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Abstract. The challenge of biodiversity upscaling, estimating the species richness of a large
area from scattered local surveys within it, has attracted increasing interest in recent years, pro-
ducing a wide range of competing approaches. Such methods, if successful, could have important
applications to multi-scale biodiversity estimation and monitoring. Here we test 19 techniques
using a high quality plant data set: the GB Countryside Survey 1999, detailed surveys of a strati-
fied random sample of British landscapes. In addition to the full data set, a set of geographical
and statistical subsets was created, allowing each method to be tested on multiple data sets with
different characteristics. The predictions of the models were tested against the “true” species–area
relationship for British plants, derived from contemporaneously surveyed national atlas data. This
represents a far more ambitious test than is usually employed, requiring 5–10 orders of magnitude
in upscaling. The methods differed greatly in their performance; while there are 2,326 focal plant
taxa recorded in the focal region, up-scaled species richness estimates ranged from 62 to 11,593.
Several models provided reasonably reliable results across the 16 test data sets: the Shen and He
and the Ulrich and Ollik models provided the most robust estimates of total species richness, with
the former generally providing estimates within 10% of the true value. The methods tested proved
less accurate at estimating the shape of the species–area relationship (SAR) as a whole; the best
single method was Hui’s Occupancy Rank Curve approach, which erred on average by <20%. A
hybrid method combining a total species richness estimate (from the Shen and He model) with a
downscaling approach (the �Sizling model) proved more accurate in predicting the SAR (mean rel-
ative error 15.5%) than any of the pure upscaling approaches tested. There remains substantial
room for improvement in upscaling methods, but our results suggest that several existing methods
have a high potential for practical application to estimating species richness at coarse spatial
scales. The methods should greatly facilitate biodiversity estimation in poorly studied taxa and
regions, and the monitoring of biodiversity change at multiple spatial scales.
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INTRODUCTION

Biological diversity is intrinsically scale-dependent.
While the issue of spatial scaling has only recently
become prominent in many other areas of scientific
research, the appreciation of scale issues in biodiversity
research dates back to the foundations of the discipline.
The most widely used tool for describing biodiversity
scaling remains the species–area relationship (SAR),
first devised more than a century ago (Watson 1835,
Arrhenius 1921, Gleason 1922). The SAR represents
species richness explicitly as a function of sample area,
which is to say, as a function of spatial scale. The scale
dependence of biodiversity as reflected in the SAR repre-
sents the combined effects of statistical sampling and
ecological processes. As one examines communities
across ever wider expanses, the number of species inevi-
tably rises for a number of reasons: larger samples incor-
porate more individuals (allowing more species to be
sampled), they encompass a wider range of habitats and
environmental conditions, and bridge barriers to disper-
sal (Shmida and Wilson 1985, Drakare et al. 2006), The
wide interest in SARs over many decades (e.g., Preston
1960, Connor and McCoy 1979, Rosenzweig 1995, He
and Hubbell 2011, Scheiner et al. 2011, Storch 2016) tes-
tifies to the long-standing appreciation by ecologists of
the centrality of scaling issues.
Classically, SARs have been drawn by conducting

intensive biological surveys of different sized areas,
which may be nested (e.g., a quadrat within a field,
within a county, within a nation) or non-overlapping
samples (e.g., a series of islands or political entities of
different sizes), and may be ecological isolates (e.g.,
islands or discrete forest patches) or arbitrarily defined
samples from a larger whole (e.g., quadrats or political
entities); a great deal of discussion has focused on the
properties of SARs composed in these different ways
(e.g., Rosenzweig 1995, Scheiner 2003, Tjørve and Turner
2009, Scheiner et al. 2011). The shape of SARs has also
been hotly contested, and after decades of debate about
the relative merits of power law and logarithmic models
(e.g., Connor and McCoy 1979), in recent years a wide
range of other functional forms have been explored (re-
viewed by Tjørve 2003, 2009, see also Scheiner et al.
2011). More than 180 years after its birth, the SAR
remains an active topic of ecological research.
The reason for the continued popularity of the SAR is

obvious: it provides a clear language for expressing spe-
cies-richness information across the full range of ecologi-
cally relevant scales. As such, it has great potential as a
tool for describing and monitoring multi-scale aspects of
biodiversity. Policy is often concerned with the preserva-
tion of biodiversity at national, continental (e.g., Gothen-
burg targets, EC 2001) or global (e.g., CBD, UNEP 2002)
scales, whereas most biodiversity monitoring is conducted
at very fine spatial scales (sometimes <1 m2). This mis-
match between the scales of our policies and of our data
creates serious challenges, especially when assessing

biodiversity change. It has recently become apparent, for
example, that environmental changes may affect biotic
diversity differently at different scales (Smart et al. 2006b,
Keith et al. 2009, Keil et al. 2011); biotic homogenization,
for example, may increase local (a) diversity while decreas-
ing diversity at coarser (b and c) scales (Socolar et al.
2016); conversely some invasive species may decrease a
while increasing c-scale richness (Rosenzweig 2001, Powell
et al. 2013). SARs reflect biodiversity across a wide range
of scales (incorporating a, b, c and coarser scales) and so
should provide an efficient tool for examining and com-
municating such complexities. Global biodiversity moni-
toring needs have further increased the interest in SARs
and biodiversity scaling, due to the need to infer biodiver-
sity patterns from growing global databases of point loca-
tions to the regional scale; that is, biodiversity upscaling.
Coordinated local sampling schemes, together with reli-
able/robust upscaling methods, are critical for the integra-
tion and generalization of biodiversity information at
large scales. Efficient tools for building reliable and accu-
rate SARs may prove increasingly useful for predicting the
response of biodiversity to environmental changes across
scales, and to assess global conservation policy options
(Pereira et al. 2013, Geijzendorffer et al. 2016).
However, one serious problem prevents the wide-

spread application of SARs to multi-scale biodiversity
monitoring. The requirement for exhaustive surveys over
large areas makes it impractical to survey SARs repeat-
edly over a short period of time. Indeed, for many poorly
studied taxa and regions, it would be difficult to amass
sufficient information to provide even a single coarse-
scale biodiversity estimate with confidence (e.g., Erwin
1982, May 1990). If the SAR is to fulfil its promise, we
need to develop new approaches to parameterizing it
with finite investments of surveying effort.
Harte and Kinzig (1997) were the first to explore a

method for upscaling biodiversity from local samples.
Their approach was based on the idea that the SAR
should rise faster with area if dissimilarity in species
occurrences in small plots (species turnover or b diver-
sity) increases more rapidly with distance between plots
(Harte et al. 1999, Krishnamani et al. 2004). Unfortu-
nately the method involved strong implicit assumptions
that limited its applicability. More recently, Harte and
colleagues have proposed more sophisticated and gen-
eral approaches based on the maximum entropy inferen-
tial method (Harte et al. 2008, 2009, Harte and Kitzes
2015). The past 15 years have seen a proliferation of
other new methods to address this problem, based on
approaches ranging from relative abundance distribu-
tions (Ulrich and Ollik 2005), species accumulation
curves (Shen and He 2008), least distance spanning
paths (Smith 2008), multi-site zeta diversity of composi-
tional turnover (Hui and McGeoch 2014), and three-
dimensional manifolds (Polce 2009). This sudden flower-
ing of alternative approaches brings with it a new chal-
lenge: how do we best choose a method for a particular
application? Many of the models have been tested
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against data, of course, but each against a different data
set, and in many cases the tests have been relatively mod-
est: attempting to up-scale by only one or two orders of
magnitude or even less. This paper addresses this issue
by testing a wide range of biodiversity upscaling
approaches on a single high quality data set across a
substantial range of scales, within a well studied system.
By working in an area with a “known” SAR, we can
judge the effectiveness of the various methods in estimat-
ing coarse-scale biodiversity.

METHODS

The CS data set

We make use of the GB Countryside Survey (CS), a
periodic botanical survey program organized by the
NERC Centre for Ecology and Hydrology (CEH). The
CS focuses on a stratified random sample of 1-km cells
within Britain, chosen to represent the full range of Bri-
tish landscapes (for further details on CS methods, see
Firbank et al. [2003]). Specifically, we will rely on the CS
survey of 1998–1999 (hereafter “CS1999”), which coin-
cides with the survey period for the New Atlas of the Bri-
tish and Irish Flora (Preston et al. 2002), which we can
use to generate our “true” SAR (see Estimating the “True
SAR”). A total of 569 1-km2 cells were examined in
CS1999, scattered over the whole of Britain and its
inshore islands (but excluding Northern Ireland and more
distant island groups). Within each 1-km cell, a wide
range of surveys was conducted, which can be roughly
divided into areal surveys (various sized surveys of habi-
tat blocks) and linear surveys (1 9 10 m surveys of linear
features such as roadsides, hedgerows, and banks of
waterways). For our purposes, the most statistically “rep-
resentative” surveys were the so-called “X” plots, five of
which are sited at random (one in each of five equally
sized subsections) within each surveyed 1-km cell. The
only departure from truly random placement is that X
plots were not allowed to overlap with linear features (but
see below). X plots have the added advantage (for this
work) in being multi-scaled: each consists of a nested ser-
ies of quadrats at 4-, 25-, 50-, 100-, and 200-m2 scales.
Species presence/absence is measured at all five scales,
and estimates of cover for each species are recorded at the
finest (2 9 2 m = 4 m2) and coarsest
(14.14 9 14.14 m = 200 m2) scales. We made data from
all five scales available to researchers (in most cases, the
authors of upscaling methods), although most used only
the coarsest scale (200 m2) data in fitting their models.
The fact that X plots were not allowed to overlap lin-

ear features arguably makes them less diverse in species
composition than truly random quadrats would be, as
the inclusion of (potentially dissimilar) vegetation from
such strips would likely enhance diversity (Smart et al.
2006a). Consequently, we developed a synthetic second
set of samples, which we termed “X + Linear” samples
(for clarity, the original surveys are hereafter referred to

as “X-only” samples). These composite samples were
created by choosing the linear feature closest in space to
each X plot, and merging its species with those in the
coarsest (200 m2) X plot sample to produce an aggregate
sample representing 210 m2 (see Fig. 1). Where the same
linear sample was the nearest neighbor of more than one
X plot, it was assigned to the X plot in closest proximity,
and others were paired with their second nearest linear
surveys. If the X-only analyses arguably underestimate
local richness, these X + Linear composite plots are
likely to overestimate it, as they tacitly assume that all X
plots would have included linear features had they been
placed truly at random. We feel confident that a truly
representative sample would fall somewhere between
these two.

Subsamples

To provide a richer test of the various methods avail-
able, we developed a total of 16 test data sets. The largest
of these is the “Full” sample, which covers all 569 CS
survey cells within the surveyed area, and all five X plots
within each. We also developed five regional subsamples,
covering the “North,” “Center,” “East,” “West,” and
“South” of Britain (Fig. 1). These were non-overlapping
regions, chosen to roughly correspond to natural divi-
sions of the area, and as such they were not equal in
area. More importantly, they were also not equal in bio-
diversity, with pronounced regional differences in both a
and b diversity between regions (encompassing, e.g.,
a more than twofold range in mean species richness at
the 100-km2 scale, c.f. Lennon et al. [2001]). We also
developed two sets of five statistical subsamples from
the full data set. “Wide-shallow” (WS) samples covered

FIG. 1. The location of GB Countryside Survey (CS) survey
sites and Atlas cells, and of the regional subsets used in the
analyses. The number of samples in each region are indicated in
the legend. A hypothetical 1 9 1 km focal landscape is shown
at higher magnification on the right, containing X-plots and
Linear samples (not to scale), and the nature of (multi-scaled)
“X-only” and (composite) “X + Linear” samples is displayed.
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the full set of sampling locations, but included only one
X plot (or X + Linear sample) of the five generally avail-
able at each site. By contrast, “narrow-deep” (ND) sam-
ples included all five X plots at each site, but included
only one-fifth of the survey sites, chosen as a stratified
random sample following the original CEH landscape
stratification. Both WS and ND sample sets were non-
overlapping, so that the sum of all five subsamples in
either set constituted the Full British CS sample.
Each of the 16 samples (full set + 5 regions + 5 WS + 5

ND) were assessed for both X-only and X + Linear sam-
ple strategies, making a total of 32 potential tests for
each method employed. However, the stratified nature of
the statistical samples tended to make their multiple runs
quite similar to each other, and thus treating them as five
separate estimates would both overstate their indepen-
dence and give them undue weight in the overall analy-
sis. Consequently, to simplify reporting, each set of
statistical subsamples (WS and ND) were summarized
by a single (mean) performance score, thus leaving 16
tests (full set + 5 regions + WS mean + ND mean = 8,
for each X-only and X + Linear data sets).

The challenge

The task we set ourselves was to estimate the SAR for
scales ranging from 100 km2 (10 9 10 km, the mini-
mum mapping unit of Preston et al. 2002) to the whole
of Britain (or of a specific subregion) using only the CS
survey data. Even the finest of these scales was 500,000
times coarser than the 200-m2 scale of an X-plot survey
(or 476,190 times larger than the 210-m2 scale of an X +
Linear sample). For the purpose of this exercise, we will
treat the area of Britain as the summed area of all the
100-km2 cells covering Britain itself and the major outly-
ing islands of the Shetland, Orkney, and Hebridean
Islands, a total of 278,500 km2. This is almost 14 billion
times larger than scale of a single X plot, and approxi-
mately 500,000 times larger than the full set of survey
sites combined (more precisely: 503,799 times the area of
the full set of X plots, or 479,808 times the area of the
full X + Linear sample). Levels of upscaling in statistical
subsamples (with only one-fifth as many samples used)
were five times greater still (2,518,995-fold for X-only
analyses; 2,399,040-fold for X + Linear). The regional
subsamples cover areas between 46,100 and 77,200 km2,
with correspondingly smaller numbers of samples, giving
upscaling levels comparable to those for the full national
data set. Several of the methods considered here have
been tested before, in particular using tropical forest sur-
vey data from relatively small (e.g., 50 ha, Shen and He
2008) plots. Such applications involve only relatively
modest upscaling; the challenge presented here is sub-
stantially more ambitious and more typical of the sort of
tasks a practical upscaling approach would be asked to
perform in, e.g., regional or national biodiversity estima-
tion. To our knowledge, only a few past papers (Ugland
et al. 2003, Krishnamani et al. 2004, Harte et al. 2009)

have attempted comparable levels of upscaling, each for
only a single model.

Upscaling methods

As noted in Introduction, there has been a proliferation
of novel methods for upscaling biodiversity in recent
years. We have brought together most of the global com-
munity of researchers addressing this issue, presenting
each with the same CS data sets. To ensure high levels of
familiarity with the models employed, most methods
were fit by their original proponents, with the exception
of the three variants of the Ugland model and the Lomo-
lino model, which were prepared by a working group
composed of E. Tjørve, A. �Sizling, R. T. Jobe, K. I.
Ugland, and W. Ulrich, and the power and logarithmic
models, fit by V. Varma and W. E. Kunin. Further details
of the models are given in the sections that follow.

Harte MaxEnt method

The maximum entropy theory of ecology (METE)
predicts the shape of metrics describing patterns in the
spatial distribution, abundance, and energetics of species
(Harte et al. 2008, Harte 2011, Harte and Newman
2014). METE is a state variable theory in which the
maximum entropy inference procedure (Jaynes 1982),
coupled with constraints arising from knowledge of
quantities such as the number of species and the number
of individuals at plot scale, determine unique and testa-
ble macroecological metrics across all scales. METE pre-
dicts a non-power law but universal form for the SAR;
in particular, if the local log-log slope of the SAR at each
spatial scale is plotted against the average abundance per
species at each scale, then all SARs are predicted to fall
on a universal curve (Harte et al. 2009).
Upscaling species richness can either be carried out

from knowledge of the number of species and the num-
ber of individuals at any one spatial scale, or alterna-
tively from knowledge of the number of species at two
spatial scales (from which information the abundance at
each of those scales can be inferred from METE). The
CS data set provides abundance information in terms of
the percentage of cover, but not the number of individu-
als (which is hard to assess in many plant species). For
that reason, we can upscale using the X-only plot data,
which does include measured values of species richness
at several plot-sized scales, but we cannot use the X +
Linear plot data, as only one scale is available.
The capacity of METE to upscale has been tested suc-

cessfully for tree species in the Western Ghats, where spe-
cies richness was upscaled over a scale range of 24
million, from 0.25-ha plots where census data are available
to the entire 60,000-km2 biome (Harte et al. 2009). Other
tests of upscaling with this method have been carried out
for arthropods and trees in a Panamanian Preserve and
trees in the Amazon (Harte and Kitzes 2015). An impor-
tant limitation of the MaxEnt method, however, is that it
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is designed only for uspscaling species richness within con-
tiguous blocks of similar habitat. Moreover, accumulating
evidence (Harte 2011, Harte and Newman 2014), suggests
that due to its reliance on equilibrial statistical outcomes
METE’s successes are restricted to relatively undisturbed
ecosystems, with failures observed in habitats strongly
influenced by human activity.

Ugland TS loglinear method

If METE is designed for uniform habitat, the Ugland
et al. (2003) TS model was explicitly designed for sur-
veys covering multiple potentially dissimilar communi-
ties. Most assemblages have a complex covariance
structure between species and subareas. This leads to a
largely unrecognized aspect of predicting the number of
species by upscaling: with the addition of new subareas
or habitats, the observed species accumulation curve
(across regions or habitats) will not only extend the pre-
vious within-habitat accumulation curve, but also tend
to lie above the accumulation curves for smaller subar-
eas. The rate of (vertical) increase of the species-accumu-
lation curves provides the best estimate of total species
richness. Ugland et al. (2003) derived an exact analytical
expression for the expectance and variance of the species
accumulation curve in all random subsets from a given
area. In this method, the whole area is divided into sub-
areas, and an increasing sequence of accumulation
curves is constructed as follows. The first accumulation
curve (the bottom curve) is obtained by taking the aver-
age of all single subareas. The second accumulation
curve is obtained by taking the average of all accumula-
tion curves based on two randomly chosen subareas. For
example, if there are five subareas, the total number of
subsets of two subareas is the binomial coefficient
5 9 4/2 9 1 = 10, so the second accumulation curve
will be the average of 10 curves. In the same way, the
third accumulation curve is the average of accumulation
curves based on all possible subsets of three subareas.
This procedure is repeated until we end up with the last
accumulation curve, which is obtained by randomization
of all available samples in the data set.
It is the terminal points of this increasing sequence of

species accumulation curves that contain the crucial
information of the accumulation rate of new species as
sampling effort is increased to new subareas. The total
species curve (the TS curve) is then defined as the curve
connecting these end points. In a semilogarithmic plot,
these curves frequently appear linear, and Ugland’s esti-
mator is then simply the linear extrapolation of the TS
curve to the whole area in the semilog plot.

Ugland ten-at-a-time method

We also used a variant of the method presented in
Ugland et al. (2003), where the mean number of species
in a set of samples with the same number of plots is
regressed with a semi-log function against the log of

summed plot area. In this case, we used 10 groups of 10
plots, 20 plots, 30 plots, and so on, until the last group
contained the entire set of plots (of which there is but
one group). We examined groups of 50, 100, 150, and so
on, plots, but the results were similar to the method
using multiples of 10 plots at a time.

Ugland PAM method

A third method of applying the Ugland approach was
pioneered by Jobe (2008), using the non-hierarchical
clustering method algorithm known as partitioning
around medoids (PAM) to determine the subclasses of
sites for computing species accumulation curves. The
original Ugland estimation method requires an a priori
grouping of observations, so the introduction of PAM
clustering allows such group assignments to be done on
an objective basis in cases where no such classification is
available. There are no hard and fast rules for selecting
these groups, but the goal is for groups to contain eco-
logically distinct observations (e.g., communities, assem-
blages, etc.). PAM makes the grouping process more
objective by using compositional similarity among
sites as reflected in the clustering algorithm to select
both the optimal number of groups and the membership
of each group.

Shen and He method

There is a growing literature of methods devoted to
estimating species richness in an area from random sam-
ples taken from within it (e.g., Palmer 1990, Chao 2005,
Magnussen et al. 2006), often using resampling tech-
niques with replacement. While these methods are not
designed to estimate the full SAR, they can be used to
upscale from a set of point data to estimate the overall
species richness of the area from which they were drawn,
and thus to estimate at least one point (the top) of the
SAR. Many of these methods, however, have been shown
to overestimate richness (e.g., Xu et al. 2012). Shen and
He (2008) developed a novel approach based on sam-
pling without replacement, using information on pres-
ence/absence data on species incidence, based on a
modified Beta distribution. The method is not spatially
explicit, and provides a single estimate for the species
richness of the full sampled area. To derive finer scale
estimates, the area to be estimated was shifted down-
wards (but see Discussion). In the X-only data sets, the
Shen and He model was fitted both to data from the full
200-m2 survey plots, but also to the finest scale (4-m2)
survey data, allowing the model’s sensitivity to sample
plot size to be assessed.

�Sizling method

Arno�st �Sizling and David Storch (Appendix S1) have
developed a method using the frequency distribution of
species’ occupancies to estimate the shape of the SAR
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between two fixed scales, based on their “finite area
model” of the SAR (�Sizling and Storch 2004); different
species-occupancy distributions produce SARs with dif-
ferent degrees of curvature, with the standard deviation
of occupancy playing a key role (see Appendix S1). This
approach is a “scaling between” method, rather than an
upscaling method per se; that is, it estimates the increase
in species richness as one moves from a unit survey plot
(here a 200- or 210-m2 CS sample) up to a predeter-
mined maximum value. Thus it requires an estimate of
“known” global species richness for the area in question
and information from local samples to estimate species
richness at scales in between these two known points on
the curve. It would have been unfair to provide this
model with more information than its competitors, and
so the modeler had to make an arbitrary global richness
estimate (1,000) to implement his model; but in practice,
the method might best be combined with other methods
that make effective global richness estimates in order to
estimate the SAR as a whole (see Discussion). The
method is based on the fact that if we assume aggregated
distributions, the proportional occupancy constrains the
size of the maximum gap in a species’ distribution (the
“area of saturation”; �Sizling and Storch 2004), which in
turn determines the number of species sampled within
given size window, i.e., in a specific area. As that and
occupancy of the unit area together determine the slope
of log-SAR (z), one could compose the SAR for any
given number of species randomly chosen from the
observed frequency distribution of occupancies, and
thus estimate species richness of any area between the
unit and total areas.

Hui models

Cang Hui developed three additional new approaches
for this paper; each will be described briefly here, with
full details and computer codes given in Appendix S2.

Hui 1: Occupancy rank curve.—This approach propor-
tionally scales up a sampling occupancy rank curve
(ORC) by assuming that the sampling is sufficient and
representative of the wider area from which the samples
were drawn. Specifically, if one plots the number of sites
occupied by species in order of ubiquity, the resulting
ORC for samples closely follows a truncated power law
(Hui 2012), O ¼ c1ec2�RRc3 , where O and R represent the
occupancy and the ranking of a species. This shape con-
sists of two components: a power law function depicting
the scale-free relationship between species ranks and their
occupancies, and an exponential cut-off depicting a Pois-
son random process of species occupancy. The power law
component is largely applicable to widespread/common
species, with their distributions reflecting the spatial parti-
tioning (or sharing) of heterogeneous, often approxi-
mately fractal, habitat, while the exponential cut-off
reflects the chance events of flickering presence/absence
of rare species. This method then scales up the sampled

ORC to estimate the true ORC proportionally according
to the sampling effort (replacing c1 from the sampling
ORC with C1 ¼ c1=s, where 0 ≤ s ≤ 1 represents sam-
pling effort) and the maximum ranking for the enlarged
ORC (i.e., solving 1 ¼ C1ec2 �RRc3 for R) then represents
the true number of species in the community.

Hui 2: Hypergeometric discovery curve (HDC).—Sam-
pling patterns do not necessarily follow the same shape as
the true biodiversity patterns, because the probability of
discovering a species in a sample does not correlate lin-
early with the species’ true occupancy: the probability of
encountering very rare species in a moderately sized sam-
ple is near zero, with probability rising with occupancy in
a sigmoid fashion and approaching an asymptote near 1
for very common species. The sampling theory of species
abundances has been extensively studied (Dewdney 1998,
Green and Plotkin 2007), and Hui has developed an
equivalent sampling theory of species occupancies,
together with its continuous approximation for random
sampling (Appendix S2). In particular, we need the sam-
pling probability (probðijjÞ) of discovering a species in i
samples given a specific true occupancy of j. For random
sampling without replacement, this follows a hypergeo-
metric distribution. Importantly, sampling can affect the
shape of observed occupancy frequency distribution
(OFD), f ðiÞ ¼ Pm

j¼1 probðijjÞFðjÞ, where f is observed
OFD, F true albeit unknown OFD, and m the sample
extent divided by the grain. This formulation follows the
discrete Fredholm equation (also Volterral integral equa-
tion) of the first kind (Arfken 1985), with probðijjÞ the
kernel function and F a solvable positive vector. Despite
the diverse parametric forms of OFDs (Hui andMcGeoch
2007), we reduce the computational demand for parame-
ter optimization by using a lognormal distribution
(FðjÞ ¼ S � LNðjjl0;r0Þ) centered at the middle of the pos-
sible logarithmic occupancy (l0 ¼ lnðmÞ=2) such that its
95% confidence interval encompasses the entire range of
occupancy at logarithmic scale (r0 ¼ lnðmÞ=3:92), making
species richness the sole variable to be estimated from the
parameter optimization.

Hui 3: Zeta diversity.—Zeta diversity represents the
overlap in species across multiple samples (Hui and
McGeoch 2014). Unlike pairwise beta diversity, which
lacks the ability to express the full set of diversity parti-
tions among multiple (three or more) samples, zeta
diversity can express and potentially explain the full
spectrum of compositional turnover and similarity
(Latombe et al. 2017), with power law and negative
exponential the most common forms of zeta diversity
declines (with increasing number of included samples).
We use a truncated power law to ensure a good fit to zeta
diversity decline and then estimate the number of new
species that are expected to occur when adding extra
samples (i.e., the level of completeness) based on fitted
zeta diversity decline. The expected number of species in
an area can then be estimated according to the generic
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estimator developed in Hui and McGeoch (2014); note,
the Chao II estimator is only a special case for exponen-
tially declining zeta diversity. As the formulation is based
on combinatorial probabilities, to reduce the overflow
error (a combination of floating-point inaccuracy in any
numerical computation platforms and combinatorial
explosion [of formulation complexity] with increasing
number of samples), we first estimate the number of new
species encountered when adding one extra sample and
then calculate the expected number of species using inte-
gral approximation.

Ulrich and Ollik method

Ulrich and Ollik (2005) made use of a different
method based on Relative Abundance Distributions
(RADs), which was originally designed to estimate the
upper and lower limits of species richness in a focal
region. Under the assumption that the occupancy–spe-
cies-rank-order distribution is either a lognormal or a
logseries and that the least abundant species has an
occupancy of one cell (200 m2), they estimated upper
species richness boundaries from the logseries by

ES ¼ lnðIntÞ þ lnNA1 � lnNS1

slope
(1)

and lower species richness boundaries from the log-
normal distribution by

ES ¼ 2 lnðIntÞ þ lnNA1 � 2 lnNS1

slope
(2)

where ln(Int) and ln(slope) are natural logarithm of the
intercept (Int) and the slope of an exponential regression
through the middle 50th percentile of the respective
abundance distributions and ln NS1 and lnNA1 are the
natural logarithms of the numbers of individuals of the
most abundant species of the whole community within
the area Atotal and of the sample of area A1, respectively.
NA1 comes from proportional upscaling of the sample
area to total area: NA1 = NS1Atotal/A1.

Smith method

A species–distance relationship (SDR) was explored
by Smith (2008) as a method for estimating the SAR
from point survey data. The SDR slope was found to be
highly correlated with the slope of the SAR for the U.S.
Breeding Bird Survey data at large geographic scales.
The SDR is calculated by estimating the path of shortest
length connecting a set of localities, then estimating
cumulative distance and cumulative diversity along the
path. In the present analysis, data for all X or X + Linear
plots were lumped within a given 1-km2 sampling cell
(except for the wide-shallow subsamples, as these only
contained one X plot per cell). This is because locality

size per se was found not to have a significant influence
on the slope of the SDR, whereas sample size (which
affects number of individuals surveyed) per locality did.
SDRs were calculated for all subsets of the Coun-

tryside Survey data using 1-km2 cells as localities. No
correction was made for sample size. Distance was calcu-
lated as Cartesian distance between the midpoints of the
cells. Mean slopes of the SDR are based on 200 values
(100 paths, each containing 10 cells and measured in for-
ward and reverse directions). To estimate the slope of
the SDR, linear regression and standardized major-axis
regression were performed. Setting then the slope of the
SDR to equal the slope of the SAR, diversity estimates
were made for the relevant portions of Britain by assum-
ing two different values for alpha diversity. First, average
alpha diversity was calculated for the plots (200 m2 or
210 m2 for X and X + Linear plots, respectively). Sec-
ond, average alpha diversity per cell (1 km2) was calcu-
lated by combining all plots in a sampling cell; this will
underestimate diversity for a 1-km2 area.

Polce and Kunin method

The SAR rises for two reasons (see, e.g., Scheiner et al.
2011): a larger area both encompasses more environmen-
tal and spatial diversity than a small area and it includes
more total individuals (and thus constitutes a larger
sample). These two component processes, increased sam-
ple size and increased spatial differentiation, may be
expected to behave rather differently with increasing
area. In order to factor out these two component
processes, we randomly sampled (1) different numbers of
quadrat surveys from constant sized “windows” of focal
area (to estimate the pure sample size effect), and (2)
constant numbers of quadrat samples chosen from differ-
ent sized windows (to estimate the pure spatial scale
effect), and tested the fit of a range of convex and sig-
moid curves (from Tjørve 2003) to each component pro-
cess. Note that in these analyses, total sample size for a
set of quadrats is expressed in units of area (total m2 sur-
veyed), as that is essential for later steps of the analysis.
We then constructed a three-dimensional manifold model
as a multiplicative combination of the best-fitting sam-
ple-size and scale models (see Polce 2009). Pilot work
suggested that the MMF model [Y = (a 9 Samplesizec)/
(b + Samplesizec)] provided the best fit to the pure sam-
ple size component (sampled within a fixed window size),
whereas a power law (Y = d 9 Scalez) performed best
for pure spatial differences (at constant sample size).
These two component models could then be combined
multiplicatively, to derive a final model

Y ¼ ða� Scalez � SamplesizecÞ=ðbþ SamplesizecÞ (3)

Fitting this three-dimensional model to the data set, the
SAR can be estimated as the value of Y over the
diagonal line where Samplesize = Scale.
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Lomolino model

We also fit a suite of models commonly fit to SARs and
to the plot-based species-accumulation curve (SAC) from
each data set (see Tjørve [2003] for models). Preliminary
results here indicated that in most cases the “Lomolino”
model (Lomolino 2001) worked best (S = a/(1 + blog10(c/A))),
where S is number of species, A is area, and a, b, and c are
model parameters fit using the Gauss-Newton method
for non-linear regression (Myers 1990). In most cases, the
AIC weight of the Lomolino model was ~1, and where it
was not, it was equally tied with other models that were
nested within the Lomolino model. Therefore, we used
only the Lomolino model to fit each data set.

Power law and logarithmic models

To complement the range of recently derived methods,
we have included a few “old-fashioned” approaches to
SAR estimation. Arrhenius (1921) proposed a power law
(S = cAz) as the best descriptor of the SAR, and Preston
(1962) suggested that the “canonical” SAR would have
an exponent (z) of 0.25. Subsequent work (e.g., Connor
and McCoy 1979, Rosenzweig 1995) has suggested
somewhat less steep z values predominate in many conti-
nental systems, with a consensus z of approximately 0.2.
Thus, we generated SAR estimates by simply computing
mean species richness at the 200-m2 scale X plot samples
(and 210-m2 for the X + Linear samples) and scaling up
to coarser resolutions using power law curves with these
two slopes. We also took advantage of the multi-scaled
nature of the CS X plot surveys, fitting both power and
semi-logarithmic (after Gleason 1922) models to the
observed species richness of each plot at the five scales
of measurement (4, 25, 50, 100, and 200 m2), and
extrapolating median estimates for each. As the X + Lin-
ear data are available only at a single scale, these extrap-
olations of power law and semi-logarithmic curves can
be done only on the X-only data sets.

Model summary

Altogether, we have assembled 13 different models for
upscaling biodiversity, and several of them (the power
law, Shen and He, Ugland’s TS and Ulrich and Ollik’s
methods) have been implemented in multiple forms, for
a total of 19 sets of predictions. These methods may be
grouped conceptually, based on the approaches they
take to the challenge of estimating coarse-scale species
richness from fine-scale samples (Fig. 2). Three of the
methods (power law, logarithmic, and Lomolino) involve
parameterizing and extrapolating a well-studied SAR
curve from the observed data. This is an entirely phe-
nomenological approach to upscaling. Two other models
(Harte’s MaxEnt model and Hui’s HDC) also extrapo-
late functions, but with curves that are built on a strong
underlying rationale concerning the patterns expected
from random community patterns under constraints.

Three models are based on sampling processes from spe-
cies occupancy (Hui ORC, �Sizling) or abundance (Ulrich
and Ollik) distributions. Two additional models (Shen
and He, Ugland’s TS) focus specifically on sampling
processes and the resulting accumulation of species. The
Polce and Kunin model is similar to Ugland’s sampling
process approach, but with an explicit emphasis on spa-
tial turnover processes. Such spatial turnover in species
is central to Hui’s Zeta model, and plays a substantial
role in the Smith model as well, which in turn links back
to phenomenological curve estimation approaches.

Estimating the “True SAR”

The quality of the various SAR predictions can only
be tested by comparing them to the “true” SAR for the
focal region. This was estimated using data from the
New Atlas of the British and Irish Flora (Preston et al.
2002; hereafter NABIF), which was compiled based on
surveys from the late 1990s, thus approximately at the
same time as the CS 1999 sample. In contrast to an ear-
lier attempt at a UK floral atlas (Perring and Walters
1962), the NABIF’s compilers made a concerted effort
to ensure a relatively even survey effort across the area
in a fairly narrow time window, and in particular to
avoid false negatives due to the underreporting of com-
mon species and the false positives that result from the
compilation of records over long periods of time. While
no biodiversity survey can be treated as perfect, the
NABIF is arguably one of the highest quality biodiver-
sity atlases currently available anywhere. In addition to
vascular plants, the CS survey included a predefined set
of 160 relatively common and distinctive bryophyte and
lichen taxa (species or species groups); consequently dis-
tribution maps for these taxa were acquired from the
bryophyte and lichen recording schemes, respectively
(M. O. Hill, personal communication; J. Simkin, personal

FIG. 2. Conceptual groupings of the methods employed.
SeeMethods for further explanation.
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communication). The true SARwas composed by super-
imposing a series of coarser grids (with resolutions from
400 km2 to 90,000 km2) over the distributional data set.
Only grid cells containing >75% land area were included
in our analyses for each scale; at coarse scales, grid cells
were shifted somewhat (following Tjørve et al. 2008,
Keil et al. 2011) to maximize the area fitting this crite-
rion. Our NABIF SAR calculations are being posted
online (Polce and Kunin 2017).

Assessing model performance

To assess the quality of the predictions of each model,
we examined two quality criteria, appropriate to some-
what different applications. One goal of diversity upscal-
ing is to estimate the Total Species Richness (TSR) in a
focal region, while for other applications, it is valuable to
estimate species richness across a range of scales within
the region, providing an estimate of the region’s species–
area relationship (SAR). We assessed model predictions
against both of these criteria: SAR and TSR fits.
To assess the quality of SAR fits, we examined the

mean absolute value of the difference between predicted
and true species richness values at a given scale,
expressed relative to the true richness value at that scale,
which we term the “mean relative error” (or MRE)

MRE ¼ 1
n

� �X
i

jSpredicted;i � Strue;ij
Strue;i

� �
(4)

where Spredicted,i is the number of species predicted at
scale i, Strue,i is the number observed at that scale in the
true SAR, and the summation is across n observed scales
(nine scales in the regional analyses, 10 in the full
national and statistical subsample analyses). Note that
we normalize errors by dividing them by the true SAR
value at each scale, so that, e.g., a 100-species error is
deemed to be a larger mistake when the true value is 100
than it is when the true value is 1,000. This has the addi-
tional advantage of allowing model fit to be expressed as
a dimensionless fraction: the mean proportional error in
estimation. We have also calculated model fits using a
number of other popular metrics (e.g., RMSE, Pearson
v2; see Data S1), but there is little qualitative effect on
our findings; the same models perform well by any sensi-
ble measure, with at most slight rearrangements of the
order of the winners.
The quality of Total Species Richness (TSR) predic-

tions was assessed using this same metric, but evaluated
only at the coarsest scale considered (278,500 km2 in
national analyses, and the area of each region in regional
analyses). In addition, we examined the correlation
between true TSR and estimated values across data sets,
using the nonparametric Spearman’s rank correlation, to
test how consistently high richness estimates were pro-
vided in highly species-rich regions. A similar correlation
test was performed for the full SAR fit, comparing the
overall slopes of the estimated SARs (on logarithmic axes)

over the range of scales examined (100–278,500 km2) with
the slopes of the true SARs over those scales.

RESULTS

The models tested differed greatly in their predictions
for British plant richness; while the true TSR value was
2,326, the model estimates based on the X-only data set
ranged from only 62 (median semi-logarithmic curve
extrapolation) up to 11,593 (Smith model) species. A
somewhat narrower range of predictions for the X + Lin-
ear data set (1,136 to 8,647) was largely due to the fact
that some of the more extreme value models could not
be applied to this data set (e.g., the fitted semi-logarith-
mic and power law models, which needed multiple scales
of diversity surveys). Examples of the true and estimated
SARs for the full British data sets are shown in Fig. 3
(full data are provided in Data S1).
Fit scores for Total Species Richness predictions are

given in Fig. 4. Three families of models stand out as the
most reliable predictors of TSR: the two applications of
Shen and He’s method (2008; hereafter S&H), the paired
upper and lower estimates of Ulrich and Ollik (2005; here-
after U&O), and the Hui ORC models. The best predic-
tive accuracy came from the S&H model, with estimates
generally within 10% of the correct TSRvalue (mean rela-
tive error = 0.097 � 0.085) when parameterized with
200-m2 (or 210 for X + Linear samples) data; interestingly,
the model performed almost as well (mean relative
error = 0.110 � 0.091) when parameterized from much
smaller (4-m2) vegetation samples. The U&O method and
Hui’s ORC model were the next best approaches: the
upper (log-series) U&O model had a mean relative error
of 0.155 (�0.083), whereas the lower (log-normal) U&O
model had a mean relative error of 0.211 (�0.080). While
these two methods are meant to serve as upper and lower
estimates, even the upper estimate was usually less than
the true TSR. Hui’s ORC model performed nearly as well
as the best U&O model in accuracy (mean relative
error = 0.156 � 0.089). The Ugland model, applied using
the 10-at-a-time algorithm, performed reasonably well
(MRE = 0.210 � 0.162), as did Hui’s HDC model
(MRE = 0.272 � 0.173); no other approach came close
(the next best was the Polce & Kunin [P&K] model,
MRE = 0.375 � 0.158). Judging by the (Spearman’s
rank) correlation coefficients between true and predicted
species richness across sample sets, a similar picture
emerges, with the S&H methods (q = 0.825 and 0.805,
when parameterized with 200- and 4-m2 data, respec-
tively) and the Hui HDC, Zeta, and ORC models
(q = 0.800, 0.752, and 0.697, respectively) showing the
highest correlation with true TSR, along with the Ugland
(in particular, the 10-at-a-time version with q = 0.788),
P&K (q = 0.728), and U&O (both q = 0.655) models.
The full SAR fits of the models are given in Fig 5.

Accuracy was not as good as for SDR overall, but one of
Hui’s models is the clear favorite in predicting the curve
as a whole: the Hui ORC model was well within 20% of

178 WILLIAM E. KUNIN ET AL. Ecological Monographs
Vol. 88, No. 2



correct SAR values on average (MRE = 0.177 � 0.059).
The lower (log-normal) U&O model performed reason-
ably well (MRE = 0.272 � 0.094), as did the Hui HDC
model (MRE = 0.304 � 0.202). The upper (log-series)
U&O approach and the P&K method competed for fifth
place (P&K, MRE = 0.358 � 0.118; U&O2, MRE =
0.369 � 0.217). The only other models that averaged
within 50% of the correct SARwere the Hui Zeta model
(MRE = 0.408 � 0.134), the S&H model (MRE =
0.418 � 0.212), the Lomolino model (MRE = 0.442 �
0.110), and the power law model with z = 0.2 (MRE =
0.451 � 0.179) or z = 0.25 (MRE = 0.496 � 0.444). As

noted above, several other models were tested only on
X-only data, but none of them performed well enough to
challenge the leading methods. The slopes of the esti-
mated SARs were generally uncorrelated with the true
SAR slopes over the scales considered here; only the
median logarithmic model showed a significant positive
correlation (q = 0.756, n = 8, P = 0.015).
Sometimes consensus models can be constructed that

perform more reliably than any one approach by itself,
especially when different models have contrasting weak-
nesses (e.g., Gritti et al. 2013). The P&K and U&O meth-
ods tended to make contrasting errors, with the P&K

d

ba

c

FIG. 3. Model predictions for the full UK data set, based on (a, b) X-only samples, (c) X + Linear samples, and (d) randomized
subsets. For clarity, a subset of the best-fitting models are plotted in panel b, with an expanded y-axis. Note that several models
(MaxEnt and fitted versions of Power and Logarithmic models) could not be estimated on X + Linear samples (see text and Figs. 4,
5). Plots in (d) represent means of X-only and X + Linear data from both wide-shallow (WS) and narrow-deep (ND) samples. Error
distributions around each curve (with matching line color) represent trimmed ranges: the central 18 of the 20 data points (roughly
corresponding to 90% confidence intervals). The true SAR is indicated by heavy lines in each panel, for clarity.
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model predicting a lower and steeper SAR than was found
in many cases, while the U&O method predicted a higher
and flatter SAR than that observed over the relevant range

of scales, so that there was an inverse correlation between
the performance of the two models (Pearson r = �0.470).
Consequently, the mean of these two estimates often
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Full British 0.951 0.578 0.156 0.490 0.974 0.172 0.148 0.459 0.566 0.810 0.228 0.216 0.567 3.984 1.934 0.471 2.673 0.094 0.301 0.155 0.258 0.198

tesbuS

Wide-
shallow

0.952 0.282 0.145 0.402 0.973 0.400 0.335 0.454 0.566 0.811 0.049 0.069 0.714 13.533 1.987 0.195 1.629 0.185 0.090 0.058 0.010 0.138

Narrow-
deep

0.951 0.242 0.143 1.144 0.973 0.508 0.425 0.453 0.566 0.808 0.023 0.003 0.735 3.813 1.578 0.111 1.424 0.179 0.084 0.091 0.044 0.132

lanoige
R

South 0.955 0.282 0.219 0.035 0.976 0.558 0.580 0.617 0.003 0.862 0.051 0.051 0.738 0.848 1.365 0.067 1.391 0.258 0.159 0.155 0.105 0.209
East † 0.014 0.135 0.357 0.980 0.571 0.493 0.758 0.363 0.856 0.245 0.148 0.772 0.191 1.330 0.055 1.309 0.327 0.215 0.238 0.182 0.271
West 0.951 0.033 0.215 0.488 0.974 0.519 0.478 0.560 0.158 0.857 0.166 0.132 0.740 0.673 1.161 0.004 1.282 0.302 0.228 0.217 0.180 0.265
Centre 0.946 0.026 0.322 0.527 0.971 0.282 0.307 0.511 0.289 0.830 0.091 0.029 0.699 0.313 1.614 0.130 1.634 0.189 0.091 0.109 0.060 0.140
North 0.916 0.214 0.239 0.389 0.951 0.511 0.551 0.200 1.149 0.704 0.026 0.061 0.686 2.080 0.947 0.109 1.595 0.147 0.052 0.104 0.057 0.099

Full British 0.556 0.015 1.138 0.060 0.004 0.140 1.490 0.325 0.512 2.219 1.992 0.608 2.717 0.079 0.294 0.202 0.309 0.186

raeniL
+

X
tesbuS

Wide-
shallow

0.436 0.006 0.832 0.317 0.240 0.139 1.490 0.178 0.666 13.767 2.154 0.368 1.823 0.182 0.088 0.002 0.045 0.135

Narrow-
deep

0.417 0.009 0.761 0.437 0.350 0.139 1.490 0.111 0.682 3.673 1.704 0.276 1.732 0.214 0.127 0.051 0.008 0.171 

lanoige
R

South 0.381 0.161 0.424 0.532 0.558 0.369 0.668 0.018 0.688 0.698 1.243 0.182 1.776 0.255 0.157 0.118 0.070 0.206
East 0.166 0.252 0.500 0.452 0.340 0.540 0.222 0.051 0.720 0.168 1.628 0.127 0.781 0.333 0.219 0.192 0.135 0.276
West 0.144 0.107 0.386 0.439 0.436 0.331 0.778 0.037 0.692 0.862 1.271 0.128 0.651 0.308 0.231 0.173 0.134 0.269
Centre 0.287 0.194 0.046 0.194 0.274 0.235 1.035 0.091 0.633 0.540 1.806 0.305 0.900 0.204 0.098 0.056 0.003 0.151
North 0.300 0.174 0.134 0.439 0.485 0.192 2.234 0.041 0.637 3.574 0.967 0.225 1.898 0.125 0.042 0.042 0.0004 0.084

Overall: Mean 
(SD)

0.972 
(0.145)

0.272
(0.173)

0.156
(0.089)

0.503 
(0.328)

0.972
(0.009) 

0.400 
(0.152)

0.375
(0.158)

0.381 
(0.192)

0.817 
(0.615)

0.817 
(0.050)

0.110
(0.091)

0.097
(0.085)

0.680 
(0.067)

3.183 
(4.315)

1.543 
(0.375)

0.210 
(0.162)

1.576 
(0.572)

0.211 
(0.080)

0.155
(0.083)

0.122 
(0.070)

0.100
(0.093)

0.183 
(0.063)

Rank correl. 0.074 0.800 0.697 0.752 0.146 0.576 0.728 0.121 0.261 0.122 0.805 0.825 0.600 0.661 0.764 0.788 0.679 0.655 0.655 0.782 0.764 0.655

FIG. 4. Compilation of total species richness fits of the various upscaling models tested. Values represent proportional absolute
errors [|Spredicted � Strue|/Strue], with underscored numbers indicating the best (solid line) and second-best (dotted line) fitting model
for a particular data set. Combined models are underscored relative to the set of individual models. Shading represents fit, with cutoff
values 0.05 (no shading), 0.1, 0.25, 0.5, and 1 (darkest). Rank correlation coefficients (Spearman’s q) for the relationship between true
and estimated richness are listed in the final row. The † stands for indicates a case where the model would not converge on a solution.
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Full British 1.296 0.125 0.238 0.400 0.956 0.601 0.294 0.553 0.168 0.809 0.808 0.669 0.683 1.042 2.446 1.094 4.470 0.446 0.848 0.088 0.647 0.168

S
lacitsitat

Wide-
shallow 0.927 0.100 0.137 0.473 0.957 0.405 0.335 0.548 0.168 0.807 0.548 0.473 0.765 3.357 2.503 0.725 2.995 0.229 0.336 0.159 0.275 0.137

Narrow-
deep 0.926 0.335 0.218 0.580 0.957 0.381 0.466 0.548 0.168 0.808 0.449 0.377 0.779 0.998 2.063 0.608 2.686 0.232 0.341 0.198 0.281 0.169

lanoige
R

South 0.944 0.182 0.144 0.378 0.968 0.399 0.520 0.670 0.230 0.864 0.199 0.148 0.779 0.519 1.525 0.302 2.108 0.176 0.170 0.315 0.165 0.200
East † 0.249 0.180 0.380 0.972 0.400 0.555 0.786 0.500 0.861 0.216 0.171 0.810 0.580 1.550 0.237 2.072 0.231 0.200 0.367 0.205 0.289
West 0.932 0.094 0.253 0.573 0.963 0.358 0.441 0.600 0.137 0.813 0.236 0.198 0.769 0.447 1.484 0.330 1.929 0.211 0.214 0.269 0.211 0.206
Centre 0.922 0.150 0.284 0.642 0.954 0.429 0.244 0.529 0.108 0.837 0.351 0.337 0.721 0.379 2.166 0.600 2.784 0.237 0.328 0.161 0.276 0.102
North 0.860 0.700 0.252 0.270 0.913 0.440 0.358 0.193 0.873 0.646 0.619 0.494 0.678 0.709 1.741 0.792 2.170 0.411 0.525 0.268 0.463 0.098

Full British 0.293 0.106 0.345 0.770 0.172 0.289 0.726 0.837 0.635 0.646 2.581 1.304 4.556 0.416 0.834 0.123 0.625 0.120

raeniL
+

X
S

lacitsitat

Wide-
shallow 0.476 0.132 0.355 0.463 0.229 0.289 0.726 0.638 0.716 3.603 2.751 0.982 3.301 0.231 0.338 0.138 0.278 0.083

Narrow-
deep 0.447 0.128 0.393 0.392 0.383 0.289 0.726 0.547 0.726 0.990 2.267 0.854 3.160 0.225 0.308 0.183 0.257 0.095

lanoige
R

South 0.209 0.145 0.546 0.377 0.487 0.457 0.285 0.208 0.730 0.451 1.446 0.448 1.384 0.189 0.171 0.303 0.172 0.134
East 0.130 0.219 0.406 0.337 0.400 0.594 0.144 0.206 0.760 0.526 1.897 0.443 1.396 0.236 0.200 0.294 0.207 0.189
West 0.210 0.167 0.422 0.338 0.374 0.392 0.432 0.254 0.721 0.446 1.638 0.498 2.176 0.214 0.212 0.249 0.211 0.108
Centre 0.450 0.103 0.224 0.502 0.175 0.263 0.728 0.506 0.654 0.352 2.434 0.854 3.266 0.230 0.320 0.164 0.267 0.059
North 0.721 0.125 0.137 0.478 0.289 0.207 1.819 0.634 0.615 1.347 1.829 0.988 4.608 0.440 0.565 0.281 0.497 0.115

Overall: Mean 
(SD)

0.972 
(0.145)

0.304 
(0.202)

0.177
(0.059)

0.408 
(0.134)

0.955 
(0.018)

0.442
(0.110)

0.358
(0.118)

0.451 
(0.179)

0.496 
(0.444)

0.807 
(0.069)

0.428
(0.219)

0.418
(0.212)

0.721 
(0.056)

1.024 
(1.000)

2.020 
(0.438)

0.691 
(0.309)

2.816 
(1.043)

0.272
(0.094)

0.369 
(0.217)

0.222 
(0.081)

0.315 
(0.155)

0.156
(0.062)

Slope correl. -0.037 -0.576 -0.497 -0.164 0.756 0.261 -0.146 0 0 0.244 -0.195 -0.176 -0.115 -0.361 -0.036 -0.042 -0.194 -0.194 -0.006 -0.097 -0.152 -0.115

FIG. 5. Quality of SAR fit, as indicated by mean relative absolute error. Underscores indicate the best and second best models
for each data set, as in Fig. 4. Shading is as in Fig. 4, to aid comparison. The final row lists Spearman’s rank correlation coeffi-
cients between true and estimated SAR slopes across the different data sets tested.
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provided a better (and more reliable) SAR estimate than
either model by itself (MRE = 0.222 � 0.081). An even
more successful combined SAR model could be con-
structed by using the S&H estimate of TSR and then
downscaling to finer scales using the �Sizling method
(MRE = 0.156 � 0.062), combining the strengths of
both models. This combination provides our best SAR
predictions.
The replicate runs of statistically subsampled data sets

allow estimates of the variance in index values holding
sample effort constant (at one-fifth of the total sample).
Fig. 6 shows the coefficients of variation in these repli-
cated analyses. Most models showed acceptable levels of
variation in estimates, although the Smith (2008) model,
Hui’s Zeta model, and approaches based on median fits
of classical SARmodels (power law and semi-logarithmic)
showed much higher variation than the others tested. For
many of the models (most strikingly in the two Ulrich and
Ollik models), variation between runs was substantially
higher in the narrow-deep analyses than in the wide-shal-
low runs, presumably because the latter allowed higher
levels of statistical independence between samples. For
some of the models (most notably the Lomolino, Ugland
PAM, and Ulrich and Ollik models) these statistical sub-
samples also tended to produce systematically lower up-
scaled biodiversity predictions than resulted from the full
data set, even though each set of five (non-overlapping)
subsamples comprised the full sample set, and all were
being used to estimate the same full British SAR.

DISCUSSION

The challenge of upscaling biodiversity from plot to
regional or national scale is an important goal of spatial

ecology, one with the potential for important practical
value. If we could reliably estimate coarse-scale species
richness from fine-scale samples, it would allow biodi-
versity estimation in poorly studied regions and taxa,
and facilitate the monitoring of multi-scale biodiversity
change and the scaling up of experimental results. A
range of methods have been proposed to address this
issue, but there has to date been no clear consensus as to
their relative strengths and weaknesses. To test these
methods, we set a much more ambitious test than has
usually been applied, requiring species richness to be
estimated at scales some 500,000 times larger than the
full data set used and 14 billion times larger than a single
sample plot (the scale of resolution from which richness
was extrapolated by most of the methods). The models
considered varied greatly in their performance in this
test, but the best of them did well enough to suggest that
they have the potential for useful application in the near
term. Nonetheless, further tests of these methods should
be attempted on data sets covering other taxa and
regions, so that the generality of our conclusions can be
ascertained. Many of the models (especially those with
relatively inflexible shapes) may be expected to fit much
better in some areas than in others; differences in species
richness, evenness, habitat diversity and spatial patchi-
ness may all affect the form of SARs (Tjørve et al.
2008), and thus may improve the relative success of some
models over others. Similarly, different models may be
differentially sensitive to differences in the structure and
intensity of sampling (CS is perhaps a best-case scenar-
io), which may again affect relative performance. Only
by examining a wide range of data sets with differently
diversity patterns can we be certain of the generality of
our results.
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CV:

Wide-
shallow 0.0133 0.1186 0.1716 0.4156 0.0661 0.0243 0.0522 0.0448 0.0448 0.1271 0.0134 0.0182 0.0477 0.1608 0.0221 0.0160 0.0611 0.0170 0.0073

Narrow-
deep 0.0266 0.0989 0.2063 0.3275 0.0419 0.1389 0.1260 0.0336 0.0336 0.1181 0.0774 0.0780 0.0655 0.1688 0.1081 0.0779 0.0730 0.0742 0.0767

Ratio ND:WS 1.9938 0.8334 1.2024 0.7881 0.6345 5.7163 2.4123 0.7495 0.7495 0.9289 5.7947 4.2958 1.3751 1.0501 4.8800 4.8769 1.1941 4.3605 10.477

Rel. 
to 
whole

Wide-
shallow 0.9901 1.0000 1.1743 0.8662 1.0044 0.7346 0.9629 1.0098 1.0000 1.0073 0.8556 0.8821 0.7470 2.1438 1.0168 0.8216 0.7276 0.7753 0.7093

Narrow-
deep 1.0058 1.1977 1.0261 0.8918 1.0040 0.6041 0.7691 1.0099 1.0001 1.0000 0.7982 0.8237 0.7041 0.9692 0.8878 0.7655 0.6712 0.7817 0.7138

raeniL+
X

CV:

Wide-
shallow 0.1350 0.0829 0.2541 0.0423 0.0443 0.0169 0.0169 0.0200 0.0150 0.4212 0.0199 0.0109 0.0412 0.0086 0.0037

Narrow-
deep 0.1352 0.1449 0.2969 0.0922 0.0973 0.0341 0.0341 0.0595 0.0558 0.1624 0.0783 0.0593 0.1185 0.1327 0.1652

Ratio ND:WS 1.0021 1.7482 1.1686 2.1787 2.1972 2.0198 2.0198 2.9760 3.7108 0.3857 3.9284 5.4218 2.8795 15.467 44.585

Rel. 
to 
whole

Wide-
shallow 1.1440 1.1367 0.9677 0.7394 0.9500 1.0000 1.0000 0.8911 0.7842 2.9627 1.0483 0.8584 0.7714 0.7947 0.7162

Narrow-
deep 1.1190 0.9285 0.8895 0.6105 0.7576 1.0000 1.0000 0.8415 0.7589 1.2934 0.9115 0.8025 0.7461 0.7664 0.6863

FIG. 6. Variation in statistical subsample runs. For each model, the coefficient of variation (standard error/mean) is given for
both wide-shallow and narrow-deep subsample sets. Shading reflects CV values, with cutoff values of (no shading) 0.01, 0.03, 0.1
and 0.3 (darkest). “Ratio WS:ND” indicates the CV of narrow-deep divided by that of wide-shallow samples. The mean value of
subsample projections relative to those of the full sample set are indicated as “relative.”
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Specific model performance

Harte and colleagues (Harte et al. 1999, Harte et al.
2005, Harte 2007) pioneered the study of biodiversity
upscaling, and their MaxEnt approach (Harte et al.
2008, 2009) is an important conceptual advance. As
expected in the fragmented and human-influenced habi-
tats of the United Kingdom, the METE model per-
formed poorly in our trials, greatly underestimating
coarse-scale species richness despite its record of success
in upscaling within relatively undisturbed and contigu-
ous habitat (Harte et al. 2009, Harte and Kitzes 2015).
Harte’s MaxEnt approach can be estimated using sur-
prisingly little information (see Methods), which makes
it a strikingly efficient tool, but also a very inflexible one.
That property is a virtue when applying the model to the
sort of homogeneous natural community for which it
was designed, but it may create difficulties in applying
the model to more anthropogenic landscapes. METE
relies on natural communities displaying statistical pat-
terns that maximize entropy within ecological con-
straints, patterns that may be slow to stabilize (Harte
2011). It would be useful to conduct future tests of the
METE upscaling method within contiguous extents of
UK biomes that are relatively undisturbed by human
activity, such as within large areas of heathland.
After Harte et al.’s (1999) paper, the TS method pro-

posed by Ugland et al. (2003) is arguably one of the
longest established and best supported methods in the
literature. For example, Jobe (2008) found it to have a
reasonable predictive accuracy when applied to tree
diversity in the southeastern United States. Extrapola-
tion of the semilogarithmic curve fitted to the terminal
points of the species accumulation curves is a robust
approach that is designed for heterogeneous environ-
ments and it is insensitive to shifts in species abundance,
as only presence/absence information is taken into
account. This is a great advantage in most applications
as there is often substantial variability in the assessment
of numbers of individuals, and in many data sets (as
here) data on population sizes are not available at all.
The TS curve estimates the accumulation rate of new
species as more subareas are covered; thus only species’
spatial distributions affect the curve.
We tested three different implementations of Ugland’s

approach, but none of them predicted the SAR very well.
The approaches showed more than two-fold differences
between the highest (PAM) and lowest (10-at-a-time) esti-
mates, but all three curves were substantially higher and
flatter than the true SAR over the scales considered here.
The discrepancy is probably the result of the large num-
ber of species that occur in just a few plots (e.g., 24.6% of
all species were found in just one plot in the X-only data
set), which causes the TS curve to rise very steeply ini-
tially, and then overshoot. This steepness occurs at rela-
tively fine scales (between the 200 m2 scale of the survey
plots and the scale of the finest Atlas grid, 100 km2), but
when extrapolated to the scales investigated here the

curves flatten out and have lower slopes than the actual
SAR. The differences in performance between the three
implementations of Ugland’s TS approach were instruc-
tive. While the PAM approach formed groups of similar
plots, the 10-at-a-time approach assembled sets at ran-
dom, and predicted fewer species at every scale. This
occurred because PAM groups were more divergent in
composition between groups, resulting in faster species
accumulation curve as groups are combined.
The TS model’s prediction of high, shallow SARs over

the scales considered here was shared by several other
models without explicit spatial structure (e.g., the Ulrich
and Ollik [2005] and Shen and He [2008] approaches).
Indeed, in the case of S&H, the SAR approached an
asymptote at a value close to the true S value. By ignoring
spatial structure in species occupancy, these approaches
tend to bring in more new species with each added sample
initially, but rapidly exhaust the species pool, so that few
species remain to be added at coarser scales (Scheiner
et al. 2011). The spatial structure of natural biotic com-
munities means that expanding the sample continues to
bring in new environments and thus new species even at
coarse spatial scales.
Another time-honored approach to upscaling is curve

extrapolation. We explored a range of options here,
including traditional canonical power laws, but also sev-
eral methods (median power law, logarithmic, and
Lomolino curves) that made use of the multi-scale nat-
ure of the field survey data to estimate the slope of spe-
cies accumulation. None performed particularly well in
our comparisons, yet some fared almost as well as some
of the more complex approaches. The Lomolino model
was the best of a suite of 14 models (Tjørve 2003) com-
monly fit to species–area relationships, but its accuracy
was sensitive to the spatial dispersion and density of
plots. When extrapolated from the entire data set, the
Lomolino model sometimes gave accurate estimates of
the total number of species, but underestimated species
number by several hundred when data subsets were used.
The model displayed asymptotic behavior, rising very lit-
tle above about 100 km2. Our results suggest that a cau-
tious approach should be used when fitting asymptotic
models to SARs, even when the model fits well at the
fine scale of survey plots.
The classical power law relationship provided a surpris-

ingly good fit to some of the data sets, although different
values of the exponent z fit different cases. However, the
more variable slopes fit using the median value of z fitted
from the multiscale X-plot surveys (from 4- to 200-m2

scales) produced generally lower slopes, with very poor
predictive power. These low fitted slopes are probably
affected by the uniformity of land management at these
fine scales, especially in the X-only plots, which were con-
strained not to cross linear features; these resulted in par-
ticularly low SAR curves for the fitted logarithmic model,
which predicted a total of only 62 species for all of Bri-
tain, despite the presence of more than 1,000 species in
the overall sample set! On the other hand, despite its
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abysmal performance in estimating total S, the fitted log-
arithmic model was the only one of all those tested that
showed a significant positive correlation with the slope of
the true SAR across data sets. Linear extrapolation meth-
ods may predict unrealistically high total species richness
when the true underlying species accumulation curves
reach an asymptote within the extrapolation domain. For
example, in an investigation of arthropods in the Azorean
Laurisilva forests, Hortal et al. (2006) found very low
beta diversity and a rapidly saturating total richness, so
that linear extrapolation became heavily biased. In the
UK, however, underlying heterogeneity is sufficient that
55% of sampled species were found in seven or fewer sam-
pling quadrats. This large fraction of species with a nar-
row geographical distribution prevents the species
accumulation curve from flattening out, and thus favors
straight line extrapolation.
Several other models showed relatively poor perfor-

mance. The Smith (2008) model not only showed a low
predictive accuracy for both TSR and SAR shape, it also
displayed extreme variability in richness predictions
across the multiple replicate subsamples, suggesting that
its estimates are unstable. Unless those problems can be
addressed, there is little to recommend it for future
applications. On the other hand, the poor performance
of the �Sizling model (see Appendix S1) is not surprising,
as it has been used here for a task rather different from
the one for which it was designed. The �Sizling model is
designed to downscale the SAR from a known value of
total species richness, based on the species–occupancy
distribution observed within a sample of cells. As such,
its application here required the choice of an arbitrary
estimate of total richness (1,000), which was not very
accurate. The method is included here, however, as it
provides a valuable component of a mixed modeling
framework, if used together with a companion model for
estimating total richness (see Combining models below).
The best performance in our tests came from a series of

relatively recent models: the Shen and He (2008), Ulrich
and Ollik (2005), and Polce (2009) models, and the three
Hui models and �Sizling model introduced here. Each had
distinctive strengths and weaknesses. The Shen and He
model performed both well and consistently in estimating
total S, but proved to be ill-suited to assessing the shape
of the SAR, presumably because it ignores the spatial
structure of samples. Clearly, the development of a spa-
tially explicit version of this model should be a priority for
future research. The Hui ORC and HDC models per-
formed more consistently, providing credible TSR esti-
mates and the best estimates of the SAR as a whole
(ORC) of any model considered; they certainly merit fur-
ther attention. HDC requires reliable numbers of observed
rare species in samples, while ORC relies on robust/repre-
sentative estimates of sampling occupancies for common
species. The CS data obviously fulfill the latter of these
requirements (sampling common species) very well, but
even a survey of this scale (and expense) samples only a
tiny fraction of rare species. This may help explain the

superior performance of the ORC model in our analyses.
The Ulrich and Ollik method proved third-best in total
richness estimation, and provided the second best SAR fit
of the models tested, suggesting it may be a useful alterna-
tive. However, its performance was only moderate in
either regard, and the two versions of the model did not
consistently bracket the true value, as they were meant to
do (in most cases, both estimates were above the true
value of species richness). This suggests that the true occu-
pancy–species-rank-order distribution is not a symmetric
lognormal but is skewed in the lower part to have more
rare than abundant species.
The S&H and U&O methods are both examples of a

broader literature devoted to estimating overall species
richness in an area based on representative samples (see
also, e.g., Palmer 1990, Chao 2005, Magnussen et al.
2006). These methods have been designed to estimate
TSR, but they are not explicitly aimed at SAR estimation;
thus it is not surprising that they both perform the former
task more effectively than the latter. Many of the methods
developed for TSR estimation require large proportions of
the focal biota to be observed (see Ulrich and Ollik 2005),
making them inappropriate for large-scale applications
such as the one attempted here. Moreover, systematic
biases in most such estimates have been documented in
the past (reviewed in Shen and He 2008), further under-
mining their applicability. The two methods employed here
were both explicitly developed with an aim to increasing
the accuracy and range of such projections. While these
models differ fundamentally in their approaches (with
S&H using sampling theory, whereas U&O extrapolate
relative abundance distributions), our results here suggest
that they have both been quite successful in this respect.
The Polce & Kunin model was explicitly designed for

the more difficult task of SAR estimation. While it
performed moderately well in our tests, its finer scale esti-
mates (in particular) were often substantially lower than
expected. One potential reason for this is the clustered nat-
ure of the CS sample set, with five samples taken in each
focal 1-km2 site. The P&Kmethod involved sampling ran-
dom sets of observations from varying sized sampling
windows; when small numbers of samples were drawn
from relatively small areas (e.g., 400 km2 or less), there
was consequently a high probability of drawing multiple
samples in close proximity to one another, sampling less
diversity than expected of a truly random sample of that
size. While the logic of the method (separating pure sam-
ple size and pure spatial extent effects) is compelling, there
clearly remains considerable scope for improvements.
Two of the most accurate individual methods for SAR

estimation were developed for this paper: Hui’s ORC
and HDC methods. Both made use of the distribution of
occupancy values across species in the sample. The mod-
els differed in what they did with those values: the ORC
method extrapolated the curve of species occurrence fre-
quencies using a truncated power law to assess how
many species would be expected to occupy one or more
200-m2 plot, had all of Britain been surveyed; the HDC
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method examines the number of species represented by
different levels of occupancy in the sample, and esti-
mates from observation probabilities how many other
such species were likely to have been missed. The SAR
downscaling approach developed by �Sizling and Storch,
which provided even better SAR estimates when married
to the Shen and He (2008) TSR estimate, was also based
on species occupancy distributions. The success of these
three model here spotlights this general approach as one
of great promise for future SAR research.
Considering the diverse classes of models tested here

(Fig. 2), shows a high level of performance for those
based on species occupancy (Hui ORC, �Sizling) and
related (Ulrich & Ollik, Hui HDC) approaches. Con-
versely, methods based around extrapolating specific
curves (power law, logarithmic, Lomolino, and even
MaxEnt) were far less successful. There was mixed suc-
cess in approaches based on subsampling and spatial
species turnover, and there remains significant potential
for further developing such approaches.

Combining models

As noted above, consensus models combining more
than one of the more promising approaches often out-
performed any single “best” model for predicting the
total species richness or SAR shape. This generally
occurred because different methods showed contrasting
errors. Such combinations come at a cost (Levins 1966);
there is often a trade-off in modeling between precision
(which requires complexity) and insight (which requires
simplicity). Developing hybrids of multiple incommen-
surate approaches runs the risk of producing a method
that works well, but which has no compelling logic. Such
approaches may prove useful, but they are intellectually
ugly. We can only hope that they will be supplanted in
time by models that are both accurate and meaningful.
There are additional unexplored opportunities for

methodological hybrids amongst the methods presented
here, given the wide differences in approach set out
above. Note, for instance, that the �Sizling model requires
the user to have a prior estimate of S0, the total species
richness in the focal region (as does the original Harte
et al. [2008] MaxEnt approach), while the Shen and He
(2008) model estimates that quantity but cannot esti-
mate diversity at finer scales with any accuracy. Feeding
the Shen and He (2008) TSR estimate into the new
�Sizling or Harte et al. (2008) model would then provide
credible estimates of both. Thus for example, if we incor-
porate the Shen & He estimate of S0 into the �Sizling
approach and then downscale, the resulting SAR has a
mean relative error score substantially better than any of
the individual models tested (Fig. 5).

Reducing survey effort

Our focal data set may represent a tiny fraction of the
whole British land surface (roughly one part in 500,000),

but it nonetheless requires an impressive investment in
time and money to survey. It would obviously be advan-
tageous to have methods that could be nearly as effective
with much lower survey effort. We explored this issue at
three spatial scales: (1) reducing the total number of
1-km cells surveyed (represented by the narrow-deep
subsamples), (2) reducing the number of quadrats sam-
pled in each focal 1-km cell (represented by the wide-
shallow subsamples), and in one case (3) surveying a
smaller total area for each quadrat (Shen and He’s 4-m2

analysis compared to the 200-m2 analyses of the same
model). Our results clearly suggest that reducing local
sampling intensity is far less serious than reducing the
number of sites examined. Wide-shallow sub-samples
showed much less variation in estimates and (in many
cases) notably less bias (relative to the full data set) than
did the equally large (but coarse-scale) narrow-deep
samples (Fig. 6). Reducing sample size at still finer
scales (by changing the size of the local sample plot)
may have even less impact: for the one model that was
tried at multiple scales (Shen and He 2008), the predic-
tive accuracy of the model was virtually identical when
fit using 4-m2 scale occupancy data than when fit using
200-m2 data, despite the 50-fold smaller area surveyed.
One issue with reduced sampling intensity in many

models was the introduction of a bias: many of the meth-
ods made systematically lower species richness predic-
tions when fit to random subsamples of the data set than
when fit to the set as a whole, despite the fact that each
combined set of five subsamples comprised the full data
set. This behavior was displayed by most methods consid-
ered, with the exception of the power law and logarithmic
extrapolations and the Hui ODC model (where subsam-
ple estimates and full set estimates were virtually identi-
cal), and the Smith and Hui Zeta models (which behaved
inconsistently in this regard). Two possible explanations
for the general trend suggest themselves: one statistical,
the other biological. On one hand, the smaller data sets
may be noisier (relative to their information content),
and this will tend to flatten the regression relationships
for small samples (a possible solution would be to use
Model II regression or equivalent techniques). A more
biologically meaningful explanation is that one needs rel-
atively large samples to encounter rare species, and it is
the rarer species that cause the SAR to rise, especially at
the coarser scales (see, e.g., Tjørve et al. 2008).

Ideal and empirical models

Looking back over the full set of methods explored
here, one useful albeit post hoc distinction is between
“ideal” and “empirical” SAR models. Ideal models are
based on theoretical attempts to understand the appro-
priate shape that the SAR should be expected to take in
natural communities. As such, they have the potential to
provide mechanistic insight into potential processes
underlying SAR shape, but they tend to be most appro-
priately applied to natural diversity patterns (rather than
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anthropogenic ones) where such mechanisms may be
thought to determine diversity patterns. Ideal SAR
model predictions tend to be relatively inflexible in shape,
and as a consequence, they require relatively little data to
parameterize; examples range from the canonical power
law SAR (Arrhenius 1921, Preston 1962) to the recent
development of Maximum Entropy models (Harte et al.
2008, 2009). The inflexibility of such models makes them
intrinsically ill-suited to monitoring, e.g., changes of bio-
diversity in response to management or other human
interventions, since they are insensitive (by design) to pre-
cisely the sorts of shifts in SAR shape that we would wish
to detect. At the other extreme are models designed to
assess the empirical SAR whatever its shape happens to
be. Such approaches pay for their flexibility by requiring
substantially more information. Nonetheless, this flexi-
bility is needed for some applications; for example, if
upscaling methods are to be used for multi-scale biodi-
versity monitoring (see Introduction), they will need to
be flexible enough to allow anthropogenic shifts in biodi-
versity scaling to be reflected in their results.
It is not surprising, given the highly anthropogenic nat-

ure of the British landscape, that the best performing
models in this analysis (Shen and He 2008, Hui’s HDC
and ORC models, Ulrich and Ollik 2005) were all empiri-
cal approaches. It would be interesting to see how the rela-
tive performance of the various approaches explored here
would shift were they to be tested on data from more nat-
ural landscapes. Several of the methods that performed
relatively poorly here have already been shown to behave
quite well in such applications (e.g., Ugland et al. 2003,
Krishnamani et al. 2004, Jobe 2008). Indeed, the con-
trasts between ideal and empirical models may be instruc-
tive if well tested methods for each can be employed. In
well studied areas with good historical species richness
records, a reasonable estimate of the natural SAR might
be computed using an ideal model (such as that of Harte
et al. 2008). This may then be compared to a current
SAR computed using one of the empirical models based
on current monitoring data. The difference between the
two could be interpreted as the “footprint” of anthro-
pogenic activities on biodiversity across spatial scales.

CONCLUSIONS

The topic of biodiversity upscaling has been largely of
theoretical interest to date, but it is an area that has
tremendous potential practical value. Robust and tested
upscaling methods would allow the assessment of species
richness in poorly studied regions and taxa; they would
also make it possible to monitor multi-scale biodiversity
change over time, and might allow the coarse-scale
implications of environmental or management changes
to be inferred from (necessarily fine-scale) experimental
results if replicated across multiple sites. To do so we
need methods that can be fit using sets of point survey
data, and that will be responsive to any anthropogenic
changes in local richness and spatial turnover, giving

robust and accurate predictions. To test these methods,
we need excellent ground-truthed biodiversity survey
data from diverse natural and anthropogenic communi-
ties across the globe. We have brought together most
existing methods for biodiversity upscaling, and have set
them an ambitious target: to estimate the total species
richness and species–area relationship of a sizeable land
mass, using scattered point biodiversity samples from
only a tiny fraction of the total area. While methods dif-
fered dramatically in their performance, the best of them
did reasonably well. Despite an ~500,000-fold increase in
scale from the total area surveyed to the area to be
assessed, the best of the approaches reliably predicted
total species richness within about 10%, and estimated
the full species–area relationship within about 18% of
the true values. Combining contrasting methods allowed
even better accuracy, allowing the SAR to be estimated
within 16%. While there is still substantial room for
improvement (in particular, in estimating SAR slope)
and additional tests on other data sets (ideally involving
contrasting regions and taxa) would be welcome, our
results suggest that biodiversity upscaling has begun to
come of age. It is notable that of the three best methods
for SAR estimation, 2.5 (Hui’s ORC and HDC and
methods, and �Sizling’s downscaling) are novel methods
published here for the first time, suggesting that the field
is progressing rapidly. Additional tools are still in devel-
opment, but our results suggest that existing methods
can begin being applied with some confidence.
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Introduction 
Species richness patterns are inevitably linked to the patterns of species spatial distribution as the 

number of species in a site is given by the number of species ranges that overlap there. However, 

these kinds of patterns have been studied mostly separately from each other, with only few attempts 

to make an explicit connection between them. The most prominent example of such interrelated 

patterns concerns the species-area relationship (SAR, i.e. the relationship between species number 

and area on which the number has been counted), and the frequency distribution of species 

occupancies (hereafter species-occupancy distribution). Although both patterns have been studied 

from the beginning of 20th century (Raunkiaer 1910, Arrhenius 1921), and although species relative 

occupancies apparently affect the slope of the SAR at least in the extreme cases (if all species occurred 

everywhere, the number of species would not increase with area, whereas if all species occupied only 

one site, mean species number would increase almost linearly with area), the exact connections 

between them have remained unexplored. The reason is that the formal theory connecting both 

patterns was either unrealistic (Ney-Nifle and Mangel 1999, Maurer 1999) or missing. 

 The SAR can be often well expressed as a power-law, which indicates scale invariance or self-

similarity (Gisiger 2001). This has led to the formulation of a theory explicitly relating the power-

law to the self-similarity at the community level (Harte et al. 1999). Although Harte et al. (2001) and 

Lennon et al. (2002) claimed that this is not compatible with the self-similarity revealed at the level 

of spatial distribution of individual species, Šizling and Storch (2004) have shown that within finite 

areas the power-law can be actually attributed to the self-similarity in individual species distributions, 

and that this effect is responsible for the slope and shape of the SAR in central European birds. Here 

we show that assuming the self-similarity of species spatial distributions, the slope and shape of the 

SAR can be derived using only the distribution of species relative occupancies. 

 Our following explorations are based on the finite area model of the SAR (Šizling and Storch 

2004), which comes out from the knowledge that the mean number of species within an area can be 

calculated by summing species occupancy probabilities, occp , for area A. In self-similarly distributed 

species these probabilities increase approximately linearly with area in the log-log scale, up to the 

mailto:sizling@cts.cuni.cz
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point satA  where 1=occp . The satA  represents the “area of saturation”, i.e. the minimum area of a 

study plot that is necessarily occupied by the species, regardless of its location. The satA  therefore 

depends on the area and shape of the largest distributional gap (see Figure 1 in Šizling and Storch 

2004), and thus on the number of occupied sites and their spatial arrangement. Then the species 

number can be calculated according to the formula 

[ ] [ ]
[ ]

[ ]ASAApAS sat

S

ASi

z
i

S

i
iocc

tot

sat

i
tot

+== ∑∑
+== 11

, π  
(S1) 

where [ ]AS  is the mean number of species observed within a sample plot of area A randomly placed 

within the total area totA  (i.e. the area of the whole study plot within which the sample plots can be 

laid), totS  is the total number of species occurring within the totA , and [ ]ASsat  is the number of species 

whose relationship between occp  and A has reached saturation (i.e. the number of species with 

AAsat ≤ ). Parameters iπ  and iz  correspond to the probability of occupancy in 1=A  and to the rate 

of increase of occp  with area, respectively. 

 According to the model (Figure S1), three parameters for each species spatial distribution (π

, satA  and z) are required to predict the resulting SAR. However, we will show that these parameters 

are so closely related to each other that the SAR can be ultimately predicted just by one of them. 
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Fig S1: Graphical representation of 

the simple finite-area model. Log occp  

increase linearly with log A, up to the 

satA  when 1=occp . The slope z is 

determined by the satA  and π  

(probability of occupancy of the unit 

area). 
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The interdependence between parameters of the finite area model 

As satA  and π  represent two points defining a line, and z is the slope of the line (Figure S1), it is 

clear that one of the parameters is redundant. The relationship between them follows formula 

isatii Az lnlnπ−=  (S2) 

In the following text we will therefore deal only with the relationship between the parameters  satA  

and π , since – assuming that the self-similarity is accurately captured by the finite area model - these 

are sufficient for characterizing species spatial distributions, and thus the resulting SAR.  

The satA  and π  are not dependent on each other in a strict sense (as they would be if just one 

value of satA  could be assigned to each π ), but they constrain each other in the following way. 

Imagine a spatial distribution of a species represented by a lattice with some occupied cells (Figure 

S2). The π  can be estimated as the proportion of the total number of cells occupied, and satA  is given 

by the maximum possible gap, i.e. by the largest possible square that does not contain any occupied 

cell. The possible range of satA  is therefore determined by the number and potential arrangements of 

unoccupied cells. The minimum and maximum possible satA  (let us call them the geometric 

constraints of satA , GMinsatA  and GMaxsatA ) can be calculated as follows: 

Minimum possible satA  can be obtained in the case of regular spatial distribution, simply because in 

that case changing a location of any occupied cell cannot make the satA  smaller (Figure S2). As the 

shape of the sample plot is square, the size of minimum satA  follows the formula 

( )( )( )1TruncTrunc2 +=≥ occtotGMinsatsat AAAA  (S3) 

where Trunc is the function that truncates an argument to the integer, totA  is the total area (see Figure 

S2 where 55×=totA  grid cells), and occA  is the occupied area ( totocc AA π= ). 

 

 

Fig S2: An example of the spatial distributions of a species occupying 4 

cells within the grid of 25 cells (its relative occupancy is 16.0254 = ). 

The circles represent the distribution with maximum possible satA , the 

sharps refer to the distribution with minimum possible satA . 
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Maximum possible satA , on the other hand, cannot be higher than the unoccA , i.e. occtotsat AAA −≤ . 

The exact value of satA  depends on the shape of the sample plot and on the spatial distribution of 

occupied cells within totA , and the highest possible satA  is apparently reached when all the occupied 

cells are located along the edge of the totA  (Figure S2). For the square-shaped sample plots we can 

then write 

( )occtotGMaxsatsat AAAA −=≤ 2Trunc  (S4) 

Note that for high π  the interval [ ]GMaxsatGMinsat AA ;  is quite narrow, as the dependence of satA  on the 

location of occupied cells is relatively weak, whereas for small π  the satA  strongly depends on the 

location of occupied cells within the totA , and thus the interval of possible satA  is relatively wide. 

 These constraints are generated by simple geometric logic and emerge without any 

consideration of internal spatial structure of species distribution. But both extreme structures (i.e. the 

regular distribution and the distribution confined to the edge of the sampled area) are apparently far 

from self-similar. Although these cases can be in fact considered as extreme realizations of random 

self-similar distribution (random fractals, see Hastings and Sugihara 1993), the probability of such 

realizations is very small. The satA  for respective π  will thus most probably lie within much narrower 

interval than that given by simple geometric constraints. Let us call these new probabilistic 

constraints, imposed upon satA  due to the assumption of self-similarity, the self-similar constraints. 

The effect of variation of satA  within them on the resulting SAR must be evaluated numerically. 

 

Empirical evaluation of the sensitivity of SAR on possible satA  variation 

To evaluate the sensitivity of the SAR to the distribution of π  and to the variation of satA  between 

its two constraints, we have conducted a series of simulations. For the purpose of these simulations 

we used data on bird distribution in central Europe (Storch and Šizling 2002) from which the 

distribution of π was extracted (see Figure S3b). Then we calculated the constraints imposed upon 

satA  by each π and tested how the resulting SAR is sensitive to the variation of satA  within these 

constraints. 

The data on the distribution of birds in central Europe comprise two scales of resolution, that 

of basic grid cell size of 121.11 ×  km (Czech Republic, hereafter CR; Šťastný et al. 1996) and  

 

a) b) 
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Fig S3: The settings and results of the tests concerning the sensitivity of the SAR on the distribution of π  

and the variation of satA . (a) The two types of constraints imposed on satA  (thick line – geometric constraints, 

thin line – self-similar constraints), and the 95% confidence interval of satA  for the case of random spatial 

distribution (dotted line). Note that all observed satA  fell to the interval between the self-similar constraints, 

indicating that the real species distributions were indeed close to the self-similarity. (b) Distributions of π  for 

the Czech Republic (black squares) and central Europe (white squares). (c) The relative residuals from the 

observed SAR for SARs constructed by the random drawing of satA  from the interval given by the geometric 

constraints (white boxes) and self-similar constraints (black boxes) of satA . The dashed line refers to mean 

observed number of species, and dotted and full lines represent %95  and %50  confidence intervals of 

observed species numbers. The bias for sampled areas 1010×≥  grid cells occurring in the case of CR is an 
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artefact of the fixation of satA , which diminished when we used different procedures of calculating z. (d) The 

comparison between the relative residuals obtained using the procedure described above (black boxes) and 

those that used inappropriate distributions of π  for the prediction of species numbers (i.e. the distribution of 

π  from CE was used for the prediction of the SAR for the CR and vice versa, white boxes). In both cases the 

self-similar constraints were used. Full lines refer to maximum and minimum species numbers obtained within 

geometric constraints of satA  for appropriate distributions of π  – note that using the inappropriate 

distributions (white boxes), which are only slightly different (Figure S3b), leads to predictions that occur 

outside of these hard boundaries. 

_______________________________________________________________________________ 

 

that of basic grid cell size of 5050×  km (central Europe, hereafter CE; Hagemeijer and Blair 1997). 

Both data sets consist of 1616×  grid cells (see Figure 3 in Šizling and Storch 2004), containing the 

information about probable or confirmed breeding of each bird species within each cell (see Storch 

and Šizling 2002). 

For each species, iπ  was calculated as the intercept of the regression line of the relationship 

between log iA  and log ioccp , , within the range in which the dependency [ ]Ap iocc,  was increasing. 

This line was fixed in the point of isatA , , so that the regression line had only one free parameter. The 

isatA ,  was set as the middle point between the minimum square-shaped area which necessarily 

contained an occupied cell and the maximum empty square-shaped area.  

The possible ranges of variation of satA  for each π  were constructed in two ways (Figure S3a): 

1. Geometric constraints of satA , calculated using equations S3 and S4. 

2. Self-similar constraints. Here we constructed self-similar distributions according to the 

procedure described in Šizling and Storch (2004; Appendix 2). We performed 500 simulations 

for the fractal dimension 1.0=FD , then 500 simulations for 2.0=FD , etc., up to 9.1=FD  (note 

that 0.2=FD  means that the species occupies the whole area). For each simulation we calculated 

π  and satA  as described above, and set the boundaries for satA  as the %95  nonparametric 

confidence interval of the obtained results, i.e. the area within π - satA  biplot that contained %95  

of simulation results for each respective π . The confidence of the reliability of these intervals is 

higher than %9.99  ( 95.0>β , 001.0<γ ; Wilks 1941, Jílek 1988). 

We then performed 500 simulations of the SAR, randomly varying satA  within the constraints. In 

each simulation, (1) π  was drawn from the respective distribution of π  in number totSN = , (2) for 
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each π , satA  was randomly drawn from the interval within the calculated boundaries, and (3) after 

calculating respective iz  for each pair of iπ  and isatA ,  (equation S2), mean species number estimatedS  

was obtained using equation S1. This was performed for both types of constraints on satA . For the 

comparison of predicted and observed species numbers for each area we used relative residuals 

calculated as ( ) totestimatedobserved SSS − . These residuals are equal to the mean of iε , ε , used in the 

previous paper (Šizling and Storch 2004). 

 The residuals were low for all simulated SARs, for both CR and CE (Figure S3c). As expected, 

higher residuals were generally produced by the model where satA  could vary more widely within the 

geometric constraints. However, even in this case the predicted species numbers did not differ from 

the observed numbers by more than %10  of totS . Note that the systematic deviation between 

observed and predicted species numbers for sampled areas 66×≤  grid cells has been shown to be 

attributable entirely to the approximative nature of equation S1, which does not represent an accurate 

expression of self-similarity for small areas (Šizling and Storch 2004).  

 On the other hand, the predicted species numbers were strongly dependent on the respective 

distribution of π . When we performed the same simulations as described above (using the self-

similar constraints), but taking π  from the other distribution (i.e. taking π from the distribution for 

CE in totS  equal to the species number of CR and comparing the predicted species numbers with the 

observed numbers for CR,  and vice versa), the deviations between predicted and observed species 

numbers were much higher than the deviations calculated from the appropriate distribution of π

(Figure S3d). They were even higher than the maximum deviations that would be obtained if all 

species had the extreme spatial arrangement of occupied cells, i.e. the regularly distributed cells and 

cells located along the edge of the totA . 

 These results indicate that the SAR is not substantially sensitive to the variation of satA  within 

the constraints imposed on it by the distribution of π , but are very sensitive to the exact distribution 

of π . Relative species occupancies therefore directly affect the shape and slope of the SAR. 

 

Relationship between the species-occupancy distribution and slope and shape of the 
SAR 
According to Šizling and Storch (2004), the slope of the SAR in logarithmic space can be calculated 

using equation 

( ) ( )totitot ASZ lnln ∑= π  (S5) 



Appendix S1 to Upscaling biodiversity: estimating the Species-Area Relationship from small 
samples by W.Kunin et al. Ecological Monographs. 

p. 8 

 

 8 

where totA  is the total number of grid cells, which refers to the coarseness of the grid. Therefore, for 

given totA , z is determined by the mean value of the species relative occupancies π  ( toti S/∑= ππ ), 

so that ( ) ( )totAz lnln π−= . Thus, the higher the mean species relative occupancy, the lower the slope 

of the SAR, bounded at 0=z  when mean species relative occupancy is equal to 1. However, the SAR 

is not necessarily precisely linear on the log-log scale, and for highly nonlinear cases it does not make 

sense to take z as a reliable descriptor of the SAR. It is thus necessary to explore also the effect of the 

distribution of π  on the shape of the SAR. 

 For this purpose we generated 10 000 random distributions of π  ( 200=totS ), constructed as 

rank-π  relationships expressed by random third-order polynomials (i.e. three kinds of distributions - 

regular, unimodal, and bimodal - were allowed), keeping mean π  per species such that z = 0.2. For 

each distribution we calculated standard deviation, skewness and kurtosis (which correspond to the 

second, third, and fourth central moments of the distributions) and constructed the SAR according to 

the procedure described above (with the self-similar constraints of satA ). Then we analysed the effects 

of these parameters on the curvilinearity of the SAR (hereafter CL). The CL was calculated using the 

sum of squares of distances from the line defined by the two extreme points of the SAR (the maximum 

( tottot SSAA == ; ) and minimum ( ∑== iSA π;1 ); the slope of the line is equal to Z (equation S5)). 

The squared distances were calculated for all points of satA  in the log-log space and then averaged 

(Šizling and Storch 2004). 

 The CL depends strongly and negatively on the standard deviation of π  ( 87.0−=r , 

0001.0<p , see inset in Figure S4). The other parameters also have significant, but smaller, effects 

on CL ( 55.0−=r  for skewness and 0.30 for kurtosis; 0001.0<p  for both variables). These effects 

imply that the SAR is closer to the power-law in the case of bimodal (which leads to increasing 

standard deviation and decreasing kurtosis) and/or right-skewed (increasing both standard deviation 

and skewness) distributions (Figure S4). Note that the distribution of π  is bounded by zero and one, 

and so the standard deviation cannot be elevated by a simple increase in the range of values, but only 

by increasing the right-skew or bimodality. 
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Fig S4: The relationship between different types of species-occupancy distribution and the curvilinearity of 

the SAR (see text for the details of the construction). The strongly right-skewed and bimodal distributions have 

larger standard deviations and produce SARs which are very close to the power-law. The resulting SARs were 

obtained using the mean of 500 simulations for each distribution. The inset shows the relationship between the 

standard deviation of π  and the curvilinearity of the SAR, CL (N=10,000). 

 

Discussion 
The species-area relationship is strongly sensitive to the distribution of species relative occupancies, 

whereas its sensitivity to particular spatial structure of species distribution is much lower. Note, 

however, that we have shown this only for self-similar spatial distributions, because this is the only 

case in which the SAR can be predicted using the finite area model (Šizling and Storch 2004; Equation 

S1). Therefore, our results do not mean that the SAR is directly dependent on the species-occupancy 

distribution regardless on the spatial structure; they say simply that the shape and slope of the SAR 

are not dependent on the particular realizations of self-similar spatial distribution given that the 

distribution of species relative occupancies does not change. 

The shape of the SAR is close to the power-law if the species occupancy distribution is either 

bimodal or strongly right-skewed. These types of occupancy distribution are actually those most 

commonly observed in nature (Hanski 1982, Gaston and Blackburn 2000, Storch and Šizling 2002) 

and thus it is not surprising that the SAR is also commonly expressed as a power-law. However, the 

species-occupancy distribution is not scale invariant – if we considered very fine resolution where 

the size of the basic grid cell was comparable to the average home range of individuals of the given 
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taxon, the occupancy distribution would be close to the distribution of species abundances which is 

unimodal, albeit still left-skewed (Preston 1962, May 1975, Hubbell 2001). This could potentially 

affect the shape of the SAR on small scales. Indeed, there is some evidence that at very small scales 

the slope of the SAR changes (Crawley and Harral 2001, Hubbell 2001), and the SAR becomes 

curvilinear in a log-log space (Harte et al. 2009). It is therefore probable that our model works only 

within particular spatial scales. Only over this range of scales will the assumption of self-similarity 

be valid, allowing the derivation of the SAR from the species-occupancy distribution. We have 

evidence that for birds these scales comprise grids of cells larger than ca 1010×  km, but it is probable 

that this scale will differ among different taxa. Thus the shape of the SAR may be taxon-dependent 

(Crawley and Harral 2001, Marquet et al. 2004). 

Until now we have dealt with purely geometric considerations, showing that the shape and 

slope of the SAR are related to the distribution of species relative occupancies. This finding implies 

that if we want to explain the shape and slope of the SAR in terms of the mechanisms producing it, 

we have to look for the processes generating also the species-occupancy distribution. It is not a 

coincidence that the same processes have been proposed as explanations for both patterns. We can 

distinguish three major groups of explanations for both patterns: (1) sampling effect (the result of 

random location of individuals across space according to the distribution of species abundances, see 

Preston 1960, Coleman 1981, Nee et al. 1991), (2) habitat heterogeneity (the effect of the spatial 

distribution of habitats preferred by individual species, see Rosenzweig 1995, Storch and Šizling 

2002) and (3) spatial population dynamics which leads to spatial aggregation not attributable solely 

to habitat aggregation (Hanski and Gyllenberg 1997, Storch and Šizling 2002, Storch et al. 2003). In 

the case of central European birds we have already shown that neither species-occupancy distributions 

(Storch and Šizling 2002) nor the SAR (Storch et al. 2003) can be attributed only to sampling effect 

or habitat heterogeneity, and that spatial aggregation is significantly higher than expected solely from 

these effects. 

Regardless on the relative contribution of the effects of habitat heterogeneity and spatial 

population dynamics, the ultimate cause of the highly unequal occupancy distribution as well as the 

shape and slope of the SAR is spatial aggregation on various scales. This is in accord with previous 

findings concerning the importance of spatial aggregation for diversity patterns (Plotkin et al. 2000, 

He and Legendre 2002). Our approach extends these notions by explicitly relating these effects to the 

observed patterns of self-similarity of species distribution and the power-law approximation of the 

SAR. However, two questions remain open: (1) what generates the self-similarity, i.e. the similar 

pattern of spatial aggregation on various scales of resolution (Storch et al. 2008), and (2) which 

processes affect mean species occupancies responsible for the slope of the SAR. Regardless of the 
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responsible processes, the species-occupancy distribution and the species-area relationship are 

ultimately caused by the same biological phenomenon, the spatial aggregation within many spatial 

scales.  
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Appendix S2: Notes on the three novel methods for inferring regional biodiversity patterns from 
fine-scale samples. 

 

This appendix includes detailed formulation and model description, as well as computer 
code, for the three Hui models presented in the manuscript. 

 

The challenge of drawing valid inferences about multi-scale species richness within a region or 
other large area based on a representative sample of fine-scale surveys is an important 
unresolved challenge in macroecology. A number of approaches have been explored to date (see 
text), but there remain a wide range of potentially productive avenues that have not yet been 
explored. Here we set out three such novel approaches. The main aspects have been provided in 
the main text, and we provide here additional notes for the calculation using these three methods. 
Before running the following models, the study area (of the 32 datasets) was first divided into 
grids of particular resolution/scale (e.g. 100km2, 400km2 and so on). The following models were 
run for each grid cell based on samples therein. Fig.S1 provides an illustration of the grid 
systems applied to the dataset. 

To reduce computational demand, we only ran the models for five cells with the most number of 
records (i.e. most intensely sampled cells) for each scale and reported the average estimates for 
comparison. Due to the limited number of grid cells at extremely large scales, we only reported 
the average estimates of two most-sampled 40000km2 cells and, when relevant, estimates of the 
most sampled 90000km2 cell.  The following models also require a reasonable number of 
samples within the grid cell (say, >10~15) so that a reliable sampling pattern of species 
occupancy, frequency and turnover emerges.  This requirement normally cannot be fulfilled for 
the WT and ND subsamples for scales <2500km2 or for the rest for scales <900km2.  As such, 
estimates for these fine scales were interpolated from second order splines based on estimates 
from other scales (largely between 2500km2 and the full extent) and observed values (at 200m2 
for X-only plots and 210m2 for X+Linear plots). 
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Fig.S1. Examples of grid systems used. From left to right, top to bottom: the grid system 
at the scale of 20 × 20 km, 50 × 50 km, 100 × 100 km, and 200 × 200 km for the full size 
X+Linear data. 
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Hui 1: Occupancy Rank Curve (ORC) 

The occupancy rank curve for samples (the number of occupied samples by species rank) 
generally follows closely a truncated power law (Hui 2012):  

𝑂𝑂 = 𝑐𝑐1𝑒𝑒𝑐𝑐2∙𝑅𝑅𝑅𝑅𝑐𝑐3, 

where O and R represent the occupancy and the ranking of a species (R = 1 for the most common 
species); c1, c2 and c3 are three coefficients. This is the sampling occupancy rank curve (ORC). 
Such a form of ranked occupancies consists of two components: a power-law function (𝑐𝑐1𝑅𝑅𝑐𝑐3) 
depicting the scale-free structure that no particular scales stand out in the relationship between 
species ranks and their occupancies, and an exponential cut-off (𝑒𝑒𝑐𝑐2∙𝑅𝑅) depicting a Poission 
random process of species occupancy. The power-law component is largely applicable to 
common species, with their distributions reflecting the spatial partitioning (or sharing) of 
heterogeneous, often fractal, habitat, whilst the exponential cut-off reflects the chance events of 
the flickering presence/absence of rare species in a homogeneous habitat (or at least perceived as 
such). The Countryside Survey data fit the truncated power law extremely well (e.g. see Fig.S2).  

We begin with a set of n samples with the grain and extent of sampling being a and A, 
respectively (A/a = m >> n; sampling effort = n/m). Assuming that the true and sampling ORCs 
are of the same shape (i.e. a species with a true occupancy of U at the scale of a having a 
sampling occupancy of O = U·n/m; meaning that the sampling is sufficient and representative), it 
should be possible to obtain the true ORC by replacing the coefficient c1 with C1 = c1·m/n. The 
number of species can thus be estimated as the solution for R of the nonlinear equation, 

1 = 𝐶𝐶1𝑒𝑒𝑐𝑐2∙𝑅𝑅𝑅𝑅𝑐𝑐3. 

This method essentially blows up the sampling ORC to the true ORC, with the true occupancy 
then estimated as the sampling occupancy divided by the sampling effort and the maximum 
ranking for the blown-up ORC thus the true number of species in the sampling extent. 

 

Hui 2: Hypergeometric Discovery Curve (HDC) 

Sampling patterns do not necessarily have the same shape as the true macroecological patterns. 
This is especially true as the probability of discovering a species in a sample does not correlate 
linearly with species true occupancies. The sampling theory of species abundances that connects 
true relative abundance distributions to ones emerged from samples has been extensively studied 
(Dewdney 1998; Green and Plotkin 2007). We here develop a simple method of species 
occupancies, instead, and its continuation approximation for random sampling. This method is 
based on assessing how incomplete sampling biases the set of species encountered: the 
probability of encountering very rare species is near zero, with probability rising with occupancy 
in a sigmoid fashion and approaching one for very common species.   
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The probability of discovering a species with a true occupancy of j occupying i sites amongst a 
total of n samples with the sampling grain a over the extent A (m = A/a) follows a 
hypergeometric distribution,  

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑖𝑖|𝑗𝑗) = 𝐶𝐶𝑗𝑗𝑖𝑖𝐶𝐶𝑚𝑚−𝑗𝑗
𝑛𝑛−𝑖𝑖 /𝐶𝐶𝑚𝑚𝑛𝑛  

Non-random sampling or species distributions will obviously complicate the discovery 
probability, and their effects are ignored here for simplicity. For large m, the hypergeometric 
discovery probability can be approximated by a continuous normal density function 𝑁𝑁(𝑖𝑖|𝜇𝜇, 𝜎𝜎) 
with the mean 𝜇𝜇 = 𝑗𝑗𝑗𝑗/𝑚𝑚 and standard deviation 𝜎𝜎 = 𝑛𝑛𝑛𝑛(1 − 𝑗𝑗/𝑚𝑚)/𝑚𝑚. We then assess how 
sampling could affect the shape of observed occupancy frequency distribution (OFD). Let 𝑓𝑓(𝑖𝑖) 
be the number of species with the sampling occupancy i and 𝐹𝐹(𝑗𝑗) the number of species with the 
true occupancy j; that is, the true species richness in an area  

𝑆𝑆 = �𝐹𝐹(𝑗𝑗)
𝑚𝑚

𝑗𝑗=1

. 

As the sampling OFD 𝑓𝑓(𝑖𝑖) is known while the true OFD 𝐹𝐹(𝑗𝑗) unknown, we have the inverse 
problem of solving the following Fredholm equation of the first kind, 

𝑓𝑓(𝑖𝑖) = �𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑖𝑖|𝑗𝑗)𝐹𝐹(𝑗𝑗)
𝑚𝑚

𝑗𝑗=1

≈ � 𝑁𝑁(𝑖𝑖|𝜇𝜇, 𝜎𝜎)𝐹𝐹(𝑗𝑗)𝑑𝑑𝑑𝑑
𝑚𝑚

𝑗𝑗=1
. 

Theoretically, we could assume different parametric forms for the true OFD (e.g., Hui and 
McGeoch 2007a, b) – a bounded frequency distribution between zero and m. In practice, the 
extremely large number of m for this dataset means that we could relax the upper bound and 
make it simply a nonnegative distribution. One widely-applied nonnegative distribution is 
lognormal, and for simplicity we thus assume the true OFD follows a lognormal distribution,  

𝐹𝐹(𝑗𝑗) = 𝑆𝑆 ∙ 𝐿𝐿𝐿𝐿(𝑗𝑗|𝜇𝜇′, 𝜎𝜎′). 

Species richness 𝑆𝑆 as well as 𝜇𝜇′ and 𝜎𝜎′ can be simultaneously determined by minimising  

�ln(𝑓𝑓(𝑖𝑖)/𝑓𝑓(𝑖𝑖))2
𝑛𝑛

𝑖𝑖=1

, 

where 𝑓𝑓(𝑖𝑖) is the predicted OFD. To substaintly reduce the computational demand, we took the 
unbiased, symmetric lognormal distribution, with 𝜇𝜇′ = ln(𝑚𝑚) /2 (the lognormal OFD is 
centralised around the middle of the possible occupancy at logarithmic scale) and 𝜎𝜎′ =
ln(𝑚𝑚) /3.92 (the width of the 95% confidence interval spreads the entire possible occupancy at 
logarithmic scale), making the species richness the sole variable to be estimated from the 
minimisation.  
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Hui 3: Zeta diversity 

Zeta diversity is a term coined recently to represent the overlap in species across sets of multiple 
samples (Hui and McGeoch 2014). Unlike pairwise beta diversity which lacks the ability to 
express the full set of diversity partitions among multiple (≥3) sites, zeta diversity can express 
the full spectrum of compositional turnover and similarity. Let 𝜁𝜁𝑗𝑗  be the number of shared 
species (intersection) of 𝑗𝑗 randomly selected sites (without replacement) among a total of 𝑚𝑚 
sites. In practice, we first fit the zeta diversity decline (i.e. the decline of 𝜁𝜁𝑗𝑗  with the increase of 
zeta order 𝑗𝑗) to a specific parametric form. As power law and negative exponential are the two 
most common forms of zeta diversity decline, the use of a truncated power law (exponential 
power law) will guarantee a good fit. Based on fitted zeta diversity decline, we can estimate the 
number of species observed in 𝑚𝑚 sites by 

𝑆𝑆𝑚𝑚 = �(−1)𝑗𝑗+1𝐶𝐶𝑚𝑚
𝑗𝑗 𝜁𝜁𝑗𝑗

𝑚𝑚

𝑗𝑗=1

. 

When 𝑚𝑚 is large, we could use the integral to approximate this (with binomial coefficients 
replaced by the manipulation of Gamma functions). This allows us to extrapolate zeta diversity 
with higher orders, and to calculate 𝑆𝑆𝑛𝑛 based on the above formula; notably, it collapses to the 
Chao II estimator when zeta diversity declines exponentially. When m is large, approximation in 
the above formula often leads to overflowing errors. Instead, we could estimate the number of 
new species encountered when adding one extra sample (Hui and McGeoch 2014),  

𝑆𝑆𝑛𝑛 − 𝑆𝑆𝑛𝑛−1 =
∑ (−1)𝑗𝑗+1𝐶𝐶𝑛𝑛−1

𝑗𝑗−1𝜁𝜁𝑗𝑗𝑛𝑛
𝑗𝑗=1

𝑛𝑛
≈ 𝑆𝑆𝑛𝑛−1𝑓𝑓𝑛𝑛−1, 

where 𝑓𝑓𝑛𝑛 represents the portion of species to be discovered in the extra sample and follows a 
power law with a negative exponent. That is, we have  

𝑆𝑆𝑚𝑚 = 𝑆𝑆𝑚𝑚−1(1 + 𝑓𝑓𝑚𝑚−1) = 𝑆𝑆1� (1 + 𝑓𝑓𝑗𝑗)
𝑚𝑚−1

𝑗𝑗=1
 

We estimate the form of 𝑓𝑓𝑗𝑗 based on estimated 𝑆𝑆𝑛𝑛. Finally, we calculate the integral of ln (𝑆𝑆𝑚𝑚) so 
that the above iteration can be simplified into the integral over 1 and 𝑚𝑚. The R implementation 
of zeta diversity analysis and related multi-site generalised dissimilarity modelling is available in 
the zetadiv package (Latombe et al. 2017a, 2017b). 
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Fig.S2. An illustration of key figures when using the three Hui models for the X-Only 
WT1 dataset for the full Britain extent. Top left: Occupancy-rank curves (dots: observed; 
red curve: fitted truncated power law). Top right: Occupancy frequency distributions 
(dots: observed; red curve: OFD for estimated species richness and the specified true 
lognormal distribution. Bottom left: Zeta diversity declines (dots: observed mean from 
100 combinations; red curve: fitted exponential power law). Bottom right: Portion of 
species discovered in one extra site (dots: observed; red curve: fitted power law). 
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Computer code 

We implemented the models in Wolfram Mathematica 11.0 with annotations in (* *). 

(*Data preparation*) 

a2 = a; (*a is a dataframe of all records located within a focal cell*) 

(*headers of each column were included in the first row*) 

xm1 = Dimensions[a2][[1]]; (*# records*) 

sit = Tally[Table[a2[[i, 5]], {i, 2, xm1}]]; (*5th col: Rep_ID*) 

ns = Dimensions[sit][[1]]; (*# sites*) 

site = Table[sit[[i, 1]], {i, 1, ns}]; (*site vector*) 

b = Tally[Table[a2[[i, 15]], {i, 2, xm1}]]; (*15th col: Spp_ID*) 

sp = Dimensions[b][[1]]; (*# species*) 

 

(*Hui 1: Occupancy Rank Curve*) 

b2 = Transpose[a2]; 

c = Drop[Tally[b2[[15]]], 1]; 

cc = Sort[Table[c[[i, 2]], {i, sp}], Greater]; 

data = Table[{i, cc[[i]]}, {i, 1, sp}]; (*ORC*) 

nlm = NonlinearModelFit[data, c1 Exp[-c2 z] z^c3, {c1, c2, c3}, z,  

   Weights -> Range[Dimensions[c][[1]]]]; 

Flatten[NSolve[(nmax/ns)*nlm[z] == 1, z]][[1, 2]]; (*# species estimated*) 

 

(*Hui 2: Discovery Curve*) 

(*Define Discovery probability*) 

cov[i_, j_, n_, m_] :=  

  PDF[NormalDistribution[j*n/m, Sqrt[n*j (1 - j/m)/m]], i]; 

(*Define true OFD*) 

ff[j_, u_, v_] := PDF[LogNormalDistribution[u, v], j]; 

m = 10; (*Only consider the OFD for species with occupancies ≤ m*) 

ux = Log[nmax]/2; vx = Log[nmax]/3.92; (*parameters assumed*) 

oc = Sort[Table[b[[i, 2]], {i, 1, sp}], Less]; (*Species occupancies*) 

ofd = Tally[oc]; (*OFD*) 

data = Table[{s,  
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    Sum[(Log[ 

         s NIntegrate[ 

           cov[i, j, ns, nmax] ff[j, ux, vx], {j, 1, nmax}]] -  

        Log[ofd[[i, 2]]])^2, {i, 1,  

      Min[Dimensions[ofd][[1]], m]}]}, {s, 100, 5000, 100}]; (*SS for given # species*) 

fx = Interpolation[data]; 

FindMinimum[{fx[x], 100 <= x <= 5000}, {x, 300}][[2, 1, 2]]; (*# species estimated*) 

 

(*Hui 3: Zeta Diversity*) 

Do[{sbs[i, j] = 0}, {i, 1, sp}, {j, 1, ns}]; 

Do[{sbs[Position[b, a2[[i, 15]]][[1, 1]],  

    Position[site, a2[[i, 5]]][[1, 1]]] = 1}, {i, 2, xm1}]; (*Species-by-Site Matrix*) 

(*calculating zeta for 100 combinations*) 

Do[{ 

   Do[{sam = RandomSample[Range[ns], k1];  

     samm[tt] =  

      Total[Table[Product[sbs[i, j], {j, sam}], {i, 1, sp}]]}, {tt, 1, 100}]; 

   zeta[k1] = Mean[Table[1.0 samm[tt], {tt, 1, 100}]];}, {k1, 1, Min[10, ns]}];  

(*Calculating zeta declines using weighted regression*) 

nlm = NonlinearModelFit[Table[{k1, zeta[k1]}, {k1, 1, Min[10, ns]}],  

   c1 *Exp[-c3*x] x^c2, {c1, c2, c3}, x, Weights -> Range[Min[10, ns]]^4]; 

(*Calculating # species in n sites*) 

Do[{ssm[n] =  

    Sum[(-1)^(k1 + 1) Gamma[ 

       n + 1] nlm[k1]/(Gamma[k1 + 1] Gamma[n - k1 + 1]), {k1, 1,  

      n}]}, {n, 1, 100}]; 

(*Calculating proportion of gained species with one extra sample*) 

nlm2 = NonlinearModelFit[ 

   Table[{n, ssm[n]/ssm[n - 1] - 1}, {n, 20, 50}], c4*x^c5, {c4, c5}, x]; 

(*Estimated # species*) 

Exp[Log[ssm[1]] +  

    NIntegrate[Log[1 + nlm2[i]], {i, 1, nmax}, MaxRecursion -> 1000]]; 
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