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110 00-CZ Praha 1, Czech

Republic
3Santa Fe Institute, 1399 Hyde

Park Road, Santa Fe,

NM 87501, USA

*Correspondence: E-mail:

arnost.l.sizling@seznam.cz

Abstract

The species–area relationship (SAR) is often expressed as a power law, which indicates

scale invariance. It has been claimed that the scale invariance – or self-similarity at the

community level – is not compatible with the self-similarity at the level of spatial

distribution of individual species, because the power law would only emerge if

distributions for all species had identical fractal dimensions (FD). Here we show that

even if species differ in their FD, the resulting SAR is approximately linear on a log–log

scale because observed spatial distributions are inevitably spatially restricted – a

phenomenon we term the �finite-area effect�. Using distribution atlases, we demonstrate

that the apparent power law of SARs for central European birds is attributable to this

finite-area effect affecting species that indeed reveal self-similar distributions. We discuss

implications of this mechanism producing the SAR.
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I N T R O D U C T I O N

One of the most general ecological patterns is the increase

in the number of species with the area sampled. There is no

consensus concerning the importance of individual mech-

anisms contributing to the pattern or the exact shape of this

species–area relationship (hereafter SAR). The shape of the

SAR can be approximated by many functions, including the

exponential (Gleason 1922), the logistic (He & Legendre

1996, 2002) and even more complex equations (for review

see Tjørve 2003). However, it seems that a power law

represents considerably good approximation of the SAR

(Arrhenius 1921; Rosenzweig 1995; Storch et al. 2003b), at

least within particular spatial scales.

The power law implies self-similarity or scale-invariance

(Gisiger 2001). Harte et al. (1999) provided a model that

explicitly related the power-law SAR to the self-similarity at

the community level. This model is based on the

assumption that if a species is present within an area, the

probability of its occurrence within a constant portion of

the original area is also constant, regardless of the absolute

size of that area. However, using slightly different formal-

ism, Lennon et al. (2002) claimed that the self-similarity at

the level of the distribution of individual species would lead

to the power-law SAR only if all species had equal fractal

dimensions (FD). As the FD is closely related to species

occupancy, and occupancy varies extensively among species,

this condition cannot be fulfilled in most real situations,

and, as also noted by Harte et al. (2001), the self-similarity at

the species level is incompatible with the community-level

self-similarity. On the contrary, there is some evidence that

species distributions are indeed self-similar (Kunin 1998;

Witte & Torfs 2003). There is therefore a controversy

between the apparent power law of the SAR and the

observed structure of species spatial distribution, which

should be resolved.

Here we show that within any real landscape, even self-

similar spatial distributions of species which differ in their

FD result in SARs that are close to a power law. The reason

is that the location of any study plot within a finite region is

constrained by the boundary of the region and sufficiently

large plots therefore inevitably contain the species in focus.

The relationship between the probability of species

occurrence and area thus cannot increase over all scales,

which changes the shape of resulting SARs. We call this the

�finite-area effect�. We assess the reliability of the finite-area

effect using numerical simulations and bird distribution data

in central Europe.
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T H E O R Y

The SAR derived from the species probability of occupancy

The SAR cannot be characterized by one particular curve

that assigns one species richness value to each area, as

different study plots of equal area differ substantially in

species number (Storch et al. 2003b). It is therefore

necessary to express the relationship between area and

the most likely species number for all plots of this area. In

the following text we express the SAR as the relationship

between area and mean of all species numbers (hereafter
�S ). Given the probability of occurrence for each species

within the study plot, mean number of species can be

calculated as

�S ðAÞ �
XStot

i¼1

pocc iðAÞ ð1Þ

where Stot is the total number of species considered and pocc

is the probability of occurrence of species i within plots

whose area is A. This is in accord with most models of the

SAR based on random species distributions (Coleman 1981;

Williams 1995; Muriel & Mangel 1999; He & Legendre

2002).

Self-similarity of species spatial distribution

The spatial distribution of a species is self-similar if there is a

structure that occurs repeatedly on different spatial scales

(Hastings & Sugihara 1993). Then, if we plot a grid of

quadrates whose side length (hereafter L) corresponds to

the size of the repeated structure over the distribution, the

relationship between number of occupied quadrates n and L

is given by formula

n ¼ n0L�FD ð2Þ

where n0 is constant, and FD is Hausdorff or fractal

dimension (Hastings & Sugihara 1993). Generalizing this

relationship for all possible L (i.e. not only those cor-

responding to the size of the repeated structure),

and approximating the probability of occupancy by a pro-

portion of non-overlapping occupied quadrates, i.e.

pocc @ n/(Atot/L2), where Atot is the total area of the grid,

we obtain the formula

pocc ffi pL2�FD ð3Þ
where p is the probability of occupancy for L ¼ 1

(p ” n0/Atot) (Lennon et al. 2002). If we replace L2 with

area A, we get the approximate relationship between area

and probability of species occurrence for that area

pocc ffi pA1�FD=2: ð4Þ

This formula can be treated as a species–area relationship

for just one species, where species number is replaced by the

probability of species occurrence and the term 1 ) FD/2

corresponds to z in classical Arrhenius (1921) equation, i.e.

zi � 1 � FD

2
: ð5Þ

Note that the relationship in eqn 4 is based on two sim-

plifying assumptions, the first one is that eqn 2 is valid for all

lengths, L, the second one comprises the estimation of

probability of species occurrence by the division of the

number of occupied quadrates by the total number of non-

overlapping quadrates of that particular size.

The finite-area effect

According to eqn 4, the probability of occupancy would

increase to infinity over infinite areas. However, probability

is bounded within the interval [0,1], and thus eqn 4 can be

valid only within a particular range of areas £ Atot. Within

any real (i.e. finite) census area we can envisage area of

saturation, Asat, as a minimum area of the study plot that

always contains the species, regardless of its location (see

Fig. 1a), i.e. Asat is bigger than any distributional �gap� of

respective shape. Beyond Asat, the pocc is inevitably equal to

1. We call this the finite-area effect, as the existence of Asat

is the direct consequence of the fact that we can study

species distributions and diversity patterns only within finite

census areas in which the location of sample plots is

constrained by the boundary of the total study area (e.g.

whole continent).

The finite-area effect has important implications for the

relationship between pocc and A in self-similarly distributed

species, which can be expressed as a continuous function

using formula

pocc i ¼ piA
zi for all 0 � A � Asat i ; and

pocc i ¼ 1 for all Asat i � A � Atot:
ð6Þ

If we order species according to their value of Asat, we can

combine eqn 1 with eqn 6 to express the SAR as

�S ðAÞ ¼
XStot

i¼SsatðAÞþ1

piA
zi þ SsatðAÞ ð7Þ

where Ssat(A) is the number of species whose relationship

between pocc and A has reached saturation (i.e. species with

Asat lower than A). The exact pattern of the increase of

species number with area will therefore be dependent on the

values of zi and Asat i for individual species (see Fig. 1b). Let

us call the proposition that the SAR can be derived from

these properties of species distributions using eqn 7 the

finite-area model.
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Shape of the SAR

According to the finite-area model, the SAR is affected both

by the self-similarity expressed as the linear increase of

probability of species occurrence with area in a log–log

space, and by the finite-area effect. It is therefore necessary

to explore how these effects combine to produce the

resulting SAR.

There are two components of the shape of the SAR. The

first component comprises the intervals between subsequent

Asat for individual species. Here Ssat(A) is constant and only

zi of individual species with Asat higher than the values

within that interval contribute to the increase of species

number within that interval, because all species with lower

Asat have pocc ¼ 1 (see Fig. 1b) within the entire interval.

For any interval between Asat j and Asat j+1, the SAR can

therefore be expressed using eqn 7, where Ssat(A) remains

constant (i.e. Ssat(A) ¼ j). The shape of the respective curve

can be studied analytically (Appendix 1), and these analyses

show, in accord with Lennon et al. (2002), that the SAR

within these intervals is always convex (upward accelerating)

in a log–log space. The second component represents the

effect of Asat, which opposes this tendency and leads to the

decrease of the resulting slope of the whole SAR (see Fig. 1b

and Appendix 1).

There are, therefore, two opposite tendencies affecting

the SAR: the tendency of upward accelerating increase of

the species number caused by interspecific differences in

FD and of downward decrease because of the finite-area

effect. The strength of these opposing forces depends on

the frequency distribution of Asat and zi, and on the

relationship between these variables. It would be very

complicated to prove analytically as to which distributions

would lead to particular SARs, so we performed numerical

simulations assuming various frequency distributions for

both variables. We investigated three types of distribution

for Asat (symmetric distribution, and distributions with

negative and positive skewness, Fig. 2a), and two types of

frequency distribution for zi (uniform and independent

of Asat, and positively dependent on Asat such that zi ¼
Asat i/Atot; Fig. 2b). All six combinations of distributions of

Asat and zi were explored. We did not consider the situation

of the negative dependency between the variables, because

this is unrealistic – note that both variables depend on

occupancy (number of occupied grid cells) such that species

that occupy many cells necessarily have low Asat, high FD

and consequently low z. There is actually clear statistical

(although not straightforward) relationship between these

variables, but its exploration is beyond the scope of this

paper.

We performed 1000 simulations for 500 species. The

resulting SARs (Fig. 2c) are not exactly linear in a log–log

space, but in most cases there is no apparent curvilinearity.

Considering the high variance of observed species numbers

within plots of equal area (Storch et al. 2003b), the

deviations of SARs from the power law would be

Figure 1 (a) The geometric representation of Asat within a rectangular area Atot. Asat represents the minimum area of a plot where the

respective species is necessarily present regardless of the location of the plot (pocc ¼ 1 for all areas ‡Asat); different species (here Spec1 and

Spec2) differ in their Asat. (b) The effect of Asat for the emergence of SAR. The linear relationship between A and pocc in a log–log space,

which characterizes the self-similarly distributed species, is valid only up to Asat, because then pocc ¼ 1 (below). This affects the shape of the

SAR (above) resulting from summing pocc for both species (solid line). The slope of the dotted line is the apparent slope of the SAR in a log–

log space calculated using eqn 8. The Asat pushes the slope of the SAR in the log–log scale down.
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undetectable. The slopes of simulated SARs vary mostly

accordingly to the changes of distribution of Asat (Fig. 2a),

such that the documented slopes of mainland SARs

(z » 0.08 ) 0.25; see Connor & McCoy 1979) correspond

well to the distribution which is somewhere between

distribution D2 (uniform) and D3 (characterized by

prevalence of lower values of Asat).

We have also explored the relationship between the total

species number and the curvilinearity of emerging SARs, by

performing 100 simulations of different species numbers

(50, 100, 150, 200,…, 500) and measuring curvilinearity for

each case. The curvilinearity has been calculated as a mean

of sum of squares of distances from the regression line for

all points of Asat in a log–log space. It did not change with

number of species, but its variance did, indicating that the

SARs converge to some particular shape with increasing

species number.

Implications for the slope of the SAR

If the shape of the SAR can be expressed approximately as a

power law, then its approximate slope in a log–log space can

be calculated from the extreme points of the relationship,

i.e. the maximum (A ¼ Atot; �S ¼ Stot) and minimum

(A ¼ 1; �S ¼
P

pi ). The approximate slope is then

Z ¼
ln StotP

pi

� �

ln Atotð Þ : ð8Þ

This equation has two implications. First, the slope depends

on pi, i.e. on the intercept of the regression line in a log–log

space, which can be estimated by the relative species

occupancy in the smallest area sampled (grid cells). Obvi-

ously, if all species occurred everywhere, the slope of the

SAR would be zero, whereas if every species occupied just

Figure 2 The settings and results of the

simulations of the finite-area model. (a) The

three types of the distribution of Asat used,

expressed using the relationship between

species rank and Asat, (b) the two types of

the relationship between Asat and z (a – not

related, b – linearly dependent), and (c) the

results of the simulations for 500 species, for

all combinations of these settings. Each

dotted line represents one of 1000 simula-

tion runs, except the first 10 simulations that

are represented by the white lines to

visualize the shape of the SAR for one

simulation run. The outlines, given by the

most upper and the lowest simulation,

represent a 99% confidence interval with

95% likelihood (Jı́lek 1988). The shapes of

simulated SARs are apparently not linear in a

log–log scale, but are quite close to the

linearity. The numbers in the right lower

corners refer to the value of the curviline-

arity (CL), (see text) and to the range of the

slopes of simulated SARs, z.
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one grid cell, the slope would converge to 1. Consequently,

assuming the spatial self-similarity, and knowing the total

number of species Stot within Atot, it could be possible to

predict the approximate slope of the SAR using only the

data of the number of occupied grid cells for each species.

And as relative species occupancies are related to the spe-

cies-abundance distribution (Nee et al. 1991; Storch &

Šizling 2002), it might be ultimately possible to derive the

shape and slope of the SAR just from the knowledge of

species total abundances (cf. Preston 1960; Sugihara 1980;

Harte et al. 2001; He & Legendre 2002).

Second, although the mainland SAR has often been

attributed to an increase in the number of habitats with area

(Rosenzweig 1995), the slope of the SAR cannot be

attributed only to the habitat effect, because the amount

of suitable habitats represents the upper limit for species

occupancies, and therefore the lower limit for the slope of

the SAR. The SAR for species will always be steeper than

the SAR for habitats, because species occupy only a portion

of suitable habitat (Storch et al. 2003b).

Testing the model using empirical data

We empirically tested our theory by determining whether

the relationship between area and species probability of

occupancy follows eqn 6, whether species reveal self-similar

distributions, and whether observed SARs can be predicted

by the finite-area model. We have used the data on the

distribution of birds in central Europe on two scales of

resolution (Fig. 3), that of basic grid cell size of 10¢ in

longitude and 6¢ in latitude, that is, c. 11.1 · 12 km (the

Czech Republic, hereafter CR; Št’astný et al. 1996) and that

of basic grid cell size of 50 km · 50 km (central Europe,

hereafter CE; Hagemeijer & Blair 1997). Both data sets

consist of 16 · 16 grid cells, containing the information

about probable or confirmed breeding of all bird species

within each cell (see Storch & Šizling 2002).

First, we tested whether eqn 6 represents a reliable

description of the observed species distributions, i.e.

whether the relationship between the probability of species

occupancy and area is linear in the log–log space within

respective intervals, and whether the deviation from this

relationship does not affect the SAR calculated using the

finite-area model (eqn 7). The probabilities pocc i have been

calculated as a proportion of all possible plots of given area

within the grid, which contained at least one record of the

respective species (Storch et al. 2003b). For each species we

calculated zi and Asat i by extracting the slope and the

intercept of the regression line for the relationship between

ln(A) and ln( pocc) for A < Asat (i.e. not considering the

values of pocc ¼ 1). Then we defined residuals ei(A) for each

species and area as e� pocc observed � pocc predicted, where

pocc predicted were calculated using eqn 6 and the extracted

parameters. If the relationship between ln(pocc) and ln(A)

for a species is actually linear within the interval, residuals

ei(A) should be close to zero for all areas.

The analyses show that all ei(A) are close to zero for areas

larger than 6 · 6 grid cells (Fig. 4a), but they differ

significantly from zero in smaller areas. This deviation in

smaller areas is, however, quite small – note that the mean

of ei(A) for all species within an area is actually equal to the

difference between the observed and predicted species

number divided by the total species number – and thus the

value of 0.04 means that for a sample of 100 species the

prediction will differ from the observation by only four

species. Spatial distribution of individual species is therefore

reasonably well represented by eqn 6, and the resulting SAR

can be well predicted by the finite-area model.

The deviation from the finite-area model in small areas

could be either the result of the violation of the assumption

of self-similarity for these areas, or because of the

approximate nature of eqn 6, which could represent an

inaccurate approximation of the relationship between A and

pocc for smaller areas in self-similarly distributed species. We

tested this second possibility by calculating residuals ei(A) for

CR

(a)

(b)

CECE

Figure 3 The studied census areas: grids of 16 · 16 cells, located

within central Europe (CE) (a) and the Czech Republic (CR) (b).

For details see Storch & Šizling (2002).
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500 simulated assemblages of self-similarly distributed

species (see Appendix 2) with FDs equal to the observed

FDs, and by comparing these residuals with observed ei(A).

The difference between the residuals from the two data sets

is close to zero (Fig. 4b). As the simulated species

distributions were exactly self-similar with known FD, the

deviation of the finite-area model is therefore not attribut-

able to the violation of the assumption of spatial self-

similarity of species distribution, but is because of the fact

that eqn 6 is just an approximate expression of self-similarity.

Therefore, it is not possible to reject the hypothesis of self-

similar spatial distribution of species, and the SAR is in our

case attributable to the collective effect of self-similarly

distributed species (Fig. 4c). Moreover, the approximation of

the self-similarity with the finite-area model (eqn 6) is

considerably accurate and as it is possible to deal with it

analytically, it represents very useful tool for studying the

relationship between SARs and species distributions.

D I S C U S S I O N

Our results show that there is a relationship between the

spatial self-similarity and the SAR, postulated by Harte et al.

(1999). However, our theory differs from the model of

Harte et al. (1999) in several points. First, and most

important, we consider finite grids composed of finite

numbers of cells, some of which are occupied by particular

species. There is no room for discussion on whether the

self-similarity holds down the level of the distribution of

individuals, and whether it implies some distribution of

species abundances. As Hubbell (2001) and others have

pointed out, within the smallest scales the SAR certainly

does not have a form of the power law, and the self-

similarity does not hold down the level of individuals. We

just show that when dealing with sufficiently large sampling

plots (grid cells), the assumption of self-similarity is valid.

The second important difference is that our theory does

not rely on a particular way of measuring the self-similarity.

The model of Harte et al. (1999) assumes that the area is

represented by �golden rectangle�, and self-similarity is

represented by the constant probability of occurrence of a

species within exactly half the original area. As Maddux (2004)

pointed out, this assumption leads to the violation of

transition invariance: if the probability is defined for, say,

right or left half of the rectangle, the half which is located in

the middle of the original area has different value of the

probability, and thus the self-similarity concerns only partic-

ular plots within the original areas. This is not the case for our

theory, because this operates with the probability of species

occurrence within all possible plots of a particular area.

Third, we assume that species have different occupancies,

and thus different FDs. Although Harte et al. (1999) have not

made any explicit statement concerning the self-similarity at

Figure 4 Results of the test of our theory using the bird distribution

data. (a) The residuals of observed pocc from pocc predicted by the

finite area model (e ” pocc observed ) pocc predicted) for each area

wihin the Czech Republic (CR) and central Europe (CE). Boxes and

whiskers represent 50 and 95% confidence intervals of means

(±0.67SE and ±1.96SE), respectively, which are important for the

estimation of the difference between observed and predicted

species numbers (see text). (b) The deviation between eR for the

comparison between the linear model and observations, and eS)S

for the comparison between the linear model and the simulated self-

similar distributions (for details see text). Boxes and whiskers

represent 50 and 95% confidence intervals, respectively. The

deviations between eR and eS)S apparently do not differ system-

atically from zero. (c) The comparison between observed SARs and

the SARs predicted using the finite-area model (FAM). Full and

dashed lines represent 95% confidence intervals of the observed

species numbers for CR and CE, respectively.
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the level of the distribution of individual species, Lennon et al.

(2001) realized, in accord with Harte et al. (2001), that the

power law would emerge only if all species had equal FDs.

Our theory, on the contrary, shows that although within the

intervals between consecutive Asat for individual species the

SAR is upward accelerating in a log–log space if the species

differ in their FD, contributions of the finite-area effect result

in SARs which are close to the power law. Considering the

variance of observed species numbers within samples of equal

areas, it is not surprising that observed SARs can be often well

described as power laws (Storch et al. 2003b) even if the

species spatial distribution is actually self-similar.

In our data set, the species reveal self-similar spatial

distributions, and the resulting SAR can be predicted from

the properties of these distributions. But why should species

distributions be self-similar? One possibility is that this

feature is imposed on species by the environment, i.e. that

natural landscapes have self-similar properties. There is

some evidence supporting this argument. Storch et al. (2002)

showed that the spatial variability of biologically relevant

parameters reveal spectral properties indicating self-similar-

ity (so called 1/f spectra; see Halley 1996). In addition, if the

species distribution is strongly affected by altitude, i.e. if

species are confined to only particular elevations, their

distribution could be self-similar, because altitude is related

to the ruggedness of the earth surface, which reveals fractal

properties (Mandelbrott 1977) – after all, many altitudinal

changes are related to the system of water drainage, which is

naturally fractal (Peckham 1995; Veitzer & Gupta 2000). We

have good evidence that altitude is indeed the most

important factor affecting the distribution of birds within

the Czech Republic (Storch et al. 2003a).

However, for the same data set used here, Storch et al.

(2003b) showed that the shape and slope of the SAR are not

attributable only to the effect of habitat, and moreover, that

the SARs predicted from the distribution of habitats differ

substantially from the observed SARs, which are actually

much closer to the power law. The power law in this case

emerges because of the spatial aggregation of species which

is not fully attributable to habitats. It is thus necessary to look

for spatial population processes that generate self-similarity,

i.e. to consider the dynamic nature of species assemblages

(Adler & Lauenroth 2003). There are plenty of spatial

population models that can be parameterized to produce

particular spatial distributions including the self-similar

distributions (e.g. Hubbell 2001), but this generality is their

weakness rather than strength. For now, we do not know any

particular reason why the spatial population dynamics should

preferentially lead to self-similar spatial distribution.

There is also a possibility that the apparent self-similarity

of species distribution is simply the result of the fact that the

distribution is affected simultaneously by many factors

acting on different scales of resolution: whereas in some

parts of a species range the distribution is affected mostly

by the habitat availability, in other places it is driven by

spatial population processes, combined with spatially res-

tricted interspecific interactions and so on. Then the scale

invariance would represent a �neutral� distribution, in a sense

more random than that provided by models of random

distribution based on equal density of probability of

occupancy across all places (i.e. Poisson distribution). This

argument is similar to that of why there are the 1/f spectra

of environmental and population variation in time (i.e. that

it is because of independent effects of factors acting within

different scales; see Halley 1996), or similar argumentation

about the spectral properties of physical surfaces (Sayles &

Thomas 1978). This idea, however, would deserve further

theoretical consideration.
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A P P E N D I X 1 : T H E S H A P E O F T H E S A R B E T W E E N

S U B S E Q U E N T A sat

To study the shape of the SAR, it is useful to express the

first and the second derivatives of the SAR in a log–log

space (hereafter lnSAR). If the second derivative is positive,

then the lnSAR is convex (upward accelerating), if it is

negative, the lnSAR is concave, and if it is equal to zero, the

lnSAR is linear within the studied intervals, i.e. the SAR can

be expressed as a power law. Using the finite-area model

(eqn 7) the first derivative of the lnSAR, i.e. of the

function ln �S ln Að Þð Þð Þ (hereafter ln �S ln Að Þ, between Asat j

and Asat j+1, can be expressed as

d

dln A
ln �S ðAÞ ¼

PStot

i¼SsatðAÞþ1 pi ziA
zi

PStot

i¼SsatðAÞþ1 piAzi þ SsatðAÞ
: ðA1Þ

The second derivative is then

which after multiplying gives

d2

dlnA2
ln�S ¼

¼
P

8i;jð Þpipj zi � zj

� �2
A ziþzjð Þ þ SsatðAÞ

PStot

i¼SsatðAÞþ1 pi z
2
i Azi

PStot

j¼SsatðAÞþ1 piAzi þ SsatðAÞ

� �2
:

ðA3Þ
As Ssat(A) differs from zero for all j > 0, and thus the second

additive term in the numerator is positive, the ln SAR is

always convex (upward accelerating) within individual

intervals between Asat j and Asat j+1, except the case of

A < Asat 1 (i.e. Ssat(A) ¼ 0) and zi ¼ zj for all combinations

i, j, when it is linear in the log–log space. As zi drops down

in the point Asat i, the slope of the ln SAR also drops down

here, according to eqn A1 (Fig. 1b). This is the moment that

pushes the slope of the whole lnSAR down, although dif-

ferent zi push the slope always up.

d

dln A

d

dln A
ln �S ðAÞ

� �
¼

PStot

i¼SsatðAÞþ1 pi z
2
i Azi

� � PStot

i¼SsatðAÞþ1 piA
zi þ SsatðAÞ

� �
�

PStot

i¼SsatðAÞþ1 pi ziA
zi

� �2

PStot

i¼SsatðAÞþ1 piAzi þ SsatðAÞ

� �2
; ðA2Þ
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A P P E N D I X 2 : C O N S T R U C T I O N O F T H E S E L F -

S I M I L A R S P A T I A L D I S T R I B U T I O N S

To test the hypothesis that the spatial distribution of birds

within the CR and CE can be considered as self-similar we

simulated 500 species assemblages consisting from the same

number of species as observed (i.e. 142 for the CR and 193

for CE), each of them having the FD equal to the FD of

respective species. The self-similar distributions of these

simulated species were placed randomly over the grid of

16 · 16 cells.

The construction of a self-similar distribution started with

a square whose side was two times longer than the side of

the whole grid. In each subsequent step, the square was

scaled down by the linear factor k, and four squares of the

resulting size were placed randomly within the original

square without an overlap (see Fig. A1). This procedure was

repeated until the squares were smaller than the basic grid

cell. The FDs of these constructed distributions are equal

to ln(4)/ln(k) (Mandelbrot 1977; Hastings & Sugihara

1993), and thus it is easy to set the FD by adjusting k. The

FDs used for the construction were estimated using the

coefficient z in the finite-area model (see eqns 4 and 5)

obtained by extracting the slope of the regression line for

the relationship between log A and log pocc for A < Asat.

This estimate (hereafter pBD) is better than the classical box

counting (Hastings & Sugihara 1993), which was proven by

600 simulations of self-similar distributions with FDs of 0.1,

and 0.2, and 0.3,…, 2.0 (30 simulations for each FD). We

calculated both classical BD and pBD for every simulation,

and compared these measurements with FDs used for the

construction of these self-similar distributions. The differ-

ence was 0.26 ± 0.19 for BD and 0.09 ± 0.19 for pBD.

Figure A1 The first three stages of the construction of a random

self-similar distribution, which was used for the testing the

hypothesis that the spatial distribution of birds within the Czech

Republic (CR) and central Europe (CE) can be considered as self-

similar. Elementary steps of the construction comprise lessening of

each square by the factor k (i.e. L ¼ kl) and the random placement

of the four obtained copies within the original square without

overlaps. The grid of 16 · 16 cells whose total area was one-fourth

of L2 was then placed randomly within the area, and pocc for each

area was calculated using all possible quadrats of that area within

the grid.
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