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highest NPP in tropical rainforests. By contrast, Huston and 
Wolverton (2009) used field measurements to argue that 
latitudinal trends in terrestrial NPP follow those observed 
in the seas, with the highest productivity (at least during 
the vegetation season) in temperate zones, and not in the 
tropics. The productivity of tropical forests could be slightly 
lower than that of temperate forests during the vegetation 
season due to shorter daylight hours, higher temperatures 
during the night, leading to higher respiration rates, and 
stronger nutrient limitation (Huston and Wolverton 2009). 
However, field measurements of NPP are still highly incon-
clusive and can be interpreted differently depending on the 
decision as to which measurements are considered reliable 
(Clark et al. 2001; below). Productivity models are at the 
same time based on simplified assumptions and are not 
always consistent with field data (Huston and Wolverton 
2009, Cleveland et al. 2015). The debate, therefore, had yet 
to be settled.

Productivity is considered one of the major determi-
nants of species richness (Gaston 2000), but the relationship 
between productivity and species diversity is controversial 
(Mittelbach et al. 2001, Gillman and Wright 2006, Adler 
et al. 2011, Grace et al. 2012, Fraser et al. 2015). Productivity 
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Environmental productivity is a key variable in ecology, 
climatology and agriculture. It is considered the main deter-
minant of resource availability, which drives the intensity of 
intraspecific and interspecific competition (Grime 1973), 
and thus presumably limits the number of coexisting spe-
cies (Hutchinson 1959, Wright 1983, Hawkins et al. 2003, 
Huston 2014). Productivity is usually measured as net pri-
mary production (NPP), which is the amount of biomass 
or carbon produced by primary producers per unit area 
and time. Biomass production is important for ecosystem 
services, agriculture and forestry (Haberl et al. 2007), as 
well as for the global carbon cycle, which in turn affects 
the water cycle and climate (Clark et al. 2003, Lee et al. 
2012). Knowledge of the global distribution of NPP and its 
underlying processes is thus important not only for under-
standing biodiversity patterns and potential agricultural 
yield, but also for predicting global climatic changes and 
vegetation dynamics.

Surprisingly, there is no clear consensus about global 
patterns of terrestrial NPP (Huston and Wolverton 2009, 
Gillman et al. 2015). Traditionally, productivity has been 
assumed to follow a latitudinal trend, with decreasing  
NPP from the equator towards the poles and with the 
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Net primary productivity (NPP) is a variable of primary interest to ecologists, as it is related both to resource availability, 
potentially affecting biological diversity, and to the dynamics of the carbon cycle. However, there are alarming discrepancies 
in NPP estimates as well as in the reported form of the relationship between NPP and species richness. Such discrepancies 
could be due to the different and often simplified assumptions of various global NPP models and the heterogeneity of field 
NPP measurements that comprise a mix of natural vegetation and plantations. Here we review different global models 
of NPP and available original sources of NPP field measurements in order to examine how their geographic patterns are 
affected by various assumptions and data selection, respectively. Then we review studies dealing with diversity–productivity 
relationships in view of different NPP estimates. We show that although NPP does generally decrease with increasing 
latitude, geographic NPP patterns considerably differ between individual models as well as between the models and field 
NPP data. Such inconsistencies might be partially responsible for discrepancies in productivity–richness relationships, 
although these are also driven by other factors that covary with productivity and affect diversity patterns. To reconcile the 
discrepancies between various NPP measures, it is necessary to 1) standardize field NPP data, 2) develop scaling techniques 
that bridge the gap between the scale of field NPP measurements and NPP models, and 3) build global NPP models 
that account for nutrient limitation (especially concerning phosphorus in the tropics) and are parameterized by field 
measurements. Also, 4) a better theory needs to be developed to distinguish the effect of productivity from the effects of 
other environmental variables on diversity patterns. Improving our ability to estimate NPP will help us predict future NPP 
changes and understand the drivers of species richness patterns.
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or its surrogates have been shown to closely correlate with spe-
cies richness at large spatial scales (Wright 1983, Waide et al. 
1999, Hawkins et al. 2003, Gillman and Wright 2006, Field 
et al. 2009), and it is reasonable to assume that productivity 
limits the amount of available resources within communities 
and consequently the maximum number of species that can 
attain viable populations (Hutchinson 1959, Wright 1983, 
Hurlbert and Stegen 2014). However, various productivity–
richness relationships have been reported at smaller scales, 
including hump-shaped (Grime 1973, Tilman and Pacala 
1993, Mittelbach et al. 2001, Fraser et al. 2015) or even neg-
ative ones (Šímová et al. 2013). Hump-shaped relationships 
have been reported more often for grassland ecosystems, 
where productivity was measured directly at peak biomass 
during the growing season (Waide et al. 1999, Mittelbach 
et al. 2001, Gillman and Wright 2006, but see Pärtel et al. 
2007, Adler et al. 2011). When productivity was estimated 
less directly in forest ecosystems (using, for example, stem 
diameter increments or allometric relationships), the uni-
modal relationship was not observed (Laanisto et al. 2008). 
Although the observed variation in productivity–diversity 
relationships may be due to its scale dependence and various 
confounding factors (namely collinearity with other factors 
affecting species richness such as habitat heterogeneity, dis-
turbances or asymmetric competition), it is also possible that 
it results from the different ways of measuring productivity 
(Huston 2014).

Here we review the different estimates of net primary pro-
ductivity and the limits of individual modelling approaches. 
Then we present an overview of available data on local 
NPP measurements, explore their biases, and discuss the 
challenges concerning their utilization and interpretation of 

their geographic patterns. Further, we discuss the implica-
tions of different NPP estimates for the interpretation of the 
observed relationships between environmental productivity 
and species diversity, and for predicting future productivity 
changes. Finally, we present a list of key steps that need to be 
done in order to improve the quality and reliability of NPP 
estimates across the globe.

Productivity patterns at large scales: an overview of 
modelling approaches

NPP cannot be directly measured at large spatial scales. It 
is possible to measure some variables that to various degrees 
correlate with productivity (e.g. using remote sensing), but 
estimates of NPP must then be based on models that assume 
certain (statistical or causal) relationships between these 
variables and productivity (Fig. 1). Several classes of mod-
els are used to estimate NPP, each with its advantages and 
limitations.

Climate-based models
The first two important global models independently devel-
oped by Rosenzweig (1968) and Lieth (1975) were based 
on relationships between NPP and climatic variables. 
Rosenzweig (1968) plotted various NPP measurements 
from 24 mature natural forest stands against annual actual 
evapotranspiration (AET, calculated based on monthly tem-
perature, precipitation and latitude or altitude following 
the Throntwaite method; Thornthwaite 1948). Rosenzweig 
realized that there was a linear relationship when both AET 
and NPP were logarithmized, so that AET could be used 

Figure 1. Simplified scheme of causal links between environmental variables and NPP assumed by remote sensing-based and dynamic 
vegetation models (DGVMs). Variables and links contained within the remote sensing-based models (here the MODIS-based model, 
Running et al. 2004) are highlighted in green; those used in DGVMs (here the LPJ-GUESS, Sitch et al. 2003) are blue. The variables that 
are common for both models are yellow with black arrows. Dashed lines indicate links that are likely missing. LUE is light use efficiency, 
LAI is leaf area index, FPAR is the fraction of photosynthetically active radiation absorbed by plants, and PFTs are plant functional types.
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as a surrogate of NPP. Most of these stands, however, were 
located within the USA, which limited the global applica-
bility of this approach. Lieth (1975) estimated global NPP 
patterns based on 50 field NPP measurements from different 
biomes worldwide (although tropical sites were also largely 
under-sampled). NPP values were paired with annual tem-
perature and precipitation measurements obtained from the 
closest meteorological stations, and a global NPP map (the 
so-called Miami model) was generated using multiple regres-
sion of log-NPP on log-temperature and log-precipitation. 
The Miami model became the basis for the later develop-
ment of more complex climate-based models such as the 
High-Resolution Biosphere Model (HRBM; Esser 1994). 
However, the idea of NPP as a simple increasing function of 
temperature and precipitation does not work in the tropics, 
where NPP becomes relatively independent of these vari-
ables (Clark et al. 2001, Luyssaert et al. 2007). This suggests 
that other factors limit a further increase of NPP in the trop-
ics. Indeed, other environmental variables, such as nutrient 
limitation, have been shown to be crucial determinants of 
field NPP measurements in the tropics (Aragão et al. 2009, 
Quesada et al. 2009, 2012). Another problem is that the spa-
tial coverage of meteorological stations is rather poor in the 
tropics (Hijmans et al. 2005), compromising the validity of 
these models in tropical areas. On the other hand, although 
other productivity models are currently preferred, the sim-
plicity of climate-based models has an advantage in that they 
can be used to estimate historical productivity, for which 
only temperature and precipitation time series are available 
(Peng et al. 1995, Brovkin et al. 2002, Wang et al. 2005).

Radiation-based NPP models
These models are based on the finding that productivity of 
annual crops under well-watered and fertilized conditions 
linearly increases with the increasing amount of absorbed 
solar energy (Monteith 1972). This assumption was used in 
the so-called Chikugo model by Uchijima and Seino (1985). 
Specifically, they calculated annual NPP as a function of 
annual net radiation, latent heat of evaporation and annual 
precipitation, based on theoretical predictions parameterized 
using NPP field data. Because the model was validated using 
NPP measurements for Japan, it is not suitable for sites where 
water is a limiting factor (Zhou and Zhang 1995, Zhou et al. 
2002). Given the strong correlation of net radiation with lat-
itude, the Chikugo model revealed a strong latitudinal gradi-
ent in productivity which has been shown to correlate well 
with species richness (Adams and Woodward 1989, Gaston 
and Blackburn 1995). Nevertheless, net radiation by itself 
is not a sufficient determinant of NPP even in well-watered 
regions, as productivity is limited also by the total leaf area 
absorbing the solar energy (Box et al. 1989, Running et al. 
2004), as well as other factors mentioned below.

Remote sensing-based models
With the development of remote-sensing techniques, the 
normalized difference vegetation index (NDVI) became a 
widely used estimate of the proportion of solar radiation 
absorbed by leaves (Box et al. 1989). The NDVI is a mea-
sure of ‘vegetation greenness’ and is calculated as the differ-
ence between spectral reflectance measurements in the red 
and near-infrared wavelength band normalized by their sum. 

NDVI integrated over a year became a popular surrogate of 
annual NPP (Goward and Dye 1987, Box et al. 1989, Lo 
Seen Chong et al. 1993). However, the NDVI reaches satu-
ration in dense vegetation, leading to similar NDVI values 
for forests with different NPP (Sánchez-Azofeifa et al. 2009, 
Lee et al. 2013). Another problem is the presence of clouds, 
which distorts reflectance measurements and can lead to the 
underestimation of NPP in some tropical areas with a dense 
cloud cover (Zhao et al. 2005). Finally, without informa-
tion about light-use efficiency, pure NDVI is not a sufficient 
measure of the fraction of photosynthetically active radiation 
absorbed by leaves (Ruimy et al. 1999, Jenkins et al. 2007). 
For this reason, Production Efficiency Models (PEMs) were 
developed, combining the NDVI with empirical estimates 
of maximum potential light use efficiency and other factors 
further constraining photosynthesis and respiration such as 
solar radiation, temperature (Box 1), water availability or 
atmospheric CO2 concentration (Cramer et al. 1999, Turner 
et al. 2002, Jenkins et al. 2007).

Currently the most commonly used remote sensing-
based model is the MOD17 NPP model (hereafter referred 
to as the MODIS-based model), a product of the Moderate 
Resolution Spectroradiometer (MODIS) sensor (Running 
et al. 2004). NPP in this model is estimated as GPP minus 
autotrophic respiration R

NPP  GPP–R (1)

where GPP is the daily net photosynthesis rate calculated 
according to the equation

GPP  e  PAR  FPAR (2)

Here e is the conversion efficiency (or the light use effi-
ciency) that transforms photosynthetically active radiation 
absorbed by leaves into tissue growth; it is a function of 
biome-specific maximum e, daily minimum temperature 
and vapour pressure deficit (Zhao et al. 2005, Zhao and 
Running 2010). PAR is photosynthetically active radiation 
(estimated from solar radiation), and FPAR is the fraction 
of PAR absorbed by plants estimated on the basis of the 
remotely sensed leaf area index (LAI), which replaces the 
NDVI (Fig. 1). Autotrophic respiration R has two compo-
nents: daily maintenance respiration (Rm), calculated as a 
function of the daily average air temperature, and annual 
growth respiration (Rg), estimated as a constant propor-
tion of total NPP (see supplementary material in Zhao and 
Running 2010 for details).

The algorithms of other PEMs are similar, differing 
mainly in the environmental variables constraining the max-
imum e and in the calculation of R, although the models 
differ also in terms of their time-steps and spatial resolution 
(see McCallum et al. 2009 for detailed comparison). For 
instance, e is assumed to be limited by the minimum tem-
perature and vapour pressure deficit in the MODIS-based 
model, while the CASA algorithm (Carnegie-Ames-Stanford 
Approach; Potter et al. 1993) assumes that e is limited by 
temperature stress and actual and potential evapotranspira-
tion (see Potter et al. 2012 for details). The CASA is also 
the only PEM where NPP is modelled directly, without 
estimating GPP or R. This model has become the basis for 
the global map of Human Appropriation of Net Primary 
Productivity (HANPP, Imhoff et al. 2004).
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models and dynamic vegetation models described below). 
After removing two outliers (TURC, Ruimy et al. 1996, and 
HYBRID, Friend et al. 1997), the models largely agreed in 
their NPP estimates and their geographic trends (Fig. 2a), 
probably due to the fact that most of them estimated NPP 
as a function of the same variables, namely solar radiation, 
water balance and ambient CO2 concentration (Cramer et al. 
1999). Unfortunately, only a few of these models accounted 
for nutrient limitation, and these models produced lower 
NPP than those without nutrient constraints (Cramer et al. 
1999).

Dynamic global vegetation models
The major disadvantage of the models above is their limited 
ability to make any predictions about future changes of NPP. 
For this purpose, more complex models are currently being 
developed, such as the dynamic global vegetation models 
(DGVMs). These models simulate changes in ecosystem 
structure (such as vegetation distribution and phenology) 
and function (such as biogeochemical cycling, GPP and 
NPP) under climatic changes in daily, monthly or annual 
time-steps (Cramer et al. 2001a). Vegetation properties are 
typically represented by separate vegetation units called plant 
functional types (PFTs) (Cramer et al. 2001a). The main 
problem of the PFTs approach is that ecosystems are formed 
by plant species of various characteristics, so PFTs are not 
homogeneous units (Van Bodegom et al. 2012, Wullschleger 
et al. 2014, Pappas et al. 2016). Another serious problem 
is that the assumed response of PFTs to climate changes 
is modelled based on experimental evidence or observa-
tions obtained in temperate biomes, leading to large uncer-
tainty about low- and high-latitude NPP variation (Clark 
et al. 2001, Hickler et al. 2008, Dietze 2014). If nutrient 

The main advantage of remote sensing-based models is 
that they rely on directly measured vegetation properties, 
typically sampled each month or every couple of weeks, 
which can be averaged over a given time period. They thus 
provide information about instantaneous NPP for a selected 
period, not only about annual averages as in the case of the 
previous category of climate-based models. Another advan-
tage is the relative simplicity of their algorithms, at least in 
comparison to the dynamic vegetation models discussed 
below. However, the leaf area index faces similar problems as 
the NDVI, namely a tendency to reach saturation in dense 
forests (thus underestimating productivity; Huete et al. 
2002) and the uneven availability of data from different 
regions due to the presence of clouds (Wilson et al. 2014). 
Additionally, the MODIS-based GPP corresponds much 
better to field GPP measurements than when comparing 
MODIS-based NPP and field NPP measurements (Turner 
et al. 2005, 2006). The difference between the reliability of 
MODIS-based GPP and NPP values can be interpreted as 
evidence of other unmeasured factors limiting NPP through 
their effect on the proportion of GPP allocated to growth vs 
respiration, such as available nutrients (Malhi 2012).

Potsdam model
The plethora of different NPP models led to several 
comparative studies published in a series of papers in ‘Global 
Change Biology’ in 1999 (see the introductory paper by 
Cramer and Field 1999) resulting from two workshops 
held at the Potsdam Institute for Climate Impact Research. 
The most famous output of these workshops was the model 
synthesis by Cramer et al. (1999), where the global NPP 
pattern was obtained by averaging 17 different NPP models 
(including climate-based models, remote sensing-based 

Box 1. The effect of temperature on productivity.

Temperature affects all biological rates (Brown et al. 2004), including photosynthesis and respiration. It is therefore 
reasonable to assume that it affects NPP as well. The fundamental relationship between biological rates and temperature is 
given by Boltzmann–Arrhenius equation

B e E kT∼ − /( )

where B is the metabolic (or any other) rate, T is temperature in kelvins, k is Boltzmann constant, and E is the activation 
energy of a key biochemical reaction (Brown et al. 2004). It follows that the logarithm of the rates should linearly depend 
on (1/kT), with the slope of –E. However, it is complicated by the fact that different processes can have different E, so 
that e.g. photosynthesis reveals different temperature-dependence than respiration (Allen et al. 2005). NPP is determined 
by both processes, so its overall temperature-dependence may not be straightforward. Moreover, some studies found no 
temperature dependence of primary productivity during the vegetation season (Kerkhoff et al. 2005).

In fact, many NPP models include temperature dependencies in their assumptions. The first climate-based models were 
based solely on the statistical dependency between measured NPP and temperature, but the later approaches explicitly 
model such dependencies. Typically (as in the case of the MODIS-based model), the rate of photosynthesis is assumed to 
be lower at low and high temperatures, i.e. that there is some optimum temperature for photosynthesis, and that respiration 
is positively temperature-dependent. Most models (especially DGVMs) also account for temperature dependencies of other 
processes, namely water balance, evapotranspiration or decomposition rate. Also, the models often assume that minimum 
temperature is more important than mean temperature. Various treatment of temperature in different models naturally 
leads to different model outputs and various latitudinal trends of modelled NPP.

Importantly, the temperature used in the models is air temperature, because plants are considered to be poikiloterms. 
Nevertheless, a hypothesis of a limited homeothermy of plants has recently been supported (Michaletz et al. 2015). This 
finding highlights the need to consider plant tissue temperature, i.e. the temperature where the plant metabolism is taking 
place. The fact that plant tissue temperature can be independent of air temperature may also be partly responsible for the 
weak correlation between field NPP measurements and air temperature.
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In summary, different models differ as to their assump-
tions, but since many of them include temperature or solar 
irradiation (Box 1, Fig. 1), most of them lead to similar 
geographic patterns showing the latitudinal productivity 
gradient. This gradient is partly driven by the effect of tem-
perature variation on the length of the vegetation season, 
which may be then considered a first-order predictor of 
annual NPP (Huston and Wolverton 2009). However, 
even complex models usually fail to include some limiting 
factors. None of the models explicitly accounts for phos-
phorus limitation in the tropics, compromising the reliabil-
ity of most models in the tropical zone. Furthermore, even 
well-established models, like the Potsdam or the MODIS-
based model, produce different geographic patterns of 
annual NPP (Fig. 2c). It is thus necessary to also consider 

limitation is included in these models (which is not always 
the case), it typically only concerns nitrogen (Hickler et al. 
2015, Walker et al. 2015), while the role of phosphorus, a 
key nutrient in the tropics, is largely overlooked (Aragão 
et al. 2009, Quesada et al. 2009). This also applies to other 
potentially limiting nutrients such as potassium (Wright 
et al. 2011, Lloyd et al. 2015). These limitations can be 
overcome by using continuous plant traits instead of PFTs 
(Scheiter et al. 2013) and by including information about 
concentration of soil phosphorus (Yang et al. 2013) or nutri-
ent concentrations in plant tissues (cf. Kattge et al. 2011). 
However, incorporating the effect of nutrients and continu-
ous plant traits would increase the model complexity (which 
is already quite high), leading to even greater uncertainties in 
model outputs (Wieder et al. 2015a).

Figure 2. Geographic patterns of annual NPP estimated by (A) the Potsdam model and (B) the MODIS-based model (averaged over years 
2000–2012), and the residuals from the MODIS-based model when regressed against the Potsdam model (C), compared to (D) geographic 
distribution of mammal species richness (taken from < www.iucnredlist.org >). Note that the Potsdam model generates a considerably more 
pronounced latitudinal gradient of NPP than the MODIS-based model, in which high productivity levels are reached in a few relatively 
small regions (western slopes of the Andes, Atlantic Forest in Brazil, east-African Rift, foothills of the Himalayas, New Guinea). Interestingly, 
these regions also represent hotspots of vertebrate species richness.
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(see primary papers from Cannell 1982, or GPPDI class B 
data references). Such heterogeneity in the data may mask 
actual geographic patterns of NPP. Indeed, when young suc-
cessional forests were excluded, Gillman et al. (2015) found 
a steeper decrease of NPP from the tropics towards the poles 
than when they were included.

We reviewed the class B data (downloaded on 28 
February 2014 from < https://daac.ornl.gov >) in order to 
explore the extent to which the presence of forest plantations 
or fertilization/irrigation treatments affected the previously 
reported latitudinal NPP trend. Since global data of non-
forest field NPP are very scarce (1093 of forest data points 
vs 177 non-forest data points in class B), we included data 
only from biomes classified as forests or those dominated 
by woody species (deciduous broadleaved, deciduous nee-
dle-leaved, evergreen broadleaved, evergreen needle-leaved, 
Mediterranean, mixed forest and savanna). We focused only 
on sites with known aboveground net primary productiv-
ity (ANPP), not including combined aboveground and 
belowground measurements (total net primary productiv-
ity, TNPP). We searched for primary studies using refer-
ences associated with the selected data points in order to 
locate information about each study site. If the reference 
was missing, we matched the data with data points reported 
by Cannell (1982) based on the coordinates, elevation and 
data description. When we were unable to find the primary 
source, sites having the term ‘plantation’ in their data descrip-
tion or those where focal species were apparently exotic for a 
given site (e.g. Pinus radiata in New Zealand) were regarded 
as plantations. We divided the data into 1) natural habitats, 
2) plantations or experimentally fertilized/irrigated sites and 
3) sites with undetermined status (it was impossible to con-
fidently find the primary reference, or it was unclear whether 

field NPP measurements to evaluate geographic trends  
in NPP.

What do field measurements say about geographic 
trends in NPP?

Field measurements do not provide a clear picture of geo-
graphic trends in NPP. There are several reasons for this. 
Most field observations come from temperate or boreal 
regions, while tropical ecosystems are largely undersampled 
(Clark et al. 2001, Olson et al. 2013), even though this is 
now changing (Avissar et al. 2002, Malhi et al. 2002, Phillips 
et al. 2009, Malhi et al. 2015). Different studies were con-
ducted for different reasons (Cannell 1982) and therefore 
at sites of different ages and successional stages (Vogt et al. 
1987, Danilin 1995), which also masks geographic patterns 
of NPP (Michaletz et al. 2014, Gillman et al. 2015). Study 
sites are typically selected non-randomly, including natural 
primary forest stands or managed sites, depending on the 
focus of the particular study. The studies also vary in the 
method of estimating standing biomass and biomass incre-
ments and in the time period of the sampling. Whereas 
NPP of herbaceous communities is typically measured using 
biomass harvest in the peak growing season, forest biomass is 
estimated based on various site-specific or published allom-
etries, or more direct estimates using litterfall traps or stem 
increments measured over one year or averaged over mul-
tiple years (Cannell 1982, Michaletz et al. 2014). Some NPP 
estimates include the effect of herbivory, and some include 
the biomass of fruits, etc. Unfortunately, these methods are 
often poorly documented, making it difficult to evaluate the 
quality of field data (Clark et al. 2001).

The largest database containing field NPP data has been 
compiled by the Global Primary Productivity Data Initiative 
(GPPDI, Olson et al. 2001, 2013). Curiously enough, stud-
ies exploring the latitudinal productivity gradient using these 
data qualitatively differ in their conclusions. Whereas Olson 
et al. (2001) and Gillman et al. (2015) report a decrease of 
NPP from the tropics towards high latitudes, Cramer et al. 
(2001b) and Huston and Wolverton (2009) report the 
highest NPP in certain temperate forests and in savannas. 
Such surprising disagreement among studies that used the 
same database can be due to three main reasons. One is data 
grouping. Gillman et al. (2015) averaged forest NPP data 
that were collected  100 km apart from each other (and 
then used these values in OLS regression with latitude as the 
explanatory variable) whereas Huston and Wolverton (2009) 
first grouped all forest data points into several latitudinal 
bins and then plotted mean NPP and its standard deviation 
against the latitude of the bins. The second reason is data 
selection. Cramer et al. (2001b) used a smaller dataset than 
the updated version of Olson et al. (2013). The third reason 
may lie in data quality. The steep latitudinal decrease of NPP 
reported by Gillman et al. (2015) was maintained when 
only a cleaned and well-documented subset of the GPPDI, 
the so-called class A category (Olson et al. 2001) was used. 
However, the majority of the GPPDI data belong to the class 
B category, originating from a mixture of studies focusing 
on ecosystem NPP, comprising various altitudinal or suc-
cessional gradients, fertilization treatments or forest cultures 

Figure 3. The relationship between forest aboveground net primary 
production (ANPP) and absolute latitude for class B data from 
GPPDI (Olson et al. 2013). Plantations or forests under fertiliza-
tion/irrigation experiments are represented by white circles and the 
dashed line (polynomial fit, r2  0.07, p  0.001) whereas natural 
vegetation is represented by black circles and the solid line (linear 
fit, r2  0.2, p  0.001). For natural stands, the quadratic term of 
productivity was not significant and the AIC of the linear model 
was lower than the AIC of the quadratic model. For plantations, 
both the terms were significant, the quadratic model having a better 
fit according to the AIC. Data points with unclear classification are 
represented by crosses.
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the forest was planted or not). There were 492 sites of natural 
vegetation, 309 sites of plantations or human-modified for-
ests and 292 forests with unknown status.

Natural habitats and plantations show very different 
geographic trends of NPP. Natural stands exhibit a linear 
decrease of ANPP with latitude (Fig. 3). Plantations or fer-
tilized plots, by contrast, show a unimodal relationship, tem-
perate areas reaching the highest values (Fig. 3). Therefore, 
contrary to some previous studies (Huston and Wolverton 
2009, Huston 2014), field measurements of NPP for natu-
ral vegetation follow a latitudinal gradient with the highest 
NPP in the tropics. The fact that NPP of forest plantations is 
highest in the temperate zone is in accord with the findings 
of Huston and Wolverton (2009) that agricultural NPP is 
highest in temperate biomes. In principle, it is still possible 
that natural temperate forests would also be very productive 
had they not been destroyed and converted into fields and 
plantations (Huston and Wolverton 2009). However, large 
values of NPP in temperate plantations may be simply due 
to the fact that studies measuring NPP of forest plantations 
were mostly conducted in temperate biomes, so there was 
a higher chance of finding extremely high values. Another 
explanation is that plantations correspond to early succes-
sional stages and comprise selected trees that are able to 
gain high biomass in a short time. The lower productivity of 
tropical plantations, on the other hand, can follow from the 
loss of nutrients and soil structure with the clearing of the 
original biomass.

Do field data match global NPP models?

Regardless of whether GPPDI data or local measurements 
recently taken in the tropics are used, the geographic trends 
based on field measurements often disagree with the predic-
tions of global NPP models (Fig. 4; Clark et al. 2001, Zaks 
et al. 2007, Cleveland et al. 2015). It seems that models in 
which productivity is assumed to be tightly related to tem-
perature have a tendency to predict higher tropical NPP than 
suggested by field measurements (Zaks et al. 2007), while 
remote sensing-based models tend to underestimate tropi-
cal NPP due to the abovementioned effect of NDVI or LAI 
saturation (Ruimy et al. 1994, Turner et al. 2005, 2006). 
Although both field data and models agree on the general 
decrease of NPP from the equator towards the poles, the dis-
crepancy between modelled and measured NPP values within 
individual climatic zones is quite high (Ni 2003, Potter et al. 
2012, Cleveland et al. 2015). One reason may reside in the 
scale of sampling. Field data are sampled at much finer scales 
than those used in models, so they do not represent random 
samples covering the whole landscape. Field measurements 
can be comparable to the predictions of global NPP models 
(and could be eventually used for parameterizing them) only 
when they are collected by a systematic stratified design, and 
are therefore representative of the given region.

Another factor potentially responsible for the discrepancy 
between field NPP measurements and the models is nutrient 
availability, which naturally affects field measurements but 
is not accounted for in the models. For instance, the strong 
decrease in locally measured values of NPP from the western 
to the eastern Amazon, most likely reflecting the gradient 

Figure 4. The relationship between annual net above-ground primary 
production (ANPP) obtained from GPPDI restricted for natural for-
est stands, and NPP estimated by the (A) Potsdam model and (B) the 
MODIS-based model, extracted from the same locations as the data 
points. (C) comparison between the two models. Black circles repre-
sent tropical sites (absolute latitude  23.4) whereas white circles 
represent temperate and boreal sites (absolute latitude  23.4); 
dashed is the identity line. The higher number of data points in panel 
(A) and (B) is due to the multiple plots with different ANPP reported 
for the same location. The trend line is fitted as a loess (local polyno-
mial regression) curve. Note that the Potsdam model predicts higher 
NPP for most tropical sites and that none of the models provides a 
good prediction of the field NPP measurements.
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due to the abovementioned problems surrounding its proper 
estimation.

Productivity is expected to limit the number of species 
either through limiting the total number of individuals 
(the More Individuals Hypothesis; Wright 1983, Srivastava 
and Lawton 1998), or the total niche space at a given site 
(Schemske 2002, Chase and Leibold 2003). However, the 
evidence for such hypotheses is limited. It seems that spe-
cies richness variation does not follow the variation in the 
total number of individuals (Currie et al. 2004, Šímová 
et al. 2011, 2013, Storch 2012). It is also often independent 
of diversity in functional traits that presumably represents 
the niche space size (Ricklefs 2012, Lamanna et al. 2014, 
Šímová et al. 2015). The effects of temperature-dependent 
diversification rates (Rohde 1992, Allen et al. 2002, Brown 
2014, Gillman and Wright 2014) or historically determined 
climatic tolerances of species (Latham and Ricklefs 1993, 
Wiens and Donoghue 2004) have therefore been regarded 
as more important large-scale diversity determinants (Currie 
et al. 2004). If this is the case, productivity correlates with 
diversity only due to its covariation with other factors that 
are causally linked to diversity, including temperature and 
long-term environmental stability (e.g. the age and historical 
extent of individual biomes, Jetz and Fine 2012).

The lack of a clear relationship between local species 
richness and productivity also casts doubt on the role of 
productivity in determining diversity at the community 
level. Biomass production estimated from the NDVI or 
from allometric equations is a poorer predictor of local spe-
cies richness of woody plants than minimum temperature 
or precipitation (Šímová et al. 2011), and neither biomass 
nor the number of individuals seem to be responsible for 
variation in the diversity of herbaceous vegetation (Šímová 
et al. 2013). Furthermore, productivity–diversity (or bio-
mass–diversity) relationships of herbaceous vegetation are 
extremely variable (Gillman and Wright 2006, Adler et al. 
2011, Fridley et al. 2012, Fraser et al. 2015), even though 
there are theoretical reasons to expect low species richness 
under very low and very high levels of productivity (Grime 
1973, Tilman and Pacala 1993, Huston 2014). However, 
most of these examples concern the patterns of diversity of 
autotrophs, i.e. the trophic level that is itself responsible for 
productivity patterns. Productivity in this case does not rep-
resent the inflow of resources into a community of a given 
taxon, which could then be reflected (according to the More 
Individuals Hypothesis) in the number of individuals and 
species. Indeed, plant communities may be productive even 
if biomass production is realized by a few large individu-
als or a monospecific stand of a highly productive species. 
Local species richness of heterotrophs, by contrast, seems 
to follow NPP quite closely (Hurlbert 2004, Pautasso and 
Gaston 2005). The local productivity–diversity relationship 
thus depends not only on the used measure of productiv-
ity, but also on the trophic level considered (Groner and 
Novoplansky 2003).

Additionally, even if productivity positively affects spe-
cies richness, it is questionable whether annual or seasonal 
NPP is more ecologically relevant for the diversity at higher 
trophic levels. Huston and Wolverton (2009) argue that 
when correcting for growing season length, NPP of the tem-
perate zone is higher than tropical NPP (Körner 2006), and 

of nutrients, did not appear in the NPP models (Cleveland 
et al. 2015). Similarly, the progressive temporal increase in 
NPP predicted by some models disagrees with long-term 
experiments and observations, and this disagreement is larg-
est for models that do not account for the nutrient limita-
tion (Hickler et al. 2015). It would thus be necessary, besides 
overcoming the abovementioned scale gap, to include also 
data on soil nutrients in order to provide more reliable NPP 
estimates for large spatial scales.

How is species richness related to productivity?

The lack of a consensus regarding NPP estimates may par-
tially explain the inconsistency in the reported relationships 
between species richness and productivity. In fact, many stud-
ies have regarded climatic variables, including evapotrans-
piration, remote-sensing-based layers like the NDVI and 
various NPP models, as more or less equivalent (Hawkins 
et al. 2003, Field et al. 2009, Cusens et al. 2012), since all of 
them are positively related to each other. All these variables 
correlate well with species richness at large spatial scales, and 
although some previous studies have reported curvilinear or 
hump-shaped relationships between productivity and species 
richness even at large spatial scales (Mittelbach et al. 2001), 
recent studies agree that large-scale species richness of higher 
taxa increases monotonically, and often almost linearly, with 
most of these variables (Francis and Currie 2003, Currie 
et al. 2004, Storch et al. 2006, Keil et al. 2008).

The problem is that although productivity has been 
postulated to be a major determinant of diversity on land 
(Wright 1983, Currie 1991, Gaston 2000), its covariation 
with other variables impedes the separation of its effect from 
the effects of other factors. Indeed, although the MODIS-
based or Potsdam NPP models provide good predictions 
of species richness patterns at large scales (Buckley and Jetz 
2007, Qian 2010, Goetz et al. 2014, McBride et al. 2014), 
temperature or AET often perform better (Table 1; Phillips 
et al. 2010, Šímová et al. 2011, Belmaker and Jetz 2011, Jetz 
and Fine 2012). It is thus possible that effects other than 
productivity are causally responsible for variation in species 
richness (Currie et al. 2004, Storch 2012), although the 
observed comparatively weaker effect of NPP could also be 

Table 1. Summary statistics of species richness variation explained 
by various productivity measures or surrogates reported by Field 
et al. (2009), with additional data obtained from Cusens (2011). 
Only the continental extent (Cusens 2011) or the extent  1000 km 
(Field et al. 2009) were considered. The number of studies is 
represented by n; AET is actual evapotranspiration, Temp represents 
temperature-related variables (mean annual or seasonal tempera-
ture or potential evapotranspiration), Prec represents precipitation-
related variables (annual or seasonal precipitation or rainfall). NPP 
is represented by various models such as the Miami model (Lieth 
1975), Chikugo (Uchijima and Seino 1985), Potsdam (Cramer et al. 
1999) and CASA (Potter et al. 1993).

n Mean r2 Standard deviation of r2

AET 24 0.63 0.16
NPP 23 0.57 0.22
Temp 21 0.69 0.16
Prec 34 0.42 0.22
NDVI 8 0.38 0.15
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have to include more accurate productivity measures and a 
proper theory that would allow to distinguish the effect of 
productivity from the effects of temperature and history/ 
stability (Storch 2012). Such a theory would need to explic-
itly address the dynamic links between resource levels, the 
total number of individuals and the number of species, as 
well as simultaneous effects of environment-dependent colo-
nization/speciation and extinction rates on species richness. 
Furthermore, the role of productivity in the species richness 
patterns of autotrophs vs heterotrophs needs to be clarified, 
as does the relevance of growing season NPP compared to 
that of annual NPP.

Can we predict future changes of productivity 
patterns?

The uncertainties in DGVMs outputs have resulted in 
strongly divergent scenarios of future NPP changes. Many 
models predict a future increase of NPP (Cramer et al. 
2001a, Hemming et al. 2013), namely in the humid trop-
ics (Hemming et al. 2013, Zhang et al. 2015), while other 
models suggest a future decrease of tropical NPP (Goll et al. 
2012, Wieder et al. 2015b). This disagreement is mostly due 
to the oversensitivity of some models to CO2 concentrations 
(Rammig et al. 2010, Hickler et al. 2015), while neglecting 
other limiting factors (Fatichi et al. 2014, Smith et al. 2015). 
Experimental evidence shows that increasing CO2 concentra-
tions enhance photosynthesis, leading to higher productivity 
of C3 plants, particularly trees (Long et al. 2004, Ainsworth 
and Long 2005). Most models thus predict an increase in 
the rates of these processes in the near future (Rammig et al. 
2010, Cox et al. 2013, Huntingford et al. 2013). The CO2 
fertilization effect is also assumed to enhance plant water use 
efficiency by reducing stomatal openings and consequently 
reducing plant transpiration rates (Drake et al. 1997, Kruijt 
et al. 2008), which would further increase NPP (Zhang 
et al. 2015). These predictions have been supported by evi-
dence of recently increasing standing biomass and forest 
production (Pan et al. 2013), although this increase was not 
as strong as predicted by the models (Hickler et al. 2015, 
Smith et al. 2015). Moreover, CO2 fertilization experiments 
were typically conducted in the temperate zone, especially 
in agricultural ecosystems, while experiments or observa-
tions from tropical and high-latitude ecosystems are missing 
(Long et al. 2004, Leakey et al. 2012).

In tropical forests, increasing CO2 levels seem to lead 
mostly to allocation of biomass to more labile tissues such 
as fine roots and shoots (DeLucia et al. 2005, De Kauwe 
et al. 2014) and to elevated growth rates of short-lived spe-
cies and shade-tolerant species such as lianas (Phillips et al. 
2002, Körner 2006). This results in faster carbon turnover 
rates (Phillips and Gentry 1994, Körner 2006, Phillips 
et al. 2009). These effects can be a consequence of a lack 
of phosphorus, which limits the total amount of carbon 
that can be allocated to woody tissues (Hickler et al. 2015). 
Indeed, DGVMs incorporating the phosphorus cycle predict 
future NPP decreases (Goll et al. 2012, Wang et al. 2015, 
Wieder et al. 2015b). Moreover, models of future NPP 
changes only include potential NPP, without accounting for 
land use changes.

they consider this ‘corrected’ NPP as ecologically more rel-
evant than annual NPP. Seasonal NPP is certainly a more 
proper estimate of available resources for some taxa such as 
migratory birds (Hurlbert and Haskell 2003). Its relevance 
to species richness of other organisms is, however, neither 
theoretically founded nor empirically supported (Gillman 
et al. 2015). Current theory assumes that productivity pro-
motes species richness by affecting the persistence of species 
with viable populations (Storch 2012), and this persistence 
probably depends even more on productivity levels in the 
low-productivity season (e.g. winter). However, this may be 
taxon-specific, depending on the food type, dormancy and 
life-history strategies, so it is still impossible to generalize.

Although it is clear that productivity is not the single 
determinant of species richness, and also probably not the 
most important one (Storch 2012), it is still possible that 
productivity limits the maximum number of species within 
regions or communities. In extreme environments, the total 
number of species must be limited by the maximum total 
number of individuals, which is at the same time tightly 
related to the total biomass. Or, using the words of E. 
Hutchinson (1959): “If the fundamental productivity of an 
area is limited by a short growing season to such a degree 
that the total biomass is less than under more favourable 
conditions, then the rarer species in a community may be 
so rare that they do not exist.” However, when productivity 
reaches a certain level, other factors affecting species rich-
ness can prevail. The crucial factors driving diversity may 
vary in productive areas, explaining the inconsistency of the 
diversity–productivity patterns at high NPP levels. Still, if 
some NPP models explain species richness patterns better 
than other NPP estimates, focusing on the particular factors 
assumed to play a role in respective NPP models might prove 
useful. For instance, in the New World, MODIS-based NPP 
is highest in the foothills of the Andes (Zhao and Running 
2010, Cleveland et al. 2015, Fig. 2b), probably due to the 
sensitivity of the MOD17 algorithm to variation in mini-
mum temperature (Cleveland et al. 2015). The observation 
that species richness of mammals or birds also peaks in these 
regions (Storch et al. 2006, Ceballos and Ehrlich 2006, 
Hawkins et al. 2012; Fig. 2d) may thus reflect the depen-
dence of species richness on minimum temperature without 
a necessary link to productivity. Alternatively, however, NPP 
can really be higher at higher elevations due to lower temper-
ature-dependent respiration rates, and species richness pat-
terns may be productivity-dependent. Such an effect could 
also potentially explain the lower species richness in humid 
tropical lowlands such as the centre of the Amazon basin or 
the Congo basin (Storch et al. 2006).

Generally, it is reasonable to assume that productivity lim-
its species richness, but the limitation is probably strong only 
under low productivity levels. When productivity increases, 
other factors, such as long-term environmental stability or 
climate-dependent diversification rate, likely become more 
important for species richness. Therefore, there is no ‘true 
relationship’ between productivity and species richness, as 
the apparent relationship observed under higher NPP levels 
is likely driven by its covariation (or lack thereof ) with other 
diversity-determining factors. To support this conclusion, 
we would need to employ tools that separate the effect of 
productivity from those of other factors. These tools would 
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exact way NPP is estimated, as the NPP model outputs are 
mostly correlated with each other and reveal a latitudinal 
gradient that is similar to the diversity gradient. The covari-
ance of NPP with many other variables, including tempera-
ture and actual evapotranspiration, at the same time poses a 
problem, as it is difficult to distinguish the pure effect of pro-
ductivity (i.e. resource input into the community) from the 
effect of temperature and history (environmental stability), 
which could have affected species richness via different pro-
cesses. So far, none of the NPP estimates are accurate enough 
to unequivocally distinguish the importance of productivity 
from the importance of other effects. To address this issue, it 
is necessary to develop a proper theory that would encom-
pass the effect of productivity simultaneously with the other 
factors potentially affecting species richness, namely tem-
perature (which potentially affects speciation rates as well as 
species coexistence) and environmental variability/stability 
(which, besides productivity-dependent population sizes, 
affects population extinction rates). Additionally, it is neces-
sary to refine the methods of measuring all these variables 
(including NPP) in a way that will allow us to distinguish 
the roles of the abovementioned factors.   
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