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Abstract

There have been several attempts to build a unified framework for macroecological

patterns. However, these have mostly been based either on questionable assumptions or

have had to be parameterized to obtain realistic predictions. Here, we propose a new

model explicitly considering patterns of aggregated species distributions on multiple

spatial scales, the property which lies behind all spatial macroecological patterns, using

the idea we term �generalized fractals�. Species� spatial distributions were modelled by a

random hierarchical process in which the original �habitat� patches were randomly

replaced by sets of smaller patches nested within them, and the statistical properties of

modelled species assemblages were compared with macroecological patterns in observed

bird data. Without parameterization based on observed patterns, this simple model

predicts realistic patterns of species abundance, distribution and diversity, including

fractal-like spatial distributions, the frequency distribution of species occupancies ⁄ abun-

dances and the species–area relationship. Although observed macroecological patterns

may differ in some quantitative properties, our concept of random hierarchical

aggregation can be considered as an appropriate null model of fundamental

macroecological patterns which can potentially be modified to accommodate ecologically

important variables.
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I N T R O D U C T I O N

Several patterns in ecology that concern species richness, the

abundances of species and the spatial distribution of

individuals, seem to be near universal regardless of taxon

and spatial scale. Macroecology has been defined as the

study of such statistical regularities (Brown 1995; Maurer

1999). In the course of the exploration of the details of these

patterns, the field has generated a multitude of hypotheses

trying to explain each of them individually (for reviews see

Gaston & Blackburn 2000; Storch & Gaston 2004; Gaston

et al. 2008) but, since many different processes can lead to

very similar patterns, these are often difficult to test.

Moreover, the ubiquity of major macroecological patterns

suggests that there are some more general principles behind

particular biological processes which go beyond the

intricacies of a given taxon or environment, and whose

nature is essentially mathematical or statistical (see Nekola &

Brown 2007).

During the last two decades, it has become clear that

many macroecological patterns are tightly connected, and

can often be mathematically derived from each other. Some

of these connections are deterministic, and particular

patterns can be considered as simple by-products of other

patterns. For example, the species–area relationship can be

derived exactly from knowledge of the relationship between

area and the probability of occurrence of individual species

(hereafter the P–area relationship; Coleman 1981; Šizling &

Storch 2004), and the slope of the species–area relationship

is in turn related to patterns of species spatial turnover

(Harte & Kinzig 1997) and to the relationship between local

and regional species richness (Rosenzweig & Ziv 1999;
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Bartha & Ittzés 2001). Other connections between macro-

ecological patterns are less straightforward, with some only

constraining the possible forms of others. The positive

relationship between abundance and range size (Brown

1984) is, for example, almost inevitable if the spatial

distributions of species are aggregated (Hartley 1998; Holt

et al. 2002) and reveals particular patterns of occupancy at

different scales (Harte et al. 2001). Although in most cases

we do not know which patterns are primary, and which only

derived (Fig. 1) – and in most cases this question does not

even make sense – the knowledge of such links is extremely

useful, as it allows us to determine which patterns are just

necessary consequences of geometric relationships and to

focus on more biologically interesting phenomena.

The finding that major macroecological patterns of

species abundance, distribution and richness are mathe-

matically tightly related has led to the idea that all of

them could in fact represent different projections of one

fundamental principle concerning the distribution of

individuals of various species and size classes on many

spatial scales, and that all of them can be derived using

one universal theoretical framework. There have been

several attempts to build such a framework, i.e. to build a

theory which would predict as many macroecological

patterns as possible with minimum ad hoc assumptions

(Hubbell 2001; McGill & Collins 2003; Harte et al. 2005).

These can be considered as null models, as they do not

include any particular taxon-specific or environment-

specific information, and attempt to derive the

patterns assuming that everything is random except for

some very general, relatively intuitive, principles and

constraints.

Here we show that the attempts to build a general theory

of macroecological patterns in species abundances, spatial

distributions and richness variation have one common

property, namely that they explicitly or implicitly introduce

the idea of species aggregation on multiple spatial scales.

Then we demonstrate that the way in which individuals are

aggregated on such scales is close to fractal (i.e. it can be

modelled using fractal geometry), and argue that this

aggregation is the key property for understanding spatial

macroecological patterns. We show that realistic patterns of

conspecific spatial aggregation (and thus realistic predictions

of many other macroecological patterns) can be obtained by

simple random hierarchical models assuming only that

species occur within sub-patches that are themselves

randomly nested within patches at a higher level of a spatial

hierarchy. Finally, using data on bird distributions at several

spatial scales we show that our null model predicts not only

intraspecific macroecological patterns, including the rela-

tionship between scale and occupancy, but also multispecies

patterns, including the species–area relationship and the

species-abundance distribution.

T H E Q U E S T F O R A U N I V E R S A L M A C R O E C O L O G I -

C A L T H E O R Y

There have been several attempts to unify macroecological

patterns. In particular, three classes of models have been

proposed that attempt to explain or predict universal

macroecological patterns in species abundance, distribution

and species richness variation within one simple, spatially

explicit framework. None of these models includes any

explicit consideration of ecological differences between

Figure 1 Links between individual macro-

ecological patterns, revealed by different

studies. The list of the links and of the

studies is far from exhaustive, however, they

show the interconnectedness of patterns

which have traditionally been examined

separately.
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species in terms of body sizes or any other characteristics;

they therefore concern only those patterns which we can

observe using spatially explicit information on local and

regional abundances of many species of a taxon or a

functional group.

The models of McGill & Collins (2003) and Harte et al.

(1999, 2005) assume a particular spatial structure to

individual species distributions to explain other spatial

macroecological patterns. McGill & Collins (2003) assume

one or a few peaks of high abundances, which drop off

rapidly with the distance from the peak to a long tail

representing the majority of sites with low abundances.

Harte et al. (1999) attempted to derive the species–area

relationship and the species-abundance distribution from an

assumption of a simple community-level probabilistic

allocation rule which applies repeatedly at successively finer

spatial scales defined by successive bisection of a given area.

This model was later extended and interpreted in terms of

parameters of ranges of particular species – i.e. at species

level (Ostling et al. 2000, 2003). Although Maddux (2004)

has demonstrated that this model produces biologically

unrealistic outcomes (but see Ostling et al. 2004), Hui &

McGeoch (2008) show that these problems can be solved

when assuming �heritability� of the probability of individual

allocations across spatial scales. In a similar, albeit more

sophisticated, model Harte et al. (2005) derived all the

patterns of concern from the probabilistic allocation rule

applied separately to each species, assuming that all

numerically distinguishable states of possible allocations of

individuals at a given spatial scale have equal probability (e.g.

if a species has 100 individuals the probability that, for

example, all would be in the left half of an area being

bisected is the same as that of 50 individuals being in the left

half and the other 50 in the right).

These models predict realistic parameters for the species–

area relationship, the positive interspecific relationship

between abundance and range size, local species-abundance

distributions and patterns of species spatial turnover.

However, their assumptions seem to be partially arbitrary –

the spatial abundance structure of species ranges is often

considerably more complicated than assumed by the model

of McGill & Collins (Gaston 2003), and there is no a priori

reason why species distributions should follow the quite

specific allocation rules postulated by Harte et al. (1999,

2005) – and they have no direct biological interpretation

(but see Harte 2007). More importantly, these models have

to assume a specific species-abundance distribution for the

whole region, i.e. they are actually parameterized by the

observed pattern of relative species abundances.

Hubbell�s (2001) neutral theory combines both evolu-

tionary and ecological processes in one simple framework,

and generates many macroecological patterns on the basis of

processes of reproduction, death, colonization and specia-

tion. The neutral community dynamics consist of the

replacement of dead individuals by the recruitment of

randomly selected ecologically equivalent individuals from a

local community or, with lower probability, from other local

communities which together comprise a whole metacom-

munity (see also Chave 2004). The species-abundance

distribution of the whole assemblage as well as the

abundance structure of local communities are also deter-

mined by this process, i.e. the model does not need an ad hoc

parameterization in terms of any species-level properties.

However, it requires fine tuning of parameters determining

the dynamics, namely migration and speciation rates, to

produce realistic macroecological patterns, and spatially

explicit realizations of the model also require characteriza-

tion of the dispersal kernel to produce spatial patterns

including the species–area relationship (Borda-de-Água et al.

2007).

All the theories mentioned above give generally quite

realistic patterns when properly parameterized, although

they differ considerably in their assumptions. It is thus

natural to ask whether some more general principles could

not lay behind all of the patterns. Close examination of

the models reveals that all have one feature in common:

they introduce some form of conspecific spatial aggrega-

tion to produce macroecological patterns. In the case of

the McGill & Collins (2003) model, this is performed

simply by postulating peaks of high abundance and tails of

low abundance across species ranges, whereas in the

model of Harte et al. (2005) the assumption of equivalency

of all numerically distinguishable states favours aggregation

on all spatial scales. The neutral theory postulates that

local recruitment is more probable than recruitment from

distant localities, leading to the prevalence of particular

species in each local community, i.e. again an aggregated

spatial distribution. This effect is in fact responsible for

realistic scaling of species numbers with area and the

patterns of species abundance structure within the

metacommunity. It is therefore reasonable to argue that

the key feature responsible for most macroecological

patterns of this kind is in fact conspecific spatial

aggregation. Indeed, close inspection of Fig. 1 reveals that

spatial aggregation has repeatedly been related to many of

these patterns, and many of them have actually been

derived from some simple assumptions concerning spatial

aggregation (e.g. Hartley 1998; He & Gaston 2000; He &

Legendre 2002; Green & Ostling 2003; Martin &

Goldenfeld 2006).

C H A R A C T E R I Z A T I O N O F S P A T I A L A G G R E G A T I O N

O N M U L T I P L E S C A L E S

If spatial aggregation is the clue to a unifying framework

for macroecological patterns, we can ask whether there are
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some properties of aggregated distributions which would

be universal and which would clarify the emergence of

these patterns. One way of characterizing the spatial

aggregation of a single species on multiple scales is through

the P-area relationship, i.e. the relationship between the

area of a plot and the probability of species occurrence

within a plot of this area (He & Gaston 2000; Harte et al.

2005), or between the area of a grid cell and the proportion

of occupied cells of this size (Kunin 1998; He & Condit

2007), which is an estimate of the probability of occur-

rence. Larger areas have a higher probability of overlapping

the distribution of a species, so that the probability of

species occurrence increases with the area of the sample

plot (census window). However, if the distribution is

relatively uniform (regular or random), the probability of

occurrence is very high even for relatively small sample

plots regardless of their location, whereas even large sample

plots can remain unoccupied if a species� distribution is

clumped. The P-area relationship for a wide range of areas

(sizes of sample plots) thus characterizes spatial aggregation

on multiple scales.

A linear increase of a P-area curve in a log–log space, i.e.

a power-law P-area relationship, is characteristic for fractal

sets. As reported by Kunin (1998), observed species

distributions often reveal such a relationship between the

area of a cell and the proportion of occupied cells,

indicating that the spatial aggregation of species can be

modelled as fractal, and that the spatial structure of a

species� distribution is self-similar on all reasonable scales

of resolution. This statement has received some support

from various spatial data sets (e.g. Virkkala 1993; Ulrich &

Buszko 2003), although Hartley et al. (2004) demonstrated

considerable deviations on some scales, and He & Condit

(2007) have shown that the P–area relationship can

generally be better characterized by a slightly more

complex model suggested by Nachman (1981). In fact,

there is even evidence that true random fractals generated

by standard algorithms (e.g. Falconer 1990) are better

characterized by Nachman�s model than by the power-law

(He & Condit 2007), indicating that fractals may truly

represent a good approximation of species spatial aggre-

gation even if the P-area relationship deviates from the

power-law.

Šizling & Storch (2004) have shown that the spatial

distribution of central European birds is well characterized

by a fractal distribution, finding that the deviation of the

P-area relationship from the power-law is statistically

indistinguishable from the deviation in the case of exact

random fractals. Moreover, they obtained an accurate

prediction of the shape and slope of the species–area

relationship using only the two parameters that characterize

the fractal properties of each species� distribution. A fractal

distribution thus seems to be a useful description of the

spatial aggregation of species that forms the basis for other

macroecological patterns.

Several fractal-based models have been proposed to

produce macroecological patterns (e.g. Ritchie & Olff

1999; Harte et al. 1999), and complex spatial species

distribution patterns are now regularly analysed by fractal

methodology (see Hastings & Sugihara 2002), including

multifractal analysis which utilizes much more detailed

information about the patterns to obtain their more

accurate description (Borda-de-Água et al. 2007). However,

although there is some evidence that particular habitats

have fractal properties (e.g. Peckham 1995; Storch et al.

2002), so far it has been unclear why species distributions

should be close to fractal and what determines the

parameters of fractal-like distributions. Therefore, although

fractal analyses represent useful analytical and descriptive

tools, the fractal distribution itself does not currently

provide a basis for a truly universal null theory of

macroecological patterns.

F R A C T A L S P A T I A L D I S T R I B U T I O N S A S A R E S U L T

O F A H I E R A R C H I C A L P R O C E S S

Are there any clues as to why species spatial distributions

resemble random fractals? Fractals can emerge in many

ways, but for this purpose it is useful to see this as a

hierarchical process connecting sequential spatial scales

(hereafter, aggregation levels; see Fig. 2). The original patch

is replaced with several smaller sub-patches according to a

particular rule, these are then in turn replaced by yet smaller

sub-patches at the following aggregation level according to

the same rule, and so on (Fig. 2). It is relatively straight-

forward to interpret this process in terms of a habitat

hierarchy and ⁄ or a hierarchy of species ecological require-

ments, in which the basic level would represent, say, the

whole continent, which is divided into broadly defined

habitats determined by climate, within which are sub-

patches defined by substrates and geomorphology, divided

into sub-patches of macrohabitat, composed from different

microhabitat sub-patches and so on (see Kolasa 1989).

Although in mathematical fractals this division goes to

infinity, in the real world, it must end at some basic area

unit, such as the home range of an individual (and thus the

number of hierarchical steps can be dependent on the life

history and body size of a species). Regardless of how

individual species discriminate their habitats (certainly

differently than we do), it is reasonable to assume that the

nature of habitats is hierarchical, as the presence of a

particular habitat type suitable for a species is always

dependent on a combination of conditions, some of which

(e.g. climate or geology) vary on a broad scale. The

occurrence of a specific habitat is thus constrained by the

presence of a more broadly defined environment (Kolasa
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1989; Ritchie & Olff 1999; see also Lennon et al. 2007),

which leads to the natural habitat hierarchy and spatial

clustering of specific habitats.

The idea of a habitat hierarchy explains the aggregated

structure of species distributions at all spatial scales.

However, it does not itself ensure the regularity (i.e. scale

invariance) of the patterns obtained, which is characteristic

for fractals. The problem is that the form that the

replacement of patches by sub-patches can take is quite

restrictive for fractals. This is a consequence of the

condition of measurability under mathematical models (for

details see Šizling & Storch 2007). According to the only

definition that deals with the dimension of fractal structures

that need not necessarily be generated by infinite processes

(Mandelbrot 1977),X
ðiÞ

l D
i ¼ LD ð1Þ

where L is the length of the side of an original square-

shaped patch (see Fig. 2), li is the length of the i-th sub-

patch, and D is the dimension (either Hausdorff dimension

or box dimension, with eqn 1 holding for both; see

Falconer 1990). According to Mandelbrott (1977), the

dimension is constant for all patches and their sub-patches

at all spatial scales for fractals, and this property has been

retained in all ecological applications of fractal geometry (see

Hastings & Sugihara 2002; Halley et al. 2004). However,

there is in fact no biological reason why we should find

structures in nature for which D is kept constant (Šizling &

Storch 2007; see also Hartley et al. 2004), although a con-

stant D is undoubtedly a mathematically useful property of

fractals. Moreover, structures with constant D reveal bio-

logically untenable properties, namely the strong depen-

dence of the total occupied area at a given aggregation level

on the number of sub-patches. For example, holding D = 1

and altering the number of sub-patches between 2 and 3, the

total occupied area alters between one-half and one-third of

the area of the original patch (assuming sub-patches of equal

size to simplify the reasoning). This is obvious when setting

li ¼ L=2 and li ¼ L=3 for all i in eqn 1 [i.e.

L=2ð Þ1þ L=2ð Þ1¼ L1 and L=3ð Þ1þ L=3ð Þ1þ L=3ð Þ1¼ L1,

respectively], which implies occupied areas of 2 L=2ð Þ2¼
L2=2 and 3 L=3ð Þ2¼ L2=3 respectively. As a consequence,

two structures with the same dimension may vary consid-

erably in their P–area relationships – which is the actual

driver of many macroecological patterns – depending on the

number of sub-patches.

For these reasons, we release this condition and model

the hierarchical process outlined above in a way which is

more readily interpretable in terms of possible underlying

processes, and which is at the same time less restrictive than

the emergence of random fractals, using the idea we term

�generalized fractals� (Šizling & Storch 2007). It is based on

(a) 

(b) 

Figure 2 Emergence of a generalized fractal as a random hierar-

chical process. (a) The original square-shaped patch of side length L

is replaced by a set of smaller sub-patches of side length li according

to particular rules relating the areas and numbers of the sub-patches

to the area of the original patch (see the text). This process

continues for several aggregation levels (b), here the first and second

(above) and third and fourth (below) aggregation levels are shown

for one realization of the model M2 in which r = 0.67 (see the text).
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an assumption that the proportion of area occupied at a

particular aggregation level is biologically more important

and better interpretable than the fractal dimension

D. Indeed, the proportion of occupied area is directly

related to the probability of occurrence, and can thus be

directly translated to the P-area relationship.

T H E I D E A O F G E N E R A L I Z E D F R A C T A L S

The generalized fractal can be defined as any structure

which emerges by the hierarchical process that comprises

the replacement of patches of the original pattern with any

patchy pattern formed by any particular process repeated

on many scales (see Šizling & Storch 2007, for more

formal definitions and mathematical rationale for this

generalization of the idea of fractals). Generalized fractals

thus represent the most general way by which to produce

structures that are aggregated on many scales of resolution,

although their realizations differ, depending on whether

this process is entirely random or constrained in some way.

Classical random fractals represent just one possible

realization of generalized fractals, in which the process is

constrained by the necessity of keeping the dimension D

constant for all patches and all aggregation levels. A

biologically more plausible possibility is that, instead of D,

it is the proportion of an area which is covered by all sub-

patches that is similar for all aggregation levels. This would

suggest some species-specific scale-invariant property

enabling the occupation of space, potentially interpretable

in terms of species niche width and ⁄ or correlated with

some species feature. Alternatively, if this proportion was

similar (or, in the extreme, constant) for all patches within

a given aggregation level but varied among the levels, this

would suggest ecological properties which are spatially

autocorrelated but scale-specific. Finally, the proportion

could also be completely random, varying both in space

and across spatial scales, suggesting factors or processes

operating independently within each patch and at each

spatial scale (Box 1).

Whichever approach is more realistic, the proportion of

an area covered by sub-patches seems likely to be a more

important parameter in shaping species distributions than

does D. However, since we cannot a priori evaluate the

biological realism of the three distinct possibilities (all of

them seem potentially to be biologically interpretable,

although the interpretation is never straightforward), we

decided to make models of generalized fractals that are as

general as possible, exploring the whole space of possibil-

ities, and assuming that reality lies somewhere within this

space. In fact, species spatial aggregation is not only related

to habitat structure, but is also produced by spatial

population and metapopulation processes (e.g. Storch et al.

2003), and we can assume that these processes will be more

important than habitat structure at some scales. However,

generalized fractals modelled in this way represent a

universal approach to any multi-scale aggregation, regardless

of its precise biological causes.

There are many ways in which generalized fractals, as

defined above, can be realized and modelled. Hereafter, we

will deal with those which can be characterized by the

equation

X
ðiÞ

li

L

� �D

¼ r ð2Þ

where either (i) D varies between 0 and 2 among species

(individual realizations of generalized fractals) and r (relative

occupancy within an aggregation level) is equal to 1 (i.e.

classical random fractal), or, alternatively, D is equal to 2 and

r is either (ii) constant for all patches and all aggregation

levels for a given species, (iii) varies among aggregation

levels, or (iv) varies randomly among all patches within all

aggregation levels. In all cases, we have only one driving

parameter, r or D. Such an approach enables several types of

generalized fractals (including classical random fractals) to

be modelled using the same algorithm but different

parameters, so that different models can be directly

compared to each other. Note that the variation in r cannot

be substituted by the variation in D, as these parameters are

actually independent if the number of sub-patches is not

constant – for a given D the proportion of occupied area

within the patch r can freely vary between 0 and 1 (see

above).

As in the case of classical random fractals, the process

of patch division can potentially continue to infinity,

which is clearly biologically unrealistic – the number of

levels of aggregation is constrained at least by the home

range of the respective species. For comparison with any

real data set, it is necessary to use a sufficient number of

levels of aggregation to produce patches which are smaller

than the basic resolution of the data (e.g. size of a grid

cell). In such a case, the basic grid cell can be considered

as occupied regardless of the size of a respective patch at

the final level of aggregation (i.e. even if final patches are

much smaller). Most macroecological patterns are based

on species occupancy patterns measured at a given

resolution (grain), and are not affected by patterns

occurring at a yet finer resolution. The obvious excep-

tions concern abundance patterns. Here we will assume

that abundance converges to occupancy at a grain size

corresponding to the average size of home ranges, and

thus we model generalized fractals with the aim of

producing patches at the final level of aggregation which

are smaller than this grain size (see below), and consider

the final patch size as corresponding to the resolution of

the measurement.
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T E S T I N G T H E M O D E L S O F G E N E R A L I Z E D

F R A C T A L S

The data

Analyses were conducted using three data sets on observed

bird distributions:

(1) A square of 16 · 16 contiguous mapping quadrats from

the breeding bird atlas of the Czech Republic (CR), each

quadrat spanning 6¢ latitude and 11¢ longitude (i.e.

c. 12 · 11.1 km) and containing records of the presence

of all species with confirmed or probable breeding during

the period 1985–1989 (Št’astný et al. 1996; see also

Šizling & Storch 2004 for details).

(2) A square of 16 · 16 mapping quadrats within central

Europe (CE), taken from the European breeding bird

atlas (Hagemeijer & Blair 1997); each quadrat was ca

50 · 50 km, and also contained presence ⁄ absence data

B o x 1 : H a b i t a t h i e r a r c h y a n d t h e m e a n i n g o f r

Imagine a species of, say, phytophagous insect, which is

dependent on one host plant species growing in a certain

type of mountain forest. The first level of aggregation, i.e. the

broadest habitat description, then comprises mountain

ranges. Depending on the location of the whole study area,

mountains can cover any part of it, i.e. the area of mountains

is expected to be anything between zero and the whole area

in question. Also, it is expected that there can be several

mountain ridges, so that the number of habitat patches (i.e.

sub-patches of the whole area) may vary. The same applies

for the second aggregation level: if we do not assume any

particular biological processes, we should consider all the

possible proportions of the forest type within the mountains

as equivalent. Similarly, the host plant may be rare as well as

widespread within the given forest type. Finally, the

distribution of the insect may be patchy even within the

area defined by the presence of the host plant, depending on

its spatial (meta)population dynamics. In this example we

consider four levels of aggregation, but the number of these

levels may apparently vary from species to species.

The truly null expectation, corresponding to our last

model, M4 (see the model descriptions), is that the

proportion r is random for every habitat patch. However,

in reality, r can be quite similar in different places. For

instance, if the proportion of aspen forest is c. 0.3 within a

given mountain ridge, it is probably similar on another

ridge, although the level of similarity depends on the

similarity of altitudinal range and other factors between the

two mountain ridges. In the extreme (our model M3), we

can assume that r is constant across different locations

within a given level of aggregation, representing spatially

autocorrelated processes which determine habitat occur-

rence within more broadly defined habitats.

Furthermore, we can assume that the proportion r will

be somehow propagated through different levels of

aggregation, as modelled by constant r across scales in

our model M2. Imagine a generalist species, associated

with a wider range of host plants. In such a case, some

host plant species can occur even in particular lowland

habitats (r for the first level of aggregation is thus higher

than in the previous case), and within both mountain and

lowland habitats they can grow in several forest types

(higher r for the second aggregation level). More host plant

species together form larger patches of suitable habitat

within respective forest types, which may be followed by

higher relative occupancy at the finest level of aggregation

(e.g. due to the stronger rescue effect, Brown & Kodric-

Brown 1977), reflected by higher r for the third and fourth

aggregation levels. Niche breadth may thus affect r in a

similar way on several scales.

It is probable that reality will lie somewhere between

these possibilities, i.e. r will not be completely indepen-

dent in all patches and scales, nor the same across all

levels and patches. Our comparisons of the models with

data (see Results and Figs 3–6) show generally (although

not always) better fit of models M3 and M4, indicating

that the propagation of r across scales is weaker than its

spatial correlation. This is in accord with the general

notion that habitat distribution can have very different

causes at different spatial scales (and levels of habitat

hierarchy) but these effects act in a similar way in

different locations. The three models thus simply delimit

the space of all possible hierarchically aggregated struc-

tures, and their overall good fit indicates that it is the

multi-scale aggregation itself and not a particular mech-

anism which is responsible for general features of

macroecological patterns.
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for breeding species (see Storch & Šizling 2002; Šizling

& Storch 2004).

(3) A linear transect of 768 mapping points, separated by

c. 400 m, across the whole territory of the Czech

Republic (Transect), at which all birds were mapped by

D.S. and J.R. using the point count method (Bibby et al.

1992) limited to a maximum distance of 150 m around

each point. Birds were mapped during five early

morning visits in the breeding seasons (April–June) of

2004 and 2005, and the maximum recorded numbers of

individuals of each species from the five visits were

then taken for every point (see Storch et al. 2002). This

data set is therefore at a considerably finer spatial

resolution than the previous ones, and also contains

information on species abundances.

The models

We performed four simulations for comparison with each

data set, differing in the constraints determining the spatial

patterns generated, with simulations for the atlas data also

differing slightly from those for the transect data. All the

simulations followed eqn 2 and an identical algorithm, so

that their outputs were fully comparable with each other. In

the construction of species assemblages we assumed

completely neutral interactions between species, i.e. we

overlaid spatial patterns for different species without

assuming any interdependence among them. Species� spatial

distributions were modelled as the spatial arrangement of

patches (for convenience, squares) at the final aggregation

level. The simulations were as follows:

M1 – simulation of the fractal model. This procedure

generates random fractals, producing patchy structures,

which keep D constant over all aggregation levels

(Mandelbrott 1977). At each aggregation level, each

square was replaced by several smaller non-overlapping

squares of randomly varying sizes and locations (see

below) so that D remained the same (see eqn 1). D was

drawn from the observed distribution of values for

individual species; r = 1. This process was repeated for

four aggregation levels.

M2 – simulation with fully correlated r (i.e. r constant

for a given species across space and spatial scales). The

original square was replaced by a set of n non-

overlapping squares randomly varying in size, whose

total area represented a proportion r of the original

square, r being randomly selected from a uniform

distribution between 0 and 1 for each species; D = 2.

This procedure was repeatedly applied to each square

again for four aggregation levels.

M3 – simulation with only spatially correlated r. Here

the procedure was the same as in the previous case, but

r varied randomly for each aggregation level, i.e. r was

randomly drawn from the uniform distribution sepa-

rately for each aggregation level; D = 2.

M4 – simulation with completely uncorrelated r. In this

case, r varied not only between aggregation levels, but

randomly for each individual square – the total propor-

tion occupied by smaller non-overlapping squares within

a square varied randomly between squares in each

aggregation level as well as between levels; D = 2.

We constructed one assemblage of 200 species for

comparison with the atlas data sets and a set of 10

assemblages (each of 144 species) for comparison with the

transect data (see below) for each model. The macroeco-

logical properties of the assemblages resulting from simu-

lations M1–M4 were compared, and these properties were

contrasted with those of the real assemblages of central

European birds censused on the three spatial scales. To

compare the models with the observed data at the finest

spatial scale, the linear transect, we overlaid the two-

dimensional spatial structures produced by the models with

the map of the transect of census points and recorded the

presences of all species whose modelled ranges overlapped

respective points (i.e. the circles of 300 m in diameter).

To compare the models to the atlas data at the larger

spatial scales, we overlaid each modelled range with a grid

of 16 · 16 cells and again censused modelled species

presences. Transects as well as grids were located in central

parts of the modelled area, to avoid edge effects.

Model construction procedure

To produce generalized fractals representing aggregated

structures, it is necessary to divide each patch into relatively

few sub-patches, because too many small patches would

lead to a rather homogeneous spatial distribution and

extremely small patches at the final level of aggregation. In

the model used for the comparison with atlas data, we

divided the initial patch (i.e. the whole study area) into a

random number of square-shaped cells between 2 · 2 and

5 · 5, and then we randomly placed one or no square of

random size (between zero and the cell size) into each cell

(see Šizling & Storch 2007). The only condition held was

eqn 2 for each replacement; therefore, each cell was finally

either empty or occupied by just one square of random size

and random position. This simulation is biased toward a

slight regularity in spatial distribution of the squares

(patches), which affects earlier saturation of species–area

relationships.

In the models used for the comparison with the transect

data, the number of patches (again modelled as squares) at

each step varied at random between two and five. The sizes

of the patches li were drawn from a uniform distribution and
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were constrained by eqn 2 and by ensuring that all patches

could in principle fit into the area with a side length L = 1.

The two largest patches were then placed so that they both

fit into the unitary area, then the algorithm randomly placed

every further patch into the remaining available space, and

the set was discarded if not all patches could be placed. We

checked for the distributions of patch sizes in the output

sets. The output distribution of patches was unbiased for

approximately r < 0.5, D = 2 and D < 0.9, r = 1. When

the covering was denser, however, the output distribution

was not uniform but biased with more small and very large

patches – note that for D near two and r near one the whole

area is almost completely filled, which can be realized only

by a set of a large square and several very small ones or

possibly with four almost equal-sized squares – hence the

distribution is necessarily biased. We redrew the patch sizes

if the allocation of all of them was unsuccessful five times. If

the cycle failed to find placement of all patches for more

than a hundred times for a given r or D (large), a lower

number of patches was accepted.

For each of the four levels of aggregation, the new sets of

patches were generated using the above procedures, and

rescaled according to their respective �parental� patch in

both cases (each patch becomes the �unitary area� in the

above algorithm). The structure of a species distribution

thus has four aggregation levels.

Macroecological patterns

With the exception of patterns related to local species

coexistence (e.g. community nestedness), which obviously

cannot be predicted by models assuming the complete

independence of species spatial distributions, many quanti-

ties that could usefully be measured from the model results

and the observed data are mathematically related to each

other (Fig. 1, see Harte et al. 2005). We therefore explored

four quantitative properties which sufficiently characterize

the structure of species assemblages, and at the same time

are more or less independent from each other:

(1) The P-area relationship for all species, calculated as the

relationship between the area of a plot (or the length of

transect) and the probability that the plot will be

occupied by the focal species. By �plot� we will mean

any particular square comprising a given number of unit

quadrats, or a line segment comprising a given number of

points, respectively. The probability was calculated as the

proportion of occupied plots from all possible plots of a

given area (or length). We evaluated the shape of the

observed or modelled P-area relationship by estimating

the deviation from the power law P-area relationship (i.e.

the P-area relationship that is linear in log–log space).

The deviation (hereafter e) was calculated for each area

(measured in number of unit quadrats or points

respectively) as the difference between the probability

of occurrence calculated using the power-law function

approximating the P-area relationship truncated by the

point of saturation (the area where P = 1) and the

probability of occurrence predicted by each model or

observation (Šizling & Storch 2004).

(2) The frequency distribution of box dimensions (Man-

delbrott 1977; Falconer 1990; Šizling & Storch 2004) of

the spatial distribution of each species (except for

model M1 in which this distribution was set to follow

that observed). The frequency distribution was

expressed as the relationship between species rank

and the box dimension.

(3) The species–area relationship for the whole assemblage,

measured as the relationship between area or length

(expressed again in the number of unit quadrats or

points, see above), and the mean number of species in

all possible plots of this area (Šizling & Storch 2004).

(4) The distribution of species� occupancies at the finest

scale. The distribution of number of quadrats occupied

by individual species depends on the spatial resolution

(Kunin 1998), and species occupancy approaches

species abundance if the units approach the approxi-

mate size of a home range or a minimum distance

between neighbouring individuals. Since we deal with

species whose home ranges approach the basic spatial

units of transect (most points were occupied by just

one individual of most species and there were no

individuals that shared two or more points), we assume

that the distribution of occupancies is close to the

species-abundance distribution at that scale. We there-

fore focused on the finest spatial resolution possible,

using only the transect data for comparison with the

models.

R E S U L T S

The P-area relationship for modelled and observed atlas data

deviates significantly (P < 0.01) from the straight line on a

log–log scale expected from the power-law, though the

absolute value of the deviation is relatively small (mean

absolute deviation, ej j,< 0.04; Fig. 3a) and comparable in all

cases. Moreover, the deviations derived from the observed

data are more variable than those from the models of

generalized fractals, with the latter falling mostly between

those for the CR data on the one hand and the CE data on

the other. Note that fractal distributions (model M1) reveal

similar deviations (max ej j) from a linear P-area relationship

as do other models and the observed data. The deviation

from the power-law differs between the modelled and the

observed transect data (Fig. 3b), although the overall trend
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and maximal deviations are similar. The models thus do not

lead to the exact power-law P-occupancy relationships for

individual species, but their deviation from the power-law is

comparable to that of observed spatial distributions of

species.

The frequency distributions of box dimensions, as

reflected in the relationship between species rank and the

box dimension, are similar for all modelled and observed

assemblages (Fig. 4a,b). As in the case of the P-area

relationship, the observed distributions for the CE and

CR data actually represent the extremes of all of the

distributions, with the modelled distributions falling some-

where in between. The distribution of box dimensions

produced by model M2 seems to be closest to those

observed for the CR and CE data, whereas the distribution

for the transect data is very close to those produced by

models M3 and M4 (Fig. 4b; distributions produced by

models M3 and M4 overlay each other). When the match

between modelled and observed distributions of box

dimensions using the transect data was tested using

Kolmogorov–Smirnov (K–S) statistics (Dvoretzky–Kiefer–

Wolfowitz, DKW, test), those generated by the model with

fully correlated r (M2) were rejected (P < 0.05; K–S > 0.1;

N = 144) in eight cases from 10, whilst the other models

could not be rejected at all. The models of generalized

fractals therefore predict well the assemblage-wide patterns

comprising interspecific variation in the structure of spatial

distributions, without any ad hoc assumption concerning

these distributions.
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The exact shape of the species–area relationship differs

between the observed atlas and transect data, as well as

between the respective models (Fig. 5a,b). For atlas data

(Fig. 5a), all the models produce very similar species–area

relationships revealing saturation at very large areas, which

could be attributable to a bias towards regularity in the

spatial distribution of sub-patches within a patch at these

scales, introduced by the algorithm used for the construc-

tion of these distributions (see Šizling & Storch 2007).

However, the slope of the curve below the point of

saturation, ranging between 0.15 and 0.17, corresponds very

well both to the observed slopes (0.1 and 0.12 for CE and

CR, respectively), and to the values most commonly

reported for mainland species–area relationships (Rosen-

zweig 1995; but see Drakare et al. 2006). For the transect

data, the modelled slopes differ slightly between the models

(0.32–0.35, 0.28–0.29, 0.29–0.32 and 0.29–0.32 in M1, M2,

M3 and M4, respectively), although they are all close to the

observed slope of 0.29, and the 95% confidence intervals of

observed species numbers overlap with mean species

richness values for modelled assemblages (Fig. 5b).

Species occupancies at the finest spatial scale modelled and

observed on the transect have unimodal, albeit somewhat left-

skewed, distributions when the occupancies are log-trans-

formed (Fig. 6). This is also the most commonly reported

form of observed species-abundance distributions (Tokeshi

1999; Gaston & Blackburn 2000; Hubbell 2001; McGill et al.

2007). The distribution of species occupancies differs

between individual models, and the predicted distributions

differ from that observed on the transect (Fig. 6a), but the
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overall agreement is surprisingly high (DKW test for K–S

statistics: M1 rejected at level 0.03, M2 rejected in one

simulation out of 10 at level 0.05, and M3 and M4 cannot be

rejected). None of the models predicts the observed pattern

without some bias. Part of this bias follows from the fact that

in reality r is neither fully uncorrelated nor fully correlated

across space and aggregation levels (see Box 1).

D I S C U S S I O N A N D C O N C L U S I O N S

The generalized fractals that emerge from a random

hierarchical aggregation process represent a very good

approximation to observed species spatial distributions.

Interestingly, models differing in the particular form of this

randomness do not differ too much in the properties of the

spatial structures that they produce (see also Šizling &

Storch 2007). Apparently fractal spatial distributions so far

reported for many species (Virkkala 1993; Kunin 1998;

Ulrich & Buszko 2003) can thus in fact reflect the outcome

of a random aggregative process which can be quite broadly

defined. Such a process can be interpreted in terms of a

habitat hierarchy, leading to the situation in which patches

that determine the distributions of species are more or less

randomly nested within patches at higher levels in the

hierarchy. In fact, the process can be much less random,

which is then expressed in the deviation from the null

pattern predicted by the model. Indeed, the observed

macroecological patterns revealed higher variation than the

models, indicating that the latter represent a null expectation

when particular biological processes do not bias the mean

behaviour.

It is not particularly surprising that the random models

produce the patterns which are most commonly observed

in nature regardless of taxon and ecosystem specificities –

the fact that they are universal means that the intricacies of

a given biological situation cannot play a role in their

emergence. In other words, our focus on universal

macroecological patterns determines the level of generality

of underlying processes. Whereas the tendency for

aggregated distributions at multiple scales seems to be

universal across all living forms (e.g. Condit et al. 2000),

and thus represents the basis of the general form of

macroecological patterns, the exact way in which species

are spatially aggregated, and the strength of this aggrega-

tion, is determined by species� biological properties,

population dynamics and interactions with particular

environments.

Since our models produced quite realistic macroecological

patterns on the basis of a very broad range of hierarchically

aggregated spatial structures without assuming any interspe-

cific interactions, it is most probable that it is indeed the

aggregated nature of species spatial distributions on multiple

scales which lies behind many such patterns of abundance,

distribution and diversity. Spatial aggregation is also the

characteristic property of other theoretical frameworks

attempting to unify macroecological patterns. It is possible

that the other approaches, including the models of McGill &

Collins (2003), Harte et al. (2005) or Hubbell�s neutral

theory, could produce very similar aggregated structures,

and could then represent just an alternative way of

producing realistic aggregated distributions and consequent

macroecological patterns.

This said, we feel that our approach has some advantages

over these others. First, it explicitly and directly considers

the proximate driver of the respective macroecological

patterns (i.e. aggregated species� spatial distribution over

multiple spatial scales), and provides a mechanism produc-

ing aggregated spatial distributions which is biologically

interpretable in terms of a habitat hierarchy. Second, it does

not need any ad hoc parameterization to obtain patterns that

qualitatively and often also quantitatively represent well

those most commonly observed; even species abundance

patterns follow from the hierarchical aggregation. Third, it

does not need an assumption of ecological or demographic

equivalency among species; instead, it assumes that species

differ in ecologically relevant properties, and these differ-

ences can be modelled by a random process – the �random

variation� of r can in fact reflect biologically relevant life-

history characteristics.

Our approach sheds light on a continuing discussion

concerning the scale-dependency of ecological patterns and

processes. On the one hand, there is a claim that different

processes act at different scales and hence a true

understanding of nature must encompass these scale

differences (Allen & Starr 1982). On the other hand, the

scaling approach tries to find properties which are scale-

invariant, knowledge of which would allow us to predict

behaviour and patterns at a specific scale from knowledge

of the parameters at another scale (e.g. Kunin 1998; Kunin

et al. 2000). We show that these two approaches are

actually compatible. Different spatial scales can indeed

differ in terms of the dominant processes, but there can

still be some features which are scale-independent, even if

these are only statistical in nature. Understanding such

statistical invariances can lead to predictions of general

properties apparent across scales, although deeper biolog-

ical understanding is necessary for the description of scale-

dependent processes.

Our null model of macroecological patterns could in

principle be modified to accommodate more biologically

relevant processes and to narrow the scope of predictions

for a particular situation. For instance, r could vary

according to levels of available energy, thus predicting the

response of species distributions to the energy availability

gradient. Bonn et al. (2004) have shown that higher species

richness in more productive areas is associated with higher
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mean occupancy of all species, and this in turn affects the

slope of the species–area relationship (Šizling & Storch

2004; Storch et al. 2005). It is possible that all of these

patterns could easily be modelled by systematic changes in r

across space, which can be interpreted in terms of varying

resource levels which are sufficient for population

persistence. Similarly, climatic changes can have a profound

effect on r, both in terms of its mean value and its statistical

distribution, consequently affecting all assemblage-level

macroecological properties. Our model could then be

useful both in the context of theories dealing with spatial

variation in species richness (see Evans et al. 2005; Storch

et al. 2006) and for the prediction of changes in species

assemblages related to global climate change. At the same

time, the deviations from our model may be indicative

of biologically important processes which go beyond

the statistical regularities revealed by macroecological

patterns.
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