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Appendix A from A. L. Šizling et al., “Between Geometry and Biology:
The Problem of Universality of the Species-Area Relationship”
(Am. Nat., vol. 178, no. 5, p. 602)

Theses and Derivations
Derivation I: derivation of equation (4). From equations (1) and (2), and ,z jS S¯ ¯S /S p � j /j p ��A A�A A

respectively, and thus (from eq. [3]) , where . Thenz jS S ¯z p ln [p � � (1 � p )� ]/ ln � p : p S / (j � S )S∪ j A A A AA A

equation (4) follows.
Derivation II: derivation of the relationship between DS, Dj, and . While DS andDj are assumedDS∪ j

mathematically independent from each other, is strictly determined by the former two (fig. 1c). Denote ,¯D aS∪ j S

, and to corresponding mean abundances per species ( , , and ).¯ ¯ ¯ ¯ ¯a a D p ln a D p ln a D p ln aj S∪ j S S j j S∪ j S∪ j

Similarly to equations (1)–(3), , , and , where and are the mean¯ ¯ ¯ ¯ ¯¯ ¯ ¯a p I /S a p h/j a p (I � h)/(S � j) I hS j S∪ jS

numbers of individuals of the assemblageS andj, respectively. The mean is given across all samples of the area
A. It follows that , where . Hence,¯ ¯ ¯ ¯a p p a � (1 � p )a p : p S /(j � S ) exp (D ) p p exp (D ) � (1 �S∪ j A S A j A A S∪ j A SA A

.p ) exp (D )A j

Thesis I. The average number of individuals scales linearly with area. Theoretically, it is easy to show a
linear scaling between sampling area and mean number of individuals per sample on an infinite plane (i.e., to
show that ; where is the mean number of individuals,r is the density of individuals, andA is area).I p rA I
Imagine a sampling area composed of two adjacent subareas, each of areaA. The sampling area is thus 2A. The
mean number of individuals across all samples is computed asI(2A) p [(I � I ) � (I � I ) � … � (I �a1 b1 a2 b2 an

, where indicesa andb label the first and second subplots, respectively, and indices 1 ...n label the first,I )]/nbn

second, and so on sampling, up to thenth sampling. This formula can be split into .I(2A) p � I /n �� I /nai bi

Since on an infinite plane , it follows that . Hence, scales linearly with� I /n p � I /n p I(A) I(2A) p 2I(A) Iai bi

A.
However, this can be violated on a finite plane. The reason is that the two adjacent plots are mutually

dependent; they cannot overlap each other, and they must touch each other at the same time. This causes more
intensive sampling in the center of the sampled finite area, especially when the sampling area is large. Therefore,
if there is a cluster of a high density of individuals in the center of the whole sampled area, then large sampling
areas capture the higher density of individuals,r, than do smaller sampling areas. Hence, a deviation from the
linear scaling ( ) may occur. For this reason we tested this assumption by using data on real assemblages.I p rA
Visually, all 125 individual-area relationships (i.e., 123 bird relationships� one fish relationship, each consisting
of five points, and one tree relationship with 11 points) were perfectly linear, with correlation coefficients above
0.999 and slopes of the relationships in the log-log scale between 0.939 and 1.041 in all cases.

The linear scaling between sampling area and mean number of individuals per sample has been derived for
nested sampling design within a contiguous area. We thus should not expect the relationship forI p rA
archipelagos of any kind.

Thesis II. The unique solution of equation (5) follows equation (6). To solve equation (5), we assume that
, and then we substitute , , and , wherel substitutes forz(ln (l))D (A)+D (A) x: p exp (D ) y: p exp (D ) F(l): p �S j S j

x, y, or . This transforms equation (5) intopx � (1 � p)y

F[px � (1 � p)y] p pF(x) � (1 � p)F(y), (A1)

whose only solution follows (see the proposition below). Transforming back, we get equation (6)F(x) p ax � b

and conditions (i) and (ii) .a � b 1 0 0 ≤ D ! ln (�b/a)
Proposition I. , wherea andb are real coefficients, is the only solution of equation (A1) (F(x) p ax � b 0 !

) if F is defined at each and is continuous at .�p ! 1 x � A0, x S x r 0max

Proof. (i) Putting , we get . Putting , we gety: p 0 F(x) p [F(px) � (1 � p)F(0)]/p x: p 0 F(y) p {F[(1 �
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. (ii) Putting and , we getp)y] � pF(0)}/(1 � p) y: p x F(x) p F(y) F(px)/p � (1 � p)/pF(0) p F[(1 �
. (iii) Since , it follows thatp)x]/(1 � p) � p/(1 � p)F(0) (1� p) /p � p/ (1 � p) { 1/p � 1/ (1� p) [F(px) �

. (iv) Substituting , we getF(0)]/p p {F[(1 � p)x] � F(0)}/(1 � p) G: p F � F(0) G(px)/p p G[(1 � p)x]/ (1 �
. (v) Putting and , we get . (vi) Putting , (because ,p) z: p px y: p (1 � p) /p yG(z) p G(yz) z: p 1 x: p y y 1 0

we use the continuity ofF at ), and , we get . (vii) Substituting back and setting�x r 0 a: p G(1) G(x) p ax
, we get .b: p F(0) F(x) p ax � b

Note I. (i) If , then equation (A1) becomes the Jensen functional equation. (ii) The condition thatp p 0.5 0 !

is biologically realistic, since or , would mean the lack of the first or the second assemblagep ! 1 p p 0 p p 1
to compose.

Thesis III. Equation (6) captures a strictly decreasing function iff and .a ! 0 b 1 0
Proof. Equation (6) is strictly decreasing iff . It happens only ifD D(dz/dD) p (1/ ln�)[(1/(ae � b)]ae ! 0 a !

because the existence of a logarithm in equation (6) requires that . As a consequence, .D0 ae � b 1 0 b 1 0
Thesis IV. Equation (6) captures downward accelerating function iff and .a ! 0 b 1 0
Proof. Equation (6) is downward accelerating iff . It holds iff2 2 D 2 D(d z/dD ) p (1/ ln�)[b/ (ae � b) ]ae ! 0

.ab ! 0
Thesis V. Any function following equation (6) intersects theX-axis at iff and .D 1 0 a ! 0 b 1 0
Proof. If equation (6) is defined and , then there is always aD1 so that , which makesD1a ! 0 0 ! ae � b ! 1

. If there is at least oneD2 to make (a biologically relevant condition), thenD1ln (ae � b) ! 0 z(D2) 1 0 z(D)
intersects theX-axis, as equation (6) captures a continuous function.

Thesis VI. The theses III–V hold true regardless of the method ofz calculation (z can be computed as the
slope between and�A or, alternatively, as the slope betweenA and�A; see fig. 1a).A/�

Harte et al. (2009) computed the slope of the logarithmically transformed species-area relationship (SAR),z,
as the mean value of two subsequent values ofz when doubling area; that is, they computed the mean value
from z between andA and fromz betweenA and�A. The slope of a logarithmically transformed SARA/�
betweenA and�A is z at DA. It is given by equation (6), which can be modified to

z (D ) DA A A� p a e � b , (A2)A A

where indexA indicates that the exact values of parameters were set for areaA (fig. 1a). The same holds true for
the preceding sequence of two areas (i.e., andA). Hence, we can writeA/�

z (D ) DA/� A/� A/�� p a e � b . (A3)A/� A/�

The parametersa andb may vary between the two focal areas. (The possible variation in the parameters is not
caused by variation inp, for p does not affect the exact value of eithera or b; see “Thesis II”). Nonetheless, we
prove that thez-D relationship constructed by Harte et al. (2009) would be downward accelerating had it been
universal (taxon invariant). Again, we allow variation in all parameters with scale to avoid constraining our
results by the assumption of their scale invariance.

According to figure 1a, . Hence, . It follows thatz (D ) DA/� A AD p D � ln � � z ln � � p �b /(� � a e )A A/� A/� A/� A/�

DAa b e �b bA A/� A/� Aln � DA( )��a eA/�z (D ) � z (D )A/� A A Az̄ (D ): p p , (A4)A A 2 ln�

where is the estimate of the SAR slope in logarithmic space used by Harte et al. (2009) if . Clearly,¯ ¯z � p 2 zA A

is strictly decreasing, attaining 0, and downward accelerating withD. The reason is that

2 D DA A¯d z 1 a b e a �eA A A/2p � ! 0 (A5)2 D 2 D 2A A( )dD ln � (a e � b ) (� � a e )A A A/2

for , , , and . (Note that the first additive term in eq. [A5] is the derivative of eq. [6].)a ! 0 a ! 0 b 1 0 � 1 1A A/2 A

In sum, the taxon-invariantz-D relationship computed following Harte et al. (2009) has the same properties as its
bottom limit (given that the SAR in logarithmic space is concave; eq. [6]).

Our theory provides a tool to compute the exact value of the derivative of the SAR in the case of a universal
z-D relationship. If� approaches 1 ( still being greater than 1), the two subsequent areas,A and�A,�� r 1
approach each other, and approaches the derivative. Apparently, thez-D relationship drops very steeplyz(A)
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(from ), being still downward accelerating, in this case. The reason is that Dz [0] p 1 (dz/dD) p (1/ ln�)[1/(ae �
if , which follows from equation (6). This means that all species would be absolutelyD �b)]ae r �� � r 1

widespread at all scales had the relationship betweenD and the exact derivative of the SAR along area been
universal.


