
C H A P T E R F I V E

Geometry of species distributions:
random clustering and scale invariance
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Introduction
Spatial biodiversity patterns are tightly related to the patterns of spatial distribu-

tion of individual species. It has been recognized that the spatial distribution of

individuals is never random nor homogeneous within some well-defined clusters

but is aggregated on many spatial scales: individuals form clusters which them-

selves are aggregated into larger clusters and so on. The most useful way to

capture these patterns is with fractal geometry, which treats such patterns as

self-similar sets (Kunin, 1998; Halley et al., 2004). Indeed, it has been shown that

species spatial distribution is often close to fractal (Virkkala, 1993; Condit et al.,

2000; Ulrich & Buszko, 2003) and that the assumption of fractality of species

spatial distribution is appropriate for deriving multispecies macroecological pat-

terns, namely the species–area relationship (Harte, Kinzig & Green, 1999; Šizling

& Storch, 2004). By contrast, species sometimes reveal distributions that deviate

from strict fractality (Hartley et al., 2004; He & Condit, this volume; Lennon et al.,

this volume). More importantly, although there are several ways in which fractal

distributions could emerge (Halley et al., 2004), there is no strong biological

reason why species spatial distribution should be exactly fractal, i.e. it is unclear

which biological processes should produce fractal distribution.

Here we show that species spatial distributions which are very close to fractal

can emerge from random processes leading to aggregation on several spatial

scales. These processes have relatively straightforward biological interpretation

and the spatial patterns they produce are in many parameters effectively undis-

tinguishable from classical fractals. Moreover, when we compose together

many spatial distributions resulting from these simple processes, we obtain

relatively realistic species–area relationships, as well as a frequency distribution

of occupied areas which is close to the observed distribution of species abun-

dances. We thus propose a null model of the geometry of species distribution

which is biologically reliable, realistic, and more general than is the fractal

distribution.
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Self-similarity and hierarchical aggregation
There is a wide range of possible types of spatially aggregated distributions,

and for our purpose it is useful to distinguish self-similarity from fractality. Self-

similarity is often taken as synonymous to fractality, but as we will show, fractal

distribution can in fact be treated as a rather specific type of self-similar distri-

bution. A geometric object is self-similar, according to Hastings and Sugihara

(1993), ‘‘if it can be written as a union of rescaled copies of itself’’. The problem is

the exact nature of the rescaling. Imagine that we have a broad-scale spatial

pattern which is patchy on this broad scale of resolution (in ecology these

patches can represent, for example, patches of suitable macrohabitat). A self-

similar structure emerges by replacing these patches with patterns similar to the

original patchy pattern. The resulting structures can be very different, depend-

ing on the exact meaning of similarity, as we will show. Anyway, it is useful to see

the emergence of self-similarity as a hierarchical, top-down process, where we

obtain the whole structure by a downscaling performed in discrete steps. If we

apply an unlimited number of these steps, we would obtain a real, mathemati-

cally self-similar set – but in the real world we always have a limited number of

these replacements. In the following text we will be dealing only with self-

similar structures emerging from a finite number of steps, and will call these

steps the levels of aggregation. Self-similarity is, in this view, a property that links

two subsequent levels of aggregation to one another.

This hierarchical approach to self-similar structures has clear advantages.

Most importantly, structures which originate by this process are interpretable

in terms of biological processes acting within each level of aggregation. We

can imagine, for instance, that the largest patches (i.e. within the zero level

of aggregation) correspond to broadly defined macrohabitats characterized by

particular climate or elevation. The next level of aggregation can represent

habitat patches characterized by particular vegetation, and subsequent levels

can be formed for instance by patches of resources. The observed spatial distri-

bution of a species then can form the next level of aggregation, as not all

available habitat patches can be occupied, and patterns of occupancy within

available habitat patches are given by spatial population (and/or metapopula-

tion) dynamics. The pattern aggregated on many scales of resolution can there-

fore reflect the nested nature of habitat hierarchy, and also the hierarchical

nature of spatial population processes. This hierarchical nature alone obviously

does not ensure any regularity concerning the similarity of patterns observed at

various levels of aggregation (i.e. self-similarity) or even fractality, but we will

show that simple statistical assumptions concerning the nature of these hier-

archical processes can lead to surprising regularities.

Note that this hierarchical approach to some extent reconciles two very

different approaches to the multiscale nature of ecological systems. One of
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these approaches, the hierarchical concept of ecosystems (Allen & Starr, 1982)

takes seriously the fact that ecological processes differ in different spatial and

temporal scales, and treats ecological systems as hierarchical, where each scale

has its own rules of behavior. By contrast, the scaling approach consists of

looking for patterns which are actually independent of scale, i.e. for scale

invariance. We will show that some types of scale invariance can emerge even

if we assume different processes acting on each scale – simply because these

processes, albeit different, can have something in common, even if it is some-

thing whose nature is purely statistical.

Fractals
Fractals are self-similar structures where the ‘‘similarity’’ is defined in a parti-

cular way; classically through particular geometrical projections leading

to various structures called ‘‘self-similar sets (sensu stricto)’’, ‘‘self-affine sets’’

and ‘‘random fractals’’. Similarity is there defined as the proportional lessening

of the original pattern in the case of the self-similarity sensu stricto, the result

of an affine projection of the original pattern in the case of self-affine sets,

and the pattern ‘‘statistically indistinguishable’’ from the original pattern

in the case of random fractals (Falconer, 1990). Behind all of these definitions

is, however, the idea of scale invariance. This idea has been originally related

to the problem of the measurement of the length of shoreline (Richardson,

1961) which apparently depends on the resolution of the scale used for

this measurement. In planar terminology, the measured size of any real

area depends on the resolution of the scale used, because finer resolutions

necessarily lead to respecting more and more details. We are therefore looking

for a measure of area which is independent of the scale used – i.e. is

scale invariant. Scale invariance sensu stricto is thus a property of the way in

which we measure geometrical objects rather than a necessary property of the

objects themselves.

When attempting to fulfill the requirement of scale invariance, it is necessary

to obey the formal condition that the measured area of the whole must be equal

the sum of measured areas of particular patches (see Fig. 5.1). To meet this

condition, we have to treat the term area more generally than it is in

Euclidean space. This can be done as follows.

Let the whole be an ith square patch at any level of aggregation. The Euclidean

area of the whole equals Li
2 where Li is the length of the edge of this patch;

the Euclidean area calculated using the finer information on the structure of

the patches at the subsequent level of aggregation equals
Pni

j¼1
l2i; j where ni is the

number of subpatches within the ith patch and li,j are the lengths of their edges.

As we can see, the equality of the areas calculated using coarse and fine scale is
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met only if patches at the subsequent level of aggregation completely cover

the whole. This can occur only if the similar copy of the original pattern is identical

to the whole, and the topological dimension is 2. However, if the similar copy of

the original pattern is patchy, and we are still going to meet the requirement of

the scale invariance of area, we have to change the dimension of the set. In other

words, we have to change the definition of area. The formal condition of self-

similarity is then

LD
i ¼

Xni

j¼1

lDi; j: (5:1)

To be accurate – if there is such D�0 that

Xni

j¼1

lD
i; j ¼ 1 where li; j ¼ li; j=Li (5:2)

for all i and all levels of aggregation, then we call the set fractal and D its fractal/

Hausdorff dimension (the definition adapted from Falconer, 1990).

It can be seen that a pair ‘‘a patch and its replacement’’ has always D�0, and

the Eq. (5.2) is thus always met. However, this D could potentially vary from

patch to patch within a particular level of aggregation, as well as between

subsequent levels. In the case of fractals, however, we have to keep this dimen-

sion stable through all the set to meet the condition of scale invariance. This can

be realized in several ways. The simplest is the case of proper schoolbook

fractals – the li,j are the same for all i,j, and they are also in the same number

for all i. For example, in Fig. 5.2 l equals to 1/3 and n is 5. Thus,
Pni

j¼1
lD

i; j ¼ 5 1
3

� �D¼ 1

and the D is necessarily ln 5
ln 3 � 1:46.

For self-similar sets as they are usually defined (i.e. where ‘‘similar’’ refers to

the proportional lessening of the original pattern), both the number of

l11

l12

l3 l2

l10

00

0 L

Figure 5.1 Three levels of aggregation of the

most common random fractal. While the

Euclidean area at the coarsest scale equals L2,

it equals l1
2þ l2

2þ l3
2 for the following level and

P
l2i;j through all possible combinations of i,j

for the bottom level of aggregation.
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subpatches, ni, and their proportional sizes, li,j, are constant for all replacements

(i.e. for all i). Consequently, D is kept through the whole set and the set is fractal

(it is scale invariant). This is also valid for those random fractals that keep the

number and sizes of subpatches and where the randomness consists just in

the random shuffling of particular patches. For more irregular structures,

e.g. the patterns that vary in the number of subpatches for a particular replace-

ment, or in the vector of li,j, the fractality, however, represents very strong and

very restrictive condition. Namely, the condition of scale invariance (Eq. 5.2)

implies that for each subpatch k of a patch i, the equality

li;k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
Xni

j¼1
j6¼k

lD
i; j

D

v
u
u
u
t (5:3)

must be met. This means that the area of at least one of the subpatches must

depend on the areas of other subpatches and that all subpatches must fall into a

particular range of possible sizes. This condition is derived purely from the

aforementioned requirement of the independency of the area measurement

from the scale used (Eq. 5.1), and thus it is entirely a matter of how we measure

areas. There is no reason why this should be met in nature, because there is

no reason (in a metaphorical sense) why nature should take care of our problems

of measurement. A more realistic view seems to be that there is some other way

in which the number and sizes of the subpatches are related. For instance,

relative Euclidean area of subpatches, instead of fractal area, could be kept

constant –
Pni

j¼1
l2

i;j ¼ const. In the next step, we will try to generalize the idea of

fractals with the aim of releasing it from the mentioned restrictive conditions.

One way to generalize the idea of fractals would be to adopt the classical

(albeit a bit extreme) interpretation of random fractals which says that

0 LL
3

Figure 5.2 Classical regular fractal. In this case,

the fractal dimension, D, remains the same for all

subsequent levels of aggregation and for all chosen

patches. D for the first two subsequent levels of

aggregation is the solution of equation LD ¼ 5 L
3

� �D
,

for the following pair of levels it is the solution of

5 L
3

� �D¼ 25 L
9

� �D
, etc. The fractal area of this set is

thus LD.
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the fractal is almost any spatial structure (Falconer, 1990). According to

this definition, a fractal is each set with fractal dimension, D, defined as the

root of

E
Xni

j¼1

lD
i; j

 !

¼ 1; (5:4)

where E(x) is the expectation of x, i.e. its mean value. Apparently, there is always

such a D that obeys this equation, and thus every set can be considered as

(random) fractal. This approach, however, is as useful as the claim that each

curve is a line because of the existence of a linear regression for each set of

points (N> 1), and consequently it cannot say anything relevant about specific

properties of particular self-similar sets. Therefore, we have to be more specific

in the attempt to generalize fractals in a useful way.

Generalized fractals
As we have shown, self-similarity is a general concept of aggregated geomet-

rical structures which can be applied for any mechanism that forms species

spatial distributions. Fractality is, by contrast, the result of the postulate

of scale invariance of our measurement, which imposes very special condi-

tions on the process of spatial clustering. Such a process, for example, would

have to cause the negative correlation between the number of patches and

the proportional area occupied,
Pni

j¼1
l2

i; j, for all levels of aggregation (the larger is

the fractal dimension, the stronger would necessarily be this correlation).

Therefore, we have to broaden the concept of fractality to release its

narrow and – at least for ecological systems – apparently unrealistic restric-

tions. We call the broader concept generalized fractals, which we define

as structures that originate by replacing patches of the original pattern with

any pattern formed by any process. The only condition on this process is that

it has to remain essentially the same for all levels of aggregation, though

it could vary in its parameters. Note that the process can be very broadly

defined – it can be either entirely random or constrained in some aspects, as

shown below.

To be accurate, we can define generalized fractals as follows. Each spatial

structure which can be decomposed into several patches and their subpatches is

a generalized fractal if there is a number of subpatches within the ith patch, ni,

and if there is a ri (0< ri� 1) such that

F l2
1; l

2
2; � � � ; l2

ni

� �
¼ ri (5:5)

for all i, where F is any function of the vector~l2. Note that for our purposes the

general form of F can be replaced with the sum of particular functions, f, which

yields
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Xni

j¼1

f l2
j

� �
¼ ri: (5:6)

In nature, various processes can form spatially aggregated structures, and these

processes will in fact probably differ between different levels of aggregation.

However, we can expect that some very general statistical regularity should

apply universally, across different levels of aggregation, so that real spatial

distributions can be modeled using the universal assumptions (say, macro-

assumptions) concerning these regularities. There are several possibilities:

1. We can assume scale invariance in the strict sense, which leads to f xð Þ ¼ x
D
2

and ri¼ 1 for all i (which leads to true fractals). We have shown that this

requirement is probably biologically meaningless, and thus we have to set

up other assumptions that could be more biologically relevant – or at least

more easily interpretable.

2. Total proportion of area occupied within any patch is kept within each level

and through all levels of aggregation, whereas the number, the sizes of

individual patches, and their location are random.

3. Total proportion of occupied area of all subpatches within any patch is kept

within each level of aggregation, but it varies randomly between these levels.

4. Everything is random. There is preference neither in number of subpatches

nor in their sizes. Apparently, this is a null model for generalized fractals.

5. The probability distribution (but not the parameters of this distribution) that

controls the randomness of the proportion of occupied area within patches is

independent of the total area considered and is universal for all taxa. This can

seem quite a special assumption, but it is actually the most general one, as

will be explained in detail later (see also Appendix 5.I). Simply said, this

assumes an existence of processes that are actually independent of scale,

and that do not depend even on our choice of the ‘‘zero’’ level of aggregation.

Generating generalized fractals – models of more or less random
multiscale aggregation
To explore the properties of spatial distributions characterized as generalized

fractals, we constructed models of spatial distributions differing in the assump-

tions mentioned above, and compared their features. Model realizations were in

all cases based on the modified percolation model (Falconer, 1990; Lennon et al.,

this volume), the algorithm being identical in all cases. The models thus differ

only in their parameters, and thus they are comparable to one another. The

basic pattern was square, i.e. not only the total area considered (the zero level of

aggregation) was square-shaped, but also all patches and their subpatches were

squares. The models are as follows.
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M1 The fractal model

In the first step, the fractal dimension, D (0<D�2), was drawn from the

distribution of fractal dimensions observed for spatial distributions of

bird species within the Czech Republic (see below). Then the square was

overlapped with a grid of a randomly chosen number of square-shaped

cells, drawn from a regular distribution between 2�2 and 5�5. In the next

step, n squares smaller than one grid cell were randomly located within

randomly chosen (yet unoccupied) grid cells, n being drawn from a regular

distribution between 1 and the total number of the grid cells (so that each

grid cell could be finally either empty or occupied by just one square of

random size and random position within the cell). The only condition was

that the sum of proportional fractal areas of these squares,
Pn

i¼1
lD

i , was equal to 1

(see Eq. 5.2). This process was applied repeatedly for each level of aggregation

(i.e. for each new square), keeping D for all squares within all levels

of aggregation. We stopped the process when reaching the fifth level of aggre-

gation. Note that whereas in an ideal case the distribution of subpatches

should be entirely random, here it is quasi-random because their location

is constrained by the grid used, i.e. by locations of grid cells. This is the case

of all following models as well, and the reason is that otherwise the process

would be too excessively time-consuming, as large already located patches

would too strongly constrain possible locations of the other patches in the

case of large D.

M2 The model of stable proportion of occupied area among levels

In the first step, the proportional area occupied, r (0< r< 1), was drawn from

regular distribution and then the same procedure as for the fractal model

was used. The only difference between these two models was in their parame-

ters. While we used D as an exponent and 1 as the sum of areas in the previous

case, we used 2 as the exponent and r as the sum of areas, respectively, in

the case of this model. Therefore, this model did not keep the fractal dimension

across all levels of aggregation, keeping instead r for each patch across all

levels of aggregation and changing the number of subpatches within each

patch.

This model can be biologically interpreted as the model of habitat hierarchy

where a species occurrence is restricted to some portion of respective level of

habitat hierarchy, and this portion remains the same across all levels and all

patches. Species can differ in this proportion (as r can vary among species), but

each species has some ability to be potentially present in a part of available

habitats regardless of the level of habitat hierarchy, and this ability can be

determined, for example by its niche width (i.e. specialists would potentially

occupy smaller portion of habitat on each level).
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M3 The model of stable proportion of area within levels

This model is similar to the previous one except that the proportion of occupied

area r is set up separately for each level of aggregation (but remains the same for

different patches within one level). This is actually more biologically reasonable

than the previous model, as it is probable that each level of aggregation (say,

level of habitat hierarchy) is very different and thus the proportion of patches

where species occurrence is allowed varies from level to level.

M4 The random proportion model

Here we set up the r separately (and randomly) not only for each level of

aggregation, but also for each patch. This model can thus be regarded as an

entirely null model, as nothing is kept stable during the process of the emer-

gence of respective spatial structure.

M5 The area- and taxa-invariance model

The main idea behind this model is that the previous model is not as ‘‘null’’ as

it looks, because the rules comprising individual patches cannot be equally

applied to the basic squares of all sizes (see Appendix 5.I). Therefore, the

model M4 in fact assumes that there is some basic level (the zero level of

aggregation) which is given, and which cannot itself represent a part of some

larger area. Model M5 ensures that the same rules can be applied for basic

squares of all possible sizes, i.e. it is independent of the scale we start with. In

practice this means that the process is the same as in the previous model (M4),

but r is not chosen from the uniform distribution but from the distribution

which had been proven to be indeed independent of scale (for details see

Appendix 5.I and Fig. 5.8). The parameters of this distribution were generated

randomly, but since this process allowed too wide a range of possible patterns,

we selected the set of simulations with the distribution of fractal dimensions

equal to the observed distribution of D.

Model properties and tests
We explored statistical properties of all the models, choosing properties which

are biologically relevant and have been studied previously. These are the ability

of the models (1) to predict the scale–occupancy relationship, or more accu-

rately the relationship between area and the probability of species occurrence,

(2) to predict the species–area relationship and (3) to predict the distribution of

occupied Euclidean area, which we assume to be proportional to the species

abundance distribution. We compared these model properties between models

M1–M5 and also with respective patterns of species distributions and abund-

ances in central European birds. Species distribution data comprised quadrat-

based distributional atlases of breeding birds of the Czech Republic (Št'astný,

Bejček & Hudec, 1996) and Europe (Hagemeijer & Blair, 1997), from which we
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used squares of 16�16 quadrats (see Šizling & Storch, 2004 for details). Data

on abundance distributions were obtained from BirdLife International/EBCC

(2000), comprising estimated abundances of breeding birds from 33 European

countries excluding Russia and Turkey. These abundance data represent prob-

ably the only suitable set for this type of comparison, because they are at the

same time large scale and reasonably accurate, containing information on

abundances across a large range of magnitudes, from one breeding pair to

several million. Abundances were calculated as a geometrical mean of the

upper and lower estimate for each country if the lower estimate was not zero;

if it was, the abundance was calculated as an arithmetical mean.

The relationship between area and probability of occurrence

The relationship between the area of grid cell and the probability of occurrence

within cells of respective area (hereafter p–area relationship) is a very important

measure of scaling of spatial distribution. It potentially provides a way to estimate

species occupancies or even abundances within fine scales from coarse-scale

censuses (Kunin, 1998; Kunin, Hartley & Lennon, 2000; He & Gaston, 2000; He &

Condit, this volume; note, however, that these authors were not dealing with the

probability of occurrence but with relative occupancy; nevertheless, these meas-

ures converge in the limit as area approaches zero). The knowledge of p–area

functions is sufficient for the construction of species–area curves simply by

summing p–area functions for individual species (Coleman, 1981; Ney-Nifle &

Mangel, 1999; Šizling & Storch, 2004). The p–area relationship is generally

assumed to be the power law in the case of fractals (i.e. it should be linear in

the log-log scale, although see He & Condit, this volume), and for this reason we

tested the linearity of the growing part of these relationships for the observed

data and models. As a measure of linearity we used the maximal correlation

coefficient between log(area) and log(probability of occurrence) obtained by rotat-

ing axes. This correlation coefficient does not depend on the slope of the regres-

sion line and reflects purely the linearity of the relationship. The curvilinearity of

this relationship may, however, generally depend on species rarity – the rarer the

species, the less linear it is (He & Condit, this volume). For this reason we plotted

the maximum correlation against the calculated fractal dimension of respective

spatial distribution (assuming that D tightly correlates with both abundance and

occupancy) to have comparison across different rarity classes.

All the models have apparently equal ability to predict the shape of the p–area

relationship (Fig. 5.3). When using the Nachman’s and logistic models instead of

the power law (He & Condit, this volume), i.e. using –ln(1� p) and p
1�p, respec-

tively, instead of the logarithm of probability of occurrence ln p, we obtained

smaller correlations with the logarithm of area, i.e. larger curvilinearity, for

both models and observed data – but again, all the models were indistinguish-

able from each other and also from the observed p–area relationships.
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Another possibility for comparing the models in terms of their ability to

predict the p–area relationship is to compare the p–area relationships produced

by the models with an ‘‘ideal’’ power-law relationship. In this case, we compared

the probability of occurrence for each area predicted by each model with the

probability predicted by the power-law relationship obtained by approximating

the modeled relationship with the regression line in the log-log scale up to the

point of saturation (i.e. up to the point where the probability of occurrence was

1; see Šizling & Storch, 2004). All the models, including the fractal one (M1), as

well as observed spatial distributions, apparently deviate from the power-law

p–area relationship (Fig. 5.4) but the mean deviation of all the models is rela-

tively low and – more importantly – approximately the same for all models

and observations for all areas. Notably, the highest deviation was revealed

by the observed spatial distributions of birds within the Czech Republic, and

also by the area- and taxa-invariance model (M5) whose parameters were

obtained from these observed distributions. All the other models are effectively

fractal dimension (~occupancy)
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Figure 5.3 Maximum correlation coefficient (see the text) of the growing part of the p–area

relationship in the log-log scale, plotted against the fractal dimension of the spatial

distribution. The correlation coefficient is a measure of the linearity of the p–area

relationship in the logarithmic scale (i.e. how close it is to the power law) and the fractal

dimension correlates with species occupancy (and abundance). Note that all correlation

coefficients are quite high, and correlations for different models fill approximately the

same space in the plot. This indicates that all models, as well as the observed data, provide

the p–area relationship which is very close to the power law. CR, Czech Republic; CE, central

Europe; for details of the data see Šizling & Storch (2004).
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indistinguishable from one another in terms of their mean deviation from the

power-law p–area relationship.

The species–area relationship

The species–area relationship (hereafter SAR) can be exactly predicted using the

knowledge of spatial distribution of individual species, because mean number

of species occurring within a plot of area A is exactly equal to the sum of

probabilities of occurrence in this area across all species (Coleman, 1981; Ney-

Nifle & Mangel, 1999; Lennon, Kunin & Hartley, 2002; Šizling & Storch, 2004).

Therefore, we can construct the SAR simply by summing the p–area curves for

all species. We constructed 200 realizations (i.e. 200 randomly generated ‘‘spe-

cies’’) of each model, and compared resulting SARs with one another and also

with SARs observed for birds in the Czech Republic and central Europe (after

normalizing the species numbers and areas). We have previously shown that

the fractal model (M1) produces SARs which are indistinguishable from

those observed, provided that the distribution of fractal dimensions used in

the model is the same as the observed distribution of measured fractal dimen-

sions (Šizling & Storch, 2004). Also, it is not surprising that the model M5 gives

the SAR which is very close to the observed one, as this model was also based on

Area (no. of grid cells)

0
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1 2251691218149259

Figure 5.4 Mean (marks) and CI0.05 of the mean (whiskers) of deviations, ", from the finite

area model for assemblages of 200 species in the cases of individual models, and for

observations of 142 and 193 bird species within the Czech Republic (CR) and central Europe

(CE), respectively. The " was calculated for each area as the difference between the

probability of occurrence calculated by the finite area model (i.e. the power law bounded by

the point of saturation) and the probability predicted by each model or observation.
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an observed distribution of fractal dimensions. Much more surprisingly, the

other models which were not dependent on any ad-hoc parameterization pro-

duced SARs which were also very close to observed SARs, and individual models

predicted SARs very similar to each other (Fig. 5.5). The species-specific proper-

ties which must have been adjusted to give exact prediction of the SAR in the

case of the fractal model (i.e. fractal dimensions) thus emerged from the other

models themselves. Indeed, the distributions of fractal dimensions (calculated

by standard box-counting method) predicted by the models closely followed the

observed distributions (Fig. 5.6). The shape of the SAR is therefore very well

predicted by several models of generalized fractals without any assumptions

concerning parameters of species spatial distributions. Note also that the slope

of the linearly increasing part of predicted SARs is approximately 0.17, which

is very close to the generally observed mean slope of mainland SARs (0.15;

Rosenzweig, 1995).

Frequency distribution of the occupied Euclidean area

So far, we have shown that particular generalized fractals (including the scale

invariant sets in the original meaning) have similar abilities to predict the p–area

relationships for individual species, as well as the species–area relationships.
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Figure 5.5 Species–area curves for individual models (marked thin lines) and observed

avifauna within the Czech Republic (bold full line) and central Europe (bold dashed line).

The prediction of the fractal model (M1) is not shown, as this model needs a

parameterization by some distribution of fractal dimensions, when it has been shown to

exactly follow the observed SARs (Šizling & Storch, 2004). Note that the curvilinearity and

the associated deviation of modeled species numbers from those observed for large areas

could be potentially due to the fact that the construction of generalized fractals was not

entirely random (see the section headed ‘‘Generalized fractals’’), and this quasi-randomness

apparently affected large areas more strongly.
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Consequently, it is no wonder that most published studies showed that species

spatial distributions are more or less close to fractal, even if they were not

true fractals at all. To show the differences between particular self-similar

models, we have had to test the property in which they should differ, and

this is the distribution of the Euclidean areas they produce. Each such area

corresponds to the area potentially occupied by an individual species and should

be in some level of aggregation proportional to species abundance. The strong

proportionality would be expected if the spatial requirements of individuals

were equal for all species, otherwise the area divided by the mean individual’s

spatial requirement (i.e. mean home range) should be proportional to

abundance.

The distributions of the Euclidean areas occupied, P, obey formulae

Pn ¼ L2rn; ðM2Þ(5:7)
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Figure 5.6 The distribution of fractal dimensions that emerged from models M2–M4,

expressed as the rank–dimension relationship (the rank was rescaled to obtain comparable

curves for observations and predictions). Fractal dimensions were extracted from 200

independent simulations of species spatial distributions (open diamonds, circles, and closed

triangles for M2, M3 and M4, respectively) and the observed distributions of fractal

dimensions of bird spatial distributions within the Czech Republic (CR, full squares) and

central Europe (CE, open squares). The results of models M1 and M5 are not shown, as in

these cases the frequency distribution of fractal dimensions was the input parameter and

was set to be equal to the distribution observed for the avifauna of the Czech Republic. Note

that the distributions predicted by the models fall between the distributions observed for CR

and CE, with the distribution produced by the model M2 falling exactly in the middle.
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Pn ¼ L2 Q
n

j¼1
rj ðM3Þ(5:8)

and

Pn ¼ L20:5n�1r; ðM4Þ(5:9)

where r is a random number between 0 and 1 (drawn from the regular distribu-

tion), n is the number of levels of aggregation and L2 is the area of the original

patch, in the case of M2, M3 and M4, respectively. The area occupied is in these

cases independent from any parameter but r (for details see Appendix 5.II). In

the cases of the other two models (M1 and M5), the distribution of area occupied

depends on an external parameter such as the distribution of fractal dimen-

sions, and this cannot be expressed so easily. We calculated these distributions

numerically for various levels of aggregation using the models depicted above.

To compare the distributions of areas occupied for the individual models with

observed distributions of species abundances, we extracted the variance and

normalized skewness of the distribution of their logarithmically (base 2) trans-

formed values from both the model predictions (for various levels of aggrega-

tion) and the abundance distributions of birds in European countries. Only two

models fitted the data well: the model of the stable proportion of area within

levels (M3) and the area- and taxa-invariance model (M5). In the case of the

model M5 it is not too surprising, as this model always provides almost log-

normal distribution of areas, fitting even better than the lognormal model to

observed distributions (using Kolmogorov–Smirnov statistics; Šizling & Storch,

unpublished manuscript). The fit of model M3 is more interesting (Fig. 5.7). Note

that we should not expect a perfect fit, as the areas occupied on nth level of

aggregation cannot be exactly proportional to the abundances, considering

that individuals from different species have different spatial requirements

(home ranges). Indeed, when we included an assumption of different home

range sizes, assuming an approximately lognormal distribution, the fit of the

model M3 improved, and even the model of the stable proportion of occupied

area among levels (M2) provided good predictions of species abundance distri-

butions. Therefore the spatial distribution characterized by generalized fractals

is likely to lie behind observed species abundance distributions.

Discussion and conclusions
Our results show that spatial structures that are effectively indistinguishable from

true fractals can emerge by simple random hierarchical processes taking place on

several spatial scales. Such processes can be modeled in several ways, differing in

the constraints on the randomness. Quite intriguingly, the models which best fitted

the observed data were those where the proportion of area potentially occupied

within the lower level of aggregation was kept constant throughout space within
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each level of aggregation (M3) or even among different levels of aggregation (M2),

although in the latter case the occupancy/abundance distributions fitted only when

accounting for different spatial requirements of individuals, i.e. assuming partic-

ular nonequal distribution of home ranges (unpublished simulations). The real

pattern of species spatial distribution can in fact lie somewhere between these

two models. Anyway, regardless of which model is closer to nature, all the models

produce structures that are similar to fractals in most properties, although they are

not true fractals, and are in fact much more directly interpretable biologically.
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Figure 5.7 Variance and normalized skewness of the frequency distribution of occupied

areas for models M1, M2, M3 and M4 (grey marks; the number of species for each

assemblage/point was 200; the number of assemblages/points for each setting was 10 in M1

and 100 in M2–M4), and corresponding parameters for logarithmized abundance

distributions of avifaunas of European countries (black marks). The parameters for different

levels of aggregation are marked with different shapes (see legends inside the figures). Note

that with the exception of the model M4, the more levels of aggregation, the higher is the

variance of the respective distribution. The frequency distribution of fractal dimensions

used for the fractal model (M1) was extracted from the observed central European avifauna

data set (see text). Only in the case of model M3 did the parameters of observed and modeled

distributions overlap, albeit only for relatively high levels of aggregation.
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Different levels of modeled spatial aggregation can represent different levels

of habitat association (macrohabitat – mesohabitat – resource patches) and/or

of spatial population dynamics (e.g. range dynamics – local metapopulation

dynamics – behavioral decision-driven changes in occurrence). Various propor-

tions of area selected at each scale that ultimately lead to interspecific differ-

ences in the distribution and abundance can then be related to species-specific

ecological properties such as body size, niche width, mean dispersal distance or

competitive ability. Therefore, although we assume entirely random processes,

they can in fact refer to particular biologically relevant mechanisms, and their

‘‘randomness’’ is just a way to treat different processes in one framework – or, in

other words, it is a way to ensure that different spatial scales and processes

taking place within them can be related to each other in a formal manner.

The finding that our model of random aggregation does not only produce

spatial structures which are very close to observed fractal-like distributions, and

predicts realistic species–area curves, but also gives the distributions of occupied

area which are close to observed species abundance distributions, deserves atten-

tion. There are plenty of models of abundance distributions within species

assemblages (for reviews see Tokeshi, 1999; Gaston & Blackburn, 2000), some of

them based on niche divisions among species (Sugihara, 1980; Tokeshi, 1996),

some on nonlinearities in population dynamics (Bell, 2000; Hubbell, 2001).

Recently it has become clear that a successful model of the species abundance

distribution within larger scales should take space seriously, as abundance always

has an inherent spatial dimension. Therefore, good models must be implicitly or

explicitly spatial. The most prominent of these models is Hubbell’s neutral theory

of biodiversity, according to which the distribution of species abundance is the

result of ‘‘community drift’’ and processes of random colonization, extinction,

migration and speciation (see also He, 2005; Borda-de-Água et al., this volume).

However, this theory assumes that individual species do not differ ecologically,

which is apparently an extremely restrictive assumption. Interspecific niche

differences are almost surely as important as space, and a successful theory

should comprise them as well. There are models that comprise both space and

interspecific niche differences (Marquet, Keymer & Cofré, 2003), and our model

can be treated as one of them. Arguably, our model is the null model of species

abundance distribution, because it does not assume any particular way in which

niches are divided among species, neither any sort of interspecific interactions

(either in evolutionary or ecological time). It is entirely individualistic (i.e.

community-level properties emerge purely from species-level spatial processes)

and ecological differences between species are assumed implicitly, as these

contribute to the process of hierarchical random aggregation.

Generally, there are two major approaches which attempt to treat most

macroecological patterns in species distribution and diversity within one uni-

versal framework. One of them is the above-mentioned Hubbell’s neutral theory
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of biodiversity and biogeography (Hubbell, 2001; see also Bell, 2001; Chave,

2004). The second one is the HEAP (Hypothesis of Equal Allocation Probabilities)

approach which attempts to derive most patterns from basic statistical assump-

tions (Harte et al., 2005; Harte, this volume). Both approaches have, however,

some limitations. Hubbell’s theory does not rely only on the restrictive assump-

tion of species per-capita ecological identity mentioned above, but also assumes

complete biotic saturation, i.e. that total number of individuals per unit area

remains constant, which leads to strong interspecific competition on space, albeit

the outcome of this competition is not given a priori. By contrast, Harte’s HEAP

model represents a rather statistical description, whose biological interpretation

is still unclear (see Harte, this volume). Moreover, although HEAP predicts many

patterns in species distribution and diversity, it needs the abundance distribution

of the whole assemblage as an input. On the contrary, our model of hierarchical

random aggregation does not need any assumption concerning interspecific

relationships or other community-level constraints, nor any external parameters

to predict realistic patterns of species abundance distribution (the abundance

distribution being one of its outputs).

It is not yet clear whether our theory is able to predict as wide a range of

spatial ecological phenomena as those predicted either by Hubbell’s neutral

theory or the HEAP. However, since our theory predicts realistic spatial scaling

of species distribution and diversity with a minimal set of assumptions and

without free parameters, and is at the same time biologically reasonable, it can

be treated as a null hypothesis of spatial scaling of ecological patterns.
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Appendix 5.I The area- and taxa-invariant distribution
As mentioned above, the random proportion model (M4) is not simultaneously

applicable for all sizes of patch area, and thus is not ‘‘scale invariant’’ even in the

most general sense. Assuming, for example, its validity for an area of

500� 500 km2, we cannot simultaneously assume its validity for any larger or

smaller area. The reason is that this model assumes a regular distribution of

proportional areas within each patch, r, through all of S simulations (i.e. for an

assemblage of S species). However, if we do assume it, for example for the

mentioned area 500�500 km2, we obtain an irregular distribution of r for an

area composed from several such areas (Fig. 5.8). The area of 500�500 km2 is

thus in this case privileged and must be considered as basal.
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To build a model that is really independent of ‘‘scale’’ we have to find a

distribution that conserves its form when enlarging the basal area (see

Fig. 5.8). Since area is always positive, the distribution must allow only positive

random values, and also should attain zero, as we never know how many species

are absent on the modeled area. The distribution that obeys these conditions is

independent of area chosen as the basal area (zero level of aggregation) and of

the set of considered species, and we thus call it the area- and taxa-invariant

distribution. We found that this distribution can be expressed using the multi-

exponential form

f xð Þ ¼
X1

i¼1

ci e�Aix � e��ix
� �

; (5:10)

where Ai and �i are positive and ci is any real number (Šizling & Storch, manu-

script in preparation). The number of additive terms, ci e�Aix � e��ix
� �

, does not

have to be necessarily infinite – it is defined as infinite because it can vary

unlimitedly as it arises whenever any two areas are joined. However, three or

(a)

(c) (d)

(b)

Figure 5.8 Top: the frequency distributions of the proportion of occupied area used for the

construction of spatial distributions within the left and the right plots in the case of (a) the

random proportion model (M4) and (b) the area- and taxa-invariance model (M5). Below:

the resulting distributions of the proportion of occupied area when joining the left and right

plots for models M4 (c) and M5 (d). While in the case of the regular distribution (a) the joining

of the two areas yields a roof-shaped distribution (c), in the case of the multiexponential

distribution (b) the distribution of joined plots remains multiexponential (d).
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four terms are usually enough for quite accurate description of observed data.

Additionally, not all additive terms must be necessarily positive (when joining

two areas, some of c appears negative), and thus the ci does not necessarily

approach zero as the number of additive terms approaches infinity.

For building the fitting procedure, which fits the multiexponential distribu-

tion to the data, we expressed the expectation of the distribution as

E xð Þ ¼
X1

i¼1

ci A�2
i � ��2

i

� �
: (5:11)

Obviously, the expectation consists of expectations for individual additive

terms. Therefore, we can roughly fit this distribution on a sample of observa-

tions just by dividing the sample into several subsets of observations (as many as

the number of the additive terms we would like to use), and by fitting each of

these terms on one of these subsets separately. The only condition is that these

subsets should have a similar number of observations.

One term can be fitted by normalizing it (by setting the integral from zero to

infinity as equal to one), by which we obtain

Ei xð Þ ¼ A�1
i þ ��1

i : (5:12)

If �i>Ai, the expected value can vary between Ai
�1 and 2Ai

�1. Estimating the

expectations as a mean, M, we can estimate the parameters as

Ai ¼
2� �= 1þ �ð Þ

Mi
and �i ¼ 1þ �ð ÞAi where � > 0: (5:13)

The vector of parameters of proportionality, ci, was estimated as the best fitted

vector from 200 vectors calculated as ci ¼ random
Ei xð Þ where random is a random

number between 0 and 1. The term ‘‘best fitted’’ refers to the vector for which

the Kolmogorov–Smirnov statistics (i.e. the maximal deviation between two

cumulative distribution functions) between the analytical form and the fitted

data was minimal. The estimation is not too sensitive to the choice of � but in an

attempt to minimalize numerical errors we set it as 1099.

Appendix 5.II Calculating the distribution of occupied areas
To set up the general form for the total areas occupied we used the proportional

areas, l2, for each patch within each level of aggregation. For two levels of

aggregation, for example, we can write

P2 ¼ L2

l2
i1¼1 l2

i1¼1;i2¼1 þ l2
i1¼1;i2¼2 þ � � � þ l2

i1¼1;i2¼ki1¼1

� �
þ

þl2
i1¼2 l2

i1¼2;i2¼1 þ l2
i1¼2;i2¼2 þ � � � þ l2

i1¼2;i2¼ki1¼2

� �
þ

� � �
þl2

i1¼k l2
i1¼k;i2¼1 þ l2

i1¼k;i2¼2 þ � � � þ l2
i1¼k;i2¼ki1¼k

� �

0

B
B
B
B
@

1

C
C
C
C
A

(5:14)
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where P2 is the total area occupied by patches at the second level of aggregation,

L2 is the total area of the area of origin, and indexes i1 and i2 refer to the order of a

particular patch within the first and second level of aggregation, respectively.

So, for instance, l2
i1¼m;i2¼n means the proportional area of nth patch within the

mth patch at the second level of aggregation (see Fig. 5.9; note that the indices

are simplified in this figure so that l2
i1¼m;i2¼n is replaced with l2

m;n, for example).

Making the form (5.14) more compact, we can write

P2 ¼ L2
Xk

i1¼1

l2
i1

Xki1

i2¼1

l2
i1;i2

 !

(5:15)

in the case of two levels of aggregation, and generally

Pn ¼ L2
Xk

i1¼1

l2
i1

Xki1

i2¼1

l2
i1;i2

Xki1 ;i2

i3¼1

l2
i1;i2;i3
� � � l2

i1Kin�1

Xki1Kin�1

in¼1

l2
i1��� in

 !

� � �
 ! ! !

(5:16)

for n of those levels. This relatively complicated general form can be simplified

in the cases of individual models as follows.

M2 The model of stable proportion of occupied area between levels

In this case, the proportional areas occupied, r, were kept constant through the

whole set. In general, considering the form Eq. (5.16) and replacing all propor-

tional areas at the lowest level with r, we obtain

Pn ¼ L2
Xk

i1¼1

l2
i1

Xki1

i2¼1

l2
i1;i2

Xki1 ;i2

i3¼1

l2
i1;i2;i3
� � �

Xki1Kin�2

in�1¼1

l2
i1Kin�1

r
� �

 !

� � �
 ! !

: (5:17)
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Figure 5.9 Three levels of

aggregation with the labels

indicating areas of individual

patches and subpatches. Using

these areas, total occupied

area within respective level of

aggregation can be calculated

using Eq. (5.14). Note that the

calculation is actually

independent of the exact

shape of individual patches,

and the L and l can be

imaginary values (because

they are the square roots of

areas of the patches).

H I E R A R C H I C A L M O D E L S O F S P E C I E S D I S T R I B U T I O N 97



After simplifying

Pn ¼ L2r
Xk

i1¼1

l2
i1

Xki1

i2¼1

l2
i1;i2

Xki1 ;i2

i3¼1

l2
i1;i2;i3
� � �

Xki1Kin�2

in�1¼1

l2
i1Kin�1

 !

� � �
 ! !

; (5:18)

and applying this replacement repeatedly, we obtain Eq. (5.7) presented above,

which is the simplest form of the frequency distribution of the total occupied

area.

M3 The model of stable proportion of area within levels

The only difference between this and the previous model is that here the

proportional area changes when stepping down one level of aggregation. Here

there is not the only one r for the whole set, but as many rj as there are levels of

aggregation (one rj for each level). This leads to Eq. (5.8) presented above.

M4 The random proportion model

The calculation of the frequency distribution of total area occupied is here a bit

more complicated. Let us assume two levels of aggregation again. Replacing

each sum of proportional areas occupied at the second level of aggregation with

its average value, 0.5, plus its deviation, ", we obtain

P2 ¼ L2

l2
i1¼1 0:5þ "1ð Þþ
þl2

i1¼2 0:5þ "2ð Þþ
� � �
þl2

i1¼k 0:5þ "kð Þ

0

B
B
@

1

C
C
A: (5:19)

After simplifying,

P2 ¼ L20:5 l2
i1¼1 þ l2

i1¼2 þ � � � þ l2
i1¼k

� �
þ L2 l2

i1¼1"1 þ l2
i1¼2"2 þ � � � þ l2

i1¼k"k

� �
:

(5:20)

Obviously, the area is given by the area at the higher level of aggregation and

an error term. The error term is a number drawn from a unimodal distribution

(nearly Gaussian) which has average value of zero (because all "i follow the

distribution with the mean of zero).

Replacing the proportional area of the first level with r1, we obtain

P2 ¼ L20:5r1 þ L2" (5:21)

in the case of two levels of aggregation, and using this algorithm repeatedly we

obtain

Pn ¼ L20:5n�1r1 þ L2" (5:22)

in general. The n is the number of levels of aggregation and r1 is the proportional

area occupied at the first level of aggregation. Since the average value of the

error term, L2", is zero, for larger samples we obtain Eq. (5.9) presented above.

This formula could be criticized, however, for allowing an unrealistic extent

of areas. For instance, the area of L2 is not allowed by this form,
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although, according to the model, it is principally possible (all levels of aggre-

gation having r equal to one for all subpatches). The areas larger than L20.5n�1

are, by contrast, very improbable, so that Eq. (5.9) can be used for nearly any

number of species (spatial distributions). This was verified comparing the out-

puts from a numerical model (N¼50; 4 levels of aggregation) with the analytical

form derived.
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