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ABSTRACT

Aim One of the fundamental tools in biogeography is the classification of the

Earth surface into spatially coherent units based on assemblage distinctiveness.

However, spatial coherence of biogeographical regions may be scale-dependent,

that is, it may change with changing the size of spatial units used. We ask (1)

how the clusters resulting from the classification of animal assemblages at dif-

ferent spatial scales differ in their spatial coherence, (2) whether there are geo-

graphical trends in the patterns of spatial coherence, and (3) what factors drive

these patterns at different scales and in different areas of Europe.

Location Europe.

Methods We used data from distribution atlases at two spatial scales

(50 9 50 km and c. 10 9 10 km) and, for each scale, we selected four differ-

ent areas across Europe, each of them covered by 250 grid cells. We classified

each area based on the distributions of mammals (coarser scale only) and birds

(both scales). Subsequently, we calculated the spatial coherence of resulting

clusters and correlated it with environmental factors and geographical distance.

Results Coarse-scale classifications provided more spatially coherent clusters

than the classifications at the finer scale and this pattern was closely related to

different strength of distance decay of similarity in the species composition at

different scales. Spatial coherence revealed latitudinal trends, so that coarse-

scale clusters were more spatially coherent in northern Europe. Geographical

distance was the best predictor of spatial patterns at the coarser scale, although

this effect was strong only in central and northern Europe. At the finer scale,

topography and land cover composition were the most important.

Main conclusions Spatial coherence of biogeographical regionalizations

depends on scale and varies geographically. It is closely related to different beta

diversity patterns at different scales and in different areas. Heterogeneous areas

with high beta diversity and endemism reveal more complex patterns than

areas characterized by lower beta diversity but a stronger relationship between

beta diversity and distance, and consequently coherent clusters. If the develop-

ment of the species distribution databases provides fine-resolution data cover-

ing large areas in the future, the issue of the scale of biogeographical

regionalizations will probably become even more crucial.
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INTRODUCTION

Classification of biota into meaningful geographical units,

so-called biogeographical regions, is one of the main aims in

the field of biogeography (Kreft & Jetz, 2010; Lomolino

et al., 2010; Holt et al., 2013). These regionalizations are

used for better understanding of biogeographical patterns or

may serve as a spatial framework for further biogeographical

and ecological studies as well as for effective application of

conservation management practices. According to general

definition, biogeographical delimitations should maximize

the homogeneity in the taxonomic composition while maxi-

mizing differences between regions in the considered area

(Stoddart, 1992; Kreft & Jetz, 2010). Traditionally, main

attention has been paid to broad spatial scales, where criteria

of taxonomical distinctiveness at the level of genera (or

above) were originally emphasized for the division of Earth’s

surface into geographical units of approximately continental

extent (Wallace, 1876, 1894). However, biogeographical

regionalizations have become of special importance also at

fine spatial scales, where assemblage distinctiveness at the

level of species has been commonly used for the delineation

of subregions, districts, zones etc. within global biogeograph-

ical regions (Crowe & Crowe, 1982; De Klerk et al., 2002;

Linder et al., 2012), continents (Heikinheimo et al., 2007;

Rueda et al., 2010) or even smaller areas (Pasinelli et al.,

2001; Moreno Saiz & Lobo, 2007; Filipe et al., 2009). This

inevitably consists of the decrease of both total spatial extent

of the study and the grain (size of the basic sampling unit),

because large grid cells may not be appropriate for the divi-

sion of smaller areas. Recently, Kreft & Jetz (2010) pointed

out that, in the use of assemblage distinctiveness for identify-

ing distinct biogeographical regions, the question of the scale

(i.e. grain and extent) of the classification analysis is critical.

Despite this fact, issues concerning spatial properties of bio-

geographical regionalizations have been rarely discussed to

date (e.g. Moreno Saiz et al., 1998 or Morrone & Escalante,

2002).

Some findings about spatial properties of biogeographical

regions in Europe were published by Heikinheimo et al.

(2007) and Rueda et al. (2010) who classified the European

continent based on the distribution of different animal taxa.

Both studies used the same spatial framework represented by

UTM grid cells spanning 50 9 50 km which are commonly

used for mapping of the European biota (e.g. Hagemeijer &

Blair, 1997; Mitchell-Jones et al., 1999; Gasc et al., 2004).

Results of both studies showed that, at this spatial resolution,

European biogeographical regions are highly coherent in

space, that is, grid cells belonging to the same cluster are

spatially connected and particular regions are thus geograph-

ically well distinguished from each other. Heikinheimo et al.

(2007) thus argued that Europe can be divided into cohesive

regions despite a long history of human presence and habitat

modification. Generally, spatial coherence seems to be a

common feature of biogeographical delimitations at broader

scales of approximately continental extent (Heikinheimo

et al., 2007, 2012; Rueda et al., 2010; Linder et al., 2012). On

the other hand, at finer spatial scales, biogeographical units

resulting from the classification analysis often tend to disin-

tegrate into spatially discontinuous patches (Pasinelli et al.,

2001; Bunce et al., 2002; Eronen et al., 2011; Div�ı�sek et al.,

2014). The reason is that classification based on small grid

size has a tendency to distinguish separate landscape types

rather than regions with similar history, and these types,

determined by particular and repeatable combination of

environmental parameters, may occur in distinct places.

Therefore, there is a good reason to assume that the spatial

coherence of classified biogeographical regions changes with

changing the scale of observation.

Several factors may largely influence the classification

results and spatial properties of resulting biogeographical

regions including their coherence in space. If we set aside the

arbitrary choice of dissimilarity measure and clustering algo-

rithm, which inevitably influence each classification

(Murgu�ıa & Villase~nor, 2003), the classification results pri-

marily depend on the spatial pattern in the dissimilarity of

assemblages, that is, on the patterns in beta diversity (Legen-

dre & Legendre, 2012). It has been recently shown that beta

diversity decreases with coarsening the spatial resolution, so

that grid cells become more similar and their similarity

decreases with geographical distance slower than at finer

scales (Lennon et al., 2001; Keil et al., 2012). We therefore

expect that the spatial coherence of biogeographical delimita-

tions at different scales is directly related to the scaling of

beta diversity and that the spatial pattern of resulting biogeo-

graphical units could be consequently ascribed to the factors

which also control beta diversity patterns at different scales.

More explicitly, we predict that environmental factors are

more important at fine scales, while geographical distance

which reflects historical factors and species dispersal limita-

tions plays a major role at broader scales.

Besides the variation of the spatial coherence of regions

with scale (grain), we expect some geographical variation.

Beta diversity patterns in Europe vary considerably latitudi-

nally, southern Europe being characterized by high beta

diversity, small geographical ranges of species and high levels

of endemism, related to enormous topographic heterogeneity

(Baselga, 2008; Svenning et al., 2011). Also, the peninsulas of

southern Europe served as glacial refugia, leading to the per-

sistence of fragmented populations of individual species

(often genetically distinct; Hewitt, 2000; Sommer & Nada-

chowski, 2006). Due to all these factors, species distribution

is often discontinuous and fragmented in southern Europe,

possibly leading to low coherence of clusters based on assem-

blage similarity. We expect that this latitudinal trend dimin-

ishes when the regionalization is based on the smaller grain.

The reason is that the smaller grain regionalization should

reflect discontinuous landscape types rather than history and

dispersal limitations regardless of the latitude.

Here, we focus on the evaluation of the spatial pattern of

biogeographical units (regions, zones etc.) in Europe statisti-

cally delineated on the basis of assemblage distinctiveness
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(beta diversity). Although the term ‘biogeographical (zoogeo-

graphical) region’ is often understood in relation to global

biogeographical divisions, we use it also for divisions at finer

scales throughout this study, as their primary purpose is to

explore regional differences in the composition of species

assemblages. We focus on the spatial coherence of regions

assessed at two spatial scales (50 9 50 km and

c. 10 9 10 km) and in different areas of Europe. Based on

the above-mentioned theoretical considerations, we test the

following hypotheses: (1) The clusters based on fine-grained

assemblage distinctiveness reflect rather different landscape

types and thus are less spatially coherent than those based on

large sampling units (grid cells). (2) Spatial coherence of the

clusters decreases towards the south, due to higher fragmen-

tation of species distributions in southern Europe. (3) This

latitudinal trend diminishes for fine-grained regionalization,

as the role of history and dispersal limitation decreases at

these scales. (4) The factors which are responsible for spatial

coherence of the clusters are the same as the factors respon-

sible for beta diversity, and predictably vary with scale and

geographical position.

MATERIALS AND METHODS

Spatial framework

To compare the spatial coherence of biogeographical region-

alizations at different spatial scales across Europe, we consid-

ered two spatial resolutions (grains): 50 9 50 km and

10 9 10 km, which are most commonly used for mapping

of the European biota. Coarser resolution (50 9 50 km) is

used for mapping of entire European continent, whereas

finer resolution (10 9 10 km) is often used in national or

regional distribution atlases. However, central European

countries (e.g. the Czech Republic or Germany) use slightly

coarser grids based on the geographical coordinates; 100 of

longitude and 60 of latitude which is c. 12 9 11.1 km on the

50th parallel (Ehrendorfer & Hamann, 1965), but we sup-

posed that this small difference should not influence our

results. Therefore, we hereafter use the term ‘fine scale’ for

both these resolutions.

At both spatial scales (resolutions), we applied following

criteria to select model areas for biogeographical regionaliza-

tions: (1) availability of species distribution data; (2) selected

areas should be as large as possible but each of them had to

be covered by the same number of grid cells in order to

make the spatial coherence of clusters comparable (the extent

of each area was thus derived from the number of grid cells

in the smallest available data set); (3) both the shape and the

position should be chosen with respect to maximum connec-

tivity of grid cells; (4) the selection of areas should follow

latitudinal gradient; (5) areas selected at the same scale were

not allowed to overlap each other. Using these criteria, we

selected four areas at each spatial scale, each of them divided

to 250 grid cells (Fig. 1). At the coarse scale, we selected the

following areas from the north to the south: Scandinavia

(including Norway, Sweden and northern Finland), central

Europe (including Germany, the Czech Republic and

Poland), south-east Europe (including the Balkans, Slovenia

and Hungary) and the Iberian Peninsula. According to Met-

zger et al. (2005), the Iberian Peninsula is situated predomi-

nantly in the Mediterranean environmental zone (also in the

Atlantic zone in the north). South-east Europe is situated

largely in the Pannonian and Continental zones, central Eur-

ope in the Continental zone (also in the Atlantic zone in the

west), and Scandinavia is situated in the Boreal, Nemoral

and North Alpine zones. At the fine scale, we selected the

following areas: northern Finland, southern Finland, eastern

Czech Republic and Provence-Alpes-Côte d’Azur in southern

France. Provence-Alpes-Côte d’Azur is situated in the

Mediterranean environmental zone, eastern Czech Republic

is situated in the Continental and partly also in the Pannon-

ian zone, southern Finland in the Boreal and partly also in

the Nemoral zone, and northern Finland in the Boreal and

North Alpine environmental zones (Metzger et al., 2005).

Species distribution data

Coarse grain distribution data (presence/absence records)

were extracted from European distribution atlases, which are

based on the 50 9 50 km Universal Transverse Mercator

(UTM) grid. We used both data on mammals (Mitchell-

Jones et al., 1999) and on birds (Hagemeijer & Blair, 1997).

At the fine scale, we used data from national or local distri-

bution atlases which were available for birds only. All used

atlases are based on the 10 9 10 km grid except the Atlas of

Breeding Birds in the Czech Republic, which uses a grid of

c. 12 9 11.1 km. In the case of Provence-Alpes-Côte d’Azur,

breeding bird distributions were extracted from http://www.-

faune-paca.org (accessed in September 2014). For the eastern

Czech Republic, the species data were extracted from �S�tastn�y

et al. (2006) and for southern and northern Finland from

Valkama et al. (2011). We excluded all records of species not

native in the given area and all records of bats. For birds, we

used records of probable and confirmed breeding only. Char-

acteristics of species assemblages in each selected area can be

found in Tables 1 and 2. For evaluation of the consistency

between atlases in considered spatial resolutions, see

Appendix S1 in Supporting Information.

Environmental data

To characterize environmental conditions within grid cells, we

used the digital elevation model and the climatic data from

the WorldClim database in resolution of c. 1 km (Hijmans

et al., 2005). For each grid cell, we calculated the maximum

and minimum altitude as well as the maximum and mini-

mum values of mean annual temperature and annual precipi-

tation. We preferred maximum and minimum values instead

of the arithmetic mean of these variables within each grid cell

because, with increasing grain, the variability of maxima and

minima may differ from the variability of the mean values.
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All grid cells were also characterized by the relative area of

land cover types extracted from the CORINE 2000 Land

Cover database (EEA, 2010). We adopted the classification

by Keil et al. (2012) and reclassified the original 44 land

cover types recognized in Europe into 18 broader classes

which represent land cover types potentially relevant for the

considered taxa. The data were processed using the ArcGIS

10.2 software (ESRI, 2014).

Classification analysis

In order to classify the selected areas into biogeographical

regions, we first calculated the dissimilarity of species com-

position between each pair of grid cells in particular data

sets. Note that we understand this dissimilarity as equivalent

to beta diversity throughout this study. We used the beta-

sim index (bsim), which is independent of species richness

gradient across the studied area (Koleff et al., 2003a). The

bsim index is used to calculate the compositional dissimilarity

between two grid cells as:

bsim ¼ 1� a

minðb; cÞ þ a

where a is the number of shared species, b is the number of

species unique to the first grid cell and c is the number of

species unique to the second grid cell. Values of bsim vary

between 0 for identical species composition in the compared

grid cells and 1 for grid cells which do not share any species.

This index is implemented in a ‘betadiver’ function of the ‘ve-

gan’ package (Oksanen et al., 2013) and its application to our

data sets resulted in dissimilarity matrices, each of them con-

taining 62,500 dissimilarity values (31,125 unique pairwise

comparisons). These matrices were then used in the agglomer-

ative hierarchical clustering procedure. We applied Ward’s

minimum variance method (Ward, 1963), that minimizes the

sum of within-group sums of squares. Although other
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Figure 1 Maps of the selected areas in Europe at two spatial scales (resolutions). All maps are in Lambert Azimuthal Equal Area projection.
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clustering algorithms such as Unweighted Pair Group Method

using Arithmetic Averages (UPGMA) are usually recom-

mended in biogeographical literature (e.g. Kreft & Jetz, 2010),

we favoured Ward’s algorithm, because UPGMA produced

clusters of extremely different sizes (high proportion of one-

cell clusters) in our analyses. As Ward’s method works in

Euclidean space, it should not be directly applied on the dis-

similarity matrix calculated using the bsim index (Legendre &

Legendre, 2012). To make the dissimilarity matrix Euclidean,

we used the correction developed by Cailliez (1983), comput-

ing and adding the smallest positive number (constant) to

each dissimilarity value. This method is implemented in the

‘ade4’ package (Dray & Dufour, 2007).

Measuring of spatial coherence

For each dendrogram cut up to 20 clusters, that is, for each

partition from 2 up to 20 clusters, we measured the spatial

coherence of each cluster using modified connectivity mea-

sure (Turner et al., 2001):

SC ¼ LCi

pi
;

where LCi is the number of grid cells in the largest patch of

cluster i and pi is the total number of grid cells in cluster i.

SC value close to zero indicates low spatial coherence,

whereas the SC value equal to 1 indicates a completely

coherent cluster. The spatial connectivity of grid cells was

assessed here using the rook connectivity scheme (Fortin &

Dale, 2005). In this scheme, each grid cell is considered to be

connected with four neighbouring grid cells in four cardinal

directions (N, S, E, W).

Analysis of spatial patterns

First, we calculated mean alpha and beta diversity, relationship

between beta diversity and geographical distance (beta-dis-

tance relationship), gamma diversity and mean endemism in

each considered area to explore relationships between these

characteristics and mean spatial coherence of clusters resulting

from the classification analysis. Mean alpha diversity was cal-

culated as a mean number of species per grid cell. Mean beta

diversity was calculated as a mean of all pairwise dissimilarities

in species composition between grid cells measured using bsim
coefficient. Beta-distance relationship was calculated as a value

of Mantel correlation (Pearson’s correlation coefficient)

between the original bsim matrix and the matrix of pairwise

geographical distances between the grid cells. Gamma diversity

is the total number of species in given area. Endemism was

calculated, for each grid cell, using the corrected weighted

endemism measure (CWE; Crisp et al., 2001):

CWEj ¼
Rk
i¼1

1
ci

kj
;

where ci is the number of grid cells occupied by species i,

and kj is the total number of species in grid cell j. The higher

the CWE value, the higher the endemism. To express mean

endemism for each considered area, we calculated the arith-

metic mean of CWE values and multiplied the result by 100

(Tables 1 and 2).

Table 1 Characteristics of species
assemblages in selected areas in Europe at a

spatial scale of 50 9 50 km. See the
Methods section for explanation. Note that

mean endemism (CWE index) was
multiplied by 100.

Mean alpha

diversity

Mean beta

diversity

Beta-distance

relationship

Gamma

diversity

Mean

endemism

Mammals

Scandinavia 20.5 0.21 0.53 44 0.33

Central Europe 31.7 0.12 0.54 56 0.69

South-east Europe 24.8 0.32 0.03 76 9.44

Iberian Peninsula 20.9 0.26 0.16 54 0.99

Birds

Scandinavia 109.9 0.22 0.62 231 0.55

Central Europe 142.0 0.09 0.40 243 0.46

South-east Europe 100.2 0.21 0.10 280 3.26

Iberian Peninsula 102.9 0.23 0.24 251 0.76

Table 2 Characteristics of bird species
assemblages in selected areas in Europe at a

spatial scale of c. 10 9 10 km
(12 9 11.1 km in the case of the Czech

Republic). See the Methods section for
explanation. Note that mean endemism

(CWE index) was multiplied by 100.

Mean alpha

diversity

Mean beta

diversity

Beta-distance

relationship

Gamma

diversity

Mean

endemism

Birds

Northern Finland 31.9 0.35 0.18 152 3.94

Southern Finland 103.2 0.11 0.11 196 0.93

Eastern Czech Republic 94.5 0.13 0.09 192 0.41

Provence-Alpes-Côte d’Azur 73.2 0.27 0.58 213 0.52
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In order to assess the independent effects of topography,

climate, land cover and spatial proximity on the spatial

pattern of particular regionalization, we used hierarchical

partitioning (Chevan & Sutherland, 1991). In this analysis,

each regionalization was represented by a square binary

matrix describing group allocations. This matrix contained

1 for grid cells which belong to the same cluster and 0 for

grid cells which do not belong to the same cluster.

Explanatory variables, that is matrices representing pairwise

dissimilarities in topography, climatic conditions, land

cover composition and geographical distance between grid

cells, were calculated using Euclidean distance. All matrices

were subsequently rearranged into vectors. In this case, the

hierarchical partitioning performs logistic regressions to

assess the independent effects of several continuous predic-

tors (i.e. rearranged environmental and geographical dis-

similarity/distance matrices) on the binary response

variable representing a classification result. Within each

considered area, we repeated this analysis for each partition

from 2 up to 20 clusters. We also tested the independent

effects of explanatory variables by 1000 randomizations

using the ‘rand.hp’ function in the ‘hier.part’ package

(Walsh & MacNally, 2008). Note that we use the term ‘ef-

fect’ to indicate a statistical relationship, not a proven

mechanistic causation (Hawkins, 2012). All the above-men-

tioned statistical analyses were done in the R software (R

Core Team, 2013).

RESULTS

At the coarser spatial scale (resolution 50 9 50 km), clusters

resulting from the classification analysis were generally more

spatially coherent than those at the finer resolution of

c. 10 9 10 km (Figs 2 & 3) and the spatial coherence pattern

was very similar for both mammals (Fig. 2a) and birds

(Fig. 2b). At the broader scale, we also found that spatial

coherence increased with increasing latitude. In southern Eur-

ope, clusters were generally less spatially coherent than in

central Europe or in Scandinavia, respectively. On the other

hand, at the finer scale, spatial coherence decreased with the

increasing latitude (Fig. 2c), although this pattern was mainly

caused by relatively coherent clusters in Provence-Alpes-Côte

d’Azur. Schematic maps of all regionalizations from 2 up to

19 clusters can be found in Appendix S1.

south north south north

south north

(a) (b)

(c)

Figure 2 Spatial coherence of clusters resulting from classification analysis based on bsim dissimilarity measure and Ward’s clustering

algorithm. Spatial coherence was measured for each cluster in each dendrogram cut up to 20 clusters, that is, in each partition from 2
up to 20 clusters. Each point in the diagram represents one region (cluster) from particular regionalization. Shades of grey indicate the

density of points. (a) Mammal distributions in resolution 50 9 50 km. (b) Bird distributions in resolution 50 9 50 km. (c) Bird
distributions in resolution c. 10 9 10 km. IP – Iberian Peninsula, SEE – south-east Europe, CE – central Europe, S – Scandinavia.

PACA – Provence-Alpes-Côte d’Azur, ECR – eastern Czech Republic, SF – southern Finland, NF – northern Finland. Thick horizontal
lines in box-plots indicate the median and the diamonds indicate the mean. The bottom and top of each box indicates the 25th and

75th percentiles respectively. Non-overlapping box notches indicate strong evidence that the individual medians differ. The vertical lines
(whiskers) represent either the maximum value or 1.59 interquartile range depending on which is closer to the mean. Values outside

the range of whiskers are defined as outliers. When there are no outliers, the whiskers show the maximum and minimum values.
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By regressing the mean spatial coherence of regional-

izations on each of the five characteristics of species

assemblages in considered areas (Fig. 4), we found that

spatial coherence was strongly positively related to the

strength of beta-distance relationship and this relation-

ship was consistent across both scales (Fig. 4c,h,m). At

the coarse scale, negative relationships were found with

mean beta diversity, gamma diversity and mean

endemism. At the fine scale, relationships were weaker

and sometimes even opposite to those found at the

coarse scale (Fig. 4l,n).

Results of the hierarchical partitioning showed that at the

broader spatial scale, the geographical distance fundamentally

influenced the spatial coherence of the clusters (Fig. 5a,b).

However, this effect was geographically very specific and it was

pronounced only in higher latitudes, that is, in central Europe
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Figure 3 Examples of regionalizations resulting from classification analysis based on dissimilarity in bird and mammal assemblages
(bsim) in Europe. For each area, partition into five clusters is shown. Maps are in Lambert Azimuthal Equal Area projection.
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Mean alpha diversity Mean alpha diversity
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Figure 4 Relationships between mean spatial coherence of clusters (each cluster in each partition up to 20 clusters was considered) and
five characteristics of bird and mammal assemblages in selected areas in Europe (see also Tables 1 and 2). IP – Iberian Peninsula, SEE –
south-east Europe, CE – central Europe, S – Scandinavia. PACA – Provence-Alpes-Côte d’Azur, ECR – eastern Czech Republic, SF –
southern Finland, NF – northern Finland. Error bars indicate standard deviations of spatial coherence values.
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and Scandinavia. In southern Europe, spatial coherence was

influenced rather by environmental factors, that is, by climate

or topography. At the finer scale, the independent effect of

geographical distance on the spatial pattern of clusters was

rather weak, outperformed by the independent effects of

topography in Provence-Alpes-Côte d’Azur and eastern Czech

Republic or by the land cover in Finland (Fig. 5c). All the

independent effects were statistically significant (P < 0.05).

Numerical results of the hierarchical partitioning as well as

Mantel correlations among bsim, environmental and distance

matrices can be found in Appendix S2.

DISCUSSION

The role of spatial scale

We attempted to show that the question of scale in biogeo-

graphical regionalizations based on assemblage distinctiveness

is crucial. Spatial scale is a very complex issue that includes

at least resolution (grain) and spatial extent of the study

(Nekola & White, 1999). In our study, the two components

of spatial scaling are integrated. We kept the same number

of grid cells in both resolutions in order to make the spatial

coherence of regionalizations comparable across the two con-

sidered scales. Thus, the increase of spatial grain was coupled

with the enlargement of total spatial extent of the area under

study. Due to this approach as well as due to the lack of

fine-resolution data covering large areas, we were not able to

distinguish between the effects of the two main spatial scale

components, that is, between the pure effect of the spatial

resolution and the total spatial extent of the study on the

spatial coherence of biogeographical regionalizations. Never-

theless, our results confirmed our expectation that clusters

resulting from the classification analysis at the fine spatial

scale often disintegrate into spatially discontinuous patches,

whereas at the broad spatial scale, clusters are rather spatially

coherent. Considering that biogeographical regionalizations

are based on dissimilarity of assemblages (Legendre & Legen-

dre, 2012), the different patterns of spatial coherence at dif-

ferent scales can be directly related to the scaling of beta

diversity. The scale dependence of beta diversity was docu-

mented by a number of studies which showed that beta

diversity between grid cells decreases with coarsening the

spatial resolution (Lennon et al., 2001; Arita & Rodr�ıguez,

2002; Gaston et al., 2007; Keil et al., 2012). This is a conse-

quence of scaling the species richness with area (species area

relationship, SAR), as beta diversity between neighbouring

grid cells is directly related to the local slope of SAR (Harte

& Kinzig, 1997; Lennon et al., 2001; �Sizling et al., 2011).

This slope decreases with the increasing grain, albeit only in
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resulting from classification analyses of birds and mammals in Europe. The independent effects were obtained from hierarchical

partitioning. Bars show mean independent effect of each predictor across all partitions up to 20 clusters. Error bars show standard
deviations. (a) Mammal distributions in resolution 50 9 50 km. (b) Bird distributions in resolution 50 9 50 km. (c) Bird distributions
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statistically significant (P < 0.05).
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areas smaller than biomes (Harte et al., 2009), then it

increases again (Storch et al., 2012).

The increase of similarity between the neighbouring grid

cells with coarsening the spatial resolution may explain to a

certain degree the differences in spatial coherence of clusters

resulting from biogeographical regionalizations at different

scales. However, these differences may be rather attributed to

the strength (goodness-of-fit) of the positive relationship

between beta diversity and distance (Fig. 4 c,h,m), which

increases with the coarsening the spatial scale; this pattern is

supported also by Keil et al. (2012; see Appendix S2 and S3).

If the beta-distance relationship is weak, a hypothetical cluster

may contain also some distant grid cells, because they may be

more similar than the neighbouring cells. In other words, if

the similarity of adjacent grid cells is higher than the similar-

ity of distant grid cells, clusters resulting from the classifica-

tion analysis will be spatially coherent. It might be argued

that the strength of distance decay may increase towards the

coarser resolution and wider extent just due to the difference

of sampling designs (Steinbauer et al., 2012), but it seems

that the different patterns of spatial coherence at different

scales are at least partially driven by ecologically relevant fac-

tors. In Finland, the spatial pattern of regionalizations based

on fine-scale grid was explained by differences in the land

cover composition, whereas in the eastern Czech Republic

and Provence-Alpes-Côte d’Azur, the pattern was attributable

to differences in topography. It is thus probable that regional-

ization based on fine-scale grid reflects environmental varia-

tion (which may not be strongly autocorrelated and thus

resulting clusters may not be contiguous), but this variation

is averaged-out when using coarse-scale grid, so that coarse-

scale regionalization reflects rather dispersal limitation which

naturally leads to strong spatial autocorrelation.

Geographical variation in spatial coherence

Using the fixed spatial resolution and extent, we found that

the pattern of spatial coherence is not consistent across Eur-

ope and varies with latitude. In southern Europe, clusters

resulting from the classification analysis were generally less

spatially coherent than in central Europe and Scandinavia,

respectively. This pattern, which was found also by previous

studies (Heikinheimo et al., 2007, 2012), is in accord with

differences in the strength of distance decay which was stron-

ger in northern areas for both mammals and birds but rela-

tively weaker in southern Europe (see Table 1 and Fig. 4c,h).

This result is partially supported by results of Svenning et al.

(2011) who found the strongest beta-distance relationship in

central Europe, weaker in northern Europe and the weakest

in southern Europe. On the other hand, this finding is in

contrast with the general pattern found in the North Ameri-

can continent. Although there are several exceptions, it has

been documented that the relationship between beta diversity

and distance as well as beta diversity itself generally increases

with the decreasing latitude there. The pattern was docu-

mented for North American vascular plant assemblages

(Qian & Ricklefs, 2007), New World owls (Koleff et al.,

2003b), and North American mammals (Stevens & Willig,

2002; Rodr�ıguez & Arita, 2004; Qian et al., 2009).

At the coarse scale, the different effects of geographical

distance and environmental dissimilarity on the spatial pat-

tern of regionalizations across Europe can be partly related

to the different history of northern and southern parts of the

European continent. While the southern parts of Europe

were influenced by orogenetic processes during the Palaeo-

gene and Neogene periods, forming high and rugged moun-

tain ranges, the northern and central parts of Europe,

including the Caledonian mountains of Scandinavia, were

exposed to intensive denudation during the ice ages. Glacial

processes thus created a relatively flat and homogeneous

landscape in the northern half of Europe. In such a land-

scape without important topographical barriers, it may be

expected that the dissimilarity of coarse-scale species assem-

blages and consequently the spatial coherence of biogeo-

graphical regions will depend primarily on geographical

distance. On the other hand, the unglaciated southern Eur-

ope retained the rugged landscape with a high altitudinal

and climatic variability, and nowadays also with a high

diversity of land cover types (Kallimanis & Koutsias, 2013).

Consequently, the Mediterranean fauna and flora is charac-

teristic by exceptional species richness, high beta diversity

and high level of endemism and population fragmentation

(Svenning & Skov, 2005, 2007; Baselga, 2008; Svenning et al.,

2011). It seems that all these characteristics of species assem-

blages negatively influence spatial coherence of biogeographi-

cal regions at least at coarse scale (Fig. 4). As our results

indicate, the heterogeneous landscape with numerous glacial

refugia may be the main reason why the biogeographical

regions in south-east Europe and on the Iberian Peninsula

tend to disintegrate into spatially discontinuous patches even

at this relatively coarse scale. The pronounced effect of spa-

tial environmental variability on Iberian biogeographical

regions is supported also by Moreno Saiz & Lobo (2007),

but other studies stress rather the role of history (Filipe

et al., 2009). Nevertheless, beside the environmental effect,

we have to acknowledge that the spatially disparate patterns

on the Iberian Peninsula and especially in south-east Europe

may also partly arise from uneven survey efforts.

At the fine spatial scale, where the spatial coherence of

clusters was generally low, we found some latitudinal pattern

too, but the pattern was opposite to that found at the

broader scale and driven mainly by the Provence-Alpes-Côte

d’Azur where the clusters were surprisingly very coherent,

despite the fine grid resolution. This pattern was probably

strongly influenced by our arbitrary selection of study areas

– due to the limited availability of species data in this spatial

resolution, we were not able to repeat the analyses in other

areas at the same latitude. Therefore, the pattern of spatial

coherence that we found at this scale could not be explicitly

related to latitude. Fine-scale regionalization seems to be dri-

ven by environmental variables which may or may not be

autocorrelated, leading to contiguous or discontiguous
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landscape types. Provence-Alpes-Côte d’Azur provided an

exceptional example of the territory with a strongly spatially

autocorrelated environmental gradient that separates species

assemblages. Consequently, this area could be divided into

geographically distinct and contiguous regions or altitudinal

zones, respectively.

Considerations for biogeographical regionalizations

Although our study has some limitations, primarily due to

relatively small spatial extent of the considered areas, we

believe that it provides some valuable implications for

biogeographical regionalizations. We can expect that the

development of species distribution databases will provide

fine-resolution data covering large geographical areas in the

future. Such a data can serve for both the delineation of new

regions or critical revision of existing ones, for example, bio-

geographical regions used in nature conservation policy of

the European Union. Therefore, the issue of the scale in bio-

geographical regionalizations will probably become even more

crucial than it is now. Whatever the delineation of biogeo-

graphical regions, ecological zones or landscape types should

respect primarily the purpose of the study or conservation

management requirements. Therefore, it is probably not pos-

sible to decide which spatial resolution is more appropriate

for the classification analysis. Dispersal limitation or historical

events are expected to be more important at broader spatial

scales (Verleyen et al., 2009), creating a stronger distance

decay of similarity in the composition of species assemblages

and consequently spatially distinct ‘true regions’. On the

other hand, environmental conditions operating at relatively

finer spatial scales often cause spatial separation of popula-

tions leading to spatially disparate clusters, which may iden-

tify isolated areas with unique assemblages deserving

protection. If it is required to obtain spatially coherent

regions using fine grid data at fine spatial scales (e.g. as a

baseline or complementary material for conservation deci-

sions), or to delineate ‘true regions’ in very heterogeneous

areas with high species richness, beta diversity and endemism,

it is possible to weigh the dissimilarity matrix by geographical

distances (see Moreno Saiz & Lobo, 2007) or to use spatially

constrained clustering (Legendre & Legendre, 2012).

Although the regions resulting from the spatially constrained

classification are more internally heterogeneous as compared

with the clusters resulting from the spatially unconstrained

classification, they may be more readily interpretable if we are

interested in general regional pattern in species composition

which may indicate different history of individual sites within

studied area. At the landscape level, results of this clustering

method are well comparable to regionalizations delineated on

the basis of expert knowledge (Div�ı�sek et al., 2014).
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