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Abstract. We describe symbolic representations of the extended real line
based on the dynamical systems consisting of Möbius transformations. The
representations can be extended to the group of real Möbius transformations.

1. Introduction

A symbolic representation of real numbers can be regarded as a factor of a space of
symbolic sequences. The binary representation of the unit interval I = [0, 1] is the
factor map Φ2 : Z

N
2 → I defined by Φ2(u) =

∑∞
n=0 un2−n−1. This can be obtained

from a dynamical system F : Z
∗
2×I → I, where Z

∗
2 is the monoid of finite binary words.

The dynamical system is generated by maps F0, F1 : I → I given by Fi(x) = (x+ i)/2.
For u ∈ Z

k
2 , Fu is the composition Fu0

◦ · · · ◦ Fuk−1
. For an infinite word u ∈ Z

N
2 ,

Φ2(u) is the unique number contained in all Fu[0,k)
(I), where u[0,k) is the prefix of u

of length k. This can be generalized to any contractive A∗-action F : A∗ × X → X
(see Edgar [3], or Barnsley [1]). If all Fa are contractions on a compact metric space
X, then there exists a unique attractor Y ⊆ X with Y =

⋃
a∈A Fa(Y ), and a factor

map Φ : AN → Y such that {Φ(u)} = ∩kFu[0,k)
(X).

The standard binary or decadic representations are not very convenient, since
continuous maps on I cannot be lifted to continuous maps on the symbolic space.
For this reason, redundant number systems are used in computer arithmetics (see
e.g. Frougny [4]). An example of a redundant number system is the base 10-system
with digits {−5, . . . , 5} proposed by Cauchy [2]. To be able to perform continuous
operations in the symbolic space, we need a topological extension property (see
Theorem 1).

Theorem 1 For a Cantor space X and a compact metric space Y there exists a factor

map Φ : X → Y with the extension property. This means that for any continuous

map ϕ : X → Y there exists a continuous map F : X → X such that Φ ◦ F = ϕ.
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Thus, any continuous map G : Y → Y can be lifted to a continuous map F : X → X
such that Φ ◦ F = G ◦ Φ. For a proof of Theorem 1 see Weihrauch [10] (Theorem
3.2.11, page 70) or Kůrka [6] (Theorem 3.8, page 110).



The construction of a symbolic representation for the set R of real numbers poses
another problem that R is not compact, so only a noncompact subset of the symbolic
space could be used for the representation. A reasonable alternative is to construct a
representation for a compactification of R, e.g., for the extended real line R = R∪{∞}.
If we regard R as a subspace of the complex sphere C = C ∪ {∞}, a natural choice
is a dynamical system whose generators are Möbius transformations, since these
transformations are the only conformal isomorphisms of the complex sphere. The
apparent problem in is that Möbius transformations are surjective, so the forward
images of the space cannot converge to a point.

However, instead of convergence of sets, we can use convergence of measures, and
inquire whether the images of the uniform measure converge to a point measure. This
approach has an additional advantage, that finite numbers (i.e., finite words in the
alphabet of digits) can be interpreted as imprecise numbers. The preciseness of a
number increases with its length. As generators, we use local contractions to vertices
of a regular polygon. The representation should satisfy some constraints, otherwise
the contraction to a vertex would be cancelled by the contraction to the opposite
vertex. These constraints define subshifts on the set of vertices of the polygon. We
consider a family of walk subshifts parametrized by the speed of the walk around the
circle, and show that symbolic representations of the extended real line can be based
on them.

Moreover, we obtain also a symbolic representation of the group MR of real Möbius
transformations. All compositions of our local contractions form a countable subgroup
of MR. We show that in some cases, this subgroup is dense in MR. In this case, any
transformation of MR can be represented as a converging sequence of elements of the
subgroup.

2. Möbius transformations

A real orientation-preserving Möbius transformation (MT) is a selfmap of the extended
real line R := R ∪ {∞} of the form M(a,b,c,d)(x) = ax+b

cx+d , where ad − bc > 0. The
space of these transformations can be parametrized with the use of the special linear
group SL(2,R) = {(a, b, c, d) ∈ R

4 : ad − bc = 1} with matrix multiplication and
norm ||(a, b, c, d)|| =

√
a2 + b2 + c2 + d2. We have the projective special linear group

PSL(2,R) = SL(2,R)/{1,−1}, where 1 = (1, 0, 0, 1) is the identity. With the quotient
topology, PSL(2,R) is a continuous group which is in one-to-one correspondence with
the real Möbius group MR = {M(a,b,c,d) : R → R : ad− bc > 0}.

Transformations M(a,b,c,d) act not only on R but also on the upper half-plane
H := {z ∈ C : ℑ(z) > 0}, where they preserve the hyperbolic metric ds = dz/ℑ(z).
H is conformally isomorphic to the unit disc D = {z ∈ C : |z| < 1} via
isomorphisms d : H → D and h : D → H given by d(z) = (z − i)/(−z − i),
h(z) = (z−1)/(iz+ i). Transformations d,h extend to continuous maps on Euclidean
closures H = {z ∈ C : ℑ(z) ≥ 0} ∪ {∞} and D = {z ∈ C : |z| ≤ 1}. On the closed
unit disc we have disc Möbius transformations M(a,b,c,d) = d ◦M(a,b,c,d) ◦h given
by

M(a,b,c,d)(z) =
[(d+ a) + (b− c)i]z + (d− a) + (b+ c)i

[(d− a) − (b+ c)i]z + (d+ a) − (b− c)i
.

The disc MT preserve the unit circle ∂D = {z ∈ C : |z| = 1}. We parametrize the
unit circle by T := R/2πZ = [−π, π) with metric d(t, s) := min{|s − t|, 2π − |s − t|},
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and we get mutually inverse transformations x : T → R and t : R → T given
by x(t) = h(eit) = tan t

2 , t(x) = arg d(x) = 2 arctanx. We have circle Möbius
transformations M(a,b,c,d) = t ◦M(a,b,c,d) ◦ x : T → T. Alternatively, we can view
them as increasing continuous functions M : R → R with M(t + 2π) = M(t) + 2π.
Denote by MD the group of disc MT and by MT the group of circle MT. The continuous
groups MR, MD, and MT are all homeomorphic to PSL(2,R).

The trace of a MT is not well-defined but the square of the trace is well
defined by tr2(M(a,b,c,d)) := (a+ d)2/(ad− bc). A transformation M ∈ MD is elliptic
if tr2(M) < 4, parabolic if tr2(M) = 4, and hyperbolic if tr2(M) > 4. A point
z ∈ C is a fixed point of M if M(z) = z, and it is stable if |M′(z)| ≤ 1. A hyperbolic
MT has two fixed points in ∂D and exactly one of them is stable. A parabolic MT
has a unique stable fixed point (this is not stability in dynamical sense), which is in
∂D. An elliptic MT has two fixed points and exactly one of them is in D.

Disc MT preserve hyperbolic metric ds = dz/(1 − |z|2) on D. A disc MT
M ∈ MD is determined by its value M(0) and the unit tangent vector M•(0),
where M•(z) := M′(z)/|M′(z)| for z ∈ D. Define the unit tangent bundle of
D as TD = D × ∂D. There exists a homeomorphism H : MD → TD given by
H(M) = (M(0),M•(0)) (see Katok [5], Thm 2.1.1). A transformation M ∈ MD

acts on TD by M(z, ξ) = (M(z),M•(z) · ξ) and preserves the Riemannian metric

ds2 =
dx2 + dy2

(1 − x2 − y2)2
+
dξ2

4π2
, (x+ iy, ξ) ∈ TD (1)

The group operation of MD is preserved by H, i.e., H(M ◦ N) = M(H(N)). This
means that TD is a continuous group homeomorphic to MD. The action of M can
be continuously extended on the Euclidean closure TD = D × ∂D of the unit tangent
bundle by the same formula M(z, ξ) = (M(z),M•(z) · ξ). We have

M(a,b,c,d)(0) =
(c2 + d2 − a2 − b2) + 2(ac+ bd)i

(d+ a)2 + (b− c)2
,

M•
(a,b,c,d)(0) =

((d+ a)2 − (b− c)2) + 2(d+ a)(b− c)i

(d+ a)2 + (b− c)2
.

Denote by Cr(t) = 2 arctan(r2 tan t
2 ) the contraction to 0 with quotient

r < 1 which is the circle Möbius transformation corresponding to the contraction
Cr(x) = r2x of the real line. We have

C
′
r(t) = r2

1 + x
2(t)

1 + r4x2(t)
, |C′

r(t)| ≤ 1 ⇐⇒ |x(t)| ≤ 1

r
⇐⇒ |t| ≤ π − αr,

where αr = 2arctan r < π/2. Denote by U0 = [αr − π, π − αr] the contraction
interval of Cr and by V0 = [−αr, αr] the expansion interval of C−1

r = C 1
r

respectively. Note that Cr(U0) = V0 ⊂ U0, so Cr(π − αr) = αr. Denote by
Rβ(x) = (cos β

2 · x + sin β
2 )/(− sin β

2 · x + cos β
2 ) the real MT corresponding to the

rotation Rβ(t) = t+ β. We consider also contractions Cr,β = Rβ ◦ Cr ◦ R−β to points
β ∈ T.

Lemma 2 For 0 < r < 1 there exists an increasing continuous function ψr :
[0, 2(π − αr)] → [0, 2αr] such that ψr(0) = 0, 0 < ψr(t) < t for t > 0 and

|Cr(W )| ≤ ψr(|W |) for each interval W ⊆ U0.

Here |W | is the length of the intervalW . The proof follows from the fact that C ′
r(t) < 1

for each t ∈ int(U0).
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3. Measures

The value M(0) of a disc MT can be interpreted as a mean of a probability distribution.
Given a compact metric space X, we have the space M(X) of Borel probability
measures with weak∗ topology, i.e., limn→∞ µn = µ iff limn→∞

∫
fdµn =

∫
fdµ

for each continuous function f . A continuous function F : X → Y extends to a
continuous function F : M(X) → M(Y ) by (Fµ)(U) = µ(F−1(U)). Denote by δx the
Dirac point measure concentrated on x, i.e., δx(U) = 1 iff x ∈ U . Measures on T

which are absolutely continuous with respect to the Lebesgue measure have densities,
which are nonnegative functions with unit integral. In particular the uniform
Lebesgue measure ℓ on T has the constant probability density h(t) = 1/2π. Since
M

−1
(a,b,c,d) = M(d,−b,−c,a), the probability density of M(a,b,c,d)ℓ is

h(a,b,c,d)(t) = h(M−1
(a,b,c,d)(t)) · (M

−1
(a,b,c,d))

′(t)

=
1

2π
· (ad− bc)(1 + x

2(t))

(d · x(t) − b)2 + (c · x(t) − a)2
.

A measure µ ∈ M(T) can be characterized by its mean E(µ) :=
∫

T
dµ which is a

complex number in the closed unit disc D. For a measure with density h we get
E(h) =

∫ π

−π
h(t)eit dt ∈ D. For a point measure we have E(δt) = eit ∈ ∂D.

Proposition 3 Let M ∈ MT be a circle MT and M ∈ MD the corresponding disc MT.

Then E(Mℓ) = M(0).

Proof: For w ∈ ∂D we have argw = 1
i Log w. We use the substitutions z = eit and

w = M−1(z) to get

E(Mℓ) =
1

2π

∫ π

−π

(M−1)′(t) · eit dt =
1

2π

∫ π

−π

(t ◦M−1 ◦ h)′(eit) · ie2it dt

=
1

2π

∫

T

(t ◦M−1 ◦ h)′(z) · z dz

=
1

2π

∫

T

1

i
Log ′(M−1(z)) · (M−1)′(z) · z dz

=
1

2πi

∫

T

(M−1)′(z)

M−1(z)
· z dz =

1

2πi

∫

T

M(w) dw

w
= M(0).

The last equality is due to the Cauchy integral formula. Indeed, the last few lines
follow from a variant of the ”argument principle”. More elementarily we get (using
the substitution t = t(x))

E(M(a,b,c,d)ℓ) =

∫ ∞

−∞
h(a,b,c,d)(t(x)) ·

1 − x2 + 2ix

1 + x2
· 2 dx

1 + x2

=

∫ +∞

−∞

(ad− bc)[1 − x2 + 2ix] dx

π[(d · x− b)2 + (c · x− a)2](1 + x2)

=
(c2 + d2 − a2 − b2) + 2(ac+ bd)i

(a+ d)2 + (b− c)2
= M(a,b,c,d)(0).

In the sequel we use the following lemma whose proof follows from the fact that
a density h(a,b,c,d) : T → [0,∞) has only one local maximum in T.
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Lemma 4 Let (Mn : T → T)n≥0 be a sequence of circle MT. Assume that there exists

t ∈ T and c > 0 such that for each interval I ∋ t we have lim infn→∞(Mnℓ)(I) > c.
Then limn→∞(Mnℓ)(I) = 1 and limn→∞ Mnℓ = δt.

4. Subshifts and dynamical systems

For a finite alphabet A, denote by A∗ :=
⋃

m≥0A
m the set of words over A and by

A+ :=
⋃

m>0A
m the set of nonempty words. The length of a word u = u0 . . . um−1 ∈

Am is denoted by |u| := m and the word of zero length is λ. We say that u ∈ A∗ is a
subword of v ∈ A∗ (u ⊑ v), if there exists k such that vk+i = ui for i < |u|. We denote
by u[i,j) = ui . . . uj−1 and u[i,j] = ui . . . uj subwords of u associated to intervals. With
the operation of concatenation and empty word λ, A∗ is the free monoid over A.

We denote by AN the Cantor space of infinite sequences of letters of A equipped
with the metric d(x, y) := 2−k, where k = min{i ≥ 0 : xi 6= yi}. The shift map
σ : AN → AN is defined by σ(u)i = ui+1. A subshift is a nonempty subset Σ ⊆ AN,
which is closed and σ-invariant, i.e., σ(Σ) ⊆ Σ. For a subshift Σ there exists a set
D ⊆ A∗ of forbidden words such that Σ = SD := {x ∈ AN : ∀u ⊑ x, u 6∈ D}.
A subshift is of finite type (SFT), if there exists a finite set D ⊂ A∗ such that
Σ = SD. The order o(Σ) of a SFT is the minimal integer k > 0 such that
Σ = SD for some D ⊆ Ak. A subshift is uniquely determined by its language
L(Σ) := {u ∈ A∗ : ∃x ∈ Σ, u ⊑ x} (see e.g., Lind and Marcus [8]). The cylinder of a
word u ∈ L(Σ) is [u] := {v ∈ Σ : v[0,|u|) = u}. Given v ∈ Ak, v∞ ∈ AN is defined by
(v∞)km+j = vj .

By a dynamical system we mean an A∗-action over a compact metric space X,
i.e., a continuous map F : A∗ × X → X satisfying Fλ = IdX and Fuv = Fu ◦ Fv,
(the discrete topology is assumed on A∗). The action is given by generators
(Fa : X → X)a∈A. As alphabets we use groups Zn = Z/nZ = {0, 1, . . . , n − 1}
of integers modulo n with circle distance defined by dn(a, b) = min{|a−b|, n−|a−b|}.
By an interval of Zn we mean either [a, b] := [c ∈ Zn : a ≤ c ≤ b] if a ≤ b or
[a, b] := [c ∈ Zn : a ≤ c or c ≤ b} if a > b. Similarly we understand intervals in
T = [−π, π).

Definition 5 A hyperbolic number system with arity n > 2 and quotient 0 <
r < 1 is a Z

∗
n-action F : Z

∗
n × T → T, where Fa = Cr, 2πa

n
for a ∈ Zn. Denote by

αr = 2arctan r, Ua = [−π + αr + 2πa
n , π − αr + 2πa

n ], Va = [−αr + 2πa
n , αr + 2πa

n ] the

contraction intervals of Fa and the expansion intervals of F−1
a respectively. The

convergence space Xn,r ⊆ Z
N
n and the map Φn,r : Xn,r → T are defined by

Xn,r := {u ∈ Z
N

n : | lim
j→∞

Fu[0,j)
(0)| = 1}, Φn,r(u) = arg lim

j→∞
Fu[0,j)

(0).

The space Xn,r is dense in Z
N
n and it is closed with respect to finite modifications. If

u ∈ Z
N
n and v ∈ Z

∗
n, then u ∈ Xn,r iff vu ∈ Xn,r. In this case Φn,r(vu) = Fv(Φn,r(u)).

Proposition 6 Let F : Z
∗
n ×T → T be a hyperbolic number system and u ∈ Z

N
n. Then

lim
j→∞

Fu[0,j)
ℓ = δt ⇐⇒ lim

j→∞
Fu[0,j)

(0) = eit

The proof follows from Proposition 3.

Proposition 7 For v ∈ Z
+
n we have v∞ ∈ Xn,r iff Fv is not elliptic. In this case

Φn,r(v
∞) is the stable fixed point of Fv.
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Proof: An elliptic transformation has an invariant circle which passes through 0. All
Fvk(0) lie on this circle and cannot converge to any point in ∂D. If Fv is hyperbolic
or parabolic with stable fixed point eit, then eit attracts all points of D.

Proposition 8 For u ∈ Z
∗
n and a ∈ Zn denote by γu,a the unique hyperbolic geodesic

which starts at Fu(0) and passes through Fua(0). Then all points {Fuaj (0) : j ≥ 0}
lie on γu,a. The angle of geodesics γu,a and γu,b at Fu(0) is 2π(b− a)/n.

Proof: For a ∈ Zn, the stable and unstable fixed points of Fa are opposite and the
diameter which joins them is a geodesic which passes through 0, so the statement is
true when u = λ. If u is arbitrary, then the Fu-image of γλ,a is a geodesic and contains
points Fuaj (0) = Fu(Faj (0)), so Fu(γλ,a) = γu,a. The angle of γu,a and γu,b is the
same as the angle between γλ,a and γλ,b, which is 2π(b− a)/n (see Figure 1).
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5. Walk subshifts

Definition 9 For n ≥ 4 and 1 ≤ k ≤ n
2 − 1 define the walk subshift Wn,k ⊆ Z

N
n as

the SFT of order 2 with forbidden words Dn,k = {ab ∈ Z
2
n : dn(a, b) > k}. For u ∈ Z

j
n

set Vu = Fu(Uuj−1
). The expansion and contraction quotients are defined by

pn,k :=

√√√√ sin (k+1)π
n − sin kπ

n

sin (k+1)π
n + sin kπ

n

, qn,k :=

√
1 − sin kπ

n

1 + sin kπ
n

.

Thus if k = 1, the only allowed transitions are a→ (a− 1), a→ a, and a→ (a+1) to
neighbouring letters. The definition of Vu extends the previous use since Va = Fa(Ua)
for a ∈ Zn. Note that pn,k ≤ qn,k (see Table 1). We are going to prove that hyperbolic
number systems work for walk subshifts Wn,k and quotients pn,k ≤ r ≤ qn,k.

Theorem 10 Let 1 ≤ k ≤ n
2 −1 and let F : Z

∗
n×T → T be a hyperbolic number system

with quotient 0 < r ≤ qn,k. Then Wn,k ⊆ Xn,r and Φn,k : Wn,k → T is continuous.

For any u ∈ Wn,k we have Vu[0,j)
⊆ Vu[0,j−1)

and
⋂

j>0 Vu[0,j)
= {Φn,k(u)}.

Proof: We show first that Fa(Ua) ⊆ ⋂k
b=−k Ua+b for each a ∈ Zn. Because of

the symmetries, the condition is satisfied iff it is satisfied for a = 0. This gives
[−αr, αr] ⊆ [−π+αr + 2πk

n , π−αr− 2πk
n ], i.e., αr ≤ π

2 − kπ
n , or r ≤ tan(π

4 − kπ
2n ) = qn,k.

Let u ∈ Wn,k and j > 0. Since u[j−2,j−1] ∈ L(Wn,k), we have Fuj−1
(Uuj−1

) ⊆ Uuj−2
.

Applying Fu[0,j−2]
we get Vu[0,j)

= Fu[0,j−2]
(Fuj−1

(Uuj−1
)) ⊆ Fu[0,j−2]

(Uuj−2
) = Vu[0,j−1)

.
Using the contraction function ψr of Lemma 2, we get

|Vu[0,j)
| ≤ ψr(|Fu[1,j)

(Uuj−1
)|) ≤ ψ2

r(|Fu[2,j)
(Uuj−1

)|) ≤ · · · ≤ ψk
r (|Uuj−1

|).

Since the only fixed point of ψr is 0, we have limj→∞ |Vu[0,j)
| = 0, so

⋂
j Vu[0,j)

is
a singleton, and we denote its unique element by Ψ(u). Clearly Ψ : Wn,k → T is
continuous. Since (Fu[0,j)

ℓ)(Vj) = ℓ((Fu[0,j)
)−1Fu[0,j)

(Uuj−1
)) = ℓ(Uuj−1

) = 2(π − α),
we have limn→∞ Fu[0,j)

ℓ = δΨ(u) by Lemma 4, so u ∈ Xn,r and Ψ(u) = Φn,k(u) by

Proposition 6.

For a, b ∈ Zn write a ≺ b if 0 ≤ b − a < n/2. This is an order on each interval
of Zn whose length does not exceed n/2. Recall that + and − are group operations
modulo n, so (n − 1) ≺ 0. We extend the relation ≺ to Wn,k lexicographically. We
have u ≺ v if there exists j such that u[0,j) = v[0,j) and uj ≺ vj . Given u ∈ L(Wn,k),
the minimal and maximal elements l(u) and r(u) of [u] are well defined by

l(u)i =

{
ui for i < |u|
ui−1 − k for i ≥ |u| , r(u)i =

{
ui for i < |u|
ui−1 + k for i ≥ |u|

Similarly, for t, s ∈ T write t ≺ s if 0 < s − t < π, where − is the group subtraction
modulo 2π.

Theorem 11 Let 1 ≤ k ≤ n
2 − 1 and let F : Z

∗
n × T → T be a hyperbolic number

system with quotient r > qn,k. Then Wn,k 6⊆ Xn,r.
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n 4 5 6 7 8 9 10 11 12
pn,1 0.414 0.486 0.518 0.535 0.546 0.553 0.558 0.561 0.564
qn,1 0.414 0.510 0.577 0.628 0.668 0.700 0.727 0.749 0.767

pn,2 0.268 0.332 0.365 0.385 0.398 0.407 0.414
qn,2 0.268 0.350 0.414 0.466 0.510 0.546 0.577

Table 1. Expansion and contraction quotients

Proof: Let u = r(0) ∈ Wn,k be the maximal element of the cylinder [0]. This is
a periodic sequence u = v∞, where v := u[0,n). We show that for r > qn,k, Fv

is an elliptic transformation, so u 6∈ Xn,r by Proposition 7. We have the real MT
Cr(x) = r2x, the rotation MT Rj and their product with matrices

Cr =

[
r 0
0 1

r

]
, Rj =

[
cos jπ

n sin jπ
n

− sin jπ
n cos jπ

n

]
, CrRj =

[
r cos jπ

n r sin jπ
n

− 1
r sin jπ

n
1
r cos jπ

n

]

We have Fv = Cr(RkCrR−k)(R2kCrR−2k) · · · (R(n−1)kCrR−(n−1)k) = (CrRk)n·C−kn.
Since C−kn is either 1 (identity) or −1, we get Fv = (CrRk)n. If r > qn,k, then

tr2(CrRk) < 4, so CrRk is elliptic and Fv is elliptic as well.

Proposition 12 Let 1 ≤ k ≤ n
2 − 1 and let F : Z

∗
n × T → T be a hyperbolic number

system with r ≤ qn,k. For u ∈ L(Wn,k) set Wu := [Φn,k(l(u)),Φn,k(r(u))] ⊂ T. Then

Wuv = Fu(Wv) ⊆ Wu ⊆ Vu and Φn,k[u] ⊆ Wu. The set {Wa : a ∈ Zn} is a cover

of T iff r ≥ pn,k. In this case {Wua : ua ∈ L(Wn,k)} is a cover of Wu. The set

{int(Wa) : a ∈ Zn} is a cover of T iff r > pn,k.

Proof: Since Φn,k(vw) = Fv(Φn,k(w)) for v ∈ Z
∗
n and w ∈ Wn,k, we get Wuv =

Fu(Wv). Since Φ(l(u)),Φ(r(u)) ∈ Vu, we get Wu ⊆ Vu. If a ≺ b then Φ(l(a)) ≺ Φ(l(b))
since Φ(l(b)) = Rb−a(Φ(l(a)). It follows that a ≺ b implies Φ(l(ua)) ≺ Φ(l(ub)).
Let u ∈ Z

m
n and v ∈ [u]. Then Φ(l(u)) ≺ Φ(l(v[0,m+1))) ≺ Φ(l(v[0,m+2))) ≺ · · ·

Since Φ(v) = limj→∞ Φ(l(v[0,j)), we get Φ(l(u)) ≺ Φ(v). Similarly we obtain
Φ(v) ≺ Φ(r(u)), so Φ[u] ⊆ Wu and we get Wuv ⊆ Wu. For v = r(0)[0,n), the stable
fixed point of Fv is

x =
r

2 sin kπ
n




(
1

r
− r

)
cos

kπ

n
+

√(
1

r
+ r

)2

cos2
kπ

n
− 4


 .

The intervals W0 and W1 intersect iff Φ(l(1)) ≤ Φ(r(0)) iff R1(−x) ≤ x. This means
−x cos π

n + sin π
n ≤ x(x sin π

n + cos π
n ) or x ≥ tan π

2n . This inequality is equivalent
to r ≥ pn,k. When this condition is satisfied we get by rotational symmetry that
{Wa : a ∈ Zn} is a cover of T. Similarly, r > pn,k iff {int(Wa) : a ∈ Zn} is a cover of
T. Since Wuv = Fu(Wv), we get that {Wua : ua ∈ L(Wn,k)} is a cover of Wu provided
r ≥ pn,k and that {int(Wua) : ua ∈ L(Wn,k)} is a cover of int(Wu) iff r > pn,k.

Theorem 13 Let 1 ≤ k ≤ n
2 − 1 and let F : Z

∗
n × T → T be a hyperbolic number

system with quotient r ≤ qn,k. Then Φn,k : Wn,k → T is surjective iff r ≥ pn,k and

has the extension property iff r > pn,k.
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Proof: Assume that r ≥ pn,k and let t0 ∈ T. There exists u0 ∈ Zn such that t ∈Wu0
.

There exists u1 such that u[0,1] ∈ L(Wn,k) and t1 := F−1
u0

(t0) ∈Wu1
. Continuing in this

manner we get a sequence tj := F−1
u[0,j)

(t0) ∈ Wuj
and Fu[0,j)

(tj) = t0. If I ∋ t0, then

for all sufficiently large j we have |(Fu[0,j−1)
ℓ)(I)| ≥ 2αr, so limj→∞ Fu[0,j−1)

ℓ = δt0 by
Lemma 4. Conversely assume that r < pn,k. Then {Wa : a ∈ Zn} does not cover T

and therefore {Φ[a] : a ∈ Zn} does not cover T, so Φ is not surjective. We show that
Φn,k : Wn,k → T has the extension property provided r > pn,k. Let ϕ : Wn,k → T

be continuous and u ∈ Wn,k. There exists j0 and v0 such that ϕ([u[0,j0)]) ⊆ int(Wv0
).

There exists j1 and v1 such that v[0,1] ∈ L(Wn,k) and ϕ([u[0,j1)]) ⊆ int(Wv[0,1]
).

Continuing in this manner, we construct F (u) = v ∈ Wn,k such that Φn,kF (u) = ϕ(u).

Corollary 14 Let 1 ≤ k ≤ n
2 − 1 and let F : Z

∗
n × T → T be a hyperbolic number

system with quotient 0 < r < 1. Then there exists a factor map Φn,k : Wn,k → T

such that Φn,k(u) = arg limj→∞ Fu[0,j)
(0) iff pn,k ≤ r ≤ qn,k. Φn,k has the extension

property iff r > pn,k.

6. Groups of hyperbolic number systems

When F : Z
∗
n×T → T is a hyperbolic number system with n even, then F−1

a = Fa+n/2,
so Gn,r := {Fu : u ∈ Z

∗
n} is a countable subgroup of MD which we call a group of

hyperbolic number system.
Given a subgroup Γ ⊆ MD, the orbit of z ∈ D is Γ(z) = {M(z) : M ∈ Γ}. A

subgroup Γ ⊆ MD is called elementary, if there exists z ∈ ∂D with finite Γ-orbit.
A subgroup Γ ⊆ MD is discrete, if the identity (and therefore every M ∈ Γ) is an
isolated point in Γ. Some of the groups Gn,r are discrete. This happens for example
when n ≥ 8 and r2 = (cosαn −

√
2 cosαn − 1)/(1 − cosαn), where αn = 2π

n (cf.
Hyperbolic triangle groups in Magnus [9], page 81). In this case we get a tesselation
of the hyperbolic plane by equilateral triangles. We are going to prove that some
groups of hyperbolic number systems are dense in MD. As a direct consequence of
Theorem 13 we get Proposition 15.

Proposition 15 Let n ≥ 4 be even and pn,k ≤ r ≤ qn,k. Then Gn,r is not elementary.

Lemma 16 Let n ≥ 4, let M be a disc MT and set a = |M(0)|. For t ∈ R define

the t-rotation of M by tM(z) = e2πt · M(z · e−2πt). Then for every z ∈ D with

|z| > 1−
√

1−2a2

a ≈ a there exists k ∈ Zn such that | k
n M(z)| < |z|.

Proof: We give the idea of a proof for n = 4. Because of the rotational symmetry we
can assume that M(0) = −a, M•(0) = 1, so M(z) = z−a

−az+1 . The condition |M(z)| <
|z| yields a|z|2−2ℜ(z)+a < 0 which holds in the open disc (x− 1

a )2 +y2 < 1−a2

a2 . This

circle intersects the lines y = ±x in x = f(a) := (1−
√

1 − 2a2)/a. Thus if z = x+ iy

and |z| > f(a), we get |M(z)| < |z| provided |y| < x, | 14 M(z)| < |z| provided |x| < y,

| 12 M(z)| < |z| provided |y| < −x, and | 34 M(z)| < |z| provided |x| < −y.

Theorem 17 Let n ≥ 4 be even and r < 1. If Gn,r is not discrete, then it is dense

in MD.
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Proof: Let ̺ be the distance corresponding to the Riemannian metric (1) on TD.
Given M ∈ MD and ε > 0, we construct an element F of Gn,r with ̺(M,F) < ε. By
the assumption there exists a sequence Gm ∈ Gn,r which converges to the identity.
In particular, limm→∞ Gm(0) = 0. Using Lemma 16 we can replace each Gm by
some its rotation kGm ∈ MD, so that limm→∞ Gm · · ·G0M(0) = 0. Thus there
exists G ∈ Gn,r such that |GM(0)| < ε/4. Since arg(Id•(0)) = 0 (we assume
−π ≤ arg(z) < π), there exists K ∈ Gn,r with arbitrarily small arg(K•(0)), and
for some its iteration we get | arg(KpGM)•(0)| < ε/2, while |KpGM(0)| < ε/2.
This means ̺(KpGM, Id) < ε. Since ̺ is preserved by any disc MT, we get
̺(M,G−1K−p) < ε.

A non-elementary subgroup Γ ⊆ MD is discrete iff for each M,N ∈ Γ, the
subgroup 〈M,N〉 generated by M and N is discrete (see Katok [5], Theorem 2.4.8). By
a theorem of Jørgensen (see Katok [5], Theorem 2.4.6), if 〈M,N〉 is discrete and non-
elementary, then | tr2(M)−4|+| tr(MNM−1N−1)−2| ≥ 1 (the trace of MNM−1N−1

is well-defined). Thus to show that a group Gn,r is not discrete, it suffices to find two
its elements which violate the Jørgensen inequality.

Proposition 18 For n = 4, r = p4,1 = q4,1 =
√

2 − 1, the group G4,r is discrete.

Proof: We have G4,r = {Fu : u ∈ L(Wn,1)} which is discrete by Theorem 10.

Theorem 19 For even n ≥ 6 and pn,1 ≤ r ≤ qn,1, the groups Gn,r are dense in MD.

Proof: For n = 6, a pair of elements M = F024, N = F042 violates the Jørgensen
inequality. As r goes from p6,1 to q6,1, the value of tr2(M) goes from 3.375 to 3.704.
The value of tr(MNM−1N−1) goes from 2.094 to 2.012. For n = 8, the pair of
elements M = F025, N = F035 violates the Jørgensen inequality. For n ≥ 10, the pair
of elements M = F0, n

2 −1, N = F0, n
2 +1 violates the Jørgensen inequality.

7. Representation of Möbius transformations

For every u ∈ Z
∗
n and v ∈ Wn,k, we have uv ∈ Xn,r and Φn,k(uv) = Fu(Φn,k(v)).

For each u ∈ Z
∗
n, the transformation Fu : T → T has symbolic representation

F̃u : Xn,r → Xn,r given by F̃u(v) = uv, since Φn,kF̃u = FuΦn,k.

Xn,r
F̃u

//

Φn,k

��

Xn,r

Φn,k

��

T
Fu

// T

If Gn,r is dense in MD, then a transformation M ∈ MT can be represented in the
alphabet A = Zn ∪ {.} as a left-infinite word v = · · · v−3.v−2.v−1, where v−j ∈ Z

+
n ,

such that limj→∞ Fv
−j

◦ · · · ◦ Fv
−1

= M in MT. Then for each u ∈ Wn,k we have

δM(Φn,k(u)) = lim
j→∞

Fv
−j

· · ·Fv
−1

Fu[0,j)
ℓ.
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A quite interesting use of these symbolic representations would be construction
of efficient algorithms for arithmetical operations. Hyperbolic number systems could
avoid the overflow problems of computer arithmetics, since ∞ is a legitimate number
in the system. At least two arithmetical operations are trivial in hyperbolic number
systems. To obtain the negation of a number, just interchange a with n−a. To obtain
the inverse element, interchange a with n

2 −a (provided n is even). Other arithmetical
operations are less obvious, but they can be described and implemented by passing
through standard real arithmetic. Of course, their direct combinatorial description
would be much more interesting.
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