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Abstract

Spatial patterns of species richness follow climatic and environmental variation, but

could reflect random dynamics of species ranges (the mid-domain effect, MDE). Using

data on the global distribution of birds, we compared predictions based on energy

availability (actual evapotranspiration, AET, the best single correlate of avian richness)

with those of range dynamics models. MDE operating within the global terrestrial area

provides a poor prediction of richness variation, but if it operates separately within

traditional biogeographic realms, it explains more global variation in richness than AET.

The best predictions, however, are given by a model of global range dynamics modulated

by AET, such that the probability of a range spreading into an area is proportional to its

AET. This model also accurately predicts the latitudinal variation in species richness and

variation of species richness both within and between realms, thus representing a

compelling mechanism for the major trends in global biodiversity.
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I N T R O D U C T I O N

Species richness is not distributed equally across the Earth’s

surface. The most prominent pattern is its decrease from the

tropics toward the poles, the latitudinal gradient of richness.

There are currently several dozen hypotheses to explain this

trend, but only a small minority has any empirical support

(Willig et al. 2003). One of the most promising is the idea

that the species richness of various taxa is controlled by

climate (Hawkins et al. 2003; Currie et al. 2004). Indeed,

climatic factors are argued to be the most widely supported

predictors of species richness both within and between

different regions (Francis & Currie 2003). The causal

mechanisms leading from climate to species richness are

still hotly debated (Currie et al. 2004; Evans et al. 2005;

Clarke & Gaston 2006). In particular, two alternative forms

of available energy have been recognized as being potentially

important. Ambient or solar energy, usually quantified in
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terms of temperature, is thought to influence species

richness distribution via its effects on the rates of biological

processes including speciation (Rohde 1992, Allen et al.

2002). Productive energy is an estimate of energy available

for use by plants in primary production of biomass,

ultimately limiting the energy flowing through food-webs

and hence the population growth of species (Waide et al.

1999; Mittelbach et al. 2001). According to the most recent

developments of the �species–energy theory�, productivity

may positively affect the total number of individuals (and

consequently species) within an area, whereas temperature

affects how this number of individuals is divided among

species (Allen et al. in press). Of these two energy forms,

productive energy has been argued to be the most general

descriptor of broad-scale diversity gradients (Turner &

Hawkins 2004).

Contemporary environmental factors do not, however,

represent the only possible explanation of species richness

patterns. These patterns are also the result of historical

influences on the formation of the biotas of different

regions, via the spatiotemporal dynamics of the geographic

ranges of individual species. In an extreme case, it is even

possible that such dynamics are themselves sufficient to

produce the patterns observed without the need to invoke

the role of environmental factors. Range dynamics are

naturally constrained by the location and shape of land-

masses, and thus species with large ranges will necessarily

reach the central areas of respective land domains.

Consequently, species richness should be higher there than

in areas which are more distant from the domain centres.

This so-called mid-domain effect (MDE) (Colwell & Hurtt

1994; Colwell & Lees 2000) has recently been proposed as a

null explanation of spatial patterns of diversity, and in some

cases has been shown to predict observed patterns quite

well (Lees et al. 1999; Jetz & Rahbek 2001, 2002; Colwell

et al. 2004; Bellwood et al. 2005). There is, however,

continuing unresolved controversy concerning the extent

to which this process is realistic (Koleff & Gaston 2001;

Zapata et al. 2003, 2005; Colwell et al. 2005; Hawkins et al.

2005). Part of this controversy arises from the uncertainty in

the domain definition – what is the area within which we

can assume the process of random range dynamics? If we

assume random range dynamics within areas delimited on

the basis of prevailing ecological conditions, for instance

biomes, the model would already contain quite substantial

information about the environment, and the predicted

species richness patterns would necessarily be a conse-

quence both of the process itself and the climatic (or other)

factors which determine the distribution of environmental

conditions across the Earth’s surface. The more detailed the

delimitation of domains within which the process acts, the

closer is the predicted pattern to the observed one, simply

because the occurrence of particular species (and the

distribution of their range sizes) within the domains is

always assumed a priori. On the other hand, very broad

delimitation of domains will guarantee much weaker

predictions, as it is unrealistic to assume that every species

can occur and spread anywhere.

These issues are related to the ongoing discussion

concerning the role of idiosyncratic regional effects on

species richness. At one extreme is the claim that the total

species richness within a particular region is uniquely

determined by historical contingencies, and that without

accounting for evolutionary history we cannot understand

the difference in species richness between different regions

(e.g. Latham & Ricklefs 1993; Qian & Ricklefs 1999). At the

other pole of the debate is the suggestion that contemporary

ecological conditions constrain local and regional species

richness such that regional differences may be predicted

from these conditions alone (Francis & Currie 2003). Since

the former viewpoint resigns from an attempt to explain

inter-regional differences on the basis of universally valid,

globally consistent principles, it justifies using individual

regions (biogeographic realms, continents, biomes or other

biologically relevant units – note that the problem of

delimitation of these units remains) as given, and trying to

explain species richness differences within these units from

different principles, including MDEs. On the other hand, if

local ecological (e.g. climatic) constraints are essential and

globally universal, we should be able to explain species

richness patterns without accounting for the historical and

geographic settings of different regions.

Of course, explanations of species richness patterns based

on climatic and energetic environmental variables on the

one hand, and on range dynamics within delimited domains

on the other, are not necessarily mutually exclusive. There is

a third possibility, namely that range dynamics are not

completely random and constrained only by hard domain

boundaries, but that the spatial dynamics of each species�
range is itself also modulated by climatic factors. These

dynamics then could act globally, i.e. without considering

any internal domain limits based on ecological conditions,

and still could produce differences among regions, simply

because the modulating environmental factors themselves

differ.

We have tested this idea using one of the most

comprehensive data sets on the distribution of a single

major taxon, that on the global distribution of all terrestrial

bird species (see Orme et al. 2005, 2006). Global bird species

richness patterns are apparently attributable to many

ecological and evolutionary processes differing in their

importance according to spatial scale and species properties

(Rahbek & Graves 2001; Jetz & Rahbek 2002). However,

since bird species richness is widely shown to be strongly

associated with energy availability, we assume that this

complexity could be encompassed by a simple process
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comprising an important feature of species dynamics,

namely that the probability of species occurrence is

proportional to productivity. Clearly, speciation, as well as

range dynamics and local extinction are all affected by many

factors other than productivity, but if productivity influen-

ces species presence in the course of all these processes,

global species richness patterns related to productivity could

be reproduced by a simple range dynamics model with

simplified assumptions.

We will show that the global model of range dynamics

modulated by environmental productivity explains as much

variance in species richness as does the pure MDE

constrained by the boundaries of individual biogeographic

realms, and predicts reasonably well the species richness

variation both between and within individual realms.

Moreover, this dynamic model generally provides better

predictions of species richness variation than the pure effect

of productivity, with implications for our understanding of

the mechanisms underpinning the observed relationship

between species richness and productivity. This process is

suitable for use as a null hypothesis of species richness

patterns, with the residuals being informative and important

in indicating other key environmental gradients.

M A T E R I A L A N D M E T H O D S

Species data

The analyses presented here are based on a previously

reported database (Orme et al. 2005) of distribution maps

for 9626 extant, recognized bird species constructed using a

variety of published sources (for details of sources and

methodology see Orme et al. 2006). Briefly, breeding ranges

from the published sources were mapped as vectors or

�polygons� and converted to an equal area grid for analysis.

The grid used a Behrmann projection at a cell resolution of

96 486.2 m. This grid cell size is equivalent to 1� longitude

and 1� latitude at 30� latitude N/S (1/360th of the width of

the globe under a Behrmann projection using the WGS84

datum). The global grid therefore contains 360 by 152 cells,

omitting the partial cells at latitudes higher than 87.13�.

Species were scored as present in a grid cell if any of the

available sources indicated that the breeding range fell

within the cell boundaries. Biogeographic realms were

delimited using the World Wildlife Fund ecoregions map

(Nearctic, Palaearctic, Neotropical, Afrotropical, Oriental

and Australasian) (Olson et al. 2001).

Environmental data

For each 1� grid cell, we obtained values of three measures

of productive energy, namely: actual evapotranspiration

(AET) (University of Delaware Global Climate Resource

Pages, available at http://climate.geog.udel.edu/�climate/

html_pages/download.html); the normalized difference

vegetation index (NDVI, The International Satellite Land-

Surface Climatology Project (ISLSCP) Initiative II Data

Archive (2004) available at http://islscp2.sesda.com/

ISLSCP2_1/html_pages/groups/veg/fasir_ndvi_monthly_

xdeg.html; see also Kerr & Ostrovsky 2003); and net

primary productivity (NPP, Cramer et al. 1999). Annual

measures were used in all cases. These data were resampled

to the same equal-area projection and resolution as the species

data (above). From the data set, we excluded land-areas falling

within the Antarctic and Oceanian realms, due to lack of

environmental data. However, we retained islands assigned to

the six remaining biogeographic realms (see Fig. 1).

Having determined that AET was the best single correlate

of bird species richness across the globe (r ¼ 0.714, see

Fig. 2a), and is strongly correlated to NPP (r ¼ 0.912), we

chose this variable as the factor modulating species range

dynamics. In fact, we performed all the analyses using all

three measures, but the results were not qualitatively

different. Slightly worse results were obtained by using

NDVI rather than AET or NPP, which is apparently related

to a lower correlation of NDVI with species richness (r ¼
0.650), as well as with both AET and NPP (r ¼ 0.834 and

r ¼ 0.838, respectively).

Models

We simulated both the random dynamics of species ranges

and the dynamics modulated by productive energy using the

same procedure, which is the generalized spreading dye

model (Jetz & Rahbek 2001). The model assumes that

species ranges are contiguous and spread from the point of

origin to available neighbouring grid cells until the final

number of occupied cells, hence range size, is attained

(i.e. the observed distribution of range sizes in terms of

number of occupied grid cells is kept). Three models were

performed (for all species), and their predictions were

compared with observed species richness, as well as with the

prediction from a pure effect of AET.

Global MDE model

The first cell was chosen randomly from all grid cells

delimiting land masses on the Earth. In subsequent steps, a

species could spread to any available unoccupied cell

adjacent to any already occupied, with probability of being

selected Pi ¼ 1/Nadj, where Nadj is the number of empty

adjacent cells at each respective step (i.e. Nadj £ 8 for a

single occupied cell but is usually higher where more than

one cell is occupied). Classical approaches to the MDE

emerging from species range dynamics assume that the latter

are strictly limited by domain boundaries, however defined.

However, in our model of global range dynamics, it was
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possible for a species (especially those with large ranges) to

spread into areas which were bounded and smaller than its

range. In such cases, when a species filled the domain (island

or continent) in question, it could skip to a different domain,

into the cell which was the shortest distance from the last

cell to be occupied within the previous domain. This

simulated the rare events of long-distance dispersal, neces-

sary for colonizing new and distant continents or islands.

After the colonization event, the range dynamics continued

within the new domain according to the rules described

above; long distance jumps therefore occurred only when

necessary (i.e. after complete filling of a domain), and were

in fact quite rare (only about 5% of species underwent such

a jump in each simulation).

(a)

(b)

(c)

(d)

 

 

 

 (e)

Figure 1 Equal-area maps of species rich-

ness at a resolution broadly comparable with

a 1� latitude · 1� longitude grid; the gradient

from dark green to dark red represents the

gradient from low to high richness, (a)

prediction based on the globally acting

MDE (global MDE), (b) prediction of the

MDE acting separately within individual

biogeographic realms (within-realm MDE;

realm boundaries are indicated by solid

lines), (c) prediction of the globally acting

AET-driven model of range dynamics and

(d) observed species richness, (e) for com-

parison, the variation of AET values. Note

that the range of species richness is rescaled

in every case, i.e. a particular colour denotes

different richness levels in each case; see

Fig. 2 for the ranges of species richness and

AET values for each situation.
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Within-realm MDE model

The process was the same as in the previous case, but

running within separate biogeographic realms. This is

equivalent to the assumption that there are impenetrable

boundaries between biogeographic realms and species can

spread only within these boundaries. Total within-realm

species richness was thus fixed at that actually observed, as

was the distribution of species range sizes within each realm.

If a species� range occurred in several realms, it was treated

separately in each realm as if the parts were separate species.

This is, of course, a simplification, but not unrealistic

considering that very large ranges probably do not behave as

coherent units, may not be contiguous if they occur on

several continents, and the dynamics of their individual parts

also may be affected by realm boundaries.

AET-driven model

In this model of range dynamics modulated by AET, the

initial cell was not selected randomly, but with probability

Pi ¼ AETi/AETtot, where AETi was the value of AET of

the particular cell, and AETtot was the sum of AET values

for all cells. In all subsequent steps only empty cells adjacent

to any already occupied could be selected, with probability

Pi ¼ AETi/AETadj.tot, where AETadj.tot is the sum of AET

values for all empty cells adjacent to those already occupied.

Hence, in this model we simply assumed that the probability

of species occurrence at each step is constrained by space

(i.e. by continental boundaries, and by the presence of

already occupied sites) and is exactly proportional to

environmental productivity measured using AET. The latter

assumption is justified by the fact that AET is proportional
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Figure 2 Species richness variation predicted by (a) the pure AET effect, (b) the global MDE, (c) the within-realm MDE, and (d) the global

AET-driven model. Ordinary least-squares regression lines are provided.
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to the total flow of energy through producers, and thus to

the total abundance of resources available for consumers.

When a species filled a domain, it could skip to a different

domain, as in the case of the MDE models. This model

necessarily generates some MDEs (as range dynamics are

constrained by domain boundaries and large ranges thus

necessarily reach centres of land masses). However, it is

distinct from the null mid-domain model defined in

previous studies, since it explicitly includes the effect of

environmental productivity on these dynamics.

A total of 100 simulations were performed for each

model (across all species), from which mean species richness

was calculated for each grid cell.

Analyses

Correlations between mean predicted and observed species

richness were compared using standard t-tests. We tested for

significant differences between these correlation coefficients

(Sokal & Rohlf 1995) in order to assess whether different

models showed significant differences in explained variance,

within each given geographical extent of consideration

(i.e. globally or within realms). Such tests can give a general

indication of the strength of individual predictors of species

richness, but cannot evaluate the overall relative importance

of each predictor across candidate model sets, including

those in which the effect of the other predictors are

accounted for. For this purpose, we performed model

selection using multiple regressions of the effect of all

predictors (pure AET, and the predictions from the MDE

models and the AET-driven model) on species richness

both globally and within each realm.

Use of OLS regression methods that assume independent

errors may render correlation coefficients or regression

slopes misleading in the case of spatially structured data

(Clifford et al. 1989; Cressie 1991). Hence, we used

generalized least squares (GLS) regression in which expo-

nential spatial covariance structures were fitted, since these

were the best-fit choice among spatial covariance options, as

indicated by lowest value of Akaike’s Information Criterion

(AIC). Longitudinal and latitudinal cell centroid values were

used as spatial variables and all models were implemented in

SAS version 9.1 using the PROC MIXED procedure (Littell

et al. 1996). Global spatial models took account of the

differences among biogeographic realms in the maximum

geographic distance or range parameter (q), measured in

degrees, over which spatial autocorrelation in equivalent

OLS residuals was observed to occur. This involved

estimating q from the semi-variogram of residuals of

standard OLS models that included the relevant combina-

tion of predictors, separately for each realm. All six

estimates of q were then entered as spatial covariance

parameters in the model, with spatial autocorrelation

assumed for observations within the same realm. Models

for individual biogeographic realms used the corresponding

spatial covariance parameters estimated for the given realm.

Globally, and within biogeographic realms, model selec-

tion procedures were performed using the results of seven

GLS spatial models representing all possible combinations

of our three predictors: AET; MDE model predictions; and

AET-driven model predictions. Globally, the global MDE

predictions were used as one predictor, while models for

each biogeographic realm used the within-realm MDE

predictions as the MDE model being tested. Model selection

was based on the use of the AIC to compare the fit of

competing models, since this approach is rapidly gaining

acceptance as the preferred alternative to null hypotheses

testing (Burnham & Anderson 2001; Johnson & Omland

2004; Whittingham et al. 2006). Following Burnham &

Anderson (2001) and Johnson & Omland (2004), we

calculated Di, or the difference between each model’s AIC

value and that of the best-fitting model, the one with the

smallest AIC (hence, Di ¼ AICi – AICmin). The Akaike

weight (W) of each model was then derived as

Wi ¼
expð1=2DiÞ

PR

j¼i

expð�1=2DjÞ
;

where W for each model is the model likelihood value

normalised to sum to 1 across all R models being consid-

ered, and can be interpreted as the probability that each

model provides the best fit among all models to explain the

observed data. We then determined candidate sets of

models by including only those with W ‡ 0.1. For each of

the three predictors of species richness, following Johnson

& Omland (2004), we summed the Akaike weights of all the

models in which the given predictor was included to esti-

mate the relative importance of the three in predicting

species richness.

We additionally compared the fit of our GLS models

against OLS models that assume independent errors. In all

cases OLS models were associated with higher values for )2

times the logarithm of the restricted likelihood than the

equivalent GLS models (see Table S1 in Supplementary

Material), indicating that adjusting for spatial autocorrelation

resulted in a consistently more accurate description of

variability in species richness (Littell et al. 1996). Hence, only

the GLS model results are reported.

R E S U L T S

Global MDE model

Not surprisingly, the purely random model of stochastic

species range dynamics constrained only by the distribution
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of continental masses did not predict observed patterns of

species richness (Fig. 1a, see Fig. 1d for comparison). Peaks

of species richness predicted by this model emerged in

central areas of the continents, although their exact locations

were affected by the shapes of continents and their spatial

relations to other landmasses. The height of a species

richness peak is clearly related to the size of the continent,

since there is an equal probability that any given grid cell will

be the starting point for the spread of a species� range, and

thus more species will start their spreading in larger

continents. The variance in predicted species richness was

much lower than observed (see the scaling of axes on

Fig. 2b). No latitudinal gradient in richness was predicted by

the global MDE model (Fig. 3a).

Figure 3 Latitudinal trends (species richness

values in all grid cells for every 1� latitudinal

band, re-sampled from the equal-area grid)

in observed species richness compared with

(a) the global MDE, (b) the within-realm

MDE, and (c) the AET-driven model.

Means and SD of observed richness values

are represented by open circles and grey

bars, respectively; means and standard devi-

ations of predicted richness values are

represented by black dots and solid lines,

respectively; (d) the latitudinal variability

(means and SD) of AET values for com-

parison.
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Within-realm MDE model

When we ran the MDE model separately for each

biogeographic realm, the picture became very different.

The overall pattern of predicted distribution of global

species richness roughly resembles the observed pattern

(Fig. 1b, see Fig. 1d for comparison), and this model

explains 60.35% of the variance in species richness (Fig. 2c),

which is more than was explained by the pure effect of

AET, i.e. its effect without assuming any range dynamics

(Table 1). This simple model also accurately predicts the

latitudinal gradient of species richness (Fig. 3b), although

this finding has to be treated with caution, as the latitudinal

differences were already partially accounted for by assuming

the total species numbers and range sizes for individual

realms (differing in latitude) to be equal to those observed.

The model predicts a portion of the variation of species

richness within individual realms, although the amount

explained differs considerably between realms and is in most

cases lower than the variation explained by the pure effect

of AET (Table 1, Fig. S1).

AET-driven model

The global model of range dynamics modulated by AET

explained virtually the same amount of global variance in

species richness (60.00%) as did the within-realm MDE

model (Figs 1c and 2d), the difference being statistically

non-significant (Table 1). Moreover, although this model

did not assume any initial differences between land masses

in terms of their species richness, it predicted very accurately

the latitudinal trends in species richness (Fig. 3c). Within

realms, the AET-driven model explained greater variation

than the within-realm MDE model in all cases (the

difference being significant in four out of six cases), and

also more than the pure effect of AET in all cases

(significant in five out of six cases, Table 1, Fig. S1). The

AET-driven model also predicted the major differences in

mean species richness between individual realms (Fig. 4).

Some biogeographic realms were evidently slightly overes-

timated (Oriental and Nearctic realms), some slightly

underestimated (Afrotropical and Neotropical), but the

general pattern is consistent with that observed. Note that

the differences in mean species richness between realms are

largely attributable to differences in AET (Fig. S2).

GLS comparison of species richness predictors

Both globally, and within individual biogeographic realms,

the AET-driven model prediction was included in the best-

fit model (lowest AIC) (Table 2; see also Table S2).

Summing the Akaike weights (W) for the presence of a

given predictor within models showed that the AET-driven

model prediction was an essential predictor (summed W ¼
1.0) globally, and in all biogeographic realms except for

Australasia where it was second in importance to the within-

realm MDE model prediction (Table 3). In all cases where

the AET-driven model prediction was an essential predictor,

it was more important than other predictors (based on

ranking the summed Akaike weights for each predictor)

except in the global case, where the global MDE model

prediction was equally important (Table 3; see also

Table S2).

Of the seven global spatial GLS models, only the one

fitting the AET-driven model prediction and the global

MDE model prediction can be considered a candidate best-

fit model based on the criterion of having W ‡ 0.1

Table 1 Comparison between the models (and the pure effect of

AET) in terms of the proportion of explained variance (r2), both

globally and within individual biogeographic realms

Realm AET

Global

MDE

Within-realm

MDE

AET-

driven

Global 0.510 0.017 0.603a 0.600a

Australasian 0.030ab 0.055a 0.018b 0.291

Afrotropical 0.279a 0.062 0.325ab 0.355b

Oriental 0.045 0.121 0.220a 0.284a

Nearctic 0.304a 0.317a 0.226 0.345a

Neotropical 0.436 0.255 0.384 0.619

Palearctic 0.420 0.084 0.142 0.523

The values that are not significantly different (P < 0.05) are

indicated by shared superscript letters here; significance values were

adjusted for multiple comparison using Bonferroni corrections.
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Figure 4 Species richness for different biogeographic realms: open

boxes refer to observed richness, whereas shaded boxes refer to

richness predicted by the AET-driven model. Means (horizontal

line), standard deviations (boxes) and non-outlier ranges are

provided.
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(Table 2). For all biogeographic realms, candidate best-fit

models (based on the same criterion) all included the AET-

model prediction with the exception of Australasia where

the second-best-fitting model included only the within-

realm MDE model prediction (Table 2). Overall, these

results indicate that the AET-driven model of range

dynamics is a better predictor of species richness than both

AET and MDE models, and explains a considerable amount

of variance even if the effects of other predictors are

accounted for.

Table 2 Model selection results for spatial GLS regression models of all seven combinations of three predictors globally, and within six

biogeographic realms

Model

Predictors Global

AET MDE-global AET-driven AIC W

1 4 140 074.7 0.000

2 4 141 810.4 0.000

3 4 143 428.8 0.000

4 4 4 140 063 0.000

5 4 4 140 028.2* 1.000

6 4 4 141 256 0.000

7 4 4 4 140 059.2 0.000

Model

Predictors Australasia Afrotropics Oriental

AET MDE-realm AET-driven AIC W AIC W AIC W

1 4 11 654.4 0.008 22 501.4 0.000 10 981.9 0.157

2 4 11 647.6 0.229 22 566.9 0.000 11 008.4 0.000

3 4 11 913 0.000 22 752.8 0.000 11 074 0.000

4 4 4 11 655.1 0.005 22 504.4 0.000 10 980.7 0.287

5 4 4 11 652.2 0.023 22 478.6* 0.971 10 980.4* 0.333

6 4 4 11 653.3 0.013 22 520.3 0.000 11 015.6 0.000

7 4 4 4 11 645.3* 0.722 22 485.6 0.029 10 981.2 0.223

Model

Predictors Nearctic Neotropics Palaearctic

AET MDE-realm AET-driven AIC W AIC W AIC W

1 4 20 509.9 0.000 24 067.1 0.000 50 137.7 0.000

2 4 20 729.4 0.000 24 173.5 0.000 50 786.3 0.000

3 4 20 556 0.000 24 393.9 0.000 50 704.6 0.000

4 4 4 20 482.9 0.269 24 007.5* 0.802 50 099.2* 1.000

5 4 4 20 512.2 0.000 24 052.1 0.000 50 161.7 0.000

6 4 4 20 532.8 0.000 24 171.9 0.000 50 699.4 0.000

7 4 4 4 20 480.9* 0.731 24 010.3 0.198 50 121 0.000

*The lowest value for Akaike’s Information Criterion (AIC), hence the best-fitting model of the seven. Models which can be considered

candidate best-fit models based on the criterion of Akaike weight W ‡ 0.1 are high-lighted in bold.

Table 3 Summed Akaike weights (W) for each predictor across all models in which each occurs of the seven possible models using spatial

GLS regression

Predictor Global Australasia Afrotropics Oriental Nearctic Neotropics Palaearctic

AET 0.000 0.741 0.029 0.510 1.000 1.000 1.000

MDE-global 1.000 – – – – – –

MDE-realm – 0.987 1.000 0.556 0.731 0.198 0.000

AET-driven 1.000 0.758 1.000 1.000 1.000 1.000 1.000
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Residuals from within-realm MDE and AET-driven models

The spatial distribution of the residuals, calculated as

observed minus predicted richness, differs slightly between

the within-realm MDE model and AET-driven models

(Fig. 5), but the most pronounced pattern is common:

mountain ranges, especially in the tropics, have consistently

much higher observed species richness than predicted.

Some biodiversity hotspots, especially Atlantic forests in

Brazil, are also apparent. On the other hand, the AET-

driven model apparently predicts considerably higher

species richness than observed in several lowland areas,

namely the south-eastern USA, the Congo basin and parts

of the Amazon basin, and southeast Asia.

D I S C U S S I O N

Although AET as a measure of productivity is a strong

predictor of avian species richness at the global scale, the

two models based on range dynamics predicted this richness

better, both globally and within most realms. Stochastic

dynamics of species ranges constrained only by the

boundaries of individual biogeographic realms (within-realm

MDE) showed considerable power in predicting species

richness, as did the AET-driven model of range dynamics.

By this criterion, then, there is little to choose between these

models. However, in every other detail we consider the

AET-driven model to be considerably superior.

Mid-domain effect is only a good predictor of global

richness patterns if each individual realm is considered

separately. The global MDE model is conspicuously poor in

comparison with all others tested here (Table 1), explaining

only 1.7% of global variation in avian richness. Further-

more, it predicts that peak species richness ought to be

about 280 species (Fig. 2b), that this should be located in

eastern Asia, and that the peak richness on any given land

mass should be proportional to its area (Fig 1a). None of

these predictions is upheld by the bird data. The mid-

domain model generates more realistic patterns of global

richness when realms are modelled separately. However, this

model requires that the species richness of each realm is

given a priori, and species cannot cross realm boundaries

(or if they do that their ranges in different realms behave

independently). In contrast, the AET-driven model predicts

global bird richness patterns as well as does the within-realm

MDE model, but without making any assumptions

about how species are distributed across realms, or the

permeability of realm boundaries. It produces a close fit to

the latitudinal gradient in richness (Fig. 3c), which an MDE

model can only match when an element of that gradient is

incorporated into it via realm richness (i.e. only for the

within-realm MDE model), and predicts the richness of

individual realms (Fig. 4). Moreover, the AET-driven model

produces richness patterns within individual realms that are

a better match (often substantially) to the real patterns than

those of the within-realm MDE model (Table 1), despite

making no assumptions about realm richness. This produc-

tivity-driven model should therefore be considered prefer-

able to the pure mid-domain model, as it predicts not only

the within-realm variation, but also broad differences

between biogeographic realms, and with more realistic

dynamical assumptions.

The fact that the dynamic models provide a better fit to

observed richness patterns than a simple environmental

variable is significant. It suggests that species richness is not

driven purely by environmental constraints, but also by the

(a)

(b)

 

 

Figure 5 Residuals (observed minus predic-

ted richness) from the within-realm MDE

(a) and the AET-driven model (b). The

colour gradient is the same as in Fig. 1.
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limited ability of species to spread to favourable places.

Processes that ensure some degree of range contiguity,

namely spatial population dynamics driven and constrained

by dispersal limitation, at the same time constrain spread to

certain places even if these are suitable in terms of ecological

conditions (Gaston 2003). For example, through this effect

peninsular areas can be impoverished relative to their

productivity, simply because species spreading across

continents have a lower probability of reaching them, even

if they spread preferentially into more productive areas.

Indeed, this �peninsular effect� has been widely reported (e.g.

Taylor & Regal 1978; Lawlor 1983). Of course, the most

extreme manifestation of the effect occurs on islands, where

well-known impoverishment caused by the limiting effect of

isolation upon immigration, belongs to one of the most

general patterns in ecology (MacArthur & Wilson 1967;

Rosenzweig 1995).

Our approach reconciles two major competing approa-

ches to explain patterns of species richness: one combining

historical thinking with the dynamics of species distribution

and processes affecting species ranges (e.g. Dynesius &

Jansson 2000), the other taking external environmental

constraints as fundamental in determining species richness

patterns (e.g. Francis & Currie 2003). We show that both

range dynamics and environmental constraints contribute to

species richness, that each in isolation provides only a partial

explanation, and hence the two can and should be

considered simultaneously. This is in broad agreement with

the general notion that range dynamics and environmental

effects are always tightly interconnected, as spatial patterns

of species richness are necessarily proximately caused by the

spatial distribution and overlap of species ranges, and, at the

same time, species range dynamics, and even range

contiguity, is to a large extent driven by the spatial

arrangement of environmental variables perceived by

individual species (Gaston 2003; Zapata et al. 2005).

It is possible to place our productivity-driven model of

range dynamics into the context of theories which attempt

to explain the observed positive relationship between energy

availability and species richness, i.e. the species–energy

relationship (Gaston 2000; Currie et al. 2004; Evans et al.

2005; Clarke & Gaston 2006). According to our model, the

species–energy relationship emerges as a result of species

range dynamics affected by the positive relationship

between probability of occurrence and energy availability.

Such a relationship could arise for a number of reasons.

Higher resource abundance can allow potentially higher

population densities, lowering the probability of extinction,

in line with the more-individuals hypothesis (Wright 1983).

Alternatively, a more productive environment may be more

heterogeneous and consequently offer a greater number of

ecological niches (Hurlbert 2004). It is even possible that the

�more individuals� effect is more important for some taxa,

while �habitat heterogeneity� is more important for others.

Indeed, there is evidence for both effects (Kerr et al. 2001;

Bonn et al. 2004; Pautasso & Gaston 2005). Nevertheless,

the increase in probability of species occurrence with

increasing energy availability may represent a general higher-

order explanation of observed species–energy relationships,

even if in reality it applies only to a subset of species, namely

those with larger range sizes (see Jetz & Rahbek 2002;

Lennon et al. 2004).

No model provides perfect predictions of species richness

variation, and the residuals from the predictions are as

interesting as the fit of the models themselves. Some

deviation of predicted from observed species richness can

probably be attributed to the way in which environmental

productivity is measured. It has been shown, for instance, that

seasonal measures are more relevant for bird assemblages in

regions with pronounced seasonality and considerable

proportion of regularly migrating species (Hurlbert & Haskell

2003). Hence, it is possible that the fit of such a model could

be improved by using variables more specifically associated to

assemblages in question. However, in the present study,

spatial distribution of the residuals of observed species

richness regressed on the model predictions, clearly indicates

that there are other important systematic effects on species

richness. Relatively high species richness of mountain ranges,

especially within the tropics, is the most pronounced pattern

of deviation, and has been widely reported elsewhere (Fjeldså

et al. 1999, Rahbek & Graves 2001; Jetz & Rahbek 2002;

Orme et al. 2005). This has been attributed to an elevation of

speciation rates due to a higher density of geographic barriers

(Fjeldså & Lovett 1997), a lowering of extinction rates due to

the stable persistence of various habitat types (Fjeldså et al.

1999), or the narrow elevational zoning of species in

(especially tropical) montane areas (Janzen 1967).

More puzzling, however, is the lower observed species

richness in certain lowland areas in comparison with model

predictions. It is possible that in such cases the majority of

ecosystem productivity is appropriated by human popula-

tions, and is hence not available to bird populations. Indeed,

the deviation between prediction and observation is most

pronounced in the south-eastern part of the USA and

eastern areas of India and China, which are regions of very

intense agricultural production. In these cases, actual

evapotranspiration is apparently not the best measure of

the amount of resources available to bird populations.

Lower observed than predicted species richness within the

Congo and, to a lesser extent, Amazon basins, indicate that

other factors including idiosyncrasies of evolutionary history

may affect global species richness patterns as well.

Total resource availability is but one of several key

environmental drivers of species richness, and species range

dynamics are certainly more complex than assumed in the

models reported here. However, generally good predictions
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of both within-realm and between-realm species richness

variation obtained by the productivity-driven range dynamics

model indicates that principles of population dynamics and

environmental/energetic constraints work equally well across

the whole globe, and are able to account for the majority of the

spatial variation in species richness observed globally.
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