial convergents are Rog = <, Ry (z) = W,
Ry ...
fz) = co cocr + (¢ — coen)x 10 ayxh? 10 aszhs o
YT 1 — CoT 1 B 1 B
_ 10 co| 10 —(2/cy)x 10 agz™ [0 agzts]
1 1 1 o+ ((A/cg) —co)z| |1 B 1 B3
Co —(2/co)x apz®?  azzks

T"‘014—((6%/00)—02)$+ B + Bz +---

where k; < 2 and deg(;) < 1. These expressions do not say anything about the convergence
of these continued fractions nor about the convergence of the original formal power series f.
Nevertheless, if convergent, the convergence is usually faster and has wider definition domain
than the formal power series. For example for the exponential function we get a continued
fraction which converges for every x € R and its partial convergents form a staircase Rog, R19,
Ri1, Ro1,- -+ in the Padé table.

CBEIE LR AL L

T 1-243-245——24+2nt1)_...

Alternatively we get a continued fraction which converges for every x € R and its partial
convergents form a staircase Ry, Ro1, R11, Ri2,- -+ in the Padé table. The two expressions for
e” are related by the formula e” = 1/e™".

- RREAEDEEAL AL

1z oz ox T T
o1 1+2-3+ 2= 2n+ 1)+ ...
Using Theorem 8.6 we get a continued fraction which converges for every z € R and its partial
convergents form the main diagonal Ry, R11, Ro2, R33, - in the Padé table.
2 _ (1 1] |0 2x‘0x2‘0x2.0x2”‘
T o1t 1—z| |1 3|71 5] 1 7

2x x?

113'2 2
l—-z+3+5+

X
o1t

= 1+

e
7
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Many other convergence results have been obtained - see Wall [67] or Jones and Thron [27].

1 ax (1+a)z (1—a)z nn+a)x n(n—ax
(L42)" = I—T+( 2 ) +( 3 : TR <2n ) + (2n+1) R
m(l4g) = £ & % dv do whr nt > -1
1+2+3+4+5+--4+2n+2n+1+---
tanx = z I—Q I—2 z? —I<x<z
1-3—5—"—2n+1—--- 2 2
x 2 x? x?
e A T R RS
arctanz = z I—Q 4_x2 ﬁ reR
1+3+ 5 ++2n+1)+...
argtanhx = llnl—i-x:f x—2 4—332 ﬂ -l<z<l1
21—z 1-3—5 —"—2n+1)—...

8.2 Algebraic tensors

The approximation of transcendent functions by Padé approximants and continued fractions
leads to the concept of an algebraic tensor which is a function 7: R x R — R U {8} of two
real variables which is a rational function in the first variable and a Mobius transformation in
the second variable. An algebraic tensor of degree ¢ > 0 is given by

(Toooxd + Toroxd o1 + -+ - + Togor)yo + (Tomzl + Tonad ‘o1 + - + Topr)m
(Thooxd + T110$g_1$1 + -+ quoff)yo + (T xd + T111$8_1$1 + -+ qulx({)yl

T(x>y) =

SO

q 1
T(z,y)k = Z Z Thijag " T1y;

i=0 j=0
In particular, an algebraic tensor of degree 0 does not depend on x and is a transformation
given by the matrix T = [%’gg %}gﬂ For example, the unit matrix represents the projection

Id(x,y) = y. Given an algebraic tensor T' of degree ¢, for each x € R we get a transformation
T*z given by (T*z)(y) = T(x,y). For each y € R we get a rational function T,y of degree ¢
given by (T.y)(z) = T(z,y). Thus

q 1
(T* )i = > Toad "oty (Tey)wi = Y Thigy
i—0 =0

For a transformation P we get algebraic tensors (T*P), (T.P), PT of degree ¢ given by
(IT"P)(z,y) = T(Px,y), (T.P)(x,y) = T(z, Py), (PT)(z,y) = P(T(z,y))
algebraic tensors satisfy similar identities as bilinear tensors, e.g.,
T(x,y) = (T'x)y = (Tuy)z,
T(x,P) = (T"z)P = (T.P)"x,
TPy = (T.y)P=(T"P).y,
(T°P)'Q = T7°(PQ),
(T.P).Q = T.(PQ).



8.2. ALGEBRAIC TENSORS 167

For a function expressed by a continued fraction we have

flx) =

apr air a2x 1 o\ (T*e) .. (T )
T+ bt ot = AT (T (D)0

where T, (z,y) = “”z . The composition of matrices T’z leads to a new kind of tensor product.

For algebraic tensors T,S we have (T*x)(S*z)(y) = (T*x)(S(x,y)) = T(x,S(x,y)). Thus for
tensors T, S of degrees ¢, p we define the tensor T' % S of degree at most g + p by

(T * S)(z,y) = T(x,S(x,y)).
Then

q 1

=0 m=0

= ZZZZTnzm m]kx8+p = H_Jyk

i=0 m=0 5=0 k=0

prq 1 min(gr)

= ZZ Z ZTnzm CRPm,r— zkx0+p T'r;yku

r=0 k=0 {=max(0,r—p) m=0
where r =7 + 7. Thus

min(gq,r)

(T*S)nrk: Z ZTnzm' m,r— zk70<7ﬂ<p+q

t=max(0,r—p) m=0

Proposition 8.7 Let T, S, R be algebraic tensors, P, Q) matrices and x a vector. Then
T+xld=1d«T=T,1d*"P =1d, Id,P =P

(T*S)*«R)=(T*(S*R))

(T'x S)'x = (T*z) o (S*x)

(T'x S)*P = (T*P) = (S*P)

(T*8).Q =T = (5.Q)

(PT)*S =P(Tx*S)

(T.P) xS =T % (PS)

Tx(PS)=(T.P)*S

o N Crds Lo o~
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Proof: (Id«T)(x,y) =1d(x,T(z,y)) = T(x,y), (T x1d)(z,y) = T'(z,1d(z,y)) = T'(z,y),

(T S)* R)(z,y) = (T'*9)(x,R(z,y)) =T(z,5(, R(z,y)))
= T(z,(S* R)(x,y)) = (T'* (S x R))(x,y)
(T S)ya)y) = (Tx*S)(z,y) =T(x,S(x,y)) = (T"x)(S(z,y))
= (T"z)((S"2)(y)) = (T"x) - (5")(y)
(T« S)"P(x,y) = (T'xS)(Px,y)=T(Pz,S(Px,y)) = (T"P)(x,S(Pz,y))
= (I"P)(z,(S"P)(z,y)) = (T"P) % (S*P))(x,y)
(T 9):Q)(w,y) = (T=*5)(x,Qy) =T(x,5(,Qy) =T(z, (5.Q)(z,y))
= (T*(5.Q))(z,y)
((PT)xS)(x,y) = (PT)(x,5(x,y)) = P(T(x,5(x,y))) = P((T"* ) (z,y))
(TuP) x S)(z,y) = (T.P)(x,S(x,y)) = T(x, P(S(z,y)) = (T * (PS))(z,y)

S
*
)
2
&
E
[
=
8
N

S(x,y)) = (T.P)(x, S(x,y)) = (T.P) * S(x,y) o

The image of intervals I, J by an algebraic tensor is defined by
T(I,J)={T(z,y): v€l,yc J}NR.

Theorem 8.8 (Inclusion criterion) If T is a algebraic tensor, P,Q, R are reqular matrices
and sgn(RT(P,Q)) > 0 then T(P¢,Q°) C Re.

The proof is analogous to the proof of Theorem 5.31. We take the (¢ + 1)-linear tensor

1
SV, Z Thei... wxfl),...,xgg)yj

1yeeey Z(I]

which is symmetric in the first ¢ variables and S(z,...,z,y) = T(z,y). If sgn(R™'T(P,Q)) > 0
then T(P°,Q°) C S(P*, ..., P° Q) C R°.

Theorem 8.9 Let {1, : n > 0} be a sequence of algebraic tensors and I, J intervals such that
T.(I,J) C J for alln.

1. If for each x € I, T*x is a contraction on J then there exists a limit

f(x) = lim (Tgz) - - - (T,2)(7)-

n—o0

2. If there exists a limit f(x) = lim, o (Tiz) - - (T7x) (i), then f(x) € J

Proof: For each € I and for each n we have (T z)(J) C J, so both statements follow by
Proposition 3.43. 0

Definition 8.10 For an algebraic tensor T and a matriz P we write T C P if sgn(P~'T) > 0.

Lemma 8.11 Let T be an algebraic tensor and P, Q), R regular matrices. If P C Q) and T*Q) C
R then T*P C R.
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Proof: R7'T*P = R7'T*(QQ'P) = (R'T*Q)*(Q~'P), so sgn(R™'T*P) > 0. O

Lemma 8.12 Let S, T be tensors and P, Q, R matrices. If T(P,Q) C Q and S(P,Q) C R then
(S*T)(P,Q) C R.

Proof: We have

(S+T)(P,Q) = ((S*T)P).Q=((S"P)(T"P)).Q = (5"P) *T(P,Q)
= (5"P)x (QQ~ 1T(P, Q) = (S"P.Q) * (QT'T(P.Q))
= S(P,Q)*(Q7'T(P.Q))
so we get sgn(R71(S xT)(P,Q)) = sgn(R'S(P,Q)) -sgn(Q'T(P,Q)) >0 o

8.3 The transcendent algorithm

To compute a transcendent function in an interval [ = P¢ we expres it as a limit f(z) =
lim, oo (T5) - - - (T 2)(7), for some algebraic tensors 7,,. This is possible if there exists an
interval J = Q° such that T,,(P, Q) C @ for all sufficiently large n. The algorithm uses states
(vertices) (X,Y,n,p,q) € T(R) x M(R) x N x B% where X = Ty *---*T,, and Y = F, for

some i _“, p.

Definition 8.13 Let (F,G,V) be a sofic number system, {T,, : n > 0} a sequence of algebraic
tensors and P, Q) regular matrices such that T, (P,Q) C Q for all n > ng. The transcendent
graph has vertices (X,Y,n,p,q) € T(R) x M(R) x N x B2 The labelled edges are

(X,Y,n,p,q) @Y (X*Hpop,Y Hypoprsn0',q) if p-%pf

(X.Y,n,p,q) XV (X% (T}Y),Y.,n+1,p,q),

(X,Y,n,p,q) XY (F7'X.Y,n,p.q) if p#i, n>no, q% ¢,
ngaX*QgFaV;;/

The first rule is the digit absorption of a letter from the input. The second rule is the tensor
absorption of the n-th tensor and the third rule is an emission of an output letter.

Proposition 8.14 Let (F,G,V) be a sofic number system, {T,, : n > 0} a sequence of algebraic
tensors and P, Q) reqular matrices such that T,,(P, Q) C Q for alln > ngy. Set S, = Tox---xT),_1,
So = Id. If (Id,1d,0,i,i) % (X,Y,n,p,q) is a path in the transcendent graph, then i *, p,
i%qY=FV, and X =F'S:Y. Ifp#1i then Y C P. If moreover q # i then X.Q CV,
or S,(Y,Q) C F,V,.

Proof: The first digit absorption and the first tensor absorption yield
(Id,1d,0,i,i) @ (Id, F,V,,0,p,q) M (T3 (F.V,), F, vp, 7, q)
(Id,1d,0,i,i) X (Ty,1d,1,p,q) XV (T3 (F.V,), F.V,, 1,7, q)

Assume by induction that the proposition holds for (Id,Id,0,i,i) % (X,Y,n,p,q).
L If (X,Y,n,p,q) @Y (X', Y n,p,q) is a digit absorption, then Y’ =Y H, .y = Fy,Vjy,
X' = X Hpop = (F, 15* Y)' Hpop =F, ((S* ) Hypa)
= Fv (S:L(Y'Hpvaﬂp,)) = 11 IS’ZY/
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If p#1ithen Y CY CV,. If moreover g # i then S,(Y, Q) C F,V, and therefore S,,(Y’, Q) C
F,V, by Lemma 8.11.

2. If (X,Y,n,p,q) A (X',Y,n +1,p,q) is a tensor absorption, then
X = X+(TY) = (F'S)Y) (T,Y) = FH((S,Y) * (T,Y) = F N (Sp,4Y)

If ¢ # i then we have S,(Y,Q) C F,V,, T,(Y,Q) C Q, so (S, *T,)(Y,Q) C F,V, by Lemma
8.12.

3. If (X,Y,n,p,q) & (XY, n,p,¢) is an emission, then X' = F.'X = F-1S*Y, X'Q C Ve,
S0 Sn(K Q) - FvaV:]’- o

Theorem 8.15 Let {T,, : n > 0} be a sequence of tensors and P,Q regular matrices such
that T,(P,Q) C Q for all n > ny. Assume that for each x € P° there ezists a limit f(x) =
limy, oo (Tgw) - - - (T2) (7). If (1d,1d, 0,1,1) ™Y is a path with infinite words u, v, then u,v € Lg
and f(®(u)) = ®(v).

Proof: For every k there exists ny and my such that

(Id,1d, 0, 1, 1) “0m200) (XY, 0y pre, i),
so Sy, (F, Vs @) € Foy iy Voo Let z = ®(u) € P° and denote by

Ulo,my,) * Pk?
Jalw) = lim (Tz) - - (T5, ) (0).

Since T,,(P, Q) C @ for n > ng, we get f,(z) € Q° by Proposition 3.43 and Theorem 8.9. Since
x=®(u) € F, Vi, we get f(x) = Su(z, [u(x)) € Fyy,, Ve, Since ®(v) € Fy Vg, , we get

Ulo,my) = Pk Ylo,k)

f(z) = ®(v). o

To get a deterministic algorithm we need a selector which chooses at each step one of
the possible actions. A greedy selector chooses an emission whenever possible. If there is no
emission possible, th