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Summary

 

1.

 

The spatial scale of  analysis may influence the nature, strength and underlying drivers of
macroecological patterns, one of the most frequently discussed of which is the relationship between
species richness and environmental energy availability.

 

2.

 

It has been suggested that species–energy relationships are hump-shaped at fine spatial grains
and consistently positive at larger regional grains. The exact nature of  this scale dependency is,
however, the subject of  much debate as relatively few studies have investigated species–energy
relationships for the same assemblage across a range of spatial grains. Here, we contrast species–
energy relationships for the British breeding avifauna at spatial grains of 1 km 

 

×

 

 1 km, 2 km 

 

× 

 

2 km
and 10 km 

 

×

 

 10 km plots, while maintaining a constant spatial extent.

 

3.

 

Analyses were principally conducted using data on observed species richness. While survey work
may fail to detect some species, observed species richness and that estimated using nonparametric
techniques were strongly positively correlated with each other, and thus exhibit very similar spatial
patterns. Moreover, the forms of species–energy relationships using observed and estimated species
richness were statistically indistinguishable from each other.

 

4.

 

Positive decelerating species–energy relationships arise at all three spatial grains. There is little evidence
that the explanatory power of these relationships varies with spatial scale. However, ratios of regional
(large-scale) to local (small-scale) species richness decrease with increasing energy availability, indicating
that local richness responds to energy with a steeper gradient than does regional richness. Local
assemblages thus sample a greater proportion of regional richness at higher energy levels, suggesting
that spatial turnover of species richness is lower in high-energy regions. Similarly, a crude measure
of temporal turnover, the ratio of cumulative species richness over a 4-year period to species richness
in a single year, is lower in high-energy regions. These negative relationships between turnover and
energy appear to be causal as both total and mean occupancy per species increases with energy.

 

5.

 

While total density in 1 km 

 

×

 

 1 km plots correlates positively with energy availability, such
relationships are very weak for mean density per species. This suggests that the observed association
between total abundance and species richness may not be mediated by population extinction rates,
as predicted by the more individuals hypothesis.

 

6.

 

The sampling mechanism suggests that species–energy relationships arise as high-energy areas
support a greater number of individuals, and that random allocation of these individuals to local
areas from a regional assemblage will generate species–energy relationships. While randomized
local species–energy relationships are linear and positive, predicted richness is consistently greater
than that observed. The mismatch between the observed and randomized species–energy relationships
probably arises as a consequence of the aggregated nature of species distributions. The sampling
mechanism, together with species spatial aggregation driven by limited habitat availability, may
thus explain the species–energy relationship observed at this spatial scale.
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Introduction

 

Describing spatial patterns in species richness, and identifying
their underlying drivers, is of fundamental importance in
ecology. Such patterns, like many of those in ecology, are
scale-dependent; that is, their form, strength and the nature of
their underlying causal mechanisms vary with the extent of
the study area and the size of  the unit of  investigation, i.e.
spatial grain (Wright, Currie & Maurer 1993; Blackburn &
Gaston 2002; McGeoch & Gaston 2002; Rahbek 2005). The
strong association between species richness and environmental
energy, the species–energy relationship (Hawkins 

 

et al

 

. 2003;
Pimm & Brown 2004), is a prime example of an apparently
scale-dependent pattern. As spatial grain increases, unimodal
relationships typically decline in frequency, and positive
monotonic ones become more common (Waide 

 

et al

 

. 1999;
Mittelbach 

 

et al

 

. 2001). However, the exact nature of  the
species–energy relationship that predominates at any particular
spatial scale remains strongly contested (Mittelbach, Steiner
& Scheiner 2003; Whittaker & Heegaard 2003; Gillman &
Wright 2006). This is partly because relatively few of the
numerous studies that have described the form of the species–
energy relationship have done so across a range of  spatial
scales for a single assemblage. Among those that have, the
finest spatial grains have typically remained rather coarse
(Rahbek & Graves 2001; van Rensburg, Chown & Gaston 2002;
Hurlbert & Haskell 2003; Storch, Evans & Gaston 2005).

This lack of studies conducted across multiple scales also
contributes to a lack of  detail in most discussions of  the
factors contributing to scale dependency in the species–
energy relationship. It is commonly simply stated that scale
dependency is an inevitable outcome of  the nonlinear
relationship between species richness and area, or that it
arises because the mechanisms influencing species richness
vary with spatial scale (Rosenzweig 1995). For example, the
species interactions that are often thought to structure local
assemblages, such as competition, predation and parasitism,
operate at a fine spatial grain and their effects may thus be
more noticeable at such a scale, contrasting with the influence
of regional processes that may be more detectable at coarser
scales (Shurin & Allen 2001; Kneitel & Chase 2004; Srivastava
2005). Therefore, while detailed investigations of the relative
roles that different mechanisms play in generating species–
energy relationships at different spatial scales are currently
rare, they are central to understanding scale dependency.

A crucial question related to the species–energy relation-
ship is whether the increase of species richness with energy
availability is accompanied by an increase in abundance. This
is a key prediction of the more individuals hypothesis (MIH),
which suggests that in high-energy regions species popu-
lations are larger, buffering them from extinction and elevating
species richness (Wright 1983). While an increase in total
abundance with available energy has been documented in
many cases (Kaspari, Yuan & Alonso 2003; Hurlbert 2004;
Pautasso & Gaston 2005; Evans, James & Gaston 2006), such
patterns could be generated by a number of  alternative
mechanisms, most notably through a sampling effect (Evans,

Warren & Gaston 2005a). Moreover, evidence for other
predictions derived from the MIH, such as an increase in
mean species abundance with energy availability, is limited
and species richness has been observed to increase with
energy availability without an increase in total abundance
(Currie 

 

et al

 

. 2004; Evans 

 

et al

 

. 2005a, 2006; Evans, Greenwood
& Gaston 2005b).

An alternative to abundance-focused mechanisms for the
species–energy relationship is that greater species richness in
high-energy areas is a consequence of a positive association
between energy availability and habitat heterogeneity, with
the latter promoting greater spatial turnover and thus higher
species richness (Hurlbert 2004). Indeed, positive associations
between spatial turnover and energy have been documented
in a number of, largely botanical, assemblages (Chase 

 

et al

 

.
2000; Chase & Leibold 2002; Chalcraft 

 

et al

 

. 2004). While
such patterns have been shown to be negative within some
avian assemblages, they have only been observed at relatively
large scales and the direction of the relationship may be
reversed at finer scales (Bonn, Storch & Gaston 2004; Storch

 

et al

 

. 2005; Evans, Lennon & Gaston, in press). Crucially,
empirical evidence indicates that positive relationships
between spatial turnover and energy may be associated with a
switch from unimodal to linear species–energy relationships
as spatial grain increases (Chase & Leibold 2002). To understand
scale dependency in species–energy relationships it is thus
necessary not just to describe such patterns for a single
assemblage across a range of scales, but to explore simultane-
ously the relationship between energy availability, abundance,
species richness, and species turnover on multiple spatial
scales. Doing so enables one to assess how the relative
contributions of  different putative drivers of  the species–
energy relationship vary with spatial scale.

Here we explore scale dependency in the influence of
environmental energy availability on assemblage structure.
We use the British breeding avifauna as a case study and focus
on three spatial grains: 1 km 

 

×

 

 1 km, 2 km 

 

×

 

 2 km and
10 km 

 

×

 

 10 km. We conduct analyses using both observed
species richness and that estimated using jackknife and
bootstrapping procedures. We first describe the nature of the
species–energy relationship at these contrasting spatial scales.
Second, we assess how ratios of regional (large-scale) to local
(small-scale) species richness vary with increasing energy
availability. We also conduct equivalent analyses assessing the
influence of energy availability on spatial variation in the ratio
of  species richness measured over a large number of  years
to that measured in a single year, which represents a crude
measure of temporal turnover. Third, we assess how spatial
scale influences how occupancy and abundance, measured
both across all species and as per species means, respond to
energy. We thus provide one of the few studies that simultaneously
investigates scale dependency in the species–energy and
abundance–energy relationships for the same assemblage.
Finally, we use abundance data to contrast observed and
randomized species–energy relationships as a means of assessing
the extent to which sampling effects may drive species–energy
relationships.
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Methods

 

AVIAN

 

 

 

SURVEY

 

 

 

METHODS

 

Data at the 10 km 

 

× 

 

10 km and 2 km 

 

×

 

 2 km spatial grains were
obtained from the second BTO/SOC/IW breeding bird atlas (Gibbons,
Reid & Chapman 1993). These record the summer (breeding) distribu-
tion of the British avifauna as presence/absence during April–July
1988–91. Data are based on timed visits, of 2 h duration (split into
two 1 h counts during the early and late parts of the breeding season),
to at least eight 2 km 

 

×

 

 2 km plots within each 10 km 

 

×

 

 10 km plot
and supplemented with additional records collated haphazardly
by members of the public during the four survey years. The vast
majority of the data for a 10 km 

 

×

 

 10 km square were collated
within three survey years, with the additional fourth year being used
to fill in gaps in coverage. These constitute one of the best sets of
distributional data for any assemblage and have been successfully
used in numerous macroecological studies.

Data at the 1 km 

 

×

 

 1 km spatial grain were obtained from the
BTO/JNCC/RSPB Breeding Bird Survey (BBS; see Raven, Noble &
Baillie 2005 for full details). BBS squares are selected from a random
stratified sample according to 83 BTO organizational regions,
roughly counties, across the UK. Data from Northern Ireland are
not included here. Avian data are collected twice (early April to
mid-May, and mid-May to late June). Adult birds are recorded
within 200 m sections along two 1 km transects in one of three
distance bands (0–25 m, 25–100 m, > 100 m) within each 1 km 

 

×

 

 1 km
square. Habitat within each 200 m transect section was recorded
according to a four level hierarchical coding system that documents
the main habitat, such as farmland or woodland, together with finer
level habitat features (Crick 1992). For resident species breeding
population density was estimated using data from the early visit in
order to minimize the possibility of inflating density estimates due
to the inclusion of juveniles. For migrants only late visits were used
to avoid underestimating population size if some individuals had
not arrived when the early visit was conducted. The one exception
was corn bunting 

 

Miliaria calandra

 

, a late breeding resident species
for which we have used data from the late BBS visit only.

 

SPECIES

 

 

 

R ICHNESS

 

 

 

DATA

 

We calculated five species richness measures from these data: (1)
total 10 km 

 

×

 

 10 km species richness (collected over a maximum of
4 years); (2) standardized 10 km 

 

×

 

 10 km species richness based
on cumulative data from eight 2 km 

 

×

 

 2 km squares selected
randomly from those that were visited in each 10 km 

 

×

 

 10 km square
(typically collected in a single year); (3) 2 km 

 

×

 

 2 km species richness
for a single year (some squares were visited more than once either by
different observers and/or in different years, and in these cases we
randomly selected one set of observations); (4) 1 km 

 

×

 

 1 km species
richness in a single year (2000); and (5) cumulative 1 km 

 

×

 

 1 km
species richness (1998–2000), which matches the number of
years spent collating total richness data for the majority of
10 km 

 

×

 

 10 km squares. In all analyses we excluded marine species
and vagrants, but retained the more naturalized introductions, giving a
total of 189 species. We excluded data from all 10 km 

 

×

 

 10 km squares
that contained less than 50% land, and also excluded data from
smaller units located within such squares.

Survey work may fail to detect all of the species present in a given
area, and this may bias our interpretation of spatial patterns in
species richness. Here, we investigate this possibility. There are a
plethora of species richness estimators available, and a number of

papers have attempted to assess which are the most reliable.
Nonparametric estimators are almost invariably recommended as
providing the best estimates, with jackknife estimators being parti

 

-

 

cularly recommended when there is variation in spatial grain and for
use with presence/absence data (Palmer 1991; Boulinier 

 

et al

 

. 2001;
Hortal, Borges & Gaspar 2006; Walther & Moore 2005; Kéry &
Schmid 2006). We used the R program (R Development Core Team
2005) to calculate jackknife estimates of species richness (specifically
the specpool option in the Vegan package), and also calculated the
bootstrap estimator for further comparison. We did so at the
1 km 

 

×

 

 1 km spatial grain, using data from 2000, by treating each of
the 10 transect sections as repeated samples of the same assemblage.
Similarly, we used eight randomly selected 2 km 

 

×

 

 2 km cells (those
used to estimate standardized species richness) as repeated samples
of the 10 km 

 

×

 

 10 km cells. Analysis indicated that using estimated
rather than observed species richness data did not alter our results
or conclusions (see below).

Using the observed species richness data and a nested design we
calculated four measures of the ratios of regional and mean com-
ponent local species richness as metrics of spatial turnover: (1) total
10 km 

 

×

 

 10 km and mean cumulative 1 km 

 

×

 

 1 km richness; (2)
standardized 10 km 

 

×

 

 10 km and mean single year 1 km 

 

×

 

 1 km
richness; (3) standardized 10 km 

 

×

 

 10 km and mean 2 km 

 

×

 

 2 km
richness; and (4) 2 km 

 

×

 

 2 km and mean single year 1 km 

 

×

 

 1 km rich-
ness. We consider these pairs of species richness estimates to be
comparable because each member of a pair is collated over the same
number of years. Similarly we measure the ratio of cumulative species
richness estimated over a number of years to species richness in a
single year. This metric provides a useful first approximation of
temporal turnover. An equivalent measure of temporal turnover
could not be constructed at the 10 km 

 

×

 

 10 km spatial grain as at
this grain, single and multiple year measures of species richness
differ in factors other than the number of years over which species
richness data were collated. These metrics can be considered broad
sense measures of turnover (Koleff, Gaston & Lennon 2003).

 

OCCUPANCY

 

 

 

AND

 

 

 

ABUNDANCE

 

We used the total number of occupied 2 km 

 

×

 

 2 km plots, summed
across all species and based only on the eight randomly selected
plots as a standardized measure of total occupancy at the resolution
of 10 km 

 

×

 

 10 km plots. We calculated equivalent data on mean
occupancy per species. Empirical data indicate that occupancy and
abundance are positively correlated in British birds (Gaston, Blackburn
& Gregory 1997) and thus this measure of occupancy provides some
indication of avian abundance in a 10 km 

 

×

 

 10 km plot.
We used distance sampling software (

 



 

, version 4·1
Release 2; Buckland 

 

et al

 

. 2001; Thomas 

 

et al

 

. 2004) to calculate
total avian density within each 1 km 

 

×

 

 1 km plot surveyed in 2000
(the year with the most data). We modelled the decline in detectability
with distance from the transect line and took the heterogeneity in
detectability between species, habitats and regions into account. We
calculated detectability functions for each species with 40 or more
observations; for other species we used the detectability function for
a commoner surrogate species, which was as similar to the rare
species in its conspicuousness and habitat type as possible (Table S1).
Detectability functions were constructed using nine main habitat
types (broad-leaved woodland, coniferous woodland, mixed
woodland, scrub, seminatural grassland, heath and bog, farmland,
humans and water bodies, based on Crick 1992) and 11 regions
(nine English Government Office Regions, Wales and Scotland) as
factors. We fitted half-normal and hazard-rate key functions and
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selected the detectability function that provided the best fit to the
data as judged by Akaike Information Criteria (AIC) values. Once
this best fitting model had been chosen for a species, it was applied
to the encounters from surveyed squares to produce an estimate of
the number of individuals of that species within each square; these
were summed to estimate total avian density. We also calculated
mean density per species present in the local assemblage.

 

RANDOMIZED

 

 

 

SPECIES

 

 

 

R ICHNESS

 

We used the summed observed numbers of each species in
1 km 

 

×

 

 1 km squares as a regional species pool from which individuals
were drawn at random, without replacement, and allocated to each
square according to the observed total number of individual birds in
that square. Using the R package we conducted 30 randomization
runs; for each run we calculated the randomized species richness for
each 1 km 

 

×

 

 1 km square and the consequent parameters of the
species–energy relationship. These parameter estimates had stabilized
after 30 randomizations (Fig. 1) and we used the mean data in
comparisons of randomized and observed patterns in species
richness. Constructing the regional species pool using the observed
number of individuals provides a more conservative test of differences
from observed patterns than using the estimated densities obtained
from distance sampling. While we only present the former method
here, both led to identical conclusions.

 

ENERGY

 

 

 

METRICS

 

Environmental productivity limits the amount of energy available
to consumers. In high northern latitudes, such as Britain, plant
productivity is not markedly influenced by water availability, and
temperature is a good measure of plant productivity in such regions
(Hawkins 

 

et al

 

. 2003). High temperatures may also reduce the
energetic requirements of endotherms by enabling them to divert
resources away from maintaining their body temperature (the
thermoregulatory load hypothesis, Lennon, Greenwood & Turner
2000). An alternative surrogate measure of plant productivity is the
Normalized Difference Vegetation Index (NDVI), which is a satellite
derived measure of the greenness of vegetation that is strongly and

positively correlated with plant productivity (Kerr & Ostrovsky
2003). We used both NDVI and temperature as metrics of energy
availability.

We used gridded mean monthly temperature data at the resolu-
tion of 10 km 

 

×

 

 10 km squares that were derived from meteorological
recording station readings for the period 1961–90 using surface
interpolation techniques (Barrow, Hulme & Jiang 1993). From
these data we calculated mean monthly summer (May, June and
July) and mean monthly annual temperature. The measure of
summer temperature used is strongly positively and linearly correlated
(

 

r

 

2

 

 = 0·97, 

 

P

 

 < 0·0001) with that used in previous investigations of
the species–energy relationship in British birds (e.g. Lennon 

 

et al

 

.
2000; Evans 

 

et al

 

. 2005b; Evans, Greenwood & Gaston 2005c)
although the latter concerned the mean temperature in June, July
and August.

NDVI data were obtained from the NOAA/NASA Pathfinder
AVHRR Land Data Set (see http://www.ciesin.org/). These data
were collected between 1981 and 2001 at a spatial resolution of a
0·1

 

°

 

 latitude/longitude grid. We calculated mean monthly summer
(May, June and July) and mean monthly annual NDVI values
and then used GIS to re-project these data at the resolution of
10 km 

 

×

 

 10 km squares.
We use data relating to long-term averages of both energy metrics

for four reasons. First, pragmatically, due to issues of data availability.
Second, with NDVI data the use of a long-term average smoothes
out anomalies created by heavy cloud cover over a given region in
any one year. Third, the use of long-term averages reduces the influence
of extreme annual fluctuations in environmental conditions.
Finally, and related to the last point, species distributions do not
respond instantaneously when environmental conditions change
but can take some years to adjust to new conditions.

 

ANALYSES

 

In order to meet the assumptions of normality, avian density data
were square root transformed and the ratios of regional to local
richness were logarithmically transformed to base 10. We first
regressed each of the species richness measures against the four
measures of energy availability (summer and annual measures of
temperature and NDVI), with square terms of the latter used to
detect simple nonlinear relationships. We assessed which energy
metric provided the best fit to the data using an information theoretic
approach (Johnson & Omland 2004). The model with the smallest
AIC value was considered to provide the best fit to the data and we
calculated each model’s weight, i.e. the probability that it provides
the best fit to the data. We then regressed the ratio of regional to
local richness, and multiple to single year species richness against
the energy metric that was the best predictor of species richness (see
above). Finally, we regressed the abundance measures against each
of our energy metrics.

We first constructed General Linear Models (GLMs) that assumed
independent errors between the data points. Spatial autocorrelation
may, however, invalidate the assumption of independent errors
distorting classical tests of association and rendering correlation
coefficients, regression slopes and associated significance tests
misleading (Cressie 1991; Lennon 2000; Legendre 

 

et al

 

. 2002). To
avoid this, analyses were also conducted using the 

 

 

 

procedure to implement spatial correlation models that fit a spatial
covariance matrix to the data and use this to adjust test statistics
accordingly (Littell 

 

et al

 

. 1996). Spatial null models, i.e. ones that
lacked predictor variables, which assumed exponential spatial
covariance structures generally fitted the data significantly better

Fig. 1. Parameter estimates from regression of randomized species
richness in 1 km × 1 km squares on summer temperature. Parameter
estimate values have stabilized after 30 randomizations, and also did
so when other measures of environmental energy were used. Species
richness data were obtained from 30 random draws, from the regional
species pool, of the number of individuals observed in each square.
Symbols represent the running mean of the parameter estimates for
temperature (open squares), temperature2 (open triangles), and the
intercept (solid black diamonds).

http://www.ciesin.org/


 

Spatial patterns in species richness

 

399

 

© 2007 The Authors. Journal compilation © 2007 British Ecological Society, 

 

Journal of Animal Ecology

 

, 

 

77

 

, 395–405

than independent error null models (likelihood ratio tests

 

P

 

 < 0·0001) and also gave a better fit than spatial models that specified
alternative covariance structures (spherical, Gaussian, linear, linear
log and power). The two exceptions to this were avian density and
the ratio of 2 km 

 

×

 

 2 km and 1 km 

 

×

 

 1 km richness measures; these
did not exhibit significant spatial autocorrelation (

 

P 

 

> 0·05) and we
thus only fitted nonspatial models to these variables.

 

Results

 

Observed and estimated species richness are strongly
positively correlated (minimum 

 

r

 

 = 0·85; maximum 

 

r

 

 = 0·99;
Table S2), suggesting that using observed species richness
does not generate major biases in spatial patterns in species
richness. However, the slope of  the relationship between
estimated and observed species richness is steeper than 1,
particularly at the 1 km 

 

×

 

 1 km grain, so there is greater under-
estimation of species richness in the most species rich areas. To
check if  this was sufficiently marked to influence the nature of
the species–energy relationship we compared the parameter
estimates of  such relationships constructed using observed
and estimated species richness. At both the 1 km 

 

×

 

 1 km and the
10 km 

 

×

 

 10 km spatial grain these parameter estimates were sta-
tistically indistinguishable (Table S3). We thus conclude that
the use of  observed rather than estimated species richness
estimates will not have altered our conclusions regarding the
spatial dependency of  the species–energy relationship.

Regardless of  spatial grain, summer temperature was
consistently the strongest predictor of observed species richness;
observed species–energy relationships consistently followed
positive decelerating curves at all spatial grains (Table 1;
Fig. 2a–e). In contrast, the randomized species–energy
relationship was linear (Fig. 2f). At any given temperature
randomized species richness was always higher than that
observed, and the absolute increase in randomized richness
relative to observed richness increases at higher levels of the
latter (upper and lower 95% confidence intervals of the slope
of a reduced major axis regression of observed and randomized
richness are 1·31 and 1·39, respectively; Fig. 3). At both the
smallest and largest spatial grains the nature of species–energy
relationships is similar whether species richness is calculated
in a single year or over a number of years, although species
richness is naturally higher in the latter case. The explanatory
power of observed species–energy relationships does not vary
in a consistent systematic manner with spatial grain.

The log-transformed ratio of regional to local richness is
negatively related to summer temperature when regional
richness is measured at a spatial grain of 10 km 

 

×

 

 10 km,
regardless of the grain at which local richness is measured
(Table 2a; Fig. 4a–c). A less clear pattern between the log-
transformed ratio of regional to local richness and summer
temperature emerges when the former are measured at respective
grains of 2 km 

 

×

 

 2 km and 1 km 

 

×

 

 1 km, although there is still

Fig. 2. Relationships between mean summer
temperature and species richness for: (a)
standardized species richness in 10 km × 10 km
squares; (b) total species richness in all
10 km × 10 km squares; (c) species richness
in 2 km × 2 km squares; (d) 1 km × 1 km
squares in a single year; (e) cumulative
species richness in 1 km × 1 km squares; and
(f) mean species richness across 30 random-
ized draws of individuals from a regional
species pool in 1 km × 1 km squares. Grey
lines indicate relationships fitted in nonspatial
models (Table 1a). To facilitate illustration
data points in panel c are from a maximum of
three randomly selected 2 km × 2 km plots
per 10 km × 10 km plot.
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Table 1. Species–energy relationships at different spatial scales for (a) independent error models and (b) spatial models (randomized species
richness does not exhibit significant spatial autocorrelation, so spatial models are not presented for this response variable). For each combination
of species richness measure and predictor variable we present the best fitting model as assessed by Akaike Information Criterion (AIC); lower
values indicate a better fit. In addition, for each species richness measure we provide the model weight for the overall best fitting model, i.e. the
probability that the model provides the best fit to the data out of all those constructed. Note that r2 values cannot be provided for the spatial models

Species richness measure Predictor x x2 AIC Model weight r2

(a)
Single year 1 km × 1 km sum temp F1,1982 = 70·5+ + + + F1,1982 = 51·5– – – – 12883·1 > 0·999 19·5%

ann temp F1,1982 = 60·6+ + + + F1,1982 = 36·0– – – – 12940·9 17·1%
sum NDVI F1,982 = 26·0+ + + + F1,1982 = 24·1– – – – 13261·0 1·6%
ann NDVI F1,982 = 6·2+ F1,1982 = 5·5– 13283·4 0·5%

Randomized single year sum temp F1,1982 = 452·2+ + + + 14066·8 0·754 18·6%
1 km × 1 km ann temp F1,1982 = 381·44+ + + + 14125·1 16·1%

sum NDVI F1,981 = 12·4+ + + F1,1981 = 14·3– – – 14430·0 1·4%
ann NDVI F1,981 = 0·03 NS – F1,1981 = 0·01 NS + 14455·8 1·1%

Cumulative 1 km × 1 km sum temp F1,1507 = 109·3+ + + + F1,1507 = 95·4– – – – 11072·8 > 0·999 14·1%
ann temp F1,1507 = 88·4+ + + + F1,1507 = 70·7– – – – 11106·0 12·2%
sum NDVI F1,1507 = 25·7+ + + + F1,1507 = 21·6– – – – 11224·5 3·9%
ann NDVI F1,1507 = 13·8+ + + F1,1507 = 12·0 – – – 11258·1 1·7%

2 km × 2 km sum temp F1,23076 = 323·6+ + + + F1,23076 = 204·2– – – – 173015·6 > 0·999 15·0%
ann temp F1,23076 = 365·0+ + + + F1,23076 = 185·5– – – – 173608·1 12·8%
sum NDVI F1,23076 = 197·8+ + + + F1,23076 = 159·2– – – – 176188·9 2·4%
ann NDVI F1,23076 = 141·6+ + + + F1,23076 = 124·4– – – – 176523·7 1·0%

Standardized 10 km × 10 km sum temp F1,1500 = 68·6+ + + + F1,1500 = 55·4– – – – 11307·3 > 0·999 14·4%
ann temp F1,1500 = 87·1+ + + + F1,1500 = 66·8– – – – 11341·0 12·5%
sum NDVI F1,1500 = 20·3+ + + + F1,1500 = 16·9– – – – 11474·2 3·1%
ann NDVI F1,1500 = 26·4+ + + + F1,1500 = 24·5– – – – 11490·8 2·1%

Total 10 km × 10 km sum temp F1,1500 = 76·7+ + + + F1,1500 = 65·7– – – – 11939·4 > 0·999 11·1%
same cells as above ann temp F1,1500 = 106·3+ + + + F1,1500 = 90·3– – – – 11960·5 9·9%

sum NDVI F1,1500 = 16·7+ + + + F1,1500 = 14·0 – – – 12058·9 2·5%
ann NDVI F1,1500 = 53·4+ + + + F1,1500 = 50·6– – – – 12040·4 3·7%

Total 10 km × 10 km all cells sum temp F1,2263 = 219·9+ + + + F1,2263 = 179·4– – – – 18331·5 > 0·999 23·4%
ann temp F1,2263 = 185·9+ + + + F1,2263 = 136·9– – – – 18502·7 17·4%
sum NDVI F1,2263 = 62·2+ + + + F1,2263 = 45·0– – – – 18581·9 13·7%
ann NDVI F1,2263 = 176·5+ + + + F1,2263 = 151·1– – – – 18602·9 12·9%

(b)
Single year 1 km × 1 km sum temp F1,1982 = 70·5+ + + + F1,1982 = 51·5– – – – 12883·4 > 0·999

ann temp F1,1982 = 60·3+ + + + F1,1982 = 36·0– – – – 12940·9
sum NDVI F1,982 = 10·5+ + F1,1982 = 9·2– – 13183·9
ann NDVI F1,982 = 1·3 NS + F1,1982 = 1·0 NS – 13196·6

Cumulative 1 km × 1 km sum temp F1,1507 = 109·3+ + + + F1,1507 = 95·4– – – – 11072·8 > 0·999
ann temp F1,1507 = 88·4+ + + + F1,1507 = 70·7– – – – 11106·0
sum NDVI F1,1507 = 339·7+ + + + F1,1507 = 257·4– – – – 11174·1
ann NDVI F1,1507 = 212·3+ + + + F1,1507 = 187·7– – – – 11195·2

2 km × 2 km* sum temp F1,5955 = 82·5+ + + + F1,5955 = 54·7– – – – 43997·9 > 0·999
ann temp F1,5955 = 68·9+ + + + F1,5955 = 34·1– – – – 44114·3
sum NDVI F1,5955 = 6·0+ F1,5955 = 2·7 NS – 44409·7
ann NDVI F1,5955 = 17·5+ + + + F1,5955 = 12·4– – – 44442·2

Standardized 10 km × 10 km sum temp F1,1500 = 73·3+ + + + F1,1500 = 60·4– – – – 11199·9 > 0·999
ann temp F1,1500 = 77·5+ + + + F1,1500 = 58·9– – – – 11229·1
sum NDVI F1,1500 = 5·4+ F1,1500 = 3·6 NS – 11333·2
ann NDVI F1,1500 = 9·2+ + F1,1500 = 7·1– – 11342·4

Total 10 km × 10 km same sum temp F1,1500 = 51·4+ + + + F1,1500 = 57·6– – – – 11443·3 > 0·999
cells as above ann temp F1,1500 = 73·1+ + + + F1,1500 = 54·8– – – – 11463·4

sum NDVI F1,1500 = 3·2 NS + F1,1500 = 2·2 NS – 11566·1
ann NDVI F1,1500 = 7·7+ + F1,1500 = 5·8– 11553·0

Total 10 km × 10 km all cells sum temp F1,2263 = 161·6+ + + + F1,2263 = 126·4– – – – 17413·4 > 0·999
ann temp F1,2263 = 155·5+ + + + F1,2263 = 105·4– – – – 17460·0
sum NDVI F1,2263 = 5·1+ F1,2263 = 2·7 NS – 17686·1
ann NDVI F1,2263 = 15·7+ + + + F1,2263 = 10·6– – 17674·8

Positive effects: + + + +P < 0·0001, + + +P < 0·001, + +P < 0·01, +P < 0·05, NS +P > 0·05; negative effects: – – – –P < 0·0001, – – –
P < 0·001, – –P < 0·01, –P < 0·05, NS –P > 0·05.
*The spatial model for 2 km × 2 km squares is based on randomly selected squares (maximum of three per 10 km × 10 km square) in order to 
reduce the sample size below the threshold (approximately n = 6000) at which spatial models require more than the available computer memory to run.
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evidence for a negative relationship (Table 2a; Fig. 4d). The
log-transformed ratio of  multiple to single year species
richness is also negatively related to summer temperature
(Table 2b; Fig. 4e).

Spatial variation in density and occupancy is also associated
with summer temperature more closely than other energy
metrics. Square root transformed total density is positively
correlated with summer temperature (r2 = 20%: Fig. 5a,

Table 3), which contrasts with the weak u-shaped relationship
between square root transformed mean density per species
and summer temperature (r2 = 7%: Fig. 5b, Table 3). Total
and mean occupancy respond to summer temperature along
a positive decelerating curve and the two relationships have
similar explanatory power (respective r2 values of 30% and
34%: Fig. 5c,d, Table 3).

Discussion

There is intense theoretical and empirical debate regarding
the performance of different species richness estimators.
However, it is rare for studies to document whether spatial
variation in species richness is markedly different when
estimated rather than observed species richness data are used.
There is no doubt that a failure to take species detectability
into account when estimating species richness can result in
biased results and misguided conclusions regarding its spatial
variation, particularly in diverse tropical regions. However, in
our case study the correlation between spatial variation in
species richness and a major determinant of such variation,
i.e. energy availability, is statistically indistinguishable
whether one uses observed or estimated species richness.
Thus at least in some cases it is possible to design sampling
strategies that can adequately describe spatial variation
in species richness without the need to use species richness
estimators.

Summer temperature is consistently the best predictor of
species richness across each of  the spatial grains that we
analyse. We use energy metrics that are calculated over a
larger spatial grain, 10 km × 10 km, than some of our avian
data. However, the temperature at these finer spatial scales
will be strongly positively correlated with temperature in
10 km × 10 km plots, as the latter exhibits strong spatial
autocorrelation (log-likelihood ratio test, P < 0·0001). Spatial
variation in NDVI exhibits a more heterogeneous pattern

Fig. 3. Relationships between observed and randomized species
richness. The black open points represent the raw data, the solid
black line represents the relationship calculated by reduced major
axis regression, and the grey line the line of equivalence.

Table 2. Relationships between summer temperature and (a) spatial and (b) temporal turnover in species richness. Model fit is assessed using
AIC values, and for each response variable we present the 95% confidence set of models, i.e. those whose weights sum to 0·95. Spatial and
temporal turnover are measured as the log10 transformed ratios of regional and mean local richness, and multiple year and single year richness,
respectively. Data are only sufficient to calculate temporal turnover at the 1 km × 1 km spatial grain. Spatial autocorrelation in the ratio of
2 km × 2 km and 1 km × 1 km richness, and temporal turnover is not significant (log likelihood ratio test P > 0·05) so spatial models are not
provided for these response variables

Regional richness Local richness
Model 
type Summer temperature Summer temperature2 AIC

Model 
weight r 2

(a)
Total 10 km × 10 km cum 1 km × 1 km GLM F1,888 = 64·9– – – – F1,888 = 56·1+ + + + –1126·3 > 0·999 15·2%

spatial F1,888 = 55·7– – – – F1,888 = 47·6+ + + + –1139·5 > 0·999 n/a
Standard 10 km × 10 km single year 1 km × 1 km GLM F1,817 = 38·7– – – – F1,817 = 30·3+ + + + –524·0 > 0·999 21·2%

spatial F1,817 = 35·5– – – – F1,817 = 27·8+ + + + –539·7 > 0·999 n/a
Standard 10 km × 10 km 2 km × 2 km GLM F1,1500 = 67·2+ + + + F1,1500 = 41·7+ + + + –3972·7 0·999 36·9%

spatial F1,1500 = 56·8+ + + + F1,1500 = 36·7– – – – –4026·5 0·999 n/a
2 km × 2 km single year 1 km × 1 km GLM F1,972 = 19·9– – – – –317·4 0·952 2·0%
(b)
cum 1 km × 1 km single year 1 km × 1 km GLM F1,508 = 349·5– – – – –2325·4 0·33 18·8%

F1,507 = 20·7– – – – F1,507 = 12·2 + + + –2326·8 0·67 19·5%

Positive effects: + + + +P < 0·0001; + + +P < 0·001; negative effects: – – – –P < 0·0001. Note that r2 values cannot be provided for the spatial models.
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than that of temperature and although we use NDVI data at
the finest resolution available, the relationship between NDVI
values at different spatial grains will contain more noise than
is the case for temperature. This may contribute to the finding

that summer temperature is a stronger predictor of species
richness and abundance at the finer spatial scales than NDVI
metrics, but cannot explain why temperature is a stronger pre-
dictor at the 10 km × 10 km spatial grain. We consider it likely

Fig. 4. Relationships between summer
temperature and spatial and temporal turnover,
measured as the ratio of regional to local
species richness for (a) total 10 km × 10 km
and cumulative 1 km × 1 km species richness
(b) standardized 10 km × 10 km and single
year 1 km × 1 km richness (c) standardized
10 km × 10 km and 2 km × 2 km richness
(d) 2 km × 2 km richness and single year
1 km × 1 km richness, and (e) multiple year
and single year 1 km × 1 km richness. Grey
lines indicate the relationship fitted in
non-spatial models, see Table 2.

Fig. 5. Relationships between summer
temperature and (a) total density in 1 km ×
1 km squares (square root transformed);
(b) as in panel a but for mean density per
species; (c) total occupancy across all species
measured as number of occupied 2 km × 2 km
squares (out of eight) in 10 km × 10 km
squares; and (d) as c, but for mean
occupancy per species. Grey lines indicate
the relationship fitted in nonspatial models,
see Table 3.
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that the nature of the energy predictor that can best explain
the structure of avian assemblages is independent of the spa-
tial grain of analysis.

The explanatory power of the species–energy relationship
does not markedly covary with the spatial grain of the analysis.
A similar lack of scale dependency has been found in an analysis
of species richness in South American avian assemblages in
relation to climatic variables across a wide range of grid cell
sizes (1° × 1° to 10° × 10°; Rahbek & Graves 2001). Conversely,
avian species richness in North America becomes less
strongly correlated with NDVI as spatial grain increases from
20 000 to 80 000 km2 (Hurlbert & Haskell 2003). Turning to
more local scales, net primary productivity explained less of
the variance in ant species richness as spatial grain increased
from 1 m2 plots to estimates of species richness at a larger, but
unspecified, ‘habitat level’ spatial scale (Kaspari et al. 2003).
Thus, and while the number of available studies is somewhat
limited, there does not seem to be a consistent pattern
between the strength of the species–energy relationship and
spatial grain.

The broad form of the species–energy relationship also
appears to be stable across the range of spatial scales that we
investigate; as environmental energy increases species rich-
ness consistently increases along a decelerating curve. The
lack of a hump-shaped relationship at small spatial grains, at
a regional spatial extent, is consistent with patterns found in
a re-analysis of a large number of studies compiled from the
literature (Gilman & Wright 2006), but contrasts with the
conclusions of the original analysis of those data (Mittelbach
et al. 2001). The precise nature of the species–energy relationship
does, however, exhibit scale dependency. Ratios of regional to
mean local richness decrease with increasing energy availability.
Thus local richness increases more rapidly with increasing
energy than does regional richness and the slope of the species–
energy relationship is steeper at local scales. While this pattern
is particularly strong when comparing standardized 10 km ×
10 km richness with that in 2 km × 2 km plots, this is probably
a consequence of the survey methods being identical at these
two spatial scales rather than an inherent characteristic of the
scale of analysis.

Ratios of regional to local richness may be used as one
measure of spatial turnover or beta diversity (βw, Whittaker
1960). While these arguably are not true measures of turnover

as they do not consider species identity, and thus relative
species gains and losses, they may be viewed as broad sense
measures of turnover (Koleff et al. 2003). Similar relationships
between environmental energy availability and beta diversity
metrics, including ones that take species identity into account,
have been found at larger spatial scales in British (Gaston,
Evans & Lennon 2007a) and South African avifaunas (Bonn
et al. 2004). It is also noteworthy that at a global extent beta
diversity of avian assemblages is high in regions of both
extremely high and low energy availability and species
richness (Davies et al. 2007; Gaston et al. 2007b).

Some measures of beta diversity, such as βw, are formally
related to the slope (z) of the power law form of the species–
area relationship (SAR, Harte & Kinzig 1997). Thus our
observation is also consistent with the lower z-values of
nested SARs in areas of higher energy availability (Storch
et al. 2005; Evans et al., in press). While a positive correlation
between the slope of SARs and energy availability has been
reported for non-nested SARs (Kalmar & Currie 2007) the
latter have different properties to nested SARs thus limiting
their comparability (Scheiner 2003). It is, however, noteworthy
that the slope of SARs generally decreases with latitude,
which is a very crude surrogate measure of energy availability
(Drakare, Lennon & Hillebrand 2006).

We find that both total and mean per species occupancy in
10 km × 10 km squares increases with energy availability.
This concurs with larger scale studies of the South African
avifauna (Bonn et al. 2004), and is expected given that high
occupancy reduces spatial turnover in species composition
(Leitner & Rosenzweig 1997). High occupancy reduces
extinction risk and may thus lower temporal turnover. It is
thus noteworthy that a crude measure of the latter, the ratio of
multiple to single year species richness at the 1 km × 1 km
spatial grain, is negatively correlated with summer temperature.
This finding concurs with empirical demonstration of negative
relationships between energy availability and extinction rates
(Evans et al. 2005c).

The negative relationships that we find between measures
of turnover and energy availability contrast with the suggestion
that species–energy relationships may be driven by an associa-
tion between high-energy availability and greater habitat
heterogeneity promoting greater spatial turnover and thus
higher species richness (Hurlbert 2004). Our results also

Table 3. Density–energy and occupancy–energy relationships at contrasting spatial scales. Square root transformed densities in 1 km × 1 km
plots do not exhibit significant spatial autocorrelation (P > 0·05) so spatial models are not provided for this response variable. For further details
see legend for Table 2

Abundance measure
Model 
type Predictor x x2 AIC

Model 
weight r2

sqrt total density 1 km × 1 km GLM sum temp F1,1983 = 479·0+ + + + 13519·1 0·714 19·5%
F1,1982 = 0·3 NS + F1,1982 = 0·7 NS + 13521·2 0·250 19·5%

sqrt mean density 1 km × 1 km GLM sum temp F1,1982 = 57·9– – – – F1,1982 = 66·6+ + + + 6918·0 > 0·999 6·9%
total occup. 10 km × 10 km GLM sum temp F1,1500 = 46·5+ + + + F1,1500 = 28·5– – – – 16330·9 > 0·999 29·6%

spatial sum temp F1,1500 = 50·1+ + + + F1,1500 = 33·8– – – – 16260·1 > 0·999 N/A
Mean occup. 10 km × 10 km GLM sum temp F1,1500 = 39·6+ + + + F1,1500 = 21·5– – – – 2425·8 0·999 34·1%

spatial sum temp F1,1500 = 37·0+ + + + F1,1500 = 22·2– – – – 2355·9 > 0·999 N/A
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contrast with studies reporting positive relationships between
beta diversity and environmental energy availability (Chase
et al. 2000; Chase & Leibold 2002; Chalcraft et al. 2004).
Such investigations typically concern plants studied at very
fine spatial grains, and whether these contrasting results have
a simple explanation is an open question. However, plants
strongly compete for space and thus, above a certain threshold
of  energy availability, higher species richness cannot be
associated with higher abundances. In such a system individual
species densities and occupancies will decline with increasing
energy and the latter and beta diversity must thus be positively
correlated.

In our data total avian density and energy availability are
positively correlated, which is compatible with both the MIH
and the sampling hypothesis. However, the MIH also predicts
that mean species density will increase with environmental
energy availability, which is not the case. This concurs with
analyses of global avian assemblages in forests (Pautasso &
Gaston 2005) and the North American avifauna (Evans et al.
2006). Investigations of other predictions derived from the
MIH concerning the relative responses of the numbers of
common and rare species and their extinction risk to energy
availability in British breeding birds find little support for the
hypothesis (Evans et al. 2005b,c). Therefore, although our
investigations support the role of the total number of individuals
in generating species richness patterns, this role appears
unlikely to be driven by a reduction in species extinction rates.

The positive relationship between total density and energy
is also compatible with the sampling hypothesis. However, the
randomized species–energy relationship predicted by the
sampling hypothesis differs from the observed relationship in
two important and interrelated ways. First, randomized
and observed relationships, respectively, exhibit linear and
decelerating curves. Second, at any given temperature
observed species richness is lower than that predicted by the
sampling mechanism, and this discrepancy increases at high
levels of  species richness. The predominant reason why
randomization will overestimate species richness, and generate
a linear rather than curvilinear species–energy relationship, is
that the model assumes a homogeneous spatial distribution
of individuals, while observed species distributions are more
aggregated. This aggregation is principally driven by the
nonrandom distribution of  habitat types in combination
with habitat selection, although other factors can also
contribute to aggregation (Storch, &izling & Gaston 2003).
Consequently, some of  the species allocated to a cell by
randomization will not be able to occur there, because the cell
lacks the appropriate habitat type. Thus, at least at the
1 km × 1 km spatial grain, the sampling mechanism, together
with species spatial aggregation may explain the observed
species–energy relationship.
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