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Republic; 2. Institute of Integrative and Comparative Biology, LC Miall Building, University of Leeds, Leeds LS2 9JT, United Kingdom;
3. Department of Philosophy and History of Science, Faculty of Science, Charles University, Viničná 7, 128 44 Praha 2, Czech Republic;
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abstract: The species-area relationship (SAR) is considered to be
one of a few generalities in ecology, yet a universal model of its shape
and slope has remained elusive. Recently, Harte et al. argued that
the slope of the SAR for a given area is driven by a single parameter,
the ratio between total number of individuals and number of species
(i.e., the mean population size across species at a given scale). We
provide a geometric interpretation of this dependence. At the same
time, however, we show that this dependence cannot be universal
across taxa: if it holds for a taxon composed from two subsets of
species and also for one of its subsets, it cannot simultaneously hold
for the other subset. Using three data sets, we show that the slope
of the SAR considerably varies around the prediction. We estimate
the limits of this variation by using geometric considerations, pro-
viding a theory based on species spatial turnover at different scales.
We argue that the SAR cannot be strictly universal, but its slope at
each particular scale varies within the constraints given by species’
spatial turnover at finer spatial scales, and this variation is biologically
informative.

Keywords: diversity patterns, spatial scaling, beta diversity, maximum
entropy, power law, taxon invariance.

Introduction

For more than a century, biologists have been fascinated
with the increase in species number (S) with area (A),
which can be approached by a power law , wherezS p cA
z is the slope of the relationship in a log-log plot. This
has been observed so regularly that it has challenged many
biologists to explain the pattern, resulting in a proliferation
of models and explanations (e.g., Preston 1960; Coleman
1981; He and Legendre 1996; Lennon et al. 2002; Matter
et al. 2002; Green et al. 2003; Triantis et al. 2003; Šizling
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and Storch 2004, 2007; Harte et al. 2005, 2009; for reviews
see Dengler 2009; Tjørve 2009). Behind this wide diversity
of approaches lies a more fundamental question: does the
species-area relationship (SAR) reflect biological processes,
a real law of ecology, or is the observed regularity the result
of some statistical or mathematical necessity? How we an-
swer these questions colors the way we interpret biodi-
versity patterns. If the shape of the SAR reflects biological
processes, then it carries ecologically relevant information,
and we should learn to read it (e.g., Tjørve and Tjørve
2008); alternatively, if SAR shape results from statistical
or mathematical necessity, then the universality of such
processes would strengthen the argument for using SARs
for the estimation of species richness or for forecasting
extinction (Magurran 2004). Of course, many possibilities
exist between these two extremes. For example, the SAR
derived from Hubbell’s (2001) neutral theory collapses to
a universal function, but the exact shape depends on bi-
ologically relevant variables, namely, the dispersal kernel
and speciation rate (Rosindell and Cornell 2007).

Despite the claims of universal SAR properties (e.g.,
Preston 1960; Rosenzweig 1995), the biological literature
reveals some repeatedly documented differences in curves
between taxa and environments that imply the presence
of at least some ecological information. A clear signal that
the SAR is influenced by some natural processes, rather
than being exclusively governed by mathematical laws,
springs from the evidence that the slope z is typically lower
in unicellular organisms than in multicellular ones (Finlay
et al. 1998; Hillebrand et al. 2001; Finlay 2002; Green and
Bohannan 2007) or for more productive environments and
coarser spatial scales than for unproductive environments
and fine scales (He and Legendre 2002; Storch et al. 2005;
Kallimanis et al. 2008; for review see Drakare et al. 2006).
However, recently Harte et al. (2009) have provided an
argument that even some of these “biological” patterns

http://dx.doi.org/10.5061/dryad.k9711
mailto:storch@cts.cuni.cz


Universality of the Species-Area Relationship 603

can be interpreted as resulting from mathematical neces-
sity. They argue that the major driver of the slope of the
SAR is the individuals-per-species ratio, which will tend
to be high in small-bodied (e.g., unicellular) taxa and in
more productive and larger areas, thus providing a single
explanation for all of the biological factors described
above. Harte et al. (2009) derived the relationship between
the slope of the logarithmically transformed SAR (z; note
that hereafter we will use the parameter z to indicate the
local slope of the SAR in logarithmic space at a given scale,
without necessarily implying a power law SAR, in which
the z would be constant across scales) and the logarithm
of mean abundance per species (hereafter D) at a given
scale. They then showed that this relationship (hereafter
the z-D relationship), together with two anchor values (the
size of a focal area and the species richness found in that
area), fully determines the SAR. Harte et al. (2009) derived
their z-D relationship by using the principle of maximum
entropy (MaxEnt; Jaynes 1957, 1982), suggesting univer-
sality of the relationship across all assemblages regardless
of their taxonomical composition and location. As the
authors note, the logic of the MaxEnt calculations should
apply to any species set, even one delimited by arbitrary
criteria (e.g., “plants with yellow flowers”; Harte et al.
2009, p. 796). They, however, used several assumptions
such as constraints on total number of species and indi-
viduals and total energy consumption, which may be ul-
timately taken as a definition of assemblages to which their
approach applies. The fact that some well-studied natural
systems fit the proposed SAR can then be taken as evidence
that these systems follow the constraints of Harte et al.’s
(2008, 2009) approach.

Here we argue in favour of biologically informative
SARs, suggesting that observed z-D relationships do not
arise from purely mathematical necessity. We base our
argument on the idea of taxon invariance (Storch and
Šizling 2008; Šizling et al. 2009a), demonstrating that no
realistic z-D relationship can hold simultaneously for both
a full set of species and all subsets within it. We show that
such a universal z-D relationship would be possible only
for small assemblages and that its shape would differ from
that commonly observed in nature (and from that pre-
dicted by Harte et al. [2009]). We use data on three con-
trasting z-D relationships to examine their natural vari-
ability. Using geometric considerations, we provide a clue
to understanding the biological basis of this variability.
These purely geometrical constraints will prove narrow
enough to produce regularities in SAR shape but wide
enough to allow reading assemblage-specific biological sig-
nals within each SAR.

Theory

The SAR Is Not Universal for All Taxa

The taxon-invariant z-D relationship can be found by solv-
ing an equation that captures the local (scale-specific)
slopes of logarithmically transformed SARs, z, of two spa-
tially overlapping assemblages and of their composite set
(fig. 1c). Let us consider two scales of samples taken from
the same region of interest (e.g., a forest or focal land-
scape): a set of smaller sample plots each of area A and a
set of larger sample plots of area �A ( , epsilon for� 1 1
enlargement). We examine two subassemblages of species
that we will later combine together. At the smaller scale,
we denote their species richness as and (whereS jA, i A, i

index i indicates a particular plot), while their richness in
our larger sample areas is denoted and , respec-S j�A, i �A, i

tively. For our first subassemblage, the slope characterizing
the increase in species richness when enlarging the sam-
pling area by the factor � can be written as

ln S � ln S�A A

z p . (1)S ln �

The variables and represent mean species richnessS S�A A

across all samples of sizes �A and A, respectively. Similarly,

¯ ¯ln j � ln j�A Az p (2)j ln �

in the case of the second assemblage. The slope of the
combined assemblage, , iszS∪j

¯ ¯ln (S � j ) � ln (S � j )�A A�A A

z p . (3)S∪j ln �

The reason for equation (3) is that the mean species rich-
ness of both assemblages combined across all samples is
calculated as ,[(S � j ) � (S � j ) � … � (S � j )]/n1 1 2 2 n n

where n is the number of samples. It can be rearranged
as , which(S � S � … � S )/n � (j � j � … � j )/n1 2 n 1 2 n

equals . Apparently, no rearrangement (e.g.,¯S � j [(S �1

) affects the result, soj ) � (S � j ) � … � (S � j )]/n3 2 n n 5

equation (3) is valid regardless of the spatial distribution
of the two subassemblages.

Putting equations (1)–(3) together and substituting for
, we can solve for the relationship be-¯p : p S /(j � S )A AA A

tween the three slopes, which is as follows:

z z zS∪j S j� p p � � (1 � p )� (4)A A

(see “Derivation I” in app. A, available online). Now we
should ask whether there is a universal relationship be-
tween z and D that would hold for all possible assemblages,
namely, for the assemblage and both its subassemblages.
We proceed by attributing each slope, zS, zj, and , tozS∪j
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Figure 1: a, Species-area relationship (SAR; curved) and individual-area relationship (IAR; linear) in a log-log plot. The distance D between
IAR and SAR for a given area is equivalent to the logarithm of mean abundance per species, as . Note that the SARlog I � log S p log (I/S)
cannot be linear, because (1) it has a lower slope than the IAR and (2) it cannot intersect the IAR, as there cannot be more species than
individuals. b, Corresponding z-D relationships based on D for the three areas A, �A, and lie on a convex curve. c, SARs and IARs forA/�
a taxon and its two subtaxa. If the slopes (z) and distances (D) of two subassemblages (dashed relationships in c) and their composite set
(full relationship in c) were to lie on a universal curve, then this universal curve would be downward accelerating (d).

the corresponding vertical distances between the SAR and
the individual-area relationship in logarithmic space, DS,
Dj, and (fig. 1c), respectively. The distance D is equalDS∪j

to the logarithm of the mean number of individuals per
species at a given area, used by Harte et al. (2009), as

. The relationship between theln I/S p ln I � ln S p D
distances for the whole assemblage and the subassemblages
is (see “Deri-D p ln [p exp (D ) � (1 � p ) exp (D )]S∪j A S A j

vation II” in app. A). To derive this relationship, we as-
sumed that total abundance of all species scales linearly
with area (see “Thesis I” in app. A). Consequently, we can
derive a functional equation:

z{ln [p exp (D )� 1�p exp (D )]} z(D ) z(D )( )A S A j S j� p p � � (1 � p )� . (5)A A

The only possible solution of equation (5), if it exists, obeys

Dln (ae � b)
z(D) p , (6)

ln �

where a and b are parameters without any particular
meaning (see “Thesis II” in app. A). If , thenDae � b ≤ 0
z(D) in equation (6) is undefined, and the universal z-D

relationship does not exist. Hence, a universal z-D rela-
tionship can exist only within a limited range of the var-
iable D ( if ). Equation (6) also sug-D ! ln (�b/a) ab ! 0
gests that the shape of the z-D relationship depends on �.
Theoretically, we should consider as low a value of � as
possible ( ) to derive a smooth curve. Practically, we�� r 1
need a reasonably large � (Harte et al. 2009 used ).� p 2
Therefore, we will discuss z-D relationships for all possible
� values ( ).� 1 1

Equation (6), or an equivalent formulation, presents the
only possible universal (i.e., taxon-invariant) z-D rela-
tionship. It has some important properties that can be
tested against data. The parameters a and b can be any
real numbers; however, makes the relationship be-a ≥ 0
tween z and D increasing or constant, which is unrealistic,
contradicting both the preponderance of reported data sets
(Harte et al. 2009; fig. 4b) and the MaxEnt solution (Harte
et al. 2009). Hence, we will not discuss this scenario, and
we hereafter assume that . Since equation (6) is de-a ! 0
fined only for , negative values of a makeDae � b 1 0

. Hence, the relationship between z and D as de-b 1 0
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Figure 2: Taxon-invariant (a) and consecutive-constraints (b) models of z-D relationships. a, An example of various z-D relationships (eq.
[6]; solid lines) for various coefficients a (see labels) and ( , ). Such a relationship would be followed byz D0 0b p � � ae z p 0.9999 D p 00 0

the data had the z-D relationship been universal and thus independent of the focal taxa. The dashed line shows the MaxEnt solution adopted
from Harte et al. (2009). b, Various z-D relationships resulting from the consecutive-constraints model, with various starting points

, , , , and . The parameter K varies randomly (with regular distribution) between its{D(0), z(0)} p {0, 0.95} {0, 0.75} {0, 0.5} {0, 0.25} {0, 0.05}
theoretical limits (eq. [8]). Note that the real distribution of parameter K is not regular; however, the parameter must have been distributed
with extreme preference toward low values (strong right-skewed distribution) to break the decreasing hollow shape of the z-D relationship.

scribed in equation (6) is (i) decreasing, (ii) downward
accelerating, and (iii) reaches 0 at (fig. 2a;D p ln (�b/a)
for proofs see “Theses III–VI” in app. A), which is clearly
unrealistic, contradicting both the observations (fig. 1a in
Harte et al. 2009; fig. 4b) and the MaxEnt solution.

The taxon-invariant z-D relationship has been derived
assuming a constant ratio (p) between species richness of
the two subassemblages at all scales. In reality, this ratio
can vary across scales if, for example, one subassemblage
exhibits higher species spatial turnover than the other. This
means that, considering an increasing series of sampling
areas, A, �A, �2A, ..., �nA, each subassemblage’s ratio

can be different. Nonetheless, if we focus on a par-p i� A

ticular step of the enlargement of the area (e.g., on the
particular slope between and ), only onei i�1z(D) �A � A
locally fixed value of is attributed to this step (fig. 1c).p i� A

Hence, in accord with the proof, the three particular points
(see fig. 1d) , , and{D , z(D )} {D , z(D )} {D , z(D )}S S j j S∪j S∪j

would certainly lie on a downward-accelerating curve had
the z-D relationship been universal. This holds true for
any three DS, Dj, and , and thus the whole universalDS∪j

taxon-invariant z-D relationship must be necessarily
downward accelerating, reaching 0 (fig. 2). The variation
in p can only modify its curvature and shift the point of

.z(D) p 0

The Expected Shape of z-D Relationships

While we have demonstrated above that all SARs cannot
simultaneously follow Harte et al.’s (2009) universal so-

lution, most data show a hollow z-D relationship, as Harte
et al. (2009) predicted. Why? One way to conceptualize
the SAR is to begin by examining the species richness of
a set of fine grid cells (e.g., fig. 3, A1, A2, B1, B2) and
then to successively merge neighboring cells to form pairs
(e.g., fig. 3, A, B), then neighboring pairs to form quartets,
and so on, equivalent to setting (see also Harte and� p 2
Kinzig 1997). We contend that the Jaccard index (the per-
centage of species shared by two assemblages; Brown and
Lomolino 1998) between two adjacent plots of a given
area (Jn for the Jaccard index at one stage of this process)
will constrain the subsequent Jaccard index between two
adjacent plots of twice that area ( for the Jaccard indexJn�1

at the next stage), following the equation

KJnJ � , (7)n�1 2 � KJn

where the parameter K is constrained as

1
1 ≤ K ≤ min 4, . (8)[ ]Jn

The reason is that (i) the Jaccard index is defined as a
proportional number of species shared by two focal plots
and (ii) the number of species shared by two adjacent
larger plots (e.g., fig. 3, A, B) cannot be lower than the
mean number of species shared by pairs of finer subplots
within them (i.e., the number of species shared by A1 and
B1, A1 and B2, A2 and B1, and A2 and B2), but it also
cannot be more than four times higher than this mean
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Figure 3: A square-shaped plot (top) or a linear plot (bottom) can be divided into four adjacent plots A1, A2, B1, and B2 (hereafter, small
plots). These plots can be grouped into two adjacent plots A ( ) and B ( ; hereafter, large plots). The number of species{ A1 ∪ A2 { B1 ∪ B2
shared by large plots A and B cannot be lower than the number of species shared by a pair of small plots depicted by one of the four
arrows, and at the same time, it cannot be higher than the simple sum of species shared by all the pairs (all four arrows) together. Therefore,
the number of species shared by the large plots A and B is K times the average number of species shared by a pair of small plots, where
K lies between 1 and 4. These limits are universal, although the lower limit can be reached only if the four arrows represent equal numbers
of shared species. K is thus the number by which the mean number of shared species between small plots must be multiplied to get the
number of shared species between the two large plots. It is constrained by the relative proportion of species shared by the small plots. If
small plots (A1, A2, B1, B2) mutually share only a low proportion of their species (narrow arrows in a), it is likely that different pairs of
the small plots will share different sets of species, so that the number of species shared between A and B will be considerably higher,
increasing K. If the Jaccard index approaches 0, the lists of species shared by the smallest plots are almost completely nonoverlapping, and
all four lists (arrows) should be involved in calculating the Jaccard index between A and B (K in eq. [7] and eqq. [B1], [B2], available
online, approaches anything between 1 and 4). On the other hand, in an extreme case, if the small plots share all their species (Jaccard
index p 1), the overlap is 100% and the number of shared species between A and B is the same as the number of shared species between
any two small subplots (i.e., all the species), so that in equations (7), (B1), and (B2) . We suggest that the relationship between theK p 1
Jaccard indices of the small plots and K (see eq. [7]) is assemblage-specific; however, the limits imposed on K and the tendency of K to
increase with the decrease in the Jaccard index between the smallest plots are universal, as they represent geometric necessity.

number of shared species (fig. 3). The value of cannot1/Jn

be exceeded by K because the Jaccard index can never
exceed 1 (for details see app. B, available online).

The local slope z and the Jaccard index of assemblage
similarity between adjacent plots (averaged across their
various locations) are closely related as

ln (1 � J)
z � 1 � (9)

ln 2

(see Koleff et al. 2003 and “The Link between z and J (Eq.
[9])” in app. B; for a review see Gaston et al. 2007). There-
fore, equation (7) also governs the z-D plot. Each zn and
Dn in this plot constrains the subsequent and ,z Dn�1 n�1

parameterized by K (see “Consecutive Constraints” in app.
B). The parameter K varies according to equation (8).

If we make the null assumption that parameter K is
distributed regularly or symmetrically between its limits,
the hollow shape of the z-D relationship (fig. 2b) simply
results from the higher probability that z decreases when
increasing area due to the disproportionately wide region
of parameter space where z declines with increasing scale
(fig. 4c). This effect is further promoted by the fact that
no K can approach its lower limit as long as there is any
variability in numbers of shared species between pairs of

adjacent samples, which is very probable (for details see
app. B). Realistic (i.e., hollow) z-D relationships are pro-
duced by all distributions of K whose median values lie
above the line that separates K for decreasing and increas-
ing z values with scale (fig. 4c, dotted line). This line lies
entirely in the lower half of the space of possible K, which
means that all symmetric, all left-skewed, and a large pro-
portion of right-skewed distributions of K produce a hol-
low shape in the z-D relationship. In sum, the hollow
pattern is the most likely one, although other shapes (e.g.,
increasing z-D relationship for high D, corresponding to
the triphasic SAR; Shmida and Wilson 1985; Fridley et al.
2005; Rosindell and Cornell 2009) are also possible.

The considerations of consecutive constraints apply for
any starting point in the bivariate z-D space{z(0), D(0)}
(fig. 2b); that is, they do not lead to any particular value
of z for a given D, predicting only the overall trend. It is,
however, reasonable to assume that all observed z-D re-
lationships start with low D and high SAR slopes
( and , respectively). This is because� �D(0) r 0 z(0) r 1
the SAR is constrained to fall below the individual-area
line, as there cannot be more species than individuals (fig.
1a, 1c; for broader discussion see app. B). This is the reason
why all SARs have high slopes for very small areas.
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Figure 4: Data on Czech birds (dots), Mediterranean fish (squares),
and tropical trees (triangles) plotted together with the theoretical
relationships. a, Relationship between the average Jaccard index of
similarity in species composition across various equal-sized plots and
the slope of the species-area relationship in logarithmic space, z. The
solid line shows the prediction of equation (9). b, Observed z-D
relationships (z computed following Harte et al. 2009) plotted against
five trends in z decay with various values of K ( , 3.5, 3, 2.5,K p 4
and 2.1 from left; solid lines); the higher the slope of z is, the lower
the Jaccard index is and the more the K is expected to drive the
decay in z (fig. 3). The MaxEnt prediction (dashed line) is adopted
from Harte et al. (2009). c, Lower and upper limits of the parameter
K (which determines z at the next coarser scale; eq. [8]) as a function
of the slope (z) of the species-area relationship (SAR) at the finer
scale (solid lines). The higher the value of K is for a given z, the
lower (relatively) the consecutive (i.e., next-coarser) z value must be
(see “The Meaning of K” in app. B, available online). The dotted
line represents values of K for which z remains constant (z at the
current scale p z at the next coarser scale). For points above the
dotted line, consecutive slopes (z2A) are lower than zA, so that the
SAR is decelerating on logarithmic axes.

The Meaning of Parameter K and Biological
Effects on the Shape of the SAR

The considerations of consecutive constraints give a clue
to understanding biological information beyond the SAR
at various scales. The parameter K links z at the focal scale
with z at the consecutive scale; z at the finer scale deter-
mines the limits of K, and K taken from this envelope
determines z at the next coarser (i.e., consecutive) scale.
Any biological effect acts through affecting the variation
in K within its limits given by a particular z at the finer
scale. Higher K relates to lower z at the coarser scale,
relative to z at the focal scale, indicating that the number
of species shared between plots at the coarser scale is con-
siderably higher than the number shared between plots at
finer scales. This can be realized only by the relative in-
crease of occupancy at the coarse scale, which tends to
occur when occupied cells at the focal scale are widely
scattered. Relationships between z and K (fig. 4c) that are
closer to the lower limit thus indicate that most species
do not have a tendency to increase their relative occupancy
when increasing scale, revealing aggregated distributions
at each focal scale.

Species’ spatial aggregation at given scale can be driven
by various factors, ranging from the distribution of suitable
habitat and spatial population dynamics comprising dis-
persal, colonization, and local extinctions to behavioral
processes such as social group formation and conspecific
attraction or repulsion. All these effects then translate into
particular occupancy patterns (i.e., relative proportion of
occupied sites) at each spatial scale, which then drive the
relationship between z and K as explained above. System-
atically low K would indicate systematic bias toward lower
occupancies when changing scale, systematically high K
would indicate a tendency for increasing occupancies with
scale, and K values lying approximately in the middle be-
tween the two constraints could be interpreted as an ab-
sence of bias toward systematic increase or decrease of
species’ relative occupancy at the coarse scale, given the
occupancy at the focal scale. This could result either from
a general tendency for moderate levels of aggregation in
species spatial distributions across scales or from a wide
range of aggregation patterns for different species, result-
ing in a moderate level of aggregation on average.

Data Tests

We performed three data tests. First, we tested for agree-
ment between z (from eq. [1], with ) and its estimate� p 2
by using the mean Jaccard index across various locations
of sampling plots (eq. [9]). We expect some small depar-
tures from the straightforward relationship, as Jaccard in-
dex values vary spatially (i.e., for various comparisons of



608 The American Naturalist

plots), whereas z comprises only an overall value. Then
we explored the extent of differences between z-D rela-
tionships for various data. Finally, we examined distri-
bution of the parameter K within the limits of its possible
values (eq. [8]) for these data sets.

We used three data sets. (i) The first consisted of Czech
bird data, comprising abundances of 137 species collected
by skilled volunteers on 123 transects scattered throughout
the whole area of the Czech Republic. Each transect con-
tained 20 census points at 300–500-m intervals counted
two times per breeding season in one randomly selected
year from the period 2006–2008. The maximum count
was treated as abundance of a species at a given point. See
Reif et al. (2010) for more details on this data set (data
are available on request from verm@birdlife.cz or at Dryad,
http://dx.doi.org/10.5061/dryad.8733). (ii) The second
data set consisted of Barro Colorado Island tree data (Con-
dit 1998; Hubbell et al. 1999; see http://ctfs.si/edu/datasets/
bci) overlapped by a grid of cells. (iii) The1,030 # 20
third data set consisted of data on Mediterranean fish
collected by A. L. Šizling (http://dx.doi.org/10.5061/
dryad.k9711) along a 20-point, 80-m-long transect located
in a bay at the east end of island Brač, Croatia. The space
around each point (2 m in radius) was checked for 3 min
(spaces around all consecutive points were adjacent); the
transect was checked for 3 days at 10 a.m. Data from each
day (40, 47, and 44 individuals of 13, 11, and 11 species,
respectively; 16 species in total) were analyzed separately,
and the presented slopes of logarithmically transformed
SARs and Jaccard indices are mean values over all the three
data sets.

In computation procedures, all data were sampled as
linear series of plots (so that the area of a sample was
enlarged by prolonging one dimension only), with con-
secutively doubled lengths starting with one cell (one cell,
two cells, four cells, and so on up to 16 cells in birds and
fish and 1,024 cells in tree data). All possible locations of
each plot were taken into account. Slopes of logarithmi-
cally transformed SARs were computed from the mean
number of species across all plots of a given size; similarly,
the Jaccard index was a mean value across all pairs of
adjacent plots of the given size (for computational tools
see http://www.cts.cuni.cz/wiki/ecology:start). The com-
parability of this computational approach with that of
Harte et al. (2009) is demonstrated by the similarity of
results for the Barro Colorado Island data used in both
articles (cf. figs. 4b, 1a in Harte et al. 2009).

Observed z values followed the predictions given by
Jaccard indices (eq. [9]; fig. 4a). The regression line be-
tween observed and predicted z values had parameters as
follows: slope, 0.988 ( ); intercept, 0.003SE p 0.004
( , ); and correlation coefficient,SE p 0.002 df p 622
0.9946 ( ).N p 624

The z-D relationships of Mediterranean fish and Barro
Colorado Island tree data differed significantly from the
Czech bird data (fig. 4b), as the probability of each falling
entirely above the 123 bird relationships at random was
less than 0.037, with confidence 0.95 (using Wilks’s non-
parametric test; Wilks 1941; see also app. C in Šizling et
al. 2009b for a detailed explanation). Unlike in the other
two data sets, some examined plots were not adjacent in
the bird survey, with gaps of up to 200 m. Longer interplot
distances, however, should make the Jaccard index between
those plots lower (due to distance decay in community
similarity; e.g., Nekola and White 1999; Azaele et al. 2009)
and thus make z higher. Hence, the true z values for birds
should be lower than those plotted, which further accen-
tuates the differences between the z-D relationships of the
three groups, making our test conservative.

The observed relationships between z and the coefficient
K were mostly clustered approximately midway between
the constraints imposed by equation (8), at least in the
bird and fish data (fig. 4c). The observed K values con-
tinued to rise with z after the upper constraint had reached
its maximum ( ), so that at very high z values, thisK p 4
upper line was approached (at least in the bird data set).
The three data sets differed somewhat in their behavior,
especially at very high slope values, with trees displaying
lower K values than fish or most birds, indicating that
these taxa differ in the way their relative occupancies vary
with spatial scale.

Discussion

The MaxEnt approach in ecology does not require any
specification about the focal group of species, and its re-
sults should thus be applicable to any—even arbitrarily
chosen—set of species (Harte et al. 2009). We used the
principle of taxon invariance (Storch and Šizling 2008;
Šizling et al. 2009a) to show that the species-area rela-
tionship cannot universally follow Harte et al.’s (2009)
solution; hence, we need to specify the group of species
to which this solution applies, if such a group exists. The
main point of our proof was that the z-D relationship
would have to be downward accelerating, soon reaching
0, had it been universal, which would allow universality
only at small scales and contradicts the great mass of SAR
patterns observed in nature.

The extent of variability in z-D relationships is consid-
erable. The tree, bird, and fish data show strongly diverging
z-D relationships when increasing D, all starting from low
D and high z values (fig. 4b). The notion that taxa may
differ in SAR properties is further supported by Finlay et
al. (1998), who found 48,186 individuals of 85 species
( ) of marine interstitial species and 20,486 indi-D p 6.3
viduals of 104 species ( ) of freshwater benthicD p 5.3

mailto:verm@birdlife.cz
http://dx.doi.org/10.5061/dryad.8733
http://ctfs.si/edu/datasets/bci
http://ctfs.si/edu/datasets/bci
http://dx.doi.org/10.5061/dryad.k9711
http://dx.doi.org/10.5061/dryad.k9711
http://www.cts.cuni.cz/wiki/ecology:start
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ciliate species (Protozoa) in their samples and estimated
z as 0.04, similar to the low slopes of logarithmically trans-
formed SARs frequently reported in planktonic and mi-
crobial assemblages (Finlay et al. 1998; Hillebrand et al.
2001; Finlay 2002; Green and Bohannan 2007). Conversely,
Harte et al. (2009) predict z of approximately 0.2 for these
values of D (fig. 4b). The crucial evidence for lack of
universality in z-D relationships, however, comprises the
analytical proof (app. A).

Our evidence suggests the existence of assemblage-spe-
cific SARs carrying ecologically relevant information. At
the same time, the geometrical considerations suggest the
prevalence of hollow shapes of z-D relationships due to
the existence of constraints resulting from mathematical
necessities. Once z is known at a specific scale, geometrical
rules impose constraints on z at the next coarser scale,
with change in z being mediated by the parameter K.

The realized distribution of K values found in our data
sets is not uniform within the constraints imposed by
equation (8) and varies between the focal assemblages (fig.
4c), which ultimately indicates something about their eco-
logical properties. First, the clustering of observed K values
in the middle between the constraints indicates that any
tendency toward higher relative occupancy in some species
is generally balanced by the opposite tendency in other
species at each scale (for details see “The Meaning of K”
in app. B). Second, the bird and fish data follow a similar
relationship, their K values being higher than the K values
for tropical trees, namely, for higher z at the finer scale
( ). Because higher K values indicate relatively lowerz ≥ 0.5
z values and thus higher mean occupancies at the next
coarser scale, we conclude that our tree species sample was
generally more aggregated at finer scales than were the
bird and fish species surveyed. At coarser scales, at which

, the tendency toward aggregation becomes similarz ! 0.5
for all three assemblages.

We argue against the traditional attempts to derive the
SAR from species abundance distributions (SADs; e.g.,
Preston 1962; Harte et al. 2008, 2009; Tjørve et al. 2008).
Our approach was based on consecutive constraints im-
posed on variation in the Jaccard index of community
similarity between two adjacent plots with scale. We did
not need information on any particular shape of the SAD
to build a SAR under this approach. Indeed, if there is a
link between SAD and SAR, it may run the opposite di-
rection, as species’ spatial turnover has recently been dem-
onstrated to determine the SAD (Šizling et al. 2009c; Kůrka
et al. 2010). Hence, the variation in species’ spatial turn-
over between adjacent plots (alternatively, z for )� p 2
may prove a master pattern simultaneously driving several
macroecological and diversity patterns, including the SAR
and the SAD.

Our considerations enable a better understanding of the

potential value of Harte et al.’s (2008, 2009) MaxEnt pre-
dictions. Harte et al. (2009) argue that no specification in
terms of focal group of species is present in their theory,
so that their results are applicable to any group of species.
They built their theory with a constraint imposed on en-
ergy, which applies only to a conservative system (in the
physical sense): one where energy income is at equilibrium
with energy emission in each sample. However, ecological
assemblages with multiple trophic levels are rather dissi-
pative systems, that is, systems that are not conservative
in the physical sense. The reason is that the flow of energy
cascades between the trophic levels, with lower trophic
levels making up the resources needed by species at higher
trophic levels (Thornton 1997). A new prey species thus
increases opportunities for a new predator to occur, which
is the opposite of what would be expected in a conservative
assemblage. The lack of taxon invariance in MaxEnt pre-
dictions may reflect an implicit limit in the application of
the model to taxonomical levels or ecological guilds where
all species compete for a fixed common pool of resources.
It is thus possible that the MaxEnt prediction applies only
to specific ecological groupings (taxonomical, trophic, or
other) where its assumptions are met.

In summary, we have shown that the local slope of the
species-area relationship, z, cannot be universally deter-
mined by the ratio between the total number of individuals
and the number of species for a given area, D. Still, the
MaxEnt prediction can be taken as a reasonable expec-
tation (which may not necessarily be followed by obser-
vations; Jaynes 1957) if we have information on only these
two variables. Indeed, the observed relationship between
D and z documented here is qualitatively similar to the
hollow curve predicted by Harte et al. (2009), although
various taxa are free to (and do) deviate from this pre-
diction to various extents. Such deviations carry ecologi-
cally relevant meaning (see also Banavar et al. 2010; Hae-
geman and Etienne 2010); for example, they can reveal a
tendency of most species to be widely dispersed or, con-
versely, spatially aggregated at each particular scale. The
existence of geometric constraints and the fact that ob-
served SARs vary somewhat within them underscores not
only the mathematical and statistical regularities governing
the relationship but also the power of ecological differences
between species groups to mold the species-area rela-
tionship.
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Šizling, A. L., D. Storch, J. Reif, and K. J. Gaston. 2009a. Invariance
in species-abundance distributions. Theoretical Ecology 2:89–103.
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