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Abstract

Classic theory predicts species richness scales as the quarter-power of area, yet species–

area relationships (SAR) vary widely depending on habitat, taxa, and scale range. Because

power-law SAR are used to predict species loss under habitat loss, and to scale species

richness from plots to biomes, insight into the wide variety of observed SAR and the

conditions under which power-law behavior should be observed is needed. Here we

derive from the maximum entropy principle, a new procedure for upscaling species

richness data from small census plots to larger areas, and test empirically, using multiple

data sets, the prediction that up to an overall scale displacement, nested SAR lie along a

universal curve, with average abundance per species at each scale determining the local

slope of the curve. Power-law behaviour only arises in the limit of increasing average

abundance, and in that limit, the slope approaches zero, not ¼. An extrapolation of tree

species richness in the Western Ghats to biome scale (60 000 km2) using only census

data at plot scale (¼ ha) is presented to illustrate the potential for applications of our

theory.

Keywords

Abundance, biodiversity, macroecology, power law, scaling, species–area relationship.

Ecology Letters (2009) 12: 789–797

I N T R O D U C T I O N

The rate of increase in the number of species with area, or

species–area relationship (SAR), is a central focus of ecology

(Rosenzweig 1995) and has been a subject of contention

despite 230 years of measurement and theoretical analysis

(Lomolino 2001). Classic theory suggested that the number

of species (S) would scale with area (A) as a power law

(S = cAz) with an exponent z » ¼ (Preston 1962; May

1975). The power-law assumption with this value of z has

provided a simple, widely used means of estimating both

species richness in areas too large to census thoroughly, and

future species losses under habitat loss and climate change

(May et al. 1995; Brooks et al. 1999; Seabloom et al. 2002;

Thomas et al. 2004; Costello & Ward 2006). Nevertheless,

empirical evidence indicates a huge variety of SAR shapes,

with the reasonableness of the power-law model and the

value of the fitted z varying greatly depending on the scale

range over which an SAR is analysed, the taxonomic group,

and the habitat type (Preston 1962; May 1975; Plotkin et al.

2000a,b; He & Legendre 2002; Drakare et al. 2006).

A systematic understanding of this diversity of observed

SAR patterns is lacking.

Two broad categories of SAR can be distinguished.

Island SAR are constructed from lists of species (within

the taxonomic group of interest) found in spatially disjoint

patches of habitat of differing area, such as actual islands

or different-sized plots scattered throughout a larger

mainland ecosystem. Nested SAR are constructed by

averaging species richness across the subplots of specified

area, using presence–absence data for each species at some

finest scale within a larger plot. This work focuses on

nested SAR.

The classic derivation of z � ¼ was obtained by

sampling larger and larger numbers of individuals drawn

from the individual pool, and thus at best applies to island,

not nested, SAR. Indeed, the abundance distribution alone

cannot determine the shape of a nested SAR; that shape

will also depend on the degree of aggregation of the

individuals within each of the species (He & Legendre

2002; Harte et al. 2008; see Materials and methods).

Furthermore, the validity of the power-law model is

questionable for many SAR. In particular, when nested

SAR data spanning a scale range of several orders of

magnitude in area are plotted on log–log axes, the data

often clearly exhibit distinct curvature (Rosenzweig 1995;
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Plotkin et al. 2000a,b; He & Legendre 2002; Drakare et al.

2006; Harte et al. 2008); such curvature arises even when

the R2-values of linear regressions on log–log scales exceed

0.98 as is typical in SAR analyses.

Here we modify and extend a previously developed

application (Harte et al. 2008) of the maximum entropy

principle from information theory (Jaynes 1982; MaxEnt)

to accomplish three closely related goals. We show that:

(i) a single quantity, the average species abundance at any

specified �anchor� spatial scale, uniquely and accurately

predicts the shape of the SAR at larger or smaller scales

and thus the theory permits extrapolation to biome scale

of species richness from representative small plots nested

within a biome; (ii) excluding the trivial case in which

each individual is a unique species, exact power-law

behaviour for the SAR emerges only in the limit of

increasing average species abundance; (iii) in that power-

law limit, z approaches 0, not ¼. We test these

predictions against multiple empirical SAR for plant and

bird assemblages. Finally, we provide an application of

the upscaling inference procedure by successfully extra-

polating tree species richness from 48 ¼-ha plots in the

Western Ghats to the entire 60 000 km2 preserve;

although this is only a single test of the upscaling

procedure over such a huge spatial scale range, it is

presented to encourage other tests, which if successful

would lead to eventual applications to biome-scale studies

of biodiversity.

The theory developed here differs from that in Harte

et al. (2008) in three essential ways. First, that previous

work was a top–down theory that allowed prediction of

the SAR at smaller scales from knowledge of species

richness and total abundance at some largest scale. Thus,

it permitted prediction of information that is frequently

available (small-scale species richness) from information

that is rarely available (biome-scale species richness).

Here, we modify the methods developed in the previous

paper in such a way so as to allow the maximum entropy

principle to be used to upscale knowledge of species

richness at a small scale, where it is often available. This

difference is consequential because of widespread interest

in having reliable predictions of species richness at large

spatial scales. Second, we show that a result hinted at in

Harte et al. (2008) concerning the limiting case of power-

law behaviour for the SAR is stronger than anticipated

there. In the previous work we speculated that the power-

law limit, in which abundance approaches ¥, corre-

sponded to a value of z � 0.16. In fact, using the revised

upscaling methods developed here, we show that the

power-law limit corresponds to z fi 0, not 0.16. Third,

we use a mix of published and new extensive data sets to

demonstrate the universality of the SAR behaviour

predicted by our theory.

M A T E R I A L S A N D M E T H O D S

Theoretical background

We write the SAR in the form:

SðAÞ ¼ S 0

XN0

n¼ 1

½1� Pð0jn;A;A0Þ�/ðnjS0;N0Þ: ð1Þ

Here A0 is the area at some specified largest spatial scale

under consideration, while S0 and N0 are the total number

of species and individuals, respectively within A0; A is the

area of an arbitrarily selected cell nested within A0 and S(A)

is the expected number of species in A. Equation 1 states

that the expected number of species in a cell of area A

located within a larger region of area A0 is the total number

of species, S0, in A0 times the sum of the probabilities of the

occurrences in A of each of those species.

The term /(n|S0, N0) is the species abundance distribu-

tion, which is the probability that a species picked at random

from the species pool in A0 has n individuals. To understand

the term 1 – P(0|n, A, A0) in eqn 1, consider the more

general function P(m|n, A, A0), characterizing the individual

species. It is a spatial abundance distribution, defined as the

probability that a species with abundance n in A0 has m

individuals in a census patch of area A nested within A0.

The expression 1 – P(0|n, A, A0) is thus the probability that

a species with n individuals in A0 is present in such a cell of

area A. Explicit expressions for /(n|S0,N0) and P(m|n, A,

A0) were derived in Harte et al. (2008) using methods

summarized in Appendix S1.

MaxEnt provides a method for inferring from incomplete

knowledge the shape of a probability distribution. In

particular, it was proven (Jaynes 1982) that maximizing the

information entropy [in its simplest form, information

entropy = – SP ln (P)] of the distribution, P, under the

available constraints yields the most likely, or least biased,

functional form of the distribution. Here, most likely or least

biased means the smoothest possible distribution that

satisfies the constraints. Maximization under constraint is

carried out using the method of Lagrange multipliers

(Stewart 2007). In Appendix S1, we provide a very basic

explanation of the MaxEnt method.

In applications of MaxEnt, a critical issue is identifying

the constraints. In Harte et al. (2008), we assumed an

ecosystem characterized by four state variables, in loose

analogy with the state variables such as pressure, volume,

temperature, and number of moles in thermodynamics. The

selected state variables are: ecosystem area (A0), total species

richness (S0) within A0, total number of individuals (N0) in

the S0 species, and total metabolic rate (E0) of the N0

individuals. Along with a normalization condition, the ratios
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of these state variables provide the needed constraints on a

joint probability distribution, R(n, �), over the abundances

of the species and the rates of metabolic energy consump-

tion by the individuals in the species (for details, see

Appendix S1). Thus, the mean of the species abundance

distribution is given by N0 ⁄ S0 and the mean of the

distribution of metabolic rates over the species is E0 ⁄ S0.

We denote the spatial scale at which state variables are

specified as the �anchor scale�.
By maximizing the information entropy of that joint

probability distribution under the constraints imposed from

knowledge of the ratios of the state variables, we showed in

Harte et al. (2008) that if S0 is sufficiently large so that

e)S0 < < 1, then the species abundance distribution, /, is

the Fisher log series,

/ðnjS0;N0Þ ¼ c/;0 � e�k/;0n=n; ð2Þ

where c/,0, a normalization constant, and k/,0, a Lagrange

multiplier, are given by satisfying the constraints that mean

of n over the distribution is equal to N0 ⁄ S0, and that / is

normalized to 1.

These constraints lead to the following determining

equations for k/,0 and c/,0, and thus the species abundance

distribution, at the arbitrary spatial scale A0:

S0

N0

XN0

n¼ 1

e�k/;0n ¼
XN0

n¼ 1

e�k/;0n

n
ð3Þ

and

c/;0 ¼
N0

S0

ð1� e�k/;0Þ
ðe�k/;0 � e�k/;0ðN0þ1ÞÞ

: ð4Þ

As shown in Harte et al. (2008), while the constraint of total

metabolic energy, E0 is needed to derive eqn 2, the actual

form of the species abundance distribution depends only on

S0 and N0, not on the numerical value of E0.

The spatial abundance distribution for each species with

known abundance, n, in A0, can also be derived from

MaxEnt. In Harte et al. (2008), we showed that

Pðmjn;A;A0Þ ¼ cP :expð�kP mÞ; ð5Þ

where cP and another Lagange multiplier, kP, both depend

on n, A, and A0 and are calculated by satisfying the

constraints that P, summed from m = 0 to n, is normalized

to 1 and that the mean of m over the distribution is nA ⁄ A0.

We note that the spatial pattern in the distribution of

individuals within species predicted by eqn 5 is not the same

as the binomial distribution predicted by the random

placement model (Coleman 1981). Relative to the random

placement model, eqn 5 predicts aggregation of individuals.

Extensive tests of eqn 5 for plant data are presented in

Harte et al. (2008).

Extending the theory to permit upscaling

At this stage, we depart from Harte et al. (2008). There we

used a downscaling procedure for calculating the conse-

quences of eqn 1 for areas smaller than the anchor scale A0.

To do that, we fixed the abundance distribution, /, at the

anchor scale A0, where the values of S0 and N0 are

presumed to be known, and then to implement eqn 1 we

calculated 1 – P(0|n, A, A0) from eqn 5 at each scale smaller

than A0. Here, however, we wish to use eqn 1 to upscale, so

that we can predict species richness at scales larger than the

anchor scale. The derivations in Harte et al. (2008) can only

be used to downscale from the anchor scale, and S at each

scale is presumed to depend solely upon S and N at the

anchor scale. Now we use eqn 1 in an iterative procedure

that allows us to downscale or upscale because it is

re-calculated at each scale with new constraint information,

the values of S and N at the halved or doubled spatial scales.

To illustrate this, consider the simpler case of downscal-

ing first. Now, we require only the special case of eqn 5 that

is applicable to a scale halving:

P 0jn;A0

2
;A0

� �
¼ 1

nþ 1
: ð6Þ

The apparent discrepancy between eqns 5 and 6 is illusory

because for A = A0 ⁄ 2, the Lagrange multiplier kP in eqn 5

is identically zero.

Using a notation in which k/,A is the Lagrange multiplier

appearing in the log-series distribution (eqn 2) at anchor

scale A, it is straightforward to show that if eqs 2, 4, and 6

are substituted into eqn 1, and the summation in eqn 1 is

carried out, then

S ðA=2Þ ¼ SðAÞek/;A �N ðAÞ 1� e�k/;A

e�k/;A � e�k/;AðN ðAÞþ1Þ

1� e�k/;AN ðAÞ

N ðAÞ þ 1

� �
:

ð7Þ

If the value of k/,A determined by eqn 3 is substituted into

eqn 7, then S(A ⁄ 2) is determined. Because N scales linearly

with area in a nested design, N(A ⁄ 2) = N(A) ⁄ 2, and now

with knowledge of S(A ⁄ 2) and N(A ⁄ 2) this iterative process

can be repeated to determine k/,A ⁄ 2 and S(A ⁄ 4), and so

forth. In effect, the approach in Harte et al. (2008), in which
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the SAD only at the anchor scale is used, discards

information whereas this modified approach updates the

state variables at each successive scale interval.

More importantly, this modified approach can also be

used to upscale species richness data from small plots to

allow prediction of biome-scale species richness. In partic-

ular, suppose we want to know how many species are in a

sampling unit that has area twice that of the anchor scale A

at which S and N are known. We can iterate eqn 7 now to

obtain:

S ðAÞ ¼ S ð2AÞek/;2A �N ð2AÞ
1� e�k/;2A

e�k/;2A � e�k/;2AðN ð2AÞþ1Þ 1� e�k/;2AN ð2AÞ

N ð2AÞ þ 1

� �
:

ð8Þ

Here there are two unknowns: S(2A) and k/,2A. N(2A) is of

course equal to 2N(A), but a second equation relating S(2A)

and k/,2A is still needed. Equation 3 provides that second

relationship if it is rewritten in the equivalent form:

Sð2AÞ
N ð2AÞ

XN ð2AÞ

n¼ 1

e�k/;2An ¼
XN ð2AÞ

n¼ 1

e�k/;2An

n
: ð9Þ

Equations 8 and 9 can be solved numerically for S(2A) and

the process can then be iterated up to an arbitrarily large

spatial scale that is a multiple of two times the anchor scale

area.

SAR metrics for data comparison

To characterize the shape of the predicted and observed

SAR, we use two measures that can be calculated at every

scale from both theory and SAR data: the local slope, z (A) =

d log(S(A) ⁄ d log(A), and the local curvature, g(A), of log(S)

vs. log(A). We define curvature in the standard way as:

gðAÞ ¼
d 2 logðSðAÞÞ

d logðAÞ2
� �

ð1þ z2ðAÞÞ3=2
: ð10Þ

Because our data and our theoretical predictions are for

discrete values of area, we calculate z and g using differences

rather than differentials. Hence, z(A) = 0.5[ln(S(A) ⁄ S(A ⁄ 2))

+ ln(S(2A) ⁄ S(A))] ⁄ ln(2) and g(A) = [ln(S(A ⁄ 2)) + ln(S(2A))

– 2ln(S(A))] ⁄ [ln2(2) (1 + z2(A))3 ⁄ 2].

Data

To test our predictions for the shape of the SAR, we

examined 41 empirical species–area curves and 194 values of

each of z and g at different N ⁄ S values along these curves.

These data are from plant censuses in both wet and dry

tropical forests, serpentine meadows, temperate montane

forest understory, and avian communities in South Africa

(details in caption of Fig. 1). They are data sets in which not

only are species richness values measured over some range

of spatial scales, but also a total abundance estimate is

available at the anchor scale. This is essential because

knowledge of the state variables, S and N, at that scale is

needed to predict the SAR at finer scales. Our demonstra-

tion of the potential applicability of our theory for upscaling

from small plots to biome-scale species richness values uses

tree census data from the Western Ghats Preserve in India

(details in caption of Fig. 2).

Total abundance census of plants poses certain unique

problems. For grasslands, the main problem, resolving what

an individual is, is generally resolved by the convention of

counting ramets for clonal species. For the tree censuses, a

convention is generally adopted to only count trees with a

diameter-at-breast-height above some minimal value (e.g.

10 mm) and as long as that convention is consistently

adhered to within a given data set, the MaxEnt procedure

can be applied.

R E S U L T S

The universal SAR and the power-law limit for the widely

applicable case in which e–Si << 1 and Ni > Si, it follows

from either eqn 7 or 8 that

zðAÞ � 1

lnð2Þ lnð 1
k/;A
Þ : ð11Þ

The curvature at scale A, g(A), can also be expressed solely

in terms of k/,A. But eqn 9 implies that under those same

conditions, the Lagrange multiplier, k/,A is a function solely

of N(A) ⁄ S(A), and hence the shape of the SAR, S(A), is a

universal function of the ratio N ⁄ S, provided that at each

scale e–S << 1. In the limit N(A) ⁄ S(A) fi ¥, it follows

from eqn 3 or 9 that k/,A fi 0. From eqn 11, it follows

that in the N ⁄ S fi ¥ limit, z fi 0. But for all practical

purposes, this is also the limit of increasing area because N

increases linearly with area in a completely nested census

design, whereas S increases more slowly. Thus, the power-

law model is predicted to be increasingly valid in the limit in

which area increases and z decreases towards 0.

Because our theory predicts that the value of N ⁄ S at

some specified scale determines the shape of the SAR at

larger or smaller scales, all SAR have the same shape,

differing only in the scale at which they share a common

N ⁄ S value and the actual number of species at that value.

Thus, we predict that all SAR are scale displacements of a

universal SAR shape.
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Numerical confirmation of universality

To demonstrate this numerically, we use eqns 8 and 9 to

upscale S starting from the values of S0 and N0 at some

�anchor� scale. The solid and dashed lines in Fig. 1a show

the predicted z values for N0 ⁄ S0 = 2 and 10, respec-

tively. That the curves lie on top of each other is a

numerical confirmation that the slope of the SAR is a

function of N0 ⁄ S0 alone. As area increases, N increases

proportionally to area and thus faster than S, and so

increasing N ⁄ S corresponds to increasing area. Because

the predicted z decreases with increasing N ⁄ S, this implies

that SAR should exhibit negative curvature. This is

confirmed in Fig. 1b, where the predicted curvatures for

the same two anchor values of N ⁄ S as in Fig. 1a

(N ⁄ S = 2 and 10) again coincide, indicating dependence

solely on that ratio.

From Fig. 1b, we see that theory predicts that the power-

law limit for the SAR, which is the limit in which the

curvature of a log(S) vs. log(A) plot approaches 0, is the limit

of increasing N ⁄ S. In that limit, Fig. 1a shows that the

predicted z does indeed decrease towards zero.

Tests of theory

The central tendency of the observed z values plotted

against N ⁄ S is in fine agreement with the theoretical

prediction (Fig. 1a). Although there is considerable scatter

in the observed values of g plotted against N ⁄ S (Fig. 1b),

the averages of binned curvature values are well predicted by

theory (Fig. 1c). We would expect the relatively small

observed variability in z-values around the central tendency

shown in Fig. 1a to result in the large relative variability in

observed g-values because curvatures are small differences

of relatively large quantities; plotted on the same vertical

scale from 0 to 1, the curvature values appear to be tightly

clustered as the slopes. Thus, we note that while the

predicted SAR curvatures for the South African bird data

appear to deviate considerably from the observed values, the

slopes themselves for the bird data appear to be in as good

agreement as are the slopes for the plant data sets.

An application of upscaling

The predicted shape of the universal SAR is shown in Fig. 2,

where the calculated values of species richness (X in the

figure) are obtained by solving eqns 8 and 9 (upscaling) or

the equivalent eqns 3 and 7 (downscaling) for the particular

case of an anchor value of S0 = 32.5 species and N0 = 109

individuals, at an anchor scale of ¼ ha. These particular

anchor values were chosen because they correspond to

census data on tree species richness from the 60 000 km2

Western Ghats Preserve in southern India (Krishnamani

et al. 2004).
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Figure 1 Predicted and observed values for (a) the slope parameter, z, and (b, c) the curvature, g, of nested species–area relationships for

log(S) vs. log(A) plots, but expressed here as a function of ln(N ⁄ S). (b) All the predicted and observed curvature values are shown here. (c)

The results of averaging all the curvature data and the theoretical predictions over binned intervals of N ⁄ S are shown here. In (a) and (b), the

dashed and solid lines correspond to the theoretical prediction for anchor values of N0 = 100, S0 = 10, and N0 = 40, S0 = 20, respectively.

In all the three figure parts, the theoretical predictions are generated by upscaling from the anchor values using eqns 3 and 8. In (a) and (b),

filled triangles represent tree census data from three wet tropical forest plots (BCI, Cocoli, Sherman; Condit 1998; Hubbell et al. 1999, 2005);

open squares represent understory vegetation census data in thirteen 1-m2 plots in Rocky Mountain conifer and aspen forests (Godinez &

Harte, unpublished data); open triangles represent plant census data from five 4-m2 and one 64-m2 plots (census repeated for each of the

4 years) in temperate serpentine meadows (Green et al. 2003; Smith, unpublished data); filled circles represent data from South African bird

censuses carried out during the peak breeding season in 2007 (October–December) at 15 transects located along the west–east productivity

gradient, from Kalahari desert in Kgalagadi National Park to humid savannah in Kruger National Park; each transect comprised 32 census

points and the distance between the neighbouring points was 1 km. Birds (recorded both acoustically and optically) were censused within

100 m distance around each point during the 20-minute period to ensure equal detectability of all species; open circles represent tree census

data from a 10-ha dry tropical forest plot in Costa Rica (Enquist et al. 1999).
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We now use these data to demonstrate the potential

usefulness of our upscaling procedure. First, we note that

downscaling from the anchor scale of ¼ ha predicts

accurately the species richness data at these smaller scales

(Fig. 2). Then, using eqns 8 and 9, and data only from the

anchor scale of ¼ ha, MaxEnt also predicts a total of 1070

tree species in the entire preserve (Fig. 2). Approximately

900 species are currently identified, with several additional

ones being reported each year (Krishnamani et al. 2004), and

thus our extrapolation from ¼ ha to 60 000 km2, a scale

interval greater than 224, yields a reasonable prediction for

the upscaled total tree species richness.

D I S C U S S I O N

The predicted slope, z, of the SAR decreases with increasing

N ⁄ S and thus increasing area. Because the absolute value of

the curvature is predicted to decrease in that limit, the

straight-line fit on log–log scales improves as that ratio

increases. Indeed, if the predicted SAR over a range of areas

spanning three powers of ten (ten doublings, 11 data points)

at the largest areas plotted in Fig. 2 is fit to a power-law

model, the resulting R2 is 0.9956 and the slope is 0.10. But

distinct curvature is apparent in the predicted log–log SAR

over just those 11 data points; with a relatively small number

of data points, even an R2 > 0.99 can be associated with

distinct and systematic curvature.

Many authors (Rosenzweig 1995; Plotkin et al. 2000b;

Fridley et al. 2006; He et al. 2006) have noted that across larger

spatial scale ranges (which tend to correspond to larger

average abundance per species because N increases roughly in

proportion to area and S increases more slowly) fitted z values

tended to drop well below ¼. Notably, low slopes (z < 0.1) of

the SAR have been reported for microbes (Green et al. 2004;

Horner-Devine et al. 2004, Green & Bohannan 2007); such

low slopes are in accord with our theory because average

abundance per taxonomic unit is likely to be extremely large

for micro-organisms. From Fig. 1a, we predict that the

average abundance per taxon satisfies ln(N ⁄ S) > 10 at the

spatial scales at which these data are obtained.

Our MaxEnt-based state-variable theory of macroecology

predicts a universal shape for the SAR, exactly as shown in

Fig. 2. The variable governing the local slope of the SAR at

any scale A is the average abundance per species at that

scale, N(A) ⁄ S(A). Although average abundance per species

will differ from habitat to habitat and from taxa to taxa at

any given absolute value of area, all SAR are predicted by

our theory to have the same shape when plotted against

N ⁄ S. Any two SAR can differ, of course, in the magnitude

of the area at which they share a common N ⁄ S value, which

corresponds to a horizontal displacement of the SAR, and

they can differ in the actual number of species at that value

of N ⁄ S, which corresponds to a vertical displacement of the

SAR. The data we have examined so far are in reasonable

agreement with this prediction.

Applying our theory to a landscape with two distinct biota

occupying non-overlapping regions will at the very least

require imposition of an additional constraint. But all

habitats are heterogeneous to at least some degree, and so

the question arises as to what influence this has on the

validity of our theory. Because we are looking at completely

nested SAR, habitat heterogeneity is effectively averaged

over and so we speculate that to the extent the theory

reliably predicts SAR, the influence of heterogeneity on the

theory�s predictions is captured by the influence of

heterogeneity on the measured values of the state variables

and thus on the constraints.

But in the extreme limit of heterogeneity, in which a

landscape is occupied by two distinct biota in non-

overlapping regions, the prediction that the slope of the

predicted SAR is a monotonically decreasing function of

area cannot be valid. In such a landscape, a triphasic SAR is

expected. Indeed, it is sometimes observed that at relatively

large, often continental, scales the slope of the SAR steepens

(Rosenzweig 1995; Fridley et al. 2006; Palmer 2007). Is a
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Figure 2 Test of upscaling and downscaling predictions for tree

species richness in the Western Ghats. The input information for

all the predicted values of species richness shown in the graph are

the averages of total abundance and species richness in 48 ¼-ha

plots scattered throughout the 60 000 km2 preserve (Krishnamani

et al. 2004). In those small plots, abundance and spatial distribution

data for every tree species with ‡ 30 mm dbh were obtained and

used to construct 48 species–area relationships spanning nested

areas within each plot of 0.25, 0.125, 0.05, and 0.025 ha (averages

shown by open squares in the graph). Currently c. 900 tree species

(data point at upper right in the graph) are identified in the

preserve, with c. 5 new ones reported each year. Area is in units of

square kilometre.
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MaxEnt approach capable of describing such behaviour?

Three possibilities can be identified. First, it is conceivable

that if the existence of two distinct biota is incorporated as a

new constraint within the MaxEnt framework, the theory

might make reasonable predictions. Second, it is possible

that even if knowledge of the disjoint species lists is

incorporated in the form of an additional constraint, an

observed triphasic SAR will still not be predicted by the

theory. Finally, at least in some cases it may be that empirical

support for a triphasic SAR, at large spatial scales, is a

consequence of not using a complete nested design in the

construction of the SAR. Further analysis of each of these

possibilities is warranted, and in particular we suggest that

investigating procedures for incorporating information

about non-overlapping species lists between distinct habitats

as a constraint is likely to yield interesting insights.

We have not attempted to explain the magnitude of the

scatter in the observed z-values in Fig. 1a around their

central tendency. It is possible that considerable information

about processes not captured in our purely information-

theoretic approach can be mined from the deviations from

theory, particularly if they are observed to differ from taxa

to taxa, from habitat to habitat, and from scale to scale.

Our theory provides a way of estimating species richness

at biome scale from data on species richness and total

abundance (summed over species) at a much smaller spatial

scale. If further tests of our upscaling procedure continue to

validate the technique, opportunity would exist to answer

long-standing questions concerning, e.g. Amazonian insect

species richness from canopy fumigation studies and large-

scale microbial diversity from soil cores or water samples.

Traditional methods of upscaling species richness, using

nonparametric estimators (Chao & Lee 1992) or extrapo-

lating collectors� curves, are not capable of extrapolating

reliably over scale intervals as huge as in the Western Ghats

(Krishnamani et al. 2004). Indeed only one other previously

published method, based on a hypothesized relationship

between the dependence of species richness on area and the

dependence of a community similarity index on distance

between small plots (Krishnamani et al. 2004), has yielded a

value in the vicinity of 103 for the number of tree species in

the Western Ghats. Because the MaxEnt application that we

use here does not predict the species similarity index, we are

unable to establish whether or not the agreement between

these two methods is accidental.

We note that our results, and specifically the form of eqn

6, reflect the implicit assumption in our application of

MaxEnt that the individuals within a species can be

considered indistinguishable; in a previous work (Harte

et al. 2005, 2008), it was shown that this assumption yields

realistically aggregated species-level spatial abundance

distributions, whereas the assumption of distinguishability

leads to an unrealistic Poisson distribution for the spatial

distribution of individuals within species. The implications

for spatial structure of the distinction between the assump-

tions of distinguishability and indistinguishability are dis-

cussed in Appendix S1.

The application (Harte et al. 2008) of MaxEnt, on which

we based our findings here, is by no means the only possible

approach of using MaxEnt to understand scaling patterns in

ecology. More generally, the best choice of state variables,

the related choices of what constraints to assume, and

whether to assume distinguishability or indistinguishability

(see Appendix S1) of the individuals in the system can only

be determined empirically. We have demonstrated here and

in Harte et al. (2008) that with the state variables and

constraints described before, and with our choice of

indistinguishability, a realistic set of predictions are

obtained; we await seeing if other choices and applications

of this powerful approach to inference under limited

information in the form of constraints can provide

comparably realistic predictions.

This raises the question of the generality of our findings

about the dependence of the slope parameter on N ⁄ S and

thus the absence of power-law behaviour for the SAR. Is

non-power-law behaviour an inevitable consequence of

applying MaxEnt to macroecology? Here it is essential to

understand that MaxEnt is simply an algorithm for finding

the least-biased shape of a probability distribution subject

to known constraints on that distribution. The ecology is

all in the constraints, which in our theory arise from ratios

of the defining state variables, A, S, N, and E. Applying

MaxEnt to our state variable theory, with the constraints it

imposes, does indeed preclude power-law behaviour for the

SAR. That is the result illustrated in Fig. 1a or Fig. 2. But

applied to different constraints on the two probability

distributions, P and / in eqn 1, one could obtain quite

different results from the MaxEnt algorithm. For example,

if one�s prior knowledge of the species abundance

distribution happened to be the values of the first and

second moments of log(n), one would obtain a log-normal

distribution for / from MaxEnt, and for particular values

of those moments, one would obtain the canonical log-

normal. In addition, using certain prior information about

the spatial distribution of individuals within species, one

could obtain from MaxEnt a binomial distribution for

P(m), as in classical statistical mechanics. In combination,

by the results of Preston and May, referred to in the

Introduction, a power-law SAR would result. In that case,

the predicted slope values in Fig. 1a would follow a

horizontal line with z � 0.25, rather than falling as a

function of N ⁄ S. Thus, MaxEnt by itself does not constrain

the behaviour of the SAR. Again, the question for ecology

is: What set of state variables and constraints derived from

them, in combination with MaxEnt, leads to empirically

defensible predictions?
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Another question arises as to what constitutes the �correct�
unit of analysis in a MaxEnt application. For example, we

could have carried out our analyses for genera– or family–

area relationships instead of SAR. We also could have

confined our analysis to just individuals and species

satisfying some perhaps arbitrary criteria (e.g. only plants

with yellow flowers). Nothing in the logic of MaxEnt would

forbid such choices; if the constraints are selected, the

procedure should generate testable predictions. Applications

of MaxEnt to such taxonomic categories remain to be tested.

We conclude that MaxEnt illuminates simplicity behind

the apparent wide variety of SAR observed in nature at sub-

biome scales. It informs us that the widely used assumption

that SAR generally obeys power-law behaviour with c. ¼

power exponents is not likely to be useful in ecology,

predicting instead that over limited scale ranges nested SAR

approximate power-law behaviour in the limits of z fi 0.

At a given scale, a single parameter, the ratio N ⁄ S, governs

both the slope and curvature of nested SAR. The empirical

success of this theory suggests that the hitherto less-than-

successful search for a process-based understanding of the

SAR might more productively be directed towards the

arguably simpler task of finding a mechanistic explanation

for observed values of average abundance per species at a

specified scale.
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