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Charles University, Praha, Czech Republic and the University of Warwick, UK

Pirogov-Sinai theory is a method developed to study phase diagrams of lat-
tice models at low temperatures. The general claim is that, under appropriate
conditions, the phase diagram of a lattice model is, at low temperatures, a small
perturbation of the zero temperature phase diagram designed by ground states.
The treatment can be generalised to cover temperature driven transitions with
coexistence of ordered and disordered phases.

1. Formulation of the main result

1.1 Setting.

Refraining first from full generality, we formulate the result for a standard class of
lattice models with finite spin state and finite range interaction. We will mention
different generalisations later.

We consider classical lattice models on the d-dimensional hypercubic lattice Zd

with d ≥ 2. A spin configuration σ = (σx)x∈Zd is an assignment of a spin with
values in a finite set S to each lattice site x ∈ Zd; the configuration space is
Ω = SZd

. For σ ∈ Ω and Λ ⊂ Zd, we use σΛ ∈ ΩΛ = SΛ to denote the restriction
σΛ = {σx;x ∈ Λ}.

The Hamiltonian is given in terms of a collection of interaction potentials (ΦA),
where ΦA are real functions on Ω, depending only on σx with x ∈ A, and A runs
over all finite subsets of Zd. We assume that the potential is periodic with finite
range of interactions. Namely, ΦA′(σ′) = ΦA(σ) whenever A and σ are related
to A′ and σ′ by a translation from (aZ)d for some fixed integer a and there exists
R ≥ 1 such that ΦA ≡ 0 for all A with diameter exceeding R.

Without loss of generality (possibly multiplying the number a by an integer and
increasing R) we may assume that R = a.

The Hamiltonian HΛ(σ|η) in Λ with boundary conditions η ∈ Ω is then given by

HΛ(σ|η) =
∑

A∩Λ6=∅

ΦA(σΛ ∨ ηΛc), (1)

where σΛ ∨ ηΛc ∈ Ω is the configuration σΛ extended by ηΛc on Λc. The Gibbs
state in Λ under a boundary conditions η ∈ Ω (and with Hamiltonian H) is the
probability µΛ(·|η) on ΩΛ defined by

µΛ({σΛ}|η) =
exp{−βHΛ(σ|η)})

Z(Λ|η)
(2)

with the partition function

Z(Λ|η) =
∑
σΛ

exp{−βHΛ(σ|η)}. (3)
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We use G(H) to denote the set of all periodic Gibbs states with Hamiltonian H
defined on Ω by means of the Dobrushin-Lanford-Ruelle (DLR) equations.

1.2 Ground state phase diagram and the removal of degeneracy.

A periodic configuration σ ∈ Ω is called a (periodic) ground state of a Hamiltonian
H = (ΦA) if

H(σ̃;σ) =
∑
A

(ΦA(σ̃)− ΦA(σ)) ≥ 0 (4)

for every finite perturbation σ̃ 6= σ of σ (σ̃ differs from σ at a finite number of
lattice sites). We use g(H) to denote the set of all periodic ground states of H. For
every configuration σ ∈ g(H), we define the specific energy eσ(H) by

eσ(H) = lim
n→∞

1
|Vn|

∑
A∩Vn 6=∅

ΦA(σ) (5)

(with Vn denoting a cube consisting of nd lattice sites).
To investigate the phase diagram, we will consider a parametric class of Hamil-

tonians around a fixed Hamiltonian H(0) with a finite set of periodic ground states
g(H(0)) = {σ1, . . . , σr}. Namely, let H(0),H(1), . . . , and H(r−1) be Hamiltoni-
ans determined by potentials Φ(0),Φ(1), . . . , and Φ(r−1), respectively, and con-
sider the (r − 1)-parametric set of Hamiltonians Ht = H(0) +

∑r−1
`=1 t`H

(`) with
t = (t1, . . . , tr−1) ∈ Rr−1. Using a shorthand em(H) = eσm(H), and introduc-
ing the vectors e(H) = (e1(H), . . . , er(H)) and h(t) = e(Ht) − minm em(Ht),
we notice that for each t ∈ Rr−1, the vector h(t) ∈ ∂Qr, the boundary of the
positive octant in Rr. A crucial assumption for such a parametrisation Ht to
yield a meaningful phase diagram is the condition of removal of degeneracy : we
assume that g(H(0) + H(`)) $ g(H(0)), ` = 1, . . . , r − 1, and that the vectors
e(H(`)), ` = 1, . . . , r − 1, are linearly independent.

In particular, its immediate consequence is that the mapping Rr−1 3 t 7→ h(t) ∈
∂Qr is a bijection. This fact has a straightforward interpretation in terms of ground
state phase diagram. Viewing the phase diagram (at zero temperature) as a par-
tition of the parameter space into regions Kg with a given set g ⊂ g(H(0)) of
ground states—“coexistence of zero temperature phases from g”—the above bijec-
tion means that the region Kg is the preimage of the set

Qg = {h ∈ ∂Qr|hm = 0 for σm ∈ g and hm > 0 otherwise }. (6)

The partition of the set ∂Qr has a natural hierarchical structure implied by the
fact that Qg1 ∩Qg2 = Qg1∪g2 (Qg is the closure of Qg). Namely, the origin {0} =
Qg(H(0)) is the intersection of r positive coordinate axes Q{σm̄,m̄6=m},m = 1, . . . , r;
each of those halflines is an intersection of (r − 1) two-dimensional quarter-planes
with boundaries on positive coordinate axes, etc., up to (r− 1)-dimensional planes
Q{σm},m = 1, . . . , r. This hierarchical structure is thus inherited by the partition
of the parameter space Rr−1 into the regions Kg. The phase diagrams with such
regular structure are sometimes said to satisfy the Gibbs phase rule.

We can thus summarise in a rather trivial conclusion that the condition of re-
moval of degeneracy implies that ground state phase diagram obeys the Gibbs phase
rule. The task of the Pirogov-Sinai theory is to provide means for proving that this
remains to be true, at least in a neighbourhood of the origin of parameter space,
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also for small nonzero temperatures. To achieve this we need an effective control
of excitation energies.

1.3 Peierls condition.

A crucial assumption for the validity of the Pirogov-Sinai theory is a lower bound
on energy of excitations of ground states—the Peierls condition.

In spite of the fact that for a study of phase diagram we consider a parametric
set of Hamiltonians whose set of ground states may differ, it is useful to intro-
duce the Peierls condition with respect to a single fixed collection G of reference
configurations (eventually, it will be identified with the ground states of the Hamil-
tonian H(0)). Let thus a fixed set G of periodic configurations {σ1, . . . , σr} be
given. Again, without loss of generality we may assume that the periodicity of all
configurations σm ∈ G is R.

Before formulating the Peierls condition, we have to introduce the notion of
contours. Consider the set of all sampling cubes C(x) = {y ∈ Zd||yi − xi| ≤
R for 1 ≤ i ≤ d}, x ∈ Zd. A bad cube of a configuration σ ∈ Ω is a sampling
cube C for which σC differs from σm restricted to C for every σm ∈ G. The
boundary B(σ) of σ is the union of all bad cubes of σ. If σm ∈ G and σ is its finite
perturbation (differing from σm on a finite set of lattice sites), then, necessarily,
B(σ) is finite. A contour of σ is a pair γ = (Γ, σΓ) where Γ(the support of the
contour γ) is a connected component of B(σ) (and σΓ is the restriction of σ on Γ).
Here, the connectedness of Γ means that it cannot be split into two parts whose
(Euclidean) distance is larger than 1. We use ∂(σ) to denote the set of all contours
of σ, B(σ) =

⋃
γ∈∂(σ) Γ.

Consider a configuration σγ such that γ is its unique contour. The set Zd \Γ has
one infinite component to be denoted Ext γ and a finite number of finite components
whose union will be denoted Int γ. Observing that the configuration σγ coincides
with one of the states σm ∈ G on every component of Zd \ B(σ), each of those
components can be labelled by the corresponding m. Let q be the label of Ext γ,
we say that γ is a q-contour, and let Intm γ be the union of all components of Int γ
labelled by m, m = 1, . . . , r.

Defining the “energy” Ψ(γ) of a q-contour γ by the equation

Ψ(γ) = H(σγ ;σq) + eq(H)|Γ| −
r∑

m=1

(em(H)− eq(H))| Intm γ|, (7)

the Peierls condition with respect to the set G of reference configurations is an
assumption of the existence of ρ > 0 such that

Ψ(γ) ≥ (ρ + min
m

em(H))|Γ| (8)

for any contour of any configuration σ that is a finite perturbation of σq ∈ G.
Notice that if G = g(H), the sum on the right hand side of (7) vanishes.

1.4 Phase diagram.

The main claim of the Pirogov-Sinai theory provides, for β sufficiently large, a
construction of regions Kg(β) of the parameter space characterized by coexistence
of phases labeled by configurations σm ∈ g. This is done similarly as for the ground
state phase diagram discussed in Section 1.2 by constructing a homeomorphism t 7→
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a(t) from a neighbourhood of the origin of the parameter space to a neighbourhood
of the origin of ∂Qr that provides the phase diagram (actually, the function a(t)
will turn out to be just a perturbation of h(t) with errors of order e−β).

Before stating the result, however, we have to clarify what exactly is meant by
existence of phase m for a given Hamiltonian H. Roughly speaking, it is the exis-
tence of a periodic extremal Gibbs state µm ∈ G(H), whose typical configurations
do not differ too much from the ground state configuration σm. In a more technical
terms, the existence of such state is provided once we prove a suitable bound, for
the finite-volume Gibbs state µΛ({σΛ}|σm) under the boundary conditions σm, on
the the probability that a fixed point in Λ is encircled by a contour from ∂σ. If this
is a case, we say that the phase m is stable. It turns out that such a bound is actu-
ally an integral part of the construction of metastable free energies fm(t) yielding
the homeomorphism t 7→ a(t). In this way, we get the main claim formulated as
follows:

Theorem 1.1. Consider a parametric set of Hamiltonians Ht = H(0)+
∑r−1

`=1 t`H
(`)

with periodic finite range interactions satisfying the condition of removal of degen-
eracy as well as the Peierls condition with respect to the reference set G = g(H(0)).
Let d ≥ 2 and let β be sufficiently large. Then there exists a homeomorphism
t 7→ a(t) of a neighbourhood Vβ of the origin of the parameter space Rr−1 onto
a neighbourhood Uβ of the origin of ∂Qr such that, for any t ∈ Vβ, the set of all
stable phases is

{
m ∈ {1, . . . , r}|am(t) = 0

}
.

The Peierls condition can be actually assumed only for the Hamiltonian H(0)

inferring its validity for Ht on a sufficiently small neighbourhood Vβ .
Notice also that the result can be actually stated not as a claim about phase

diagram in a space of parameters, but as a statement about stable phases of a fixed
Hamiltonian H. Namely, for a Hamiltonian H satisfying Peierls condition with
respect to a reference set G, one can assure existence of parameters am labelled by
elements from G such that the set of extremal periodic Gibbs states of H consists
of all those m-phases for which am = 0.

1.5 Construction of metastable free energies.

An important part of the Pirogov-Sinai theory is an actual construction of the
metastable free energies—a set of functions fm(t),m = 1, . . . , r that provide the
homeomorphism a(t) by taking am(t) = fm(t)−minm̄ fm̄(t).

We start with a contour representation of partition function Z(Λ|σq). Consid-
ering, for each contributing configuration σ, the collection ∂(σ) of its contours, we
notice that, in addition to the fact that different contours γ, γ′ ∈ ∂(σ) have dis-
joint supports, Γ ∩ Γ′ = ∅, the contours from ∂(σ) have to satisfy the matching
conditions: if C is a connected component of Zd \

⋃
γ∈∂ Γ, then the restrictions

of the spin configurations σγ to C are the same for all contours γ ∈ ∂(σ) with
dist(Γ, C) = 1. In other words, the contours touching C induce the same label
on C. Let us observe that there is actually one to one correspondence between
configurations σ that coincide with σq on Λc and collections M(Λ, q) of contours ∂
in Λ satisfying the matching condition and such that the external among them are
q-contours. Here, a contour γ ∈ ∂ is called an external contour in ∂ if Γ ⊂ Ext γ′

for all γ′ ∈ ∂ different from γ.
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With this observation and using Λm(∂) to denote the union of all components
of Λ \

⋃
γ∈∂ Γ with label m, we get

Z(Λ|σq) =
∑

∂∈M(Λ,q)

∏
m

e−βem(H)|Λm(γ)|
∏
γ∈∂

e−βΨ(γ). (9)

A usefulness of such contour representation stems from an expectation that, for a
stable phase q, contours should constitute a suppressed excitation and one should
be able to use cluster expansions to evaluate the behaviour of the Gibbs state µq.
However, the direct use of the cluster expansion on (9) is trammelled by the presence
of the energy terms e−βem(H)|Λm(∂)| and, more seriously, by the requirement that
the contour labels match.

Nevertheless, one can rewrite the partition function in a form that does not
involve any matching condition. Namely, considering first a sum over mutually
external contours ∂ext and resumming over collections of contours which are con-
tained in their interiors without touching the boundary (being thus prevented to
“glue” with external contours), we get

Z(Λ|σq) =
∑
∂ext

e−βeq(H)|Ext |
∏

γ∈∂ext

{
e−βΨ(γ)

∏
m

Zdil(Intm γ|σm)
}

. (10)

Here, the sum goes over all collections of compatible external q-contours in Λ,
Ext = ExtΛ(∂ext) =

⋂
γ∈∂ext(Ext γ ∩ Λ), and the partition function Zdil(Λ|σq) is

defined by (9) with M(Λ, q) replaced by Mdil(Λ, q) ⊂M(Λ, q), the set of all those
collections whose external contours γ are such that dist(Γ,Λc) > 1. Multiplying
now each term by

1 =
∏

γ∈∂ext

∏
m

Zdil(Intm γ|σq)
Zdil(Intm γ|σq)

, (11)

we get

Z(Λ|σq) =
∑
∂ext

e−βeq(H)|Ext |
∏

γ∈∂ext

(
e−βeq(H)|Γ|wq(γ)Zdil(Int γ|σq)

)
, (12)

where wq(γ) is given by

wq(γ) = e−βΨ(γ) eβeq(H)|Γ|
∏
m

Zdil(Intm γ|σm)
Zdil(Intm γ|σq)

. (13)

Observing that a similar expression is valid for Zdil(Λ|σq) (with an appropriate
restriction on the sum over external contours ∂ext) and proceeding by induction,
we eventually get the representation

Z(Λ|σq) = e−βeq(H)|Λ|
∑

∂∈C(Λ,q)

∏
γ∈∂

wq(γ), (14)

where C(Λ, q) denotes the set of all collections of non-overlapping q-contours in Λ.
Clearly, the sum on the right hand side is exactly of the form needed to apply
cluster expansion, provided the contour weights satisfy the necessary convergence
assumptions.

Even though this is not necessarily the case, there is a way to use this represen-
tation. Namely, one can artificially change the weights to satisfy the needed bound,
for example, by modifying them to the form

w′
q(γ) = min

(
wq(γ), e−τ |Γ|) (15)
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with a suitable constant τ . The modified partition function

Z ′(Λ|σq) = e−βeq(H)|Λ|
∑

∂∈C(Λ,q)

∏
γ∈∂

w′
q(γ) (16)

can then be controlled by cluster expansion allowing to define

fq(H) = − 1
β

lim
|Λ|→∞

1
|Λ|

log Z ′(Λ|σq). (17)

This is the metastable free energy corresponding to the phase q. Applying the
cluster expansion to the logarithm of the sum in (16), we get |fq(H)−eq(H)| ≤ e−

τ
2 .

The metastable free energy corresponds to taking of the ground state σq and its
excitations as long as they are sufficiently suppressed. Once wq(γ) exceeds the
weight e−τ |Γ| (and the contour would have been actually preferred), we suppress
it “by hand”. The point is that if the phase q is stable, this never happens and
w′

q(γ) = wq(γ) for all q-contours γ. This is the idea behind the use the function
fq(H) as an indicator of the stability of the phase q by taking

aq(t) = fq(Ht)−min
m

fm(Ht). (18)

Of course, the difficult point is to actually prove that stability of phase q (i.e.
the fact that aq(t) = 0) indeed implies w′

q(γ) = wq(γ) for all γ. The crucial step is
to prove, by induction on the diameter of Λ and γ, the following three claims (with
ε = 2e−

τ
2 ):

(i) If γ is a q-contour with aq(t) diam Γ ≤ τ
4 , then w′

q(γ) = wq(γ).
(ii) If aq(t) diam Λ ≤ τ

4 , then Z(Λ|σq) = Z ′(Λ|σq) 6= 0 and

|Z(Λ|σq)| ≥ e−fq(Ht)|Λ|−ε|∂Λ|. (19)

(iii) If m ∈ G, then

|Z(Λ|σm)| ≤ e−minq fq(Ht)|Λ|eε|∂Λ|. (20)

A standard example illuminating the perturbative construction of the metastable
free energies and showing the role of entropic contributions, is the Blume- Capel
model. It is defined by the Hamiltonian

HΛ(σ) = −J
∑
〈x,y〉

(σx − σy)2 − λ
∑
x∈Λ

σ2
x − h

∑
x∈Λ

σx (21)

with spins σx ∈ {−1, 0, 1}. Taking into account only the lowest order excitations,
we get:
f̃±(λ, h) = −λ∓ h− 1

β e−β(2d−λ±h) (sea of pluses or minuses with a single spin flip
± → 0) and
f̃0(λ, h) = − 1

β e−β(2d+λ)
(
eβh + e−βh

)
(sea of zeros with a single spin flip either

0 → + or 0 → −). Since these functions differ from full metastable free energies
f±(λ, h), f0(λ, h) by terms of higher order (∼ e−(4d−2)β), the real phase diagram
differs in this order from that one constructed by equating the functions f̃±(λ, h)
and f̃0(λ, h). Particularly interesting is to inspect the origin, λ = h = 0. It is only
the phase 0 that is stable there at all small temperatures since

f0(0, 0) ∼ − 2
β

e−β2d < f±(0, 0) ∼ − 1
β

e−β2d. (22)
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The only reason why the phase 0 is favoured at this point with respect to phases +
and −, is that there are two excitations of order e−2dβ for the phase 0, while there
is only one such excitation for + or −. The entropy of the lowest order contribution
to f0(0, 0) is overweighting the entropy of the contribution to f±(0, 0) of the same
order.

2. Applications

Several applications, stemming from the Pirogov-Sinai theory, are based on the
fact that, due to the cluster expansion, we have quite accurate description of the
model in finite volume.

One class of applications concerns various problems featuring interfaces between
coexisting phases. To be able to transform the problem into study of random bound-
ary line separating the two phases, one needs a precise cluster expansion formula for
partition functions in volumes occupied by those phases. In the situation with no
symmetry between the phases, the use of the Pirogov-Sinai theory is indispensable.

Another interesting class of applications concerns behaviour of the system with
periodic boundary conditions. It is based on the fact that the partition function
ZTN

on a torus TN consisting of Nd sites can be, again with the help of the cluster
expansions, explicitly and very accurately evaluated in terms of metastable free
energies,

∣∣ZTN
−

r∑
q=1

e−βfq(H)Nd∣∣ ≤ exp{−β min
m

fm(H)Nd − bβN}, (23)

with a fixed constant b. This formula (and its generalization to the case of complex
parameters) allows to obtain various results concerning the behaviour of the model
in finite volumes.

2.1 Finite-size effects.

Considering, as an illustration, a perturbation of the Ising model, so that it has
not the ± symmetry any more (and the value ht(β) of external field at which the
phase transition between plus and minus phase occurs is not known), we can pose
a natural question that has an importance for correct interpretation of simulation
data. Namely, what is the asymptotic behaviour of the magnetization mper

N (β, h) =
µTN

(
1
|Λ|

∑
x∈Λ σx

)
on a torus? In the thermodynamic limit, the magnetization

mper
∞ (β, h) displays, as a function of h, a discontinuity at h = ht(β). For finite N

we get a rounding of the discontinuity—the jump is smoothed. What is the shift of
a naturally chosen finite volume transition point ht(N) with respect to the limiting
value ht? The answer can be obtained with help of (23) once sufficient care is taken
to use the freedom in the definition of the metastable free energies f+(h) and f−(h)
to replace them with a sufficiently smooth version allowing an approximation of the
functions f±(h) around limiting point ht in terms of their Taylor expansion.

As a result, in spite of the asymmetry of the model, the finite volume magneti-
zation mper

N (β, h) has a universal behaviour in the neighbourhood of the transition
point ht. With suitable constants m and m0, we have

mper
N (β, h) ∼ m0 + m tanh

{
Ndβm(h− ht)

}
. (24)
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Choosing the inflection point hmax(N) of mper
N (β, h) as a natural finite volume

indicator of the occurence of the transition, one can show that

hmax(N) = ht +
3χ

2β2m3
N−2d + O(N−3d). (25)

2.2 Zeros of partition functions.

The full strength of the formula (23) is revealed when studying the zeros of the
partition function ZTN

(z) as a polynomial in a complex parameter z entering the
Hamiltonian of the model. To be able to use the theory in this case, one has
to extend the definitions of the metastable free energies to complex values of z.
Indeed, the construction goes still through yielding, this time genuinely complex,
contour models w± with the help of an inductive procedure. Notice that no analytic
continuation is involved. An analog of (23) is still valid,∣∣ZTN

(z)−
r∑

m=1

e−βfm(z)Nd∣∣ ≤ exp{−β min
m
<efm(z)Nd − bβN}. (26)

Using (26), it is not difficult to convince oneself that the loci of zeros can be
traced down to the phase coexistence lines. Indeed, on the line of the coexistence
of two phases <efm = <efq the partition function ZTN

(z) is approximated by
e−βfNd(

e−β=mfmNd

+ e−β=mfnNd)
. The zeros of this approximation are thus given

by the equations
<efm = <efn < <ef` for all ` 6= m,n,

βNd(=mfm −=mfn) = π mod 2π.
(27)

The zeros of the full partition function ZTN
(z) can be proven to be exponentially

close, up to a shift of order O(e−βbN ), to those of the discussed approximation.
Briefly, the zeros of ZTN

(z) asymptotically concentrate on the phase coexistence
curves with the density 1

2π βNd|(d/dz)(fm − fn)|.

3. Bibliographical remarks and generalisations

The original works [PS75,PS76, Sin] were introducing an analog of the weights
w′

q(γ) and parameters aq(H) as a fixed point of a suitable mapping on a Banach
space. The inductive definition used here was introduced in [KP] and [Zah]. The
completeness of phase diagram—the fact that the stable phases exhaust the set of
all periodic extremal Gibbs states was first proven in [Zah]. Extension to complex
parameters was first considered in Gawȩdzki et al. (1987) and Borgs and Imbrie
(1989). For a review of standard Pirogov-Sinai theory see [Sin,Sl].

Application of Pirogov-Sinai theory for finite size effects was studied in [BoKo]
and general theory of zeros of partition functions is presented in [BBCK].

The basic statement of the Pirogov-Sinai theory yielding the construction of the
full phase diagram has been extended to a large class of models. Let us mention
just few of them (with rather incomplete references):
Continuous spins. The main difficulty in these models is that one has to deal with
contours immersed in a sea of fluctuating spins (Dobrushin and Zahradńık 1986,
Borgs and Waxler 1989).
Potts model. An example of a system with a transition in temperature with coexis-
tence of the low temperature ordered and the high temperature disordered phases.
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Contour reformulation is employing contours between ordered and disordered re-
gions [BKL, KLMR]. The treatment is simplified with help of Fortuin-Kasteleyn
representation [LMMRS].
Models with competing interactions. ANNNI model, microemulsions. Systems with
a rich phase structure [DS].
Disordered systems. An example is a proof of existence of the phase transition for
the 3-dimensional random field Ising model [BrKu] using a renormalization group
version of the Pirogov-Sinai theory first formulated in [GKK].
Quantum lattice models. A class of quantum models that can be viewed as a
quantum perturbation of a classical model. With help of Feynman-Kac formula are
rewritten as a (d + 1)-dimensional classical model that is, in its turn, treated by
standard Pirogov-Sinai theory (Datta et al 1996, Borgs et al 1996).
Continuous systems. Gas of particles in continuum interacting with a particular
potential of Kac type. Pirogov-Sinai theory is used for a proof of existence of the
phase transitions after a suitable discretisation [LMP].
See also:. Equilibrium statistical mechanics, Cluster expansion, Phase transitions
in continuum systems, Quantum spin systems
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[KP] R. Kotecký and D. Preiss, An inductive approach to PS theory, Proc. Winter School

on Abstract Analysis, Suppl. ai Rend. del Mat. di Palermo (1983).



10 PIROGOV-SINAI THEORY, OCTOBER 3, 2005

[LMP] J.L. Lebowitz, A. Mazel, E. Presutti, Liquid-vapor phase transitions for systems with

finite range interactions. Journal of Statistical Physics 94 (1999), 955–1025.
[LMMRS] L. Laanait, A. Messager, S. Miracle-Solé, J. Ruiz, S. B. Shlosman, Interfaces in the
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