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Abstract. A real Möbius iterative system is an action of a free semigroup of
finite words acting via Möbius transformations on the extended real line. Its
convergence space consists of all infinite words, such that the images of the Cauchy
measure by the prefixes of the word converge to a point measure. A Möbius
number system consists of a Möbius iterative system and a subshift included in
the convergence space, such that any point measure can be obtained as the limit
of some word of the subshift. We give some sufficient conditions on sofic subshifts
to form Möbius number systems. We apply our theory to several number systems
based on continued fractions.
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1. Introduction

Classical number systems for compact real intervals such as decadic, binary, or binary
signed systems can be obtained from contractive iterative systems (see e.g., Barnsley
[1] or Edgar [2]). An iterative system (Fa : X → X)a∈A consists of continuous self-
maps of a compact metric space X indexed by a finite alphabet A. In contractive
iterative systems, each infinite word u ∈ AN determines a unique point x = Φ(u)
which is contained in all images Fu0

Fu1
· · ·Fun−1

(X) of the state space X by the
prefixes of u. The range of the symbolic representation Φ is a compact subset of X
called the attractor of the system. The method works, however, only for compact
subspaces of the real line or complex plane. It is therefore natural to look for number
systems on a compactification of the real line such as the extended real line R. A
natural choice for the mappings are Möbius transformations, since these are the only
holomorphic isomorphisms of the extended complex plane C = C ∪ {∞}. However,
since Möbius transformations are surjective, the Barnsley theorem does not work for
them.

In Kůrka [8] we have used convergence of measures (instead of convergence of
sets), to obtain symbolic representations of the extended real line from iterative
Möbius systems. The uniform Haar measure on the unit circle is transferred by
the stereographic projection to the Cauchy measure on R. We say that an infinite
word u ∈ AN converges to a number x ∈ R, if the images of the Cauchy measure by
the prefixes of u converge to the point measure δx. In this case we say that u is a
representation of x and write Φ(u) = x. The domain of Φ is the convergence space
XF ⊆ AN. To get a number system, the range of Φ should be all R. Since Φ is usually
not continuous on XF , we look for a subshift Σ ⊆ XF such that Φ(Σ) = R and Φ is
continuous on Σ. In this case we say that (F,Σ) is a Möbius number system.



In [8] we have constructed several Möbius number systems using contractions to
vertices of a regular polygon inscribed to the unit circle. In [7] we have obtained some
results on topological dynamics of Möbius iterative systems. In the present paper
we develop a theory of Möbius number systems with sofic subshifts. In Theorem
9 we characterize those Möbius iterative systems whose range is whole R. In the
Convergence Theorem 11 we give a sufficient condition on a sofic subshift Σ to
satisfy Σ ⊆ XF . In the Surjectivity Theorem 15 we give a sufficient condition for
Φ(Σ) = R. Finally we show that for Möbius number systems whose coefficients are in
a computable field (such as rational numbers), efficient arithmetic algorithms exist.
We apply the theory to several systems based on continued fractions.

2. Möbius transformations

An orientation-preserving real Möbius transformation (MT) is a self-map of the
extended real line R := R ∪ {∞} of the form M(a,b,c,d)(x) = (ax+ b)/(cx+ d), where
ad − bc > 0. Real Möbius transformations act also on the complex upper half-plane
U := {z ∈ C : ℑ(z) > 0}, where they preserve the hyperbolic metric ds = dz/ℑ(z)
(see e.g., Katok [3]). The upper half-plane U is conformally isomorphic to the unit
disc D = {z ∈ C : |z| < 1} via isomorphisms d : U → D and u : D → U given
by d(z) = (iz + 1)/(z + i), u(z) = (−iz + 1)/(z − i). The transformation d maps
i to 0 and R to ∂D = {z ∈ C : |z| = 1}. On D = D ∪ ∂D we have disc Möbius
transformations

M̂(a,b,c,d)(z) = d ◦M(a,b,c,d) ◦ u(z) =
αz + β

βz + α
,

where α = (a+ d) + (b− c)i, β = (b+ c) + (a− d)i. Disc MT preserve the hyperbolic
metric ds = dz/(1 − |z|2). Define the circle distance d on R by

d(x, y) = min{2| arctan(x) − arctan(y)|, 2π − 2| arctan(x) − arctan(y)|},

which is the length of the shortest arc joining d(x) and d(y) in ∂D. Open and closed
intervals are balls Br(a) = {x ∈ R : d(x, a) < r}, Br(a) = {x ∈ R : d(x, a) ≤ r}.
Their lengths are ||Br(a)|| = ||Br(a)|| = min{2r, 2π}. We define the length ||W || of
a set W ⊆ R as the length of the shortest interval which contains W . Denote by I
the set of closed intervals. If we regard R as the projective real line (the space of
one-dimensional subspaces of R2) with homogenous coordinates x ∈ R2 \ {(0, 0)}
and equality x = y ⇔ x0y1 = x1y0, then the open interval with distinct endpoints
a, b can be defined by (a, b) := {x ∈ R : (a0x1 −a1x0)(x0b1 −x1b0)(b0a1 − b1a0) > 0}.
Closed intervals are defined by [a, b] := (a, b) ∪ {a, b}, etc. The norm of a Möbius
transformation M = M(a,b,c,d) is ||M || := (a2 + b2 + c2 + d2)/(ad − bc). The square
of the trace of M is tr2(M) := (a+ d)2/(ad− bc), and the circle derivation of M
is

M•(x) := lim
y→x

d(M(y),M(x))

d(y, x)
= |M̂ ′(d(x))| =

(ad− bc)(x2 + 1)

(ax+ b)2 + (cx+ d)2
.

Proposition 1 Let M be a Möbius transformation. Then ||M || ≥ 2 and

min{M•(x) : x ∈ R} = 1
2 (||M || −

√
||M ||2 − 4),

max{M•(x) : x ∈ R} = 1
2 (||M || +

√
||M ||2 − 4).
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Proof: The equation M•(x) = 1/ε for x has a solution iff its discriminant is
nonnegative, i.e., if ε2 − ||M ||ε + 1 ≤ 0. The minimum and the maximum ε for
which this holds are the solutions of ε2 − ||M ||ε+ 1 = 0.

If tr2(M) > 4 then M is hyperbolic, has a stable fixed point s ∈ R with
M(s) = s, M•(s) < 1, and an unstable fixed point u ∈ R with M(u) = u, M•(u) > 1.
If tr2(M) = 4 then M is parabolic and, unless it is the identity, has a unique fixed
point s ∈ R with M•(s) = 1. If tr2(M) < 4 then M is elliptic and has a unique
fixed point in U and no fixed point in R. A rotation by α is the transformation
Rα = M(cos α

2 ,sin α
2 ,− sin α

2 ,cos α
2 ), R̂α(z) = eiα · z.

The values M(i) and M̂(0) of a Möbius transformation have a probabilistic
interpretation. Given a compact metric space X, we denote by M(X) the
space of Borel probability measures with weak∗ topology, i.e., limn→∞ νn = ν iff
limn→∞

∫
fdνn =

∫
fdν for each continuous function f : X → R. A continuous

function F : X → Y extends to a continuous function F∗ : M(X) → M(Y ) by
(F∗ν)(U) = ν(F−1(U)). Denote by δx the Dirac point measure concentrated on x,
i.e., δx(U) = 1 iff x ∈ U . Measures on R which are absolutely continuous with respect
to the Lebesgue measure have densities, which are nonnegative functions with unit
integral. The uniform Haar measure ℓ on ∂D yields the Cauchy measure u∗ℓ on
R with density h(x) = 1/π(1 + x2). The density h(a,b,c,d) of (M(a,b,c,d)u)∗ℓ on R is

h(a,b,c,d)(x) =
(ad− bc)/π

(dx− b)2 + (cx− a)2
=

σ/π

(x− µ)2 + σ2
, where

M(a,b,c,d)(i) = µ+ iσ =
(ac+ bd) + (ad− bc)i

c2 + d2
.

Thus h(a,b,c,d) is the density of the generalized Cauchy measure with parameters µ and
σ which are the real and imaginary parts of M(a,b,c,d)(i). While generalized Cauchy
measures have infinite variance and no mean, the parameters µ and σ play a similar role
as the mean and variance of the normal distribution. If X0,X1 are random variables
with generalized Cauchy distributions with parameters µ0, σ0 and µ1, σ1 respectively,
then X0 +X1 has Cauchy distribution with parameters µ0 + µ1, σ0 + σ1. A measure
µ ∈ M(∂D) can be characterized by its mean E(µ) :=

∫
∂D
z dµ which is a complex

number in the closed unit disc D. For a point measure of x ∈ ∂D we have E(δx) = x.

Proposition 2 If M = M(a,b,c,d) is a real MT and M̂ the corresponding disc MT,
then

E(M̂ℓ) = M̂(0) = d(M(i)) =
(d− a) + (b+ c)i

(b− c) + (d+ a)i
, |M̂(0)|2 =

||M || − 2

||M || + 2
.

See Kůrka [8] for a proof. A Möbius transformation M is uniquely determined by its

mean M̂(0) and its unit tangent vector M̂ ′(0)/|M̂ ′(0)| (see Katok [3]). We shall
need several criteria for convergence of generalized Cauchy measures.

Proposition 3 Let (Mn : R → R)n≥0 be a sequence of MT and x ∈ R. The following
conditions are equivalent.

(1) limn→∞Mn(i) = x.

(2) limn→∞ M̂n(0) = d(x).
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(3) limn→∞(Mnu)∗ℓ = δx.

(4) For each open interval I ∋ x, limn→∞||M−1
n (I)|| = 2π.

(5) There exists c > 0 and a sequence of intervals Im ∋ x such that

lim
m→∞

||Im|| = 0, and ∀m, lim inf
n→∞

||M−1
n (Im)|| > c.

Proof: (1) ⇔ (2) follows from d(i) = 0.
(2) ⇔ (3) follows from Proposition 2.
(3) ⇒ (4) follows from the definition of convergence of measures.
(4) ⇒ (5) is trivial.
(5) ⇒ (2): We can assume that Im are open intervals. If ||M−1

n (Im)|| > c, there
exists x ∈ R with (M−1

n )•(x) ≥ c/||Im||. By Proposition 1, we get limn→∞ ||Mn|| =

∞, and therefore limn→∞ ||M̂n(0)|| = 1. There exist rotations Rn such that

limn→∞ R̂nM̂n(0) = d(x), and we get limn→∞ ||M−1
n (R−1

n (Im))|| = 2π by (4). Since
lim infn→∞ ||M−1

n (Im)|| ≥ c, the intervals R−1
n (Im) and Im intersect for large n, so

limn→∞Rn = Id and limn→∞ M̂n(0) = limn→∞ R̂−1
n R̂nM̂n(0) = d(x).

Proposition 4 Let (Mn : R → R)n≥0 be a sequence of Möbius transformations and
assume that there exist distinct y, z ∈ R such that limn→∞Mn(y) = limn→∞Mn(z) =
x. Then limn→∞Mn(i) = x.

Proof: Let Mn = M(an,bn,cn,dn) and a2
n + b2n + c2n + d2

n = 1. Assume first x, y, z ∈ R.
We have

Mn(y) −Mn(z) =
(andn − bncn)(y − z)

(cny + dn)(cnz + dn)
.

Since |cny + dn| and |cnz + dn| are bounded away from zero, we get limn→∞ andn −
bncn = 0 and limn→∞(Mn(y) −Mn(i)) = 0. If some of the x, y, z are ∞, the proof is
similar.

3. Möbius number systems

For a finite alphabet A, denote by A+ :=
⋃

m>0A
m the set of nonempty words. With

the concatenation operation, A+ is the free semigroup over A. The length of a word
u = u0 . . . um−1 ∈ Am is denoted by |u| := m. We denote by u[i,j) = ui . . . uj−1 and

u[i,j] = ui . . . uj subwords of u associated to intervals. We denote by AN the Cantor

space of infinite sequences of letters of A equipped with metric dA(u, v) := 2−k, where
k = min{i ≥ 0 : ui 6= vi}. Given u ∈ An, v ∈ Am, denote by u.v ∈ AN the
preperiodic word with preperiod u and period v defined by (u.v)i = ui for i < n
and (u.v)n+km+i = vi for i < m. We say that u ∈ A+ is a subword of v ∈ A+ ∪ AN

and write u ⊑ v if u = v[i,j) for some i < j.

The shift map σ : AN → AN is defined by σ(u)i = ui+1. A subshift is a nonempty
subset Σ ⊆ AN which is closed and σ-invariant, i.e., σ(Σ) ⊆ Σ. For a subshift Σ there
exists a set D ⊆ A+ of forbidden words such that Σ = ΣD := {x ∈ AN : ∀u ⊑
x, u 6∈ D}. A subshift Σ is of finite type (SFT) of order k, if there exists a finite
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set D ⊆ Ak such that Σ = ΣD. A subshift is uniquely determined by its language
L(Σ) := {u ∈ A+ : ∃x ∈ Σ, u ⊑ x}. Denote by Ln(Σ) := L(Σ)∩An and LD := L(ΣD).

An iterative system is a continuous map F : A+ × X → X, or a family of
continuous maps (Fu : X → X)u∈A+ satisfying Fuv = Fu ◦ Fv. An iterative system is
determined by its generators (Fa : X → X)a∈A. Assume that F : A+ ×X → X is an
iterative system, B ⊂ A+ a finite set and W = {Wb : b ∈ B} a family of subsets of
X. We identify a word in B+ ∪BN with the concatenation of its letters. In this sense,
B+ ⊂ A+ and BN ⊂ AN. For u ∈ Bn+1 set

Wu := Wu0
∩ Fu0

(Wu1
) ∩ Fu[0,2)

(Wu2
) ∩ · · · ∩ Fu[0,n)

(Wun
)

ΣW := {u ∈ BN : ∀k,Wu[0,k]
6= ∅}

Then ΣW ⊆ BN is a subshift. By an abuse of notation we identify ΣW with
{σn(u) : u ∈ ΣW , n ≥ 0} and regard ΣW also as a subshift of AN.

Proposition 5 Let F : A+ ×X → X be an iterative system, B ⊂ A+ a finite set and
W = {Wb : b ∈ B} a family of subsets of X such that whenever Fa(Wb) ∩Wa 6= ∅
then Fa(Wb) ⊆Wa. Then ΣW ⊆ AN is a subshift of finite type.

Proof: Let u ∈ Bn+1 be such that u[i,i+1] ∈ L(ΣW) for all i < n, so Fui
(Wui+1

) ⊆
Wui

. Then Fu[0,n)
(Wun

) ⊆ Fu[0,n−1)
(Wun−1

) ⊆ · · · ⊆ Fu0
(Wu1

) ⊆ Wu0
, so ∅ 6=

Fu[0,n)
(Wun

) ⊆Wu and u ∈ L(ΣW). Thus ΣW is a SFT of order 2 as a subshift of BN

and a SFT as a subshift of AN.

Definition 6 We say that F : A+ × R → R, is a Möbius iterative system, if all
Fa : R → R are orientation-preserving Möbius transformations. The convergence
space XF ⊆ AN and the symbolic representation Φ : XF → R are defined by

XF := {u ∈ AN : lim
n→∞

Fu[0,n)
(i) ∈ R}, Φ(u) = lim

n→∞
Fu[0,n)

(i).

Thus u ∈ XF iff the limit limn→∞ Fu[0,n)
(i) exists, and belongs to R. We denote by

su the stable fixed point of Fu (provided Fu is not elliptic). We denote by

Uu := {x ∈ R : F •
u (x) < 1}, Vu := {x ∈ R : (F−1

u )•(x) > 1}

the contracting interval of Fu and the expanding interval of F−1
u respectively.

If Fu is a rotation or identity, then Uu = Vu = ∅. Otherwise, both Vu and Uu

are nonempty open intervals, Fu(Uu) = Vu, and ||Vu|| < π < ||Uu||. The symbolic
representation Φ is usually not continuous on XF . This is why we look for subshifts
of XF , on which Φ is continuous.

Proposition 7 Let F : A+ × R → R be a Möbius iterative system.

(1) For v ∈ A+, u ∈ AN we have vu ∈ XF iff u ∈ XF , and Φ(vu) = Fv(Φ(u)).

(2) For v ∈ A+ we have .v = v∞ ∈ XF iff Fv is not elliptic. In this case Φ(.v) = sv

is the stable fixed point of Fv.

Proof: (1) is trivial. (2): If Fv is elliptic, then all Fvk(i) lie on a closed curve in U,
so Fvk(i) cannot converge to a real number. If Fv is hyperbolic or parabolic, then the
stable fixed point sv attracts all points of U.
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Theorem 8 Let F : A+ × R → R be a Möbius iterative system, B ⊆ A+ a finite set
and W = {Wb : b ∈ B} a family of open intervals such that W := {Wb : b ∈ B} is a
cover of R and Wb ⊆ Vb for each b ∈ B. Then ΣW ⊆ XF , Φ : ΣW → R is continuous
and Φ : ΣW → R is surjective.

Proof: For u ∈ B+ denote byWu := Wu0
∩Fu0

(Wu1
)∩· · ·∩Fu[0,n)

(Wun
). There exists

an increasing continuous function ψ : [0, 2π] → [0, π] such that ψ(0) = 0, 0 < ψ(t) < t
for t > 0, and ||Fb(W )|| ≤ ψ(||W ||) for each b ∈ B and W ⊆ Ub (recall that the
length of a set is the length of the shortest interval that contains it - Wu are not
necessarily intervals). Given u ∈ ΣW (regarded as a subshift of BN), and m ≤ n we
have F−1

u[0,m]
(Wu[0,n]

) ⊆ F−1
u[0,m]

Fu[0,m)
(Wum

) = F−1
um

(Wum
) ⊆ Uum

, so

||Wu[0,n)
|| = ||Fu0

F−1
u0

(Wu[0,n)
)|| ≤ ψ(||F−1

u0
(Wu[0,n)

)||)
= ψ(||Fu1

F−1
u[0,1]

(Wu[0,n)
)||) ≤ ψ2(||F−1

u[0,1]
(Wu[0,n)

)||) < · · ·
≤ ψn(||F−1

u[0,n)
(Wu[0,n)

)||) ≤ ψn(2π).

Since ψ(t) < t and the only fixed point of ψ is zero, we get limn→∞ ||Wu[0,n)
|| = 0,

so there exists a unique point x ∈ ⋂
nWu[0,n)

. We show that Φ(u) = x. Set

c := min{d(Wb,R \ Vb) : b ∈ B} > 0. Then for each open interval I ∋ x there exists
n such that for all j > n we have ||F−1

u[0,j)
(I)|| ≥ min{ψ−j(||I||), c}. By Proposition 3

we get u ∈ XF and Φ(u) = x, so ΣW ⊆ XF . For u ∈ L(ΣW) we have Φ([u]) ⊆ Wu,
and since the diameter of Wu converges to 0 as |u| goes to infinity, Φ : ΣW → R is
continuous. We show that Φ : ΣW → R is surjective. Given x ∈ R, there exists u0 ∈ A
such that x = x0 ∈Wu0

and (x0, x0+ε0) ⊆Wu0
for some ε0 > 0. There exists u1 such

that x1 = F−1
u0

(x0) ∈ Wu1
and (x1, x1 + ε1) ⊆ Wu1

, so Wu[0,1]
6= ∅. We continue by

induction, so for each k, xk = F−1
uk−1

(xk−1) ∈ Wuk
and (xk, xk + εk) ⊆ Wuk

for some

εk > 0. Thus Wu[0,k)
6= ∅, x ∈Wu[0,k)

, so x = Φ(u) and Φ : ΣW → R is surjective.

Using more sophisticated techniques, A.Kazda proves in [4] that even under
weaker assumptions Wb ⊆ Vb we get ΣW ⊆ XF and Φ : ΣW → R is continuous
and surjective.

Theorem 9 Let F : A+ × R → R be a Möbius iterative system.

(1) If
⋃

u∈A+ Vu 6= R, then Φ(XF ) 6= R.

(2) If {Vu : u ∈ A+} is a cover of R, then Φ(XF ) = R, there exists a subshift Σ ⊆ XF

on which Φ is continuous, and Φ(Σ) = R.

Proof: (1) Assume that x ∈ R does not belong to the closure of the union of all Vu, so
there exists an open interval I ∋ x which is disjoint from all Vu. Given u ∈ AN, then
for each n we have ||F−1

u[0,n)
(I)|| ≤ ||I||. By Proposition 3, Fu[0,n)

(i) cannot converge

to x, so x 6∈ Φ(XF ).
(2): If {Vu : u ∈ A+} is a cover of R, then by compactness there exists a finite

set B ⊂ A+ such that {Vu : u ∈ B} is a cover of R. It follows that there exists a
family of open intervals W = (Wb)b∈B such that W = {Wb : b ∈ B} is a cover of R

and Wb ⊆ Vb. We apply Theorem 8.
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Definition 10 We say that (F,Σ) is a Möbius number system, if F : A+×R → R

is a Möbius iterative system and Σ ⊆ XF is a subshift such that Φ : Σ → R is surjective
and continuous.

If W is a family of intervals satisfying the assumptions of Theorem 8, then both
(F,ΣW) and (F,ΣW) are Möbius number systems. We conjecture that under the
assumptions of Theorem 9(2) there exists a SFT Σ ⊆ XF such that Φ : Σ → R is
continuous and surjective. In our examples in final sections, Σ is usually constructed
as an SFT approximation to some ΣW . This means that the forbidden words of Σ are
chosen among forbidden words of ΣW .

4. Convergence Theorem

A labelled graph over an alphabet A is a structure G = (V,E, s, t, h), where V is
a finite set of vertices, E is a finite set of edges, s : E → V is a surjective source
map, t : E → V is a target map, and h : E → A is a labelling function. A finite
or infinite word u ∈ E+ ∪ EN is a path in G if t(ui) = s(ui+1) for all i. The source
and target of a finite path u ∈ En are s(u) := s(u0), t(u) := t(un−1). We denote by
Op ⊆ EN the set of all infinite paths with source p. Since the source map is surjective,
Op 6= ∅. The label h(u) ∈ A+ ∪ AN of a path u is defined by h(u)i := h(ui). We
denote by Σ|G| ⊆ EN the subshift of all paths of G and by ΣG ⊆ AN the subshift of all
their labels. The languages of these subshifts are denoted by L|G| and LG. A subshift
Σ is sofic iff there exists a labelled graph G such that Σ = ΣG. Each SFT is sofic
(see Lind and Marcus [9]). A finite set P ⊂ L|G| is a suffix code for G, if each long
enough finite path of G has a unique suffix which belongs to P .

Alternatively, sofic subshifts are defined by finite automata. A deterministic
finite automaton (DFA) over an alphabet A is a structure A = (V, δ, i), where V is
a finite set of states, δ : V × A → V is a partial transition function, and i ∈ V is
the initial state. The function δ is extended to a partial function δ : V × A+ → V
by δ(p, ua) = δ(δ(p, u), a), where the left-hand-side is defined iff the right-hand-side is
defined. The language L(A) of A consists of words u ∈ A+ which are accepted, i.e.,
for which δ(i, u) is defined. A subshift Σ is sofic iff there exists a DFA which accepts
exactly the words of L(Σ). The graph G = (V,E, s, δ, h) of a DFA A = (V, δ, i) is
defined by E = {(q, a) ∈ V × A : δ(q, a) is defined}, s(q, a) = q, and h(q, a) = a, so

the edges of G are q
a→ δ(q, a). Then LG = L(A).

Theorem 11 (Convergence theorem) Let F : A+ × R → R be a Möbius iterative
system and let G = (V,E, s, t, h) be a labelled graph. Assume that there exist closed
intervals I = {Iq : q ∈ V } and a finite suffix code P ⊂ L|G| such that for each

path u ∈ P we have It(u) ⊆ Uh(u), and Fh(u)(It(u)) ⊆ Is(u). Then ΣG ⊆ XF and

Φ : ΣG → R is continuous.

Proof: There exists an increasing continuous function ψ : [0, 2π] → [0, π] such that
ψ(0) = 0, 0 < ψ(t) < t for t > 0, and for every u ∈ P and any set W ⊆ Uh(u) we have
||Fh(u)(W )|| ≤ ψ(||W ||). There exists a constant d > 0 such that for every u ∈ P , every

suffix v of u and any set W ⊆ Uh(u) we have ||Fh(v)(W )|| ≤ d · ||W ||. Given an infinite

path u ∈ Σ|G|, there exists by compactness its parsing v ∈ (A+)N, such that vk ∈ P
for all k > 0, v0 is a suffix of some v′0 ∈ P , and for each n there exists jn such that
v[0,n) = u[0,jn). Set W0 := Is(v0), Wn := Fh(v[0,n))(Is(vn)). Since Fh(vn)(It(vn)) ⊆ Is(vn)

and t(vn) = s(vn+1), we get Wn+1 = Fh(v[0,n])(It(vn)) ⊆ Fh(v[0,n))(Is(vn)) = Wn. For
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m < n we get by induction Fh(v[m,n))(Is(vn)) ⊆ Is(vm) = It(vm−1) ⊆ Uh(vm−1) and
therefore

||Wn|| ≤ d · ||Fh(v[1,n))(Is(vn))|| ≤ d · ψ(||Fh(v[2,n))(Is(vn))||) < · · ·
≤ d · ψn−1(||Is(vn)||)) ≤ d · ψn−1(2π).

Since the only fixed point of ψ is 0, we have limn→∞ ||Wn|| = 0, so there exists a
unique x ∈ ⋂

nWn. We have (Fh(v[0,n)))
−1(Wm) = (Fh(v[m,n)))

−1(Is(vm)) ⊇ Is(vn) for

each m ≤ n, so lim infn→∞ ||(Fh(v[0,n)))
−1(Wm)|| ≥ c := min{||Iq|| : q ∈ V } and

therefore limn→∞ Fu[0,n)
(i) = x by Proposition 3. Thus h(u) ∈ XF and Φ(h(u)) = x,

so ΣG ⊆ XF . We show that Φ : ΣG → R is continuous. Given w ∈ ΣG, let u ∈ Σ|G|
be a path with h(u) = w, and let let v ∈ (A+)N be its parsing. For m > 0 let n be
such that jn ≤ m < jn+1. Then Φ(w) ∈ Fh(u[0,jn))(Uh(ujn−1)), and

||Fh(u[0,jn))(Uh(ujn−1))|| ≤ dψn−1(2π) ≤ dψm/p−1(2π),

where p := min{|u| : u ∈ P}. Thus the diameter of Φ([w[0,m)]) is at most

2dψm/p−1(2π), so Φ : ΣG → R is continuous.

We generalize now Theorem 8 to families indexed by vertices of a labelled
graph. Given a Möbius iterative system F : A+ × R → R, and a labelled graph
G = (V,E, s, t, h), consider a family W = (Wp)p∈V of subsets of R. For u ∈ Ln+1

|G| set

Wu := Ws(u0) ∩ Fh(u0)(Wt(u0)) ∩ · · · ∩ Fh(u[0,n])(Wt(un))

ΣW := {h(u) : u ∈ Σ|G|, ∀k,Wu[0,k]
6= ∅}.

Then ΣW ⊆ ΣG is a subshift.

Proposition 12 Let W = (Wp)p∈V be a family of subsets of R and assume that
Fh(e)(Wt(e)) ⊆Ws(e) for each edge e ∈ E. Then ΣW = ΣG.

Proof: If u ∈ Ln+1
|G| , then

Fh(u[0,n])(Wt(un)) ⊆ Fh(u[0,n−1])(Wt(un−1)) ⊆ · · · ⊆ Fh(u0)(Wt(u0)) ⊆Ws(u0),

so ∅ 6= Fh(u[0,n])(Wt(un)) ⊆Wu[0,n]
and h(u) ∈ Ln+1(ΣW).

Theorem 13 Let F : A+ × R → R be a Möbius iterative system, G = (V,E, s, t, h) a
labelled graph, and W = (Wp)p∈V a family of open intervals such that W s(e) ⊆ Vh(e)

for each edge e ∈ E, Wp ⊆ ⋃{Fh(e)(Wt(e)) : s(e) = p} for each vertex p ∈ V , and

W = {Wp : p ∈ V } is a cover of R. Then ΣW ⊆ XF , Φ : ΣW → R is continuous, and
Φ : ΣW → R is surjective.

Proof: We generalize the proof of Theorem 8. If m ≤ n, then

F−1
h(u[0,m])

(Wu[0,n]
) ⊆ F−1

h(u[0,m])
Fh(u[0,m))(Wt(um−1)) = F−1

h(um)(Ws(um)) ⊆ Uh(um),

so for each u ∈ ΣW we have limn→∞ ||Wu[0,n)
|| = 0 and Φ : ΣW → R is continuous.

Given x ∈ R there exists p ∈ V such that x = x0 ∈ Wp and (x0, x0 + ε0) ⊆ Wp for
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some ε0 > 0. There exists an edge u0 with source p such that x1 = F−1
h(u0)

(x0) ∈Wt(u0)

and (x1, x1 + ε1) ⊆Wt(u0) for some ε1 > 0. By induction there exists an edge uk with

source t(uk−1) such that xk = F−1
h(uk−1)

(xk−1) ∈Wt(uk) and (xk, xk + εk) ⊆Wt(uk) for

some εk > 0. Then u ∈ ΣW and x = Φ(u), so Φ : ΣW → R is surjective.

5. Surjectivity theorems

We say that a continuous surjective map Φ : X → Y has the extension property,
if for any continuous map ϕ : X → Y there exists a continuous map F : X → X
such that Φ ◦ F = ϕ. In this case, any continuous map G : Y → Y can be lifted to a
continuous map F : X → X such that Φ◦F = G◦Φ. By a theorem of Weihrauch (see
Weihrauch [12], Theorem 3.2.11, page 70 or Kůrka [6] Theorem 3.8, page 110), for every
compact metric space Y and any Cantor space X there exists a continuous surjection
Φ : X → Y with the extension property. We say that a Möbius number system (F,Σ)
is redundant, if the symbolic representation Φ : Σ → R has the extension property.

Given a Möbius number system (F,Σ), define the cylinder of a word u ∈ L(Σ)
by Φ([u]), where [u] := {v ∈ Σ : v[0,|u|) = u} is the symbolic cylinder of u. Define the
cylinder of a vertex p ∈ V by [p]Φ = Φ(h(Op)). The cylinders of vertices satisfy
the conditions of both Theorem 11 and 13, i.e., [p]Φ =

⋃{Fh(e)([t(e)]Φ) : s(e) = p}.
However, [p]Φ are in general not intervals. Next theorems give conditions which imply
that [p]Φ are intervals which cover R. We apply them usually to the graphs of DFA, in
which [i]Φ = R. A selector for a graph G = (V,E, s, t, h) is a map K : V → E which
selects at each vertex an outgoing edge, i.e., s(K(p)) = p. A selector K determines
for each p ∈ V a unique eventually periodic path Kp ∈ Op defined by Kp

0 = K(p),
Kp

i+1 = K(t(Kp
i )).

Theorem 14 Let F : A+×R → R be a Möbius iterative system, let G = (V,E, s, t, h)
be a labelled graph such that ΣG ⊆ XF and Φ : ΣG → R is continuous. Then there
exists a system of closed intervals J = {Jp : p ∈ V } and selectors L,R : V → E such
that for each p ∈ V we have

(1) [p]Φ ⊆ Jp.

(2) Either Jp = [Φ(h(Lp)),Φ(h(Rp))], or Jp = R.

(3) limn→∞ ||Fh(u[0,n))(Jt(u[0,n)))|| = 0 for each u ∈ Σ|G|.

Proof: Denote by V0 the set of all vertices p ∈ V , such that there exist arbitrarily
long paths with target p. If p ∈ V0, and t(u) = p, then Fu([p]Φ) ⊆ Φ[h(u)]. By the
continuity of Φ, the diameter of this set goes to 0 as the length of u goes to infinity. It
follows that there exist unique ap, bp ∈ [p]Φ such that [p]Φ ⊆ [ap, bp] and the diameter
of Fu([ap, bp]) goes to zero as the length of u goes to infinity. Since for each p ∈ V0

we have [p]Φ =
⋃{Fh(e)([q]Φ) : p

e→ q}, there exists an edge e = L(p) ∈ E such

that p
e→ q and ap = Fh(e)(aq). Analogously there exists an edge e′ = R(p) ∈ E

with source p, target q′ and bp = Fh(e′)(bq′). Thus L,R are selectors on V0 and we
have their paths Lp, Rp. For a given vertex p ∈ V0 let m,n be the preperiod and
period of Lp and set q = t(Lp

[0,m)) = t(Lp
[0,m+n)), u := h(Lp

[0,m)), v = h(Lp
[m,m+n)),

so h(Lp) = u.v. By Proposition 7, Φ(h(Lp)) = Fu(sv), where sv is the stable
fixed point of Fv. For every k ≥ 0 we have ap = Fu(aq) = Fuvk(aq) ∈ Φ([uvk]),
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Φ(h(Lp)) = Fuvk(sv) ∈ Φ([uvk]). Since the diameter of Φ([uvk]) converges to zero as
k goes to infinity, we get Φ(h(Lp)) = ap. Similarly we prove Φ(h(Rp)) = bp. We now
extend the selectors L,R to whole V by induction. Suppose that p ∈ V is a vertex, such
that for all edges e with s(e) = p, L(t(e)) and R(t(e)) are already defined. Denote by
J ′

p :=
⋃{Fh(e)(Jt(e)) : s(e) = p}. If J ′

p = R, then we set Jp = R and define L(p), R(p)

arbitrarily. If J ′
p 6= R, then there exist distinct ap, bp ∈ J ′

p such that J ′
p ⊆ [ap, bp] and

we set Jp := [ap, bp]. There exist edges L(p), R(p) with source p and targets q, r such
that ap = Fh(L(p))(Φ(h(Lq)) = Φ(h(Lp)), bp = Fh(R(p))(Φ(h(Rr)) = Φ(h(Rp)). To
prove (3), note that for each path u of Σ|G| there exists n0 such that t(un) ∈ V0 for

each n ≥ n0, so limn→∞ ||Fh(u[0,n])(Jt(un))|| = 0.

If L,R are selectors from Theorem 14, then for each selector K and for each
p ∈ V we have Φ(h(Kp)) ∈ [Φ(h(Lp)),Φ(h(Rp))]. Since there is only a finite number
of selectors for a given labelled graph, the left and right selectors L,R from Theorem
14 can be found effectively.

Theorem 15 (Surjectivity theorem) Let F : A+ × R → R be a Möbius iterative
system, let G = (V,E, s, t, h) be a labelled graph such that ΣG ⊆ XF and Φ : ΣG → R

is continuous. Let J = {Jp : p ∈ V } be intervals and L,R selectors from
Theorem 14. Assume that the intervals Jp cover R and that for each p, the intervals

{Fh(e)(Jq) : p
e→ q} cover Jp. Then Φ(ΣG) = R and [p]Φ = Jp for each p ∈ V . If

moreover the open intervals J◦
p cover R and if {Fh(e)(J

◦
q ) : p

e→ q} is a cover of J◦
p ,

then Φ : ΣG → R has the extension property.

The proof is analogous to the proof of Theorem 13. Alternatively, we can prove the
surjectivity using smaller intervals than Jp. This is useful when the endpoints of Jp

are irrational, and arithmetical algorithms can be simplified when we replace them by
intervals with rational endpoints.

Theorem 16 Let F : A+ × R → R be a Möbius iterative system, G a labelled
graph such that Φ : ΣG → R is continuous. Let W = (Wp)p∈V be a family
of intervals such that W = {Wp : p ∈ V } is a cover of R, Wp ⊆ Jp, and
Wp ⊆ ⋃{Fh(e)(Wt(e)) : s(e) = p} for each vertex p ∈ V . Then Φ : ΣW → R is
surjective.

Proposition 17 Let (F,Σ) be a Möbius number system with sofic subshift Σ, let
A = (V, δ, i) be a DFA for L(Σ) and assume that the system J = {Jp : p ∈ V }
of intervals constructed in Theorem 14 satisfies the conditions of Theorem 15. Then
Ji = R and Φ([u]) = Fu(Jδ(i,u)) for each u ∈ L(Σ).

Proof: For u ∈ L(Σ) and v ∈ AN we have

Φ([u]) = {Φ(uv) : uv ∈ Σ} = {Fu(Φ(v)) : v ∈ h(Oδ(i,u))}
= Fu([δ(i, u)]Φ) = Fu(Jδ(i,u)).
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6. Arithmetical algorithms

Definition 18 Let (F,Σ) be a Möbius number system with the symbolic representation
Φ : Σ → R. We say that E : R → Σ is a number expansion map, if ΦE(x) = x
for each x ∈ R. We say that E : I → L(Σ) is an interval expansion map, if
I ⊆ Φ([E(I)]) for each closed interval I ∈ I.

We say that u ∈ Σ is an expansion of x ∈ R if Φ(u) = x. The expansion of
a number can be conceived as the label of a path in the infinite expansion graph
defined as follows. Let G be the graph of a DFA for L(Σ), and let W = {Wp : p ∈ V }
be a family of intervals which satisfies the conditions of Theorem 16. The vertices of
the expansion graph are pairs (x, p) where p ∈ V and x ∈ Wp. We have a labelled

edge (x, p)
a→ (y, q), if p

a→ q in G, and y = F−1
a (x) (this implies x ∈ Fa(Wq)).

The expansion of a number x is the label of any infinite path with the source vertex
(x, i). If we have a selector K for the expansion graph (defined for example by a linear
preference order on outgoing edges of a given vertex of G), then we have a number
expansion map E , where E(x) is the label of the path with source (x, i) selected by K.

In a similar manner, an interval expansion map can be obtained from the interval
expansion graph whose vertices are (I, p), where p ∈ V and I ⊆ Wp is an interval.

We have a labelled edge (I, p)
a→ (J, q), if p

a→ q in G, and J = F−1
a (I). If the length

of I is too large then there are no edges with source (I, p), so each path in the interval
expansion graph is finite.

To obtain algorithms for arithmetical operations, we need Möbius transformations
with coefficients in a computable field, i.e., in a countable subfield of R whose
arithmetical operations are recursive. The field Q of rational numbers is computable.
If K is a computable field, and if x1, . . . , xn ∈ K are positive, then K(

√
x1, . . . ,

√
xn)

(the smallest subfield of R which contains K and all
√
xi) is a computable field.

Given a computable field K, denote by K = K ∪ {∞}, and by IK the set of closed
intervals with endpoints in K. The sum of two intervals I, J ∈ IK is defined by
I + J = {z ∈ R : ∃x ∈ I,∃y ∈ J, z = x + y} (we have a + ∞ = ∞ for a 6= ∞ while
∞ + ∞ is undefined).

Assume that (F,Σ) is a Möbius number system with a sofic subshift Σ, such
that the coefficients of Fa belong to a computable field, and let A = (V, δ, i) be a
DFA for Σ with the system of intervals J = {Jp : p ∈ V } from Theorem 15. The
endpoints of Jp are solutions of quadratic equations, so they belong to a possibly
larger computable field K. Then we have arithmetical algorithms analogous to those
described in Vuillemin [11] or Kornerup and Matula [5].

For each u ∈ L(Σ), the cylinder Φ([u]) = Fu(Jδ(i,u)) has endpoints in K and
can be algorithmically computed. The expansion E(I) of an interval I ∈ IK can be
algorithmically computed using a selector for the interval expansion graph. The sum
of u, v ∈ L(Σ) is then E(Φ([u]) + Φ([v])). Alternatively, instead of Jp we can use a
family of intervals which satisfies the conditions of Theorem 16. The algorithm also
works in an on-line manner for infinite words u, v ∈ Σ, whose sum is computed in an
infinite loop and written to the output word w ∈ AN: in step n the algorithm reads
un−1 and vn−1 and computes the expansion w(n) := E(Φ([u[0,n)])+Φ([v[0,n)])), so w(n)

is a prefix of w(n+1). It may happen that limn→∞ |w(n)| is finite, for example when
Φ(u) = Φ(v) = ∞. If not, then w = limn→∞ w(n) ∈ AN and Φ(w) = Φ(u) + Φ(v). We
have similar algorithms for other arithmetic operations and also conversion algorithms
between different Möbius number systems.
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Figure 1. Means of the binary signed system (BSS)

7. Binary signed system

The classical binary signed system uses transformations (x − 1)/2, x/2, (x + 1)/2,
which are contractive on the attractor [−1, 1]. To get a Möbius number system, we
add the transformation 2x. The number of 2’s at the beginning of a word corresponds
to the placement of the binary point.

Example 1 The Möbius binary signed system (BSS) consists of the alphabet
A = {1, 0, 1, 2}, transformations

F1(x) = (−1 + x)/2, F0(x) = x/2, F1(x) = (1 + x)/2, F2(x) = 2x,

and the subshift ΣD with forbidden words D = {20, 02, 12, 12, 11, 11}.

The means F̂u(0) of words u ∈ L(ΣD) can be seen in Figure 1. For each Möbius
transformation F there exists a family of Möbius transformations (F t)t∈R such that

F 0 = Id, F 1 = F , and F t+s = F tF s. In Figure 1, each mean F̂ua(0) is joined to
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F̂u(0) by the curve (F̂u(F̂ t
a(0)))0≤t≤1. The labels u ∈ A+ at F̂u(0) are written in the

direction of the unit tangent vectors F̂ ′
u(0)/|F̂ ′

u(0)|.

t(u) h(u) Uh(u) It(u) Fh(u)(It(u)) s(u)
0 1 [−3, 1] [−1, 1

2 ] [−1,− 1
4 ] 0, 1, 3

1 0 [−
√

2,
√

2] [−1, 1] [− 1
2 ,

1
2 ] 0, 1, 2

2 1 [−1, 3] [− 1
2 , 1] [14 , 1] 1, 2, 3

3 2222 [14 ,− 1
4 ] [ 14 ,− 1

4 ] [4,−4] 3

3 2

0 1

2 

1-

1-

1 

0 

1-

0 1 

0 

1 

2 1 

1- 0 
i

-2 -1 0 1 2

0 0

1 1

2 2

33

i i

t(e) h(e) L,R h(Lt(e)) h(Rt(e)) Jt(e) Fh(e)(Jt(e))
0 1 0, 1 .1 01.1 [−1, 1

2 ] [−1,− 1
4 ]

1 0 0, 2 1.1 1.1 [−1, 1] [− 1
2 ,

1
2 ]

2 1 1, 2 01.1 .1 [− 1
2 , 1] [14 , 1]

3 2 2, 0 101.1 101.1 [ 14 ,− 1
4 ] [ 12 ,− 1

2 ]

Figure 2. Convergence and surjectivity in BSS

For each u ∈ L(ΣD), the transformation Fu can be written as

Fu(x) = 2n

(
s0 +

1

2

(
s1 +

1

2

(
s2 + · · · + 1

2

(
sk−1 +

x

2

)
· · ·

)))

=

k−1∑

i=0

2n−isi + 2n−kx

for some n, k ≥ 0, si ∈ {−1, 0, 1}, s0 6= 0, and sisi+1 6= −1. This includes the
case k = 0 when Fu(x) = 2nx. For each u ∈ ΣD \ {.2} and x 6= ∞ we get
limk→∞ Fu[0,k)

(x) =
∑∞

i=0 2n−isi, so Φ(u) =
∑∞

i=0 2n−isi by Proposition 4. Clearly
Φ(.2) = ∞, so ΣD ⊆ XF .

The graph G of a DFA for L(ΣD) can be seen in Figure 2 center left. The
subgraph G0 of G with vertices V0 = {0, 1, 2, 3} yields ΣD as well: ΣD = ΣG = ΣG0

.
The continuity of Φ can be shown by the Convergence theorem 11 applied to the
graph G0. We take the suffix code consisting of all paths whose labels are in the set
P := {1, 0, 1, 2222}, and intervals (Ip)p∈V0

in Figure 2 top. The selectors, their paths
and cylinders of vertices can be seen in Figure 2 bottom and in Figure 2 center right.
Since the interiors of Jp satisfy the assumptions of Surjectivity theorem 15, the system
is surjective and redundant.

8. Regular continued fractions

Regular continued fractions are based on iterations of transformations 1 + x and 1/x.
Since the transformation 1/x is orientation-reversing, we use rather the orientation
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Figure 3. Means in regular continued fractions (RCF)

preserving transformation F0(x) = −1/x which corresponds to the rotation F̂0(z) =
−z of the unit circle by π. It is then natural to allow as partial quotients also negative
numbers. To expand a positive number x, we repeatedly subtract 1 till we get into
the interval [0, 1). Then we apply F0, getting a negative number less than −1. We
repeatedly add 1 till we get into the interval (−1, 0], apply F0 and repeat the process.

Example 2 The Möbius system of regular continued fraction (RCF, Figure
3) consists of the alphabet A = {1, 0, 1}, transformations

F1(x) = −1 + x, F0(x) = −1/x, F1(x) = 1 + x,

and the subshift ΣD with forbidden words D = {00, 11, 11, 101, 101}.
The expansion procedure for RCF is reflected in the family of intervals W =

{Wb : b ∈ B}, where B = {1, 01, 01, 1}, W1 = (∞,−1), W01 = (−1, 0), W01 = (0, 1),
and W1 = (1,∞). Using Proposition 5 we get ΣW = ΣD. We have Wb ⊆ Vb, since
V1 = (∞,− 1

2 ), V01 = (−2, 0), V01 = (0, 2), V1 = (1
2 ,∞). While the conditions of
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Theorem 8 do not apply, a stronger theorem of A.Kazda [4] shows that Φ : ΣD → R

is continuous and surjective. This can be also proved using Theorems 11 and 15.
Alternatively, we can use the theory of continued fractions. For each u ∈ L(ΣD),the
transformation Fu can be written as

Fu(x) = F a0
1 F0F

a1
1 · · ·F0F

an

1 (x) = a0 −
1|
|a1

− · · · − 1|
|an + x

where ai ∈ Z, aiai+1 ≤ 0 and ai 6= 0 for i > 0. Thus we obtain a continued fraction
whose partial quotients (−1)iai are either all positive or all negative. Each rational
number has exactly two expansions of the form u.1, and v.1, while each irrational
number has a unique expansion. The system is surjective but not redundant.
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Figure 4. Means in the Binary continued fractions (BCF)

9. Binary continued fractions

The convergence in regular continued fractions is quite slow, so we add the
transformation F2(x) = 2x to make it faster. Several sofic subshifts can be constructed
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which yield a Möbius number systems with these transformations.

Example 3 The Möbius system of binary continued fraction (BCF, Figure 4)
consists of the alphabet A = {1, 0, 1, 2}, transformations

F1(x) = −1 + x, F0(x) = −1/x, F1(x) = 1 + x, F2(x) = 2x,

and subshift ΣD with forbidden words D = {00, 11, 11, 101, 101, 12, 12, 20, 210, 210}.

t(u) h(u) Uh(u) = It(u) Fh(u)(It(u)) s(u)
0 11 [∞, 1] [∞,−1] 0, 3, 5, 6
2 11 [−1,∞] [1,∞] 2, 3, 4, 7

3 2 [
√

2
2 ,−

√
2

2 ] [
√

2,−
√

2] 3, 4, 5
4 110 [0,−1] [∞,−1] 0, 3, 6
5 110 [1, 0] [1,∞] 2, 3, 7

6 21 [2 +
√

10
2 , 2 −

√
10
2 ] [2 +

√
10, 2 −

√
10] 3, 4, 5

7 21 [−2 +
√

10
2 ,−2 −

√
10
2 ] [−2 +

√
10,−2 −

√
10] 3, 4, 5

0 4 25

6 73
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6

7

i i

t(e) h(e) L,R h(Lt(e)) h(Rt(e)) Jt(e) Fh(e)(Jt(e))

0 1 0, 4 .1 .0211 [∞, 1 −
√

2
2 ] [∞,−

√
2

2 ]

1 0 2, 0 1.0211 1.0211 [
√

2
2 ,−

√
2

2 ] [−
√

2,
√

2]

2 1 5, 2 .0211 .1 [
√

2
2 − 1,∞] [

√
2

2 ,∞]

3 2 7, 6 .1102 .1102 [
√

2
2 + 1,−

√
2

2 − 1] [2 +
√

2,−2 −
√

2]

4 0 2, 3 1.0211 .2110 [
√

2
2 ,−2 −

√
2] [−

√
2, 1 −

√
2

2 ]

5 0 3, 0 .2110 1.0211 [2 +
√

2,−
√

2
2 ] [

√
2

2 − 1,
√

2]

6 1 0, 0 1.1 .1021 [∞,−
√

2
2 ] [∞,−

√
2

2 − 1]

7 1 2, 2 .1021 1.1 [
√

2
2 ,∞] [

√
2

2 + 1,∞]

Figure 5. Convergence and surjectivity in BCF

The convergence and surjectivity is shown in Figure 5. The graph G of a DFA for
ΣD is in Figure 5 center left. Note that the subgraph with vertices {0, 4, 5, 2} defines
the subshift of RCF. For the convergence of BCF we use the subgraph with vertices
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V0 = {0, 2, 3, 4, 5, 6, 7} and the suffix code consisting of all paths with labels in the set
P = {11, 11, 2, 110, 110, 21, 21}. The intervals It(u) = Uh(u) satisfy the assumptions

of the Convergence theorem 11 (Figure 5 top), so ΣD ⊆ XF and Φ : ΣD → R

is continuous. The selectors, their paths and cylinders of vertics are in Figure
5 bottom and in Figure 5 center right. The system is surjective and redundant.
There exist smaller subshifts which avoid long chains of slowly converging parabolic

transformations F1 and F1. If 13 and 1
3

are added to D, the resulting system is

surjective but no more redundant. If 14 and 1
4

are added to D, the resulting system is
surjective and redundant. The BCF system can be regarded as an SFT approximation
to ΣW from Proposition 19.

Proposition 19 Let (F,ΣD) be the BCF system (Definition 3). Consider the open
cover W = (Wa)a∈A, where W1 = (−c,−b), W0 = (−a, a) W1 = (b, c), W2 = (d,−d),
and

√
2

2 < b < 1, b < a < min{1, 2b−1
2−2b}, 2a+ 2 < d < 1

1−b , d < c < min{d+ 1, 1
1−b}.

Then ΣW ⊂ ΣD.

Note that if c− n < b, then 1n and 1
n

are forbidden words in ΣW .

(2,2) 1 

(2,4) 1 

(2,7)
1 

(-1,0)
0 

(2,3) 1 

(-2,3) 1-

(1,2) 0 

(-2,6) 1-

(-2,5) 1-

(-2,0)
1-

(1,2) 1 

(1,4)
1 

(1,7)
1 

(-1,6) 1-

(-1,5) 1-

(-1,0)
1-

(0,2) 0 

(0,0) 0 

(   )8 ,5
2 

(   )8 ,4

2 

1-

1 

(   )8 ,3

1 

(   )8 ,7

1-
(   )8 ,6

1 

(   )8 ,2

1-
(   )8 ,0 1-

2 

1 

Figure 6. Number expansion graph of BCF

Theorem 20 In BCF, each expansion of each rational number is preperiodic with
period length 1 and has the form u.a, where a ∈ {1, 1, 2}.
Proof: We use the matrices of F−1

a in the form

F−1
1

=

[
1 1
0 1

]
, F−1

0 =

[
0 −1
1 0

]
, F−1

1 =

[
1 −1
0 1

]
, F−1

2 =

[
1 0
0 2

]

Consider the expansion graph with vertices (x0, x1, p), where (x0, x1) ∈ Z2 \ {(0, 0)}
are homogenous integer coordinates, and x0/x1 ∈ Jp. We have an edge (x, p)

a→ (y, q)
if y = F−1

a · x (here x, y are viewed as column vectors). Define a Lyapunov function
f : Z2 → N by f(x0, x1) := max{|x0|, |x1|}. We show that f(y) ≤ f(x) whenever

(x, p)
a→ (y, q). If a = 0 then f(y) = f(x). If a ∈ {1, 1}, then |x0/x1| ≥

√
2/2 and we
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distinguish two cases. If |x0/x1| ≥ 1, then f(y) = max{|x1|, |x0|− |x1|} ≤ |x0| = f(x).
If
√

2/2 ≤ |x0/x1| ≤ 1, then f(y) = max{|x1|, |x1|− |x0|} ≤ |x1| = f(x). If a = 2 then
|x0/x2| ≥ 2 +

√
2 and f(y) = f(x0, 2x1) = |x0| = f(x). Since there is only a finite

number of vertices with a bounded value of f(x), each infinite path in the expansion
graph contains a cycle, and the function f(x) is eventually constant along the path.

The cycle cannot contain 11 or 11: If (x, p)
1→ (x−1, q)

1→ (x−2, r), then x−1 ≥
√

2/2

and f(x− 1) < f(x). If the cycle contains (x, 2)
0→ (− 1

x , 5)
1→ (x−1

x , 0)
0→ ( x

1−x , 4)
1→

( 2x−1
1−x , 2), then x = (2x− 1)/(1 − x), so x is irrational. Thus the only possibilities for

the cycle are (∞, p)
a→ (∞, p) with a ∈ {1, 1, 2} and p ∈ {0, 2, 3} (see Figure 6).

x E(x) x E(x) x E(x) x E(x)

0/1 0 1/4 02110 1/3 01
3
0 2/5 0110110

1/2 0110 3/5 01010110 2/3 010110 3/4 010130

1/1 10 4/3 101
3
0 3/2 10110 5/3 1010110

2/1 110 5/2 110110 3/1 130 4/1 2110

Figure 7. Expansions of Farey fractions in BCF according to Proposition 19
with a = 4

5
, b = 3

4
, c = 19

5
, d = 15

4
. Here u = E(x) stands for u.2

10. Compressed continued fractions

Another subshift which works for the transformations of the BCF system from
Example 3 has forbidden words

D = {00, 11, 11, 20, 12, 12, 11, 11, 101, 101, 101, 101, 1021, 1021 1021, 1021}.

In this subsfift, 1 and 1 are always followed by 022, so we can combine them into single
digits 1022, 1022 which yield transformations ±1 − 1/4x. These two transformations
are conjugated to simpler transformations −1/(x± 2).

Example 4 The Möbius system of compressed continued fractions (CCF,
Figure 8) consists of the alphabet A = {1, 0, 1, 2}, transformations

F1(x) = 1/(−2 − x), F0(x) = x/2, F1(x) = 1/(2 − x), F2(x) = 2x,

and the subshift ΣD with forbidden words D = {12, 02, 12, 20}
Transformations F1 and F1 are parabolic with fixed points −1 and 1 respectively.

To prove the convergence, we use the prefix code P := {1, 0, 1, 2222} and intervals
I2 = [14 ,− 1

4 ], I = I1 = I0 = I1 = [−1, 1] (see Figure 9 top). In fact I is the attractor
of the subsystem with alphabet B := {1, 0, 1}. The surjectivity is shown in Figure 9
bottom. The convergence can be proved also by the continued fraction theory. For
each u ∈ L(ΣD), Fu can be written as

Fu(x) = Fn0−1
0 Fs0

Fn1−2
0 Fs1

· · ·Fnk−2
0 Fsk

(x)

= 21−n0/(2s0 − 22−n1/(2s1 − · · · − 22−nk/(2sk − x) · · ·)

18
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Figure 8. Means of Compressed continued fractions (CCF)

=
s02

−n0 |
|1 − s0s12

−n1 |
|1 − · · · − sk−1sk2−nk |

|1 − xsk/2

=
1|

|s02m0
− 1|

|s12m1
− · · · − 1|

|sk2mk − 2mk−1x

Here si ∈ {−1, 1}, n0 ∈ Z and ni ≥ 2 for i > 0. The integers mi ∈ Z are defined
by m0 = n0, mi+1 = ni+1 − mi, so mi + mi+1 ≥ 2. The partial numerators and
denominators satisfy either ai = si−1si2

−ni , bi = 1, |ai| ≤ 1
4 , or ai = 1, bi = si2

mi ,
|bibi+1| ≥ 4. This class of continued fractions converges by a Theorem of Pringsheim
(see Satz 27 in page 259 of Perron [10]).

Theorem 21 In CCF, each expansion of each rational number is eventually periodic
with period length 1.

Proof: We use the matrices of F−1
a in the standard form

F−1
1

=

[
2 1

−1 0

]
, F−1

0 =

[
2 0
0 1

]
, F−1

1 =

[
−2 1
−1 0

]
, F−1

2 =

[
1 0
0 2

]
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t(u) h(u) Uh(u) It(u) Fh(u)(It(u)) s(e)
0 1 [−1,∞] [−1, 1] [−1,− 1

3 ] 0, 1, 3

1 0 [−
√

2,
√

2] [−1, 1] [− 1
2 ,

1
2 ] 0, 1, 2

2 1 [∞, 1] [−1, 1] [ 13 , 1] 1, 2, 3
3 2222 [14 ,− 1

4 ] [ 14 ,− 1
4 ] [4,−4] 3

3 2

0 1

2 

1-

1-

1 

0 

1-

0 1 

0 

1 

1-

1 

-2 -1 0 1 2

0 0

1 1

2 2

33

i i

t(e) h(e) L,R h(Lt(e)) h(Rt(e)) Jq Fh(e)(Jt(e))
0 1 0, 2 .1 1.1 [−1, 1] [−1,− 1

3 ]
1 0 0, 2 1.1 1.1 [−1, 1] [− 1

2 ,
1
2 ]

2 1 0, 2 1.1 .1 [−1, 1] [13 , 1]
3 2 2, 0 11.1 11.1 [ 13 ,− 1

3 ] [ 23 ,− 2
3 ]

Figure 9. Convergence and surjectivity in CCF

Given a rational number p/q and u ∈ {1, 0, 1}+, then 2nu ∈ ΣD is an expansion of
p/q iff there exists a sequence (pi, qi) ∈ Z2 \ {(0, 0)} such that (p0, q0) = (p, q · 2n),
(pi+1, qi+1) = F−1

ui
· (pi, qi) and |pi| ≤ |qi|. We show that |qi| is a nonincreasing

sequence of integers. If ui = 1 or ui = 1 and |pi| < |qi|, then |qi+1| = |pi| < |qi|. If
ui = 0 then qi+1 = qi, but the number of consecutive 0 is finite, unless pi = 0. For
each i there exists j ≥ i such that |qj | = 1 and therefore |pi| ≤ 1. The numbers −1,
0, 1 are fixed points of the expansion algorithm.

The expansion graph for rational numbers can be seen in Figure 10. Here
p/q

a→ p′/q′ means (p′, q′) = F−1
a · (p, q). Note that for u ∈ {1, 0, 1}n, the endpoints of

Φ([u]) (see Figure 11) all occur in the last n columns of the number expansion graph.
In CCF, both F1 and F1 are parabolic transformations, so the convergence of 1∞ and
1
∞

is quite slow (see Figure 8). If we forbid also 1111 and 1111, the resulting system
is still surjective and redundant. It follows that in CCF, each rational number has an
expansion of the form u.0.

There is also a family of subshifts of CCF which are based on the avoidance of
the vicinities of 1 and −1, where the convergence of F1 and F1 is slow. Let us replace
the interval I = [−1, 1] by an interval (−c, c), where c ≤ 1. Using the graph of a
DFA in Figure 9, we get a system of intervals W = (Wa)a=i,0,1,2,3, where Wi = R,
W0 = W1 = W2 = (−c, c), W3 = ( 1

c+2 ,− 1
c+2 ). If 1

c+2 <
c
2 , i.e., if c >

√
3 − 1

.
= 0.732,

then W satisfies the assumptions of Theorem 16, and expansion algorithms can be
based on it. For c = (5 −

√
7)/3

.
= 0.785, which is the stable fixed point of F1110, we

get ΣW = Σ{12,02,12,20,1111,1111}. Another variant of the CCF system is in Example 5.
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Figure 10. Rational number expansion graph in CCF

-3 -2 -1 0 1 2 3

1- 1-
0 0 

1 1 
2 2 

u Φ([u]) u Φ([u]) u Φ([u]) u Φ([u])
1 [−1,− 1

3 ] 0 [− 1
2 ,

1
2 ] 1 [13 , 1] 2 [23 ,− 2

3 ]
11 [−1,− 3

5 ] 10 [− 2
3 ,− 2

5 ] 11 [− 3
7 ,− 1

3 ] 01 [− 1
2 ,− 1

6 ]
00 [− 1

4 ,
1
4 ] 01 [16 ,

1
2 ] 11 [ 13 ,

3
7 ] 10 [ 25 ,

2
3 ]

11 [35 , 1] 21 [−2,− 2
3 ] 21 [23 , 2] 22 [43 ,− 4

3 ]

Figure 11. Cylinders of words in CCF

x E(x) x E(x) x E(x) x E(x)
0/1 1/4 01 1/3 011 2/5 11
1/2 1 3/5 1011 2/3 11 3/4 2013

1/1 21 4/3 211 3/2 22013 5/3 22111
2/1 221 5/2 22111 3/1 23013 4/1 231

Figure 12. Expansions of Farey fractions in CCF, c = 3/4. Here u = E(x) stands
for u.0

Example 5 The Möbius number system with alphabet A = {1, 0, 1, 2}, transforma-
tions F1(x) = 1/(−2 − x), F0(x) = x/2, F1(x) = 1/(2 − x), F2(x) = −1/2x, and the
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subshift ΣD with forbidden words D = {12, 02, 12, 22} is surjective and redundant.

11. Conclusions

The algorithms for both BCF and CCF are efficient if the integers involved are
represented in the integer binary signed system. A word u ∈ {1, 0, 1}+ represents the
number

∑
k<|u| 2

kuk. During the expansion and evaluation algorithms, the integer
matrices Fu are updated by the right multiplication Fua := Fu · Fa. Due to the
presence of column (1, 0) or (0, 1) in each Fa, two of the entries of Fu are kept and
only moved. Thus these two systems offer a reasonable choice for the implementation
of computer arithmetics.
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